1
|
Roy P, Rutter A, Gainer A, Haack E, Zeeb B. Survival and reproduction tests using springtails reveal weathered petroleum hydrocarbon soil toxicity in boreal ecozone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57920-57932. [PMID: 39302583 DOI: 10.1007/s11356-024-35012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Survival and reproduction tests were conducted using two native springtail (subclass: Collembola) species to determine the toxicity of a fine-grained (< 0.005 - 0.425 mm) soil from an industrial site located in the Canadian boreal ecozone. Accidental petroleum hydrocarbon (PHC) release continuously occurred at this site until 1998, resulting in a total hydrocarbon concentration of 12,800 mg/kg (soil dry weight). Subfractions of the PHC-contaminated soil were characterized using Canadian Council of Ministers of the Environment Fractions, which are based on effective carbon numbers (nC). Fraction 2 (> nC10 to nC16) was measured at 8400 mg/kg and Fraction 3 (> nC16 to nC34) at 4250 mg/kg in the contaminated soil. Age-synchronized colonies of Folsomia candida and Proisotoma minuta were subject to 0%, 25%, 50%, 75%, and 100% relative contamination mixtures of the PHC-contaminated and background site soil (< 100 mg/kg total PHCs) for 28 and 21 days, respectively. Survival and reproduction decreased significantly (Kruskal-Wallis Tests: p < 0.05, df = 4.0) in treatments of the contaminated site soil compared to the background soil. In both species, the most significant decline in survival and reproduction occurred between the 0% and 25% contaminated soil. Toxicity responses in the two springtails were ascribed to the standardized test design, short lifespans, and high fecundity in both species. This study showed that 25 + years of soil weathering has not eliminated the toxicity of fine-grained PHC-contaminated soil on two native terrestrial springtail species. Adverse effects to springtail health were attributed to exposure to soils dominated by genotoxic PHC Fraction 2 compounds and slow weathering processes due to the cold climate at the site.
Collapse
Affiliation(s)
- Prama Roy
- School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - Allison Rutter
- School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Amy Gainer
- Clear-Site Solutions (Formerly With Advisian/Worley Canada Services), 9807 83 Ave, Edmonton, AB, Canada
| | - Elizabeth Haack
- Ecometrix Incorporated, 6800 Campobello Road, Mississauga, ON, L5N 2L8, Canada
| | - Barbara Zeeb
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, K7K 7B4, Canada
| |
Collapse
|
2
|
Wu M, Feng S, Liu Z, Tang S. Bioremediation of petroleum-contaminated soil based on both toxicity risk control and hydrocarbon removal-progress and prospect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59795-59818. [PMID: 39388086 DOI: 10.1007/s11356-024-34614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024]
Abstract
Petroleum contamination remains a worldwide issue requiring cost-effective bioremediation techniques. However, establishing a universal bioremediation strategy for all types of oil-polluted sites is challenging. This difficulty arises from the heterogeneity of soil textures, the complexity of oil products, and the variations in local climate and environment across different oil-contaminated regions. Several factors can impede bioremediation efficacy: (i) differences in bioavailability and biodegradability between aliphatic and aromatic fractions of crude oil; (ii) inconsistencies between hydrocarbon removal efficiency and toxicity attenuation during remediation; (iii) varying adverse effect of aliphatic and aromatic fractions on soil microorganisms. This review examines the ecotoxicity risk of petroleum contamination to soil fauna and flora. It also discusses three primary bioremediation strategies: biostimulation with nutrients, bioaugmentation with petroleum degraders, and phytoremediation with plants. Based on current research and state-of-the-art challenges, we highlighted future research scopes should focus on (i) exploring the ecotoxicity differentiation of aliphatic and aromatic fractions of crude oil, (ii) establishing unified risk factors and indicators for evaluating oil pollution toxicity, (iii) determining the fate and transformation of aliphatic and aromatic fractions of crude oil using advanced analytical techniques, and (iv) developing combined bioremediation techniques that improve petroleum removal and ecotoxicity attenuation.
Collapse
Affiliation(s)
- Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China.
| | - Shuang Feng
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Zeliang Liu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Shiwei Tang
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| |
Collapse
|
3
|
Wu ZH, Li F, Wang F, Jin R, Li Y, Li S, Zhou Z, Jia P, Li JT. A synthetic bacterial consortium improved the phytoremediation efficiency of ryegrass on polymetallic contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116691. [PMID: 38981391 DOI: 10.1016/j.ecoenv.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Polymetallic contamination of soils caused by mining activities seriously threatens soil fertility, biodiversity and human health. Bioremediation is thought to be of low cost and has minimal environmental risk but its effectiveness needs to be improved. This study aimed to identify the combined effect of plant growth and microbial strains with different functions on the enhancement of bioremediation of polymetallic contaminated soil. The microbiological mechanism of bioremediation was explored by amplicon sequencing and gene prediction. Soil was collected from polymetallic mine wastelands and a non-contaminated site for use in a pot experiment. Remediation efficiency of this method was evaluated by planting ryegrass and applying a mixed bacterial consortium comprising P-solubilizing, N-fixing and SO4-reducing bacteria. The plant-microbe joint remediation method significantly enhanced the above-ground biomass of ryegrass and soil nutrient contents, and at the same time reduced the content of heavy metals in the plant shoots and soil. The application of the composite bacterial inoculum significantly affected the structure of soil bacterial communities and increased the bacterial diversity and complexity, and the stability of co-occurrence networks. The relative abundance of the multifunctional genera to which the strains belonged showed a significant positive correlation with the soil nutrient content. Genera related to carbon (C), nitrogen (N), phosphorus (P), and sulphur (S) cycling and heavy metal resistance showed an up-regulation trend in heavy metal-contaminated soils after the application of the mixed bacterial consortium. Also, bacterial strains with specific functions in the mixed consortium regulated the expression of genes involved in soil nutrient cycling, and thus assisted in making the soil self-sustainable after remediation. These results suggested that the remediation of heavy metal-contaminated soil needs to give priority to the use of multifunctional bacterial agents.
Collapse
Affiliation(s)
- Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Fenglin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Feifan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Rongzhou Jin
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yanying Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shilin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Zhuang Zhou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
4
|
Rout AK, Dixit S, Tripathy PS, Rout SS, Parida SN, Parida PK, Sarkar DJ, Kumar Das B, Singh AK, Behera BK. Metagenomic landscape of sediments of river Ganga reveals microbial diversity, potential plastic and xenobiotic degradation enzymes. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134377. [PMID: 38663298 DOI: 10.1016/j.jhazmat.2024.134377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
The Ganga is the largest river in India, serves as a lifeline for agriculture, drinking water, and religious rites. However, it became highly polluted due to the influx of industrial wastes and untreated sewages, leading to the decline of aquatic biodiversity. This study investigated the microbial diversity and plastic-xenobiotic degrading enzymes of six sediment metagenomes of river Ganga at Prayagraj (RDG, TSG, SDG) and Devprayag (KRG, BNG, BRG). The water quality parameters, higher values of BOD (1.8-3.7 ppm), COD (23-29.2 ppm) and organic carbon (0.18-0.51%) were recorded at Prayagraj. Comparative analysis of microbial community structure between Prayagraj and Devprayag revealed significant differences between Bacteroidetes and Firmicutes, which emerging as the predominant bacterial phyla across six sediment samples. Notably, their prevalence was highest in the BRG samples. Furthermore, 25 OTUs at genus level were consistent across all six samples. Alpha diversity exhibited minimal variation among samples, while beta diversity indicated an inverse relationship between species richness and diversity. Co-occurrence network analysis established that genera from the same and different groups of phyla show positive co-relations with each other. Thirteen plastic degrading enzymes, including Laccase, Alkane-1 monooxygenase and Alkane monooxygenase, were identified from six sediment metagenomes of river Ganga, which can degrade non-biodegradable plastic viz. Polyethylene, Polystyrene and Low-density Polyethelene. Further, 18 xenobiotic degradation enzymes were identified for the degradation of Bisphenol, Xylene, Toluene, Polycyclic aromatic hydrocarbon, Styrene, Atrazene and Dioxin etc. This is the first report on the identification of non-biodegradable plastic degrading enzymes from sediment metagenomes of river Ganga, India. The findings of this study would help in pollution abatement and sustainable management of riverine ecosystem.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120 Kolkata, West Bengal, India; Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore 756089, Odisha, India
| | - Sangita Dixit
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar 751003, India
| | - Partha Sarathi Tripathy
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway; Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| | - Sushree Swati Rout
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore 756089, Odisha, India
| | - Satya Narayan Parida
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120 Kolkata, West Bengal, India
| | - Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120 Kolkata, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120 Kolkata, West Bengal, India
| | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120 Kolkata, West Bengal, India; Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India.
| |
Collapse
|
5
|
Zou Y, Hu Y, Li S, Huang X, Cheng X, Pan W. Remediation of crude oil contaminated soil through an integrated biological-chemical-biological strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170756. [PMID: 38340816 DOI: 10.1016/j.scitotenv.2024.170756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
A plausible approach to remediating petroleum contaminated soil is the integration of chemical and biological treatments. Using appropriate chemical oxidation, the integrated remediation can be effectively achieved to stimulate the biodegradation process, consequently bolstering the overall remediation effect. In this study, an integrated biological-chemical-biological strategy was proposed. Both conventional microbial degradation techniques and a modified Fenton method were employed, and the efficacy of this strategy on crude oil contaminated soil, as well as its impact on pollutant composition, soil environment, and soil microorganism, was assessed. The results showed that this integrated remediation realized an overall 68.3 % removal rate, a performance 1.7 times superior to bioremediation alone and 2.1 times more effective than chemical oxidation alone, elucidating that the biodegradation which had become sluggish was invigorated by the judicious application of chemical oxidation. By optimizing the positioning of chemical treatment, the oxidization was allowed to act predominantly on refractory substances like resins, thus effectively enhancing pollutant biodegradability. Concurrently, this oxidating maneuver contributed to a significant increase in concentrations of dissolvable nutrients while maintaining appropriate soil pH levels, thereby generating favorable growth conditions for microorganism. Moreover, attributed to the proliferation and accumulation of degrading bacteria during the initial bioremediation phase, the microbial growth subsequent to oxidation showed rapid resurgence and the relative abundance of typical petroleum-degrading bacteria, particularly Proteobacteria, was substantially increased, which played a significant role in enhancing overall remediation effect. Our research validated the feasibility of biological-chemical-biological strategy and elucidated its correlating mechanisms, presenting a salient reference for the further studies concerning the integrated remediation of petroleum contaminated soil.
Collapse
Affiliation(s)
- Yulin Zou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuanyuan Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Sicheng Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaojia Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaowei Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Weibin Pan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
6
|
Curiel-Alegre S, Khan AHA, Rad C, Velasco-Arroyo B, Rumbo C, Rivilla R, Durán D, Redondo-Nieto M, Borràs E, Molognoni D, Martín-Castellote S, Juez B, Barros R. Bioaugmentation and vermicompost facilitated the hydrocarbon bioremediation: scaling up from lab to field for petroleum-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32916-8. [PMID: 38517632 DOI: 10.1007/s11356-024-32916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
The biodegradation of total petroleum hydrocarbon (TPH) in soil is very challenging due to the complex recalcitrant nature of hydrocarbon, hydrophobicity, indigenous microbial adaptation and competition, and harsh environmental conditions. This work further confirmed that limited natural attenuation of petroleum hydrocarbons (TPHs) (15% removal) necessitates efficient bioremediation strategies. Hence, a scaling-up experiment for testing and optimizing the use of biopiles for bioremediation of TPH polluted soils was conducted with three 500-kg pilots of polluted soil, and respective treatments were implemented: including control soil (CT), bioaugmentation and vermicompost treatment (BAVC), and a combined application of BAVC along with bioelectrochemical snorkels (BESBAVC), all maintained at 40% field capacity. This study identified that at pilot scale level, a successful application of BAVC treatment can achieve 90.3% TPH removal after 90 days. BAVC's effectiveness stemmed from synergistic mechanisms. Introduced microbial consortia were capable of TPH degradation, while vermicompost provided essential nutrients, enhanced aeration, and, potentially, acted as a biosorbent. Hence, it can be concluded that the combined application of BAVC significantly enhances TPH removal compared to natural attenuation. While the combined application of a bioelectrochemical snorkel (BES) with BAVC also showed a significant TPH removal, it did not differ statistically from the individual application of BAVC, under applied conditions. Further research is needed to optimize BES integration with BAVC for broader applicability. This study demonstrates BAVC as a scalable and mechanistically sound approach for TPH bioremediation in soil.
Collapse
Affiliation(s)
- Sandra Curiel-Alegre
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Carlos Rad
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Blanca Velasco-Arroyo
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Rafael Rivilla
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - David Durán
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - Miguel Redondo-Nieto
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - Eduard Borràs
- Circular Economy & Decarbonization Department, LEITAT Technology Center, Carrer de La Innovació, 2. 08225, Terrassa, Barcelona, Spain
| | - Daniele Molognoni
- Circular Economy & Decarbonization Department, LEITAT Technology Center, Carrer de La Innovació, 2. 08225, Terrassa, Barcelona, Spain
| | | | - Blanca Juez
- ACCIONA, C/ Valportillo II, 8. 28108, Madrid, Alcobendas, Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain.
| |
Collapse
|
7
|
Zhang Q, Zhao J, Wang G, Guan H, Wang S, Yang J, Zhang J, Jian S, Ouyang L, Wu Z, Li A. Differences of bacterioplankton communities between the source and upstream regions of the Yangtze River: microbial structure, co-occurrence pattern, and environmental influencing factors. Braz J Microbiol 2024; 55:571-586. [PMID: 38302737 PMCID: PMC10920563 DOI: 10.1007/s42770-024-01265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/06/2024] [Indexed: 02/03/2024] Open
Abstract
The source area of the Yangtze River is located in the hinterland of the Qinghai-Tibet Plateau, which is known as the "Earth's third pole." It is the water conservation area and the natural barrier of the ecosystem of the Yangtze River basin. It is also the most sensitive area of the natural ecosystem, and the ecological environment is very fragile. Microorganisms play key roles in the biogeochemical processes of water. In this paper, the bacterioplankton communities in the source and upstream regions of the Yangtze River were studied based on 16S rRNA high-throughput sequencing, and their environmental influencing factors were further analyzed. Results showed that the upstream region had higher richness and diversity than the source region. The predominant bacterial phyla in the source and upstream regions were Proteobacteria, Firmicutes, and Actinobacteriota. The bacterial phyla associated with municipal pollution and opportunistic pathogen, such as Firmicutes and Actinobacteriota, were more abundant in the upstream. By contrast, distinct planktonic bacterial genera associated with mining pollution, such as Acidiphilium and Acidithiobacillus, were more abundant in the source region. The co-occurrence network showed that the interaction of bacterioplankton community is more frequent in the upstream. The bacterioplankton community compositions, richness, and functional profiles were affected by the spatial heterogeneity. Moreover, variation partitioning analysis further confirmed that the amount of variation in the source region independently explained by variables of altitude was the largest, followed by water nutrient. This paper revealed the spatial distribution of planktonic bacterial communities in the source and upstream regions of the Yangtze River and its correlation with environmental factors, providing information support for ensuring the health and safety of aquatic ecosystems in the Yangtze River Basin.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Juan Zhao
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810012, China
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining, 810012, China
| | - Guojie Wang
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810012, China
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining, 810012, China
| | - Hongtao Guan
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810012, China
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining, 810012, China
| | - Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jicheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jinyong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, China
| | - Shenglong Jian
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810012, China
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining, 810012, China
| | - Lijian Ouyang
- Ecological Engineering College, Guizhou University of Engineering Science, Bijie, 551700, China
| | - Zhenbing Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
8
|
Tripathi V, Gaur VK, Kaur I, Srivastava PK, Manickam N. Unlocking bioremediation potential for site restoration: A comprehensive approach for crude oil degradation in agricultural soil and phytotoxicity assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120508. [PMID: 38457896 DOI: 10.1016/j.jenvman.2024.120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Crude oil contamination has inflicted severe damage to soil ecosystems, necessitating effective remediation strategies. This study aimed to compare the efficacy of four different techniques (biostimulation, bioaugmentation, bioaugmentation + biostimulation, and natural attenuation) for remediating agricultural soil contaminated with crude oil using soil microcosms. A consortium of previously characterized bacteria Xanthomonas boreopolis, Microbacterium schleiferi, Pseudomonas aeruginosa, and Bacillus velezensis was constructed for bioaugmentation. The microbial count for the constructed consortium was recorded as 2.04 ± 0.11 × 108 CFU/g on 60 d in augmented and stimulated soil samples revealing their potential to thrive in chemically contaminated-stress conditions. The microbial consortium through bioaugmentation + biostimulation approach resulted in 79 ± 0.92% degradation of the total polyaromatic hydrocarbons (2 and 3 rings ∼ 74%, 4 and 5 rings ∼ 83% loss) whereas, 91 ± 0.56% degradation of total aliphatic hydrocarbons (C8-C16 ∼ 90%, C18-C28 ∼ 92%, C30 to C40 ∼ 88% loss) was observed in 60 d. Further, after 60 d of microcosm treatment, the treated soil samples were used for phytotoxicity assessment using wheat (Triticum aestivum), black chickpea (Cicer arietinum), and mustard (Brassica juncea). The germination rates for wheat (90%), black chickpea (100%), and mustard (100%) were observed in 7 d with improved shoot-root length and biomass in both bioaugmentation and biostimulation approaches. This study projects a comprehensive approach integrating bacterial consortium and nutrient augmentation strategies and underscores the vital role of innovative environmental management practices in fostering sustainable remediation of oil-contaminated soil ecosystems. The formulated bacterial consortium with a nutrient augmentation strategy can be utilized to restore agricultural lands towards reduced phytotoxicity and improved plant growth.
Collapse
Affiliation(s)
- Varsha Tripathi
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Presently: School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Ispreet Kaur
- Department of Environmental Technologies, CSIR-National Botanical Research Institute, Lucknow, India
| | - Pankaj Kumar Srivastava
- Department of Environmental Technologies, CSIR-National Botanical Research Institute, Lucknow, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
9
|
Hu F, Wang P, Li Y, Ling J, Ruan Y, Yu J, Zhang L. Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: Mechanisms, methods and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117211. [PMID: 37778604 DOI: 10.1016/j.envres.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The development of the chemical industry has led to a boom in daily consumption and convenience, but has also led to the release of large amounts of organic pollutants, such as petroleum hydrocarbons, plastics, pesticides, and dyes. These pollutants are often recalcitrant to degradation in the environment, whereby the most problematic compounds may even lead to carcinogenesis, teratogenesis and mutagenesis in animals and humans after accumulation in the food chain. Microbial degradation of organic pollutants is efficient and environmentally friendly, which is why it is considered an ideal method. Numerous studies have shown that Pseudomonas aeruginosa is a powerful platform for the remediation of environmental pollution with organic chemicals due to its diverse metabolic networks and its ability to secrete biosurfactants to make hydrophobic substrates more bioavailable, thereby facilitating degradation. In this paper, the mechanisms and methods of the bioremediation of environmental organic pollutants (EOPs) by P. aeruginosa are reviewed. The challenges of current studies are highlighted, and new strategies for future research are prospected. Metabolic pathways and critical enzymes must be further deciphered, which is significant for the construction of a bioremediation platform based on this powerful organism.
Collapse
Affiliation(s)
- Fanghui Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Panlin Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunhan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Jiahuan Ling
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Yongqiang Ruan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Jiaojiao Yu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China.
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China.
| |
Collapse
|
10
|
Gao H, Wu M, Liu H, Ou Y, Zhang T, Duan X. Unraveling the Positive Effect of Soil Moisture on the Bioaugmentation of Petroleum-Contaminated Soil Using Bioinformatics. MICROBIAL ECOLOGY 2023; 86:2436-2446. [PMID: 37278908 DOI: 10.1007/s00248-023-02245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Petroleum contamination is a severe threat to the soil environment. Previous studies have demonstrated that petroleum degradation efficiency is promoted by enhancing soil moisture content (MC). However, the effects of MC on soil microbial ecological functions during bioremediation remain unclear. Here, we investigated the impacts of 5% and 15% of moisture contents on petroleum degradation, soil microbial structures and functions, and the related genes using high-throughput sequencing and gene function prediction. Results indicated that petroleum biodegradation efficiency was increased by 8.06% in the soils with 15% MC when compared to that with 5% of MC. The complexity and stability of soil microbial community structures with 15% MC were higher than those in the soils with 5% MC when hydrocarbon-degrading bacterial flora (HDBF) were inoculated into the soils. Fifteen percent of moisture content strengthened the interaction of the bacterial community network and reduced the loss of some key bacteria species including Mycobacterium, Sphingomonas, and Gemmatimonas. Some downregulated gene pathways relating to bioaugmentation were enhanced in the soils with 15% MC. The results suggested that the dynamic balances of microbial communities and the metabolic interactions by 15% MC treatment are the driving forces for the enhancement of bioremediation in petroleum-contaminated soil.
Collapse
Affiliation(s)
- Huan Gao
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Manli Wu
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Heng Liu
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yawen Ou
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Ting Zhang
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xuhong Duan
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| |
Collapse
|
11
|
An S, Woo H, Kim SH, Yun ST, Chung J, Lee S. Complex behavior of petroleum hydrocarbons in vadose zone: A holistic analysis using unsaturated soil columns. CHEMOSPHERE 2023; 326:138417. [PMID: 36925010 DOI: 10.1016/j.chemosphere.2023.138417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The migration of petroleum hydrocarbons in vadose zone involves complex coupled processes such as downward displacement and natural attenuation. Despite its significance in determining groundwater vulnerability to petroleum contamination and optimizing the remedial strategy, it has not been comprehensively studied in terms of overall processes under field-relevant conditions. In this study, a series of unsaturated soil column experiments were conducted by simulating subsurface diesel contamination within a vadose zone using different soil textures at different soil bulk densities and initial diesel concentrations, while partly exposing them to simulated precipitation. The results showed that the soil column with less fine fraction was favorable for the downward migration of diesel but unfavorable for its natural degradation. However, precipitation complicated the relative conductivities of multiple fluids (water, air, and diesel) through the pore network, therby decreasing diesel migration and degradation. For example, the downward migration of diesel in the SL column decreased by 8.4% under precipitation, while the overall attenuation rate dropped to almost 0.24% of its original state. Lowering bulk density (from 1.5 to 1.23 g/cm3), however, could enhance the attenuation rate presumably due to the secured void space for the incoming fluids. A high initial concentration of diesel (2%; w/w) inhibited its natural attenuation, while its influence on its vertical propagation after the precipitation was not significant. The present findings provide a mechanistic basis for approximating the behavior of petroleum hydrocarbons in a random vadose zone.
Collapse
Affiliation(s)
- Seongnam An
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Heesoo Woo
- Geo-technical Team, ECO Solution Business Unit, SK Ecoplant, Seoul, 03143, South Korea
| | - Sang Hyun Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Seong-Taek Yun
- Department of Earth and Environmental Sciences, Korea University, Seoul, 136-701, South Korea
| | - Jaeshik Chung
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea.
| | - Seunghak Lee
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea; Graduate School of Energy and Environment (KU-KIST GREEN SCHOOL), Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
12
|
Narayanan M, Ali SS, El-Sheekh M. A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117532. [PMID: 36801803 DOI: 10.1016/j.jenvman.2023.117532] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Industrialization and other human activity represent significant environmental hazards. Toxic contaminants can harm a comprehensive platform of living organisms in their particular environments. Bioremediation is an effective remediation process in which harmful pollutants are eliminated from the environment using microorganisms or their enzymes. Microorganisms in the environment often create a variety of enzymes that can eliminate hazardous contaminants by using them as a substrate for development and growth. Through their catalytic reaction mechanism, microbial enzymes may degrade and eliminate harmful environmental pollutants and transform them into non-toxic forms. The principal types of microbial enzymes which can degrade most hazardous environmental contaminants include hydrolases, lipases, oxidoreductases, oxygenases, and laccases. Several immobilizations, genetic engineering strategies, and nanotechnology applications have been developed to improve enzyme performance and reduce pollution removal process costs. Until now, the practically applicable microbial enzymes from various microbial sources and their ability to degrade multipollutant effectively or transformation potential and mechanisms are unknown. Hence, more research and further studies are required. Additionally, there is a gap in the suitable approaches considering toxic multipollutants bioremediation using enzymatic applications. This review focused on the enzymatic elimination of harmful contaminants in the environment, such as dyes, polyaromatic hydrocarbons, plastics, heavy metals, and pesticides. Recent trends and future growth for effectively removing harmful contaminants by enzymatic degradation are also thoroughly discussed.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602 105, Tamil Nadu, India
| | - Sameh Samir Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
13
|
Yang Y, Zhang W, Zhang Z, Yang T, Xu Z, Zhang C, Guo B, Lu W. Efficient Bioremediation of Petroleum-Contaminated Soil by Immobilized Bacterial Agent of Gordonia alkanivorans W33. Bioengineering (Basel) 2023; 10:bioengineering10050561. [PMID: 37237630 DOI: 10.3390/bioengineering10050561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
In this article, we report a method for preparing an immobilized bacterial agent of petroleum-degrading bacteria Gordonia alkanivorans W33 by combining high-density fermentation and bacterial immobilization technology and testing its bioremediation effect on petroleum-contaminated soil. After determining the optimal combination of MgCl2, CaCl2 concentration, and culture time in the fermentation conditions by conducting a response surface analysis, the cell concentration reached 7.48 × 109 CFU/mL by 5 L fed-batch fermentation. The W33-vermiculite-powder-immobilized bacterial agent mixed with sophorolipids and rhamnolipids in a weight ratio of 9:10 was used for the bioremediation of petroleum-contaminated soil. After 45 days of microbial degradation, 56.3% of the petroleum in the soil with 20,000 mg/kg petroleum content was degraded, and the average degradation rate reached 250.2 mg/kg/d.
Collapse
Affiliation(s)
- Yong Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianjin 300457, China
| | - Wanze Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhanwei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ting Yang
- China Offshore Environmental Service Ltd., Tianjin 300457, China
| | - Zhuo Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bing Guo
- China Offshore Environmental Service Ltd., Tianjin 300457, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Xu J, Cao Z, Chen F, Li Y, Dai J, Zhang X. Fast degradation of macro alkanes through activating indigenous bacteria using biosurfactants produced by Burkholderia sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64300-64312. [PMID: 37067708 DOI: 10.1007/s11356-023-26909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
Soil bacteria that produce biosurfactants can use total petroleum hydrocarbons (TPHs) as a carbon source. This study demonstrated that biosurfactants produced by Burkholderia sp. enhanced the recovery and synergism of soil microbial community, resulting in fast degradation of macro alkanes. Experiments were carried out by applying bio-stimulation after pre-oxidation to investigate the effects of nutrient addition on biosurfactant production, TPH degradation, and microbial community succession in the soil. The results presented that bio-stimulation could produce biosurfactants in high C/N (32.6) and C/H (13.3) conversion after pre-oxidation and increased the total removal rate of TPH (10.59-46.71%). The number of total bacteria had a rapid increase trend (2.94-8.50 Log CFU/g soil). The degradation rates of macro alkanes showed a 4.0-fold (48.07 mg/kg·d-1 versus 186.48 mg/kg·d-1) increase, and the bioremediation time of degrading macro alkanes saved 166 days. Further characterization revealed that the biosurfactants produced by Burkholderia sp. could activate indigenous bacteria to degrade macro alkanes rapidly. A shift in phylum from Actinomycetes to Proteobacteria was observed during bioremediation. The average relative abundance of the microbial community increased from 36.24 to 64.96%, and the predominant genus tended to convert from Allorhizobium (8.57%) to Burkholderia (15.95%) and Bacillus (15.70%). The co-occurrence network and Pearson correlation analysis suggested that the synergism of microbial community was the main reason for the fast degradation of macro alkanes in petroleum-contaminated soils. Overall, this study indicated the potential of the biosurfactants to activate and enhance the recovery of indigenous bacteria after pre-oxidation, which was an effective method to remediate petroleum-contaminated soils.
Collapse
Affiliation(s)
- Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China.
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China.
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Zezhuang Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Feiyang Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yuanyuan Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Jianan Dai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xin Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| |
Collapse
|
15
|
Yin Q, Nie H, Nie M, Guo Y, Zhang B, Wang L, Wang Y, Bai X. Rapid effective treatment of waxy oily sludge using a method of dispersion combined with biodegradation in a semi-fluid state. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120971. [PMID: 36603759 DOI: 10.1016/j.envpol.2022.120971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Waxy oily sludge (WOS) from petrochemical enterprises has complex components and difficult treatment. Long-term large-scale stacking has seriously threatened human health and the ecological environment. In this paper, a new rapid and effective treatment method combining dispersion and biodegradation in a semi-fluid state was developed for the WOS. The degradation mechanism of the WOS in the bioreactor was preliminarily discussed. The component analysis results showed that the compounds with large molecular weight (M ≥ 282) in the WOS accounted for more than 50%. Among all microbial consortiums, the treatment effect of the consortium FF: NY3 = 9: 1 was the best for treating the crude oil in WOS, which was significantly different from that of a single strain (p < 0.05). Under the optimal nitrogen source NH4NO3 and the concentration of rhamnolipid, the developed high-efficiency microbial consortium (FF: NY3 = 9:1) could remove 85% of the total hydrocarbon pollutants in the 20 L semi-fluid bioreactor within 9 days. The degradation characteristics of WOS components in the bioreactor showed that the developed consortium has good degradation ability for n-alkanes (about 90%), middle- (77.35%)/long-chain (72.66%) isomeric alkanes, alkenes (79.12%), alicyclic hydrocarbons (78.9%) and aromatic hydrocarbons (62.78%). The kinetic analysis results indicated that, in comparison, the middle-chain n-alkanes, middle-chain isomeric saturated alkanes, alkenes, and alicyclic hydrocarbons were most easily removed. The removal rates of long-chain n-alkanes, long-chain isomeric saturated alkanes, and aromatic hydrocarbons were relatively low. The biological toxicity test showed that the germination rate of wheat seeds in treated waxy sludge was Significantly higher than that in untreated waxy sludge (p < 0.01). These results suggest that the new method developed in this paper can treat refractory WOS quickly and effectively. This method lays the foundation for the pilot-scale treatment of the semi-fluid bioreactor.
Collapse
Affiliation(s)
- Qiuyue Yin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hongyun Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an, 710055, China
| | - Maiqian Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an, 710055, China.
| | - Yonghua Guo
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bo Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an, 710055, China
| | - Yan Wang
- Microbiology Institute of Shaanxi Province, Xi'an, 710043, China
| | - Xuerui Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
16
|
Shi G, Hu J, Cheng Y, Shi W, Chen Y. Pseudomonas aeruginosa improved the phytoremediation efficiency of ryegrass on nonylphenol-cadmium co-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28247-28258. [PMID: 36401010 DOI: 10.1007/s11356-022-24224-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The effect of Pseudomonas aeruginosa (P. aeruginosa) on the phytoremediation efficiency of ryegrass on soil contaminated with nonylphenol (NP) and cadmium (Cd) was investigated by pot experiments. Pseudomonas aeruginosa application stimulated the adsorption of Cd by ryegrass and facilitated the biodegradation of NP in the soil. Exogenous P. aeruginosa inoculation increased the activities of urease, dehydrogenase, and polyphenol oxidase in the soil of the T4 treatment by 38.5%, 50.0%, and 56.5% compared to that of the T2 treatment, respectively. There was a significant positive correlation between the activities of dehydrogenase and polyphenol oxidase and the NP removal rate (P < 0.001). The relative abundances of beneficial microorganisms (such as Sphingomonas, Lysobacter, Streptomyces, Chloroflexia, Deltaproteobacteria, and Alphaproteobacteria) were increased as a result of P. aeruginosa inoculation. These microorganisms play important roles in nutrient cycling, Cd adsorption, and NP degradation. Additionally, P. aeruginosa was not the dominate bacterial species at the end of the experiment. According to this study, P. aeruginosa application improved the phytoremediation efficiency of ryegrass on soil contaminated with NP and Cd, with a minimal risk of alien microbial invasion.
Collapse
Affiliation(s)
- Guangyu Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China.
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fujian, 350000, China.
| | - Jiayuan Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Yuanyuan Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Weilin Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
17
|
Lim SJ, Son M, Ki SJ, Suh SI, Chung J. Opportunities and challenges of machine learning in bioprocesses: Categorization from different perspectives and future direction. BIORESOURCE TECHNOLOGY 2023; 370:128518. [PMID: 36565818 DOI: 10.1016/j.biortech.2022.128518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Recent advances in machine learning (ML) have revolutionized an extensive range of research and industry fields by successfully addressing intricate problems that cannot be resolved with conventional approaches. However, low interpretability and incompatibility make it challenging to apply ML to complicated bioprocesses, which rely on the delicate metabolic interplay among living cells. This overview attempts to delineate ML applications to bioprocess from different perspectives, and their inherent limitations (i.e., uncertainties in prediction) were then discussed with unique attempts to supplement the ML models. A clear classification can be made depending on the purpose of the ML (supervised vs unsupervised) per application, as well as on their system boundaries (engineered vs natural). Although a limited number of hybrid approaches with meaningful outcomes (e.g., improved accuracy) are available, there is still a need to further enhance the interpretability, compatibility, and user-friendliness of ML models.
Collapse
Affiliation(s)
- Seung Ji Lim
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Moon Son
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Seo Jin Ki
- Department of Environmental Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Sang-Ik Suh
- Department of Energy System Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Jaeshik Chung
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
18
|
Muthukumar B, Surya S, Sivakumar K, AlSalhi MS, Rao TN, Devanesan S, Arunkumar P, Rajasekar A. Influence of bioaugmentation in crude oil contaminated soil by Pseudomonas species on the removal of total petroleum hydrocarbon. CHEMOSPHERE 2023; 310:136826. [PMID: 36243087 DOI: 10.1016/j.chemosphere.2022.136826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to carry out the bioaugmentation of crude oil/motor oil contaminated soil. The mixture of novel strains Pseudomonas aeruginosa PP3 and Pseudomonas aeruginosa PP4 were used in this bioaugmentation studies. The four different bioaugmentation systems (BS 1-4) were carried out in this experiment labelled as BS 1 (Crude oil contaminated soil), BS 2 (BS 1 + bacterial consortia), BS 3 (Motor oil sludge contaminated soil), and BS 4 (BS 3 + bacterial consortia). The total petroleum hydrocarbon (TPH) was investigated for monitor the effectiveness of bioaugmentation process. The highest TPH removal rate was recorded on BS 4 (9091 mg Kg -1) was about 67% followed by 52% on BS 2 (8584 mg Kg -1) respectively. The percentage of biodegradation efficiency (BE) of residual crude and motor oil contaminated soil were evaluated by GCMS analysis and the results showed that 65% (BS 2) and 83% (BS 4) respectively. Further the bioaugmented soil was subjected to the plant cultivation (Lablab purpureus) and the results revealed that the L. purpureus was rapidly grown in the systems BS 4 and BS 2 than the system BS 1 and BS 2 which was due to the lesser biodegradation of the crude oil contents. In resultant, it can be concluded that the soil was suitable for the cultivation of plant. Overall, this study revealed that the selected bacterial consortia were effectively degraded the hydrocarbon and act as a potential bioremediator in the hydrocarbon polluted soil in a short period.
Collapse
Affiliation(s)
- Balakrishnan Muthukumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Saravanan Surya
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Krithiga Sivakumar
- Department of Community Medicine, Government Stanley Medical College, Chennai, Tamil Nadu, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Tentu Nageswara Rao
- Department of Chemistry, Krishna University, Machilipatnam, AP, 521001, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Paulraj Arunkumar
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
| |
Collapse
|
19
|
Qin Z, Zhao Z, Xia L, Wang S, Yu G, Miao A. Responses of abundant and rare prokaryotic taxa in a controlled organic contaminated site subjected to vertical pollution-induced disturbances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158625. [PMID: 36089032 DOI: 10.1016/j.scitotenv.2022.158625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/20/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Soil microbiota as the key role mediates the natural attenuation process of organic contaminated sites, and therefore illuminating the mechanisms underlying the responses of abundant and rare species is essential for understanding ecological processes, maintaining ecosystem stability, and regulating natural attenuation well. Here, we explored the distributional characteristics, ecological diversities, and co-occurrence patterns of abundant and rare prokaryotic subcommunities using 16S rRNA high-throughput sequencing in vertical soil profiles of a controlled organic contaminated site. Results showed that abundant prokaryotic taxa were widespread across all soil samples, whereas rare counterparts were unbalancedly distributed. Rare subcommunity had more taxonomic groups and higher α- and β-diversities than abundant subcommunity. Both of these two subcommunities surviving in the organic polluted site possessed the potential of degrading organic contaminants. Abundant subcommunity was little affected by abiotic factors and mainly shaped by soil depth, while rare one was sensitive to environmental disturbances and presented a non-depth-dependent structure. Co-occurrence analysis revealed that rare taxa were more situated at the center of the network and more inclined to cooperate with non-abundant species than abundant taxa, which might play crucial roles in enhancing the resilience and resistance of prokaryotic community and maintaining its structure and stability. Overall, our results suggest that abundant and rare prokaryotic subcommunities present different responses to physicochemical factors and pollution characteristics along vertical soil profiles of organic contaminated sites undergoing natural attenuation.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | - Liling Xia
- Nanjing Vocational University of Industry Technology, Nanjing 210016, China
| | - Shiyu Wang
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing 100048, China
| | - Guangwen Yu
- China National Chemical Civil Engineering Co., Ltd, Nanjing 210031, China
| | - Aihua Miao
- China National Chemical Civil Engineering Co., Ltd, Nanjing 210031, China
| |
Collapse
|
20
|
Yaashikaa PR, Kumar PS. Bioremediation of hazardous pollutants from agricultural soils: A sustainable approach for waste management towards urban sustainability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120031. [PMID: 36041569 DOI: 10.1016/j.envpol.2022.120031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination is perhaps the most hazardous issue all over the world; these emerging pollutants ought to be treated to confirm the safety of our living environment. Fast industrialization and anthropogenic exercises have resulted in different ecological contamination and caused serious dangerous health effects to humans and animals. Agro wastes are exceptionally directed because of their high biodegradability. Effluents from the agro-industry are a possibly high environmental risk that requires suitable, low-cost, and extensive treatment. Soil treatment using a bioremediation method is considered an eco-accommodating and reasonable strategy for removing toxic pollutants from agricultural fields. The present review was led to survey bioremediation treatability of agro soil by microbes, decide functional consequences for microbial performance and assess potential systems to diminish over potentials. The presence of hazardous pollutants in agricultural soil and sources, and toxic health effects on humans has been addressed in this review. The present review emphasizes an outline of bioremediation for the effective removal of toxic contaminants in the agro field. In addition, factors influencing recent advancements in the bioremediation process have been discussed. The review further highlights the roles and mechanisms of micro-organisms in the bioremediation of agricultural fields.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai - 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India.
| |
Collapse
|
21
|
Pang A, Rutter A, Bordenave S, Gainer A, Haack E, Zeeb B. Assessment of the toxicity of weathered petroleum hydrocarbon impacted soils to native plants from a site in the Canadian Subarctic. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1287-1298. [PMID: 36125662 DOI: 10.1007/s10646-022-02585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Remedial guidelines for petroleum hydrocarbons (PHCs) in soil aid in the mitigation of risks to human health and the environmental. However, some remediation guidelines may overestimate the potential for adverse effects to native plant species, contributing to unnecessary remedial efforts in attempts to meet the guidelines. At sites where PHC-contaminated soils undergo weathering, some PHCs may persist but with decreased bioavailability to organisms. In this study, the toxicity of both coarse and fine-grained subarctic soils, contaminated with weathered PHCs were assessed using five native plant species (Picea mariana, Achillea millefolium, Alnus viridis, Elymus trachycaulus and Salix bebbiana). Soil toxicity tests were conducted in a growth chamber with parameters set to simulate the site's subarctic climate conditions. Reference toxicant tests using boric acid were conducted to provide confidence in the interpretation of the results for the PHC-contaminated soils, and also provide new information on the sensitivities of the four boreal species to boric acid. All plants exhibited reduced growth and germination rates as boric acid concentrations increased. Despite exceeding the Canada-wide standard guidelines for Fraction 3 PHCs, field-collected contaminated soils had no significant negative impacts on the growth (i.e., length, dry weight and emergence) of any of the plant species tested.
Collapse
Affiliation(s)
- Adrian Pang
- School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - Allison Rutter
- School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Sylvain Bordenave
- Trace Associates Incorporated, 37 Richard Way SW, Calgary, AB, T3E 7M8, Canada
| | - Amy Gainer
- Advisian (Worley Canada Services), 4811 87 Street NW, Edmonton, AB, T6E 0V3, Canada
| | - Elizabeth Haack
- Ecometrix Incorporated, 6800 Campobello Road, Mississauga, ON, L5N 2L8, Canada
| | - Barbara Zeeb
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, K7K 7B4, Canada
| |
Collapse
|
22
|
Kumar M, Bolan N, Jasemizad T, Padhye LP, Sridharan S, Singh L, Bolan S, O'Connor J, Zhao H, Shaheen SM, Song H, Siddique KHM, Wang H, Kirkham MB, Rinklebe J. Mobilization of contaminants: Potential for soil remediation and unintended consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156373. [PMID: 35649457 DOI: 10.1016/j.scitotenv.2022.156373] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Land treatment has become an essential waste management practice. Therefore, soil becomes a major source of contaminants including organic chemicals and potentially toxic elements (PTEs) which enter the food chain, primarily through leaching to potable water sources, plant uptake, and animal transfer. A range of soil amendments are used to manage the mobility of contaminants and subsequently their bioavailability. Various soil amendments, like desorbing agents, surfactants, and chelating agents, have been applied to increase contaminant mobility and bioavailability. These mobilizing agents are applied to increase the contaminant removal though phytoremediation, bioremediation, and soil washing. However, possible leaching of the mobilized pollutants during soil washing is a major limitation, particularly when there is no active plant uptake. This leads to groundwater contamination and toxicity to plants and soil biota. In this context, the present review provides an overview on various soil amendments used to enhance the bioavailability and mobility of organic and inorganic contaminants, thereby facilitating increased risk when soil is remediated in polluted areas. The unintended consequences of the mobilization methods, when used to remediate polluted sites, are discussed in relation to the leaching of mobilized contaminants when active plant growth is absent. The toxicity of targeted and non-targeted contaminants to microbial communities and higher plants is also discussed. Finally, this review work summarizes the existing research gaps in various contaminant mobilization approaches, and prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Srinidhi Sridharan
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shiv Bolan
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - James O'Connor
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Haochen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Hocheol Song
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, United States
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| |
Collapse
|
23
|
Xu J, Chen F, Shi Q, Luo S, Liu C. Fast biodegradation of long-chain alkanes in heavily polluted soil by improving C/H conversion after pre-oxidation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Medić AB, Karadžić IM. Pseudomonas in environmental bioremediation of hydrocarbons and phenolic compounds- key catabolic degradation enzymes and new analytical platforms for comprehensive investigation. World J Microbiol Biotechnol 2022; 38:165. [PMID: 35861883 DOI: 10.1007/s11274-022-03349-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Pollution of the environment with petroleum hydrocarbons and phenolic compounds is one of the biggest problems in the age of industrialization and high technology. Species of the genus Pseudomonas, present in almost all hydrocarbon-contaminated areas, play a particular role in biodegradation of these xenobiotics, as the genus has the potential to decompose various hydrocarbons and phenolic compounds, using them as its only source of carbon. Plasticity of carbon metabolism is one of the adaptive strategies used by Pseudomonas to survive exposure to toxic organic compounds, so a good knowledge of its mechanisms of degradation enables the development of new strategies for the treatment of pollutants in the environment. The capacity of microorganisms to metabolize aromatic compounds has contributed to the evolutionally conserved oxygenases. Regardless of the differences in structure and complexity between mono- and polycyclic aromatic hydrocarbons, all these compounds are thermodynamically stable and chemically inert, so for their decomposition, ring activation by oxygenases is crucial. Genus Pseudomonas uses several upper and lower metabolic pathways to transform and degrade hydrocarbons, phenolic compounds, and petroleum hydrocarbons. Data obtained from newly developed omics analytical platforms have enormous potential not only to facilitate our understanding of processes at the molecular level but also enable us to instigate and monitor complex biodegradations by Pseudomonas. Biotechnological application of aromatic metabolic pathways in Pseudomonas to bioremediation of environments polluted with crude oil, biovalorization of lignin for production of bioplastics, biofuel, and bio-based chemicals, as well as Pseudomonas-assisted phytoremediation are also considered.
Collapse
Affiliation(s)
- Ana B Medić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia.
| | - Ivanka M Karadžić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia
| |
Collapse
|
25
|
Morales-Guzmán G, Ferrera-Cerrato R, Rivera-Cruz MDC, Torres-Bustillos LG, Mendoza-López MR, Esquivel-Cote R, Alarcón A. Phytoremediation of soil contaminated with weathered petroleum hydrocarbons by applying mineral fertilization, an anionic surfactant, or hydrocarbonoclastic bacteria. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:329-338. [PMID: 35704711 DOI: 10.1080/15226514.2022.2083577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study evaluated the effect of the application of mineral fertilization (F), the anionic surfactant Triton X-100 (TX100), or the inoculation with a hydrocarbooclastic bacterial consortium (BCons) on the growth of Clitoria ternatea during the phytoremediation of a Gleysol contaminated with weathered petroleum hydrocarbons (39,000 mg kg-1 WPH) collected from La Venta, Tabasco (Mexico). The experiment consisted of a completely randomized design with seven treatments and four replications each under greenhouse conditions. The application of F (biostimulation) increased plant growth and biomass production; in contrast, TX100 only favored root biomass (11%) but significantly favored WPH degradation. Bioaugmentation with BCons did not show significant effects on plant growth. Nevertheless, the combination of biostimulation with bioaugmentation (BCons + F, BCons + TX100, and BCons + F+TX100) enhanced plant growth, hydrocarbonoclastic bacteria population, and WPH degradation when compared to treatments with the single application of bioaugmentation (BCons) or biostimulation (F).
Collapse
Affiliation(s)
- Gilberto Morales-Guzmán
- Posgrado de Edafología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México, Mexico
| | - Ronald Ferrera-Cerrato
- Posgrado de Edafología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México, Mexico
| | - María Del Carmen Rivera-Cruz
- Posgrado en Producción Agroalimentaria en el Trópico, Colegio de Postgraduados, Periférico Carlos A, Cárdenas, Tabasco, Mexico
| | - Luis Gilberto Torres-Bustillos
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (UPIBI-IPN), Ciudad de Mexico, Mexico
| | - Ma Remedios Mendoza-López
- Unidad de Servicios de Apoyo en Resolución Analítica. Universidad Veracruzana, Dr. Luis Castelazo Ayala S/N, Col. Industrial-Animas, Xalapa, Veracruz, Mexico
| | - Rosalba Esquivel-Cote
- Posgrado de Edafología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México, Mexico
| | - Alejandro Alarcón
- Posgrado de Edafología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México, Mexico
| |
Collapse
|
26
|
Ossai IC, Hamid FS, Hassan A. Micronised keratinous wastes as co-substrates, and source of nutrients and microorganisms for trichoremediation of petroleum hydrocarbon polluted soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Ambaye TG, Chebbi A, Formicola F, Prasad S, Gomez FH, Franzetti A, Vaccari M. Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. CHEMOSPHERE 2022; 293:133572. [PMID: 35016966 DOI: 10.1016/j.chemosphere.2022.133572] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Petroleum hydrocarbons (PHs) are used as raw materials in many industries and primary energy sources. However, excessive PHs act as soil pollutants, posing serious threats to living organisms. Various ex-situ or in-situ chemical and biological methods are applied to restore polluted soil. However, most of the chemical treatment methods are expensive, environmentally unfriendly, and sometimes inefficient. That attracts scientists and researchers to develop and select new strategists to remediate polluted soil through risk-based analysis and eco-friendly manner. This review discusses the sources of PHs, properties, distribution, transport, and fate in the environment, internal and external factors affecting the soil remediation and restoration process, and its effective re-utilization for agriculture. Bioremediation is an eco-friendly method for degrading PHs, specifically by using microorganisms. Next-generation sequencing (NGS) technologies are being used to monitor contaminated sites. Currently, these new technologies have caused a paradigm shift by giving new insights into the microbially mediated biodegradation processes by targeting rRNA are discussed concisely. The recent development of risk-based management for soil contamination and its challenges and future perspectives are also discussed. Furthermore, nanotechnology seems very promising for effective soil remediation, but its success depends on its cost-effectiveness. This review paper suggests using bio-electrochemical systems that utilize electro-chemically active microorganisms to remediate and restore polluted soil with PHs that would be eco-friendlier and help tailor-made effective and sustainable remediation technologies.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| | - Alif Chebbi
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy; Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Francesca Formicola
- Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Franco Hernan Gomez
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| |
Collapse
|
28
|
Current research on simultaneous oxidation of aliphatic and aromatic hydrocarbons by bacteria of genus Pseudomonas. Folia Microbiol (Praha) 2022; 67:591-604. [PMID: 35318574 DOI: 10.1007/s12223-022-00966-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
One of the most frequently used methods for elimination of oil pollution is the use of biological preparations based on oil-degrading microorganisms. Such microorganisms often relate to bacteria of the genus Pseudomonas. Pseudomonads are ubiquitous microorganisms that often have the ability to oxidize various pollutants, including oil hydrocarbons. To date, individual biochemical pathways of hydrocarbon degradation and the organization of the corresponding genes have been studied in detail. Almost all studies of this kind have been performed on degraders of individual hydrocarbons belonging to a single particular class. Microorganisms capable of simultaneous degradation of aliphatic and aromatic hydrocarbons are very poorly studied. Most of the works on such objects have been devoted only to phenotype characteristic and some to genetic studies. To identify the patterns of interaction of several metabolic systems depending on the growth conditions, the most promising are such approaches as transcriptomics and proteomics, which make it possible to obtain a comprehensive assessment of changes in the expression of hundreds of genes and proteins at the same time. This review summarizes the existing data on bacteria of the genus Pseudomonas capable of the simultaneous oxidation of hydrocarbons of different classes (alkanes, monoaromatics, and polyaromatics) and presents the most important results obtained in the studies on the biodegradation of hydrocarbons by representatives of this genus using methods of transcriptomic and proteomic analyses.
Collapse
|
29
|
Kim SH, Woo H, An S, Chung J, Lee S, Lee S. What determines the efficacy of landfarming for petroleum-contaminated soils: Significance of contaminant characteristics. CHEMOSPHERE 2022; 290:133392. [PMID: 34952012 DOI: 10.1016/j.chemosphere.2021.133392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Identifying the cause of inconsistent landfarming efficacy is critical to designing optimal remedial strategies for petroleum-contaminated sites. We assessed contaminated soils collected from two former military bases in South Korea to better understand the role and influence of different factors. Landfarming remediation was simulated in the laboratory by applying comparable practices (such as tillage and bioaugmentation) and the relevant mechanism was examined. We then systematically examined potential factors affecting petroleum-removal efficacy, including the content of fine soil particles, the initial concentration and composition of petroleum contaminants, and the degree of soil-contaminant interaction. The distribution range of total petroleum hydrocarbons (TPHs) and the size of unresolved complex mixture (UCM) found in gas chromatography data showed that petroleum composed of TPHs with lower carbon numbers and having smaller size of UCM could be treated more effectively by landfarming. Incorporating the evaluation of the distribution range and UCM properties of petroleum, rather than simply considering its total concentration, is a more accurate and efficient method for determining the site-specific suitability of landfarming as a remedial option, as well as for assessing the necessity of supplementary processes.
Collapse
Affiliation(s)
- Sang Hyun Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Heesoo Woo
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Seongnam An
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Department of Earth and Environmental Sciences, Korea University, Seoul, 136-701, South Korea
| | - Jaeshik Chung
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea.
| | - Seunghak Lee
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea; Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, South Korea.
| | - Seungwoo Lee
- Daeil Engineering and Consulting Co., Ltd, Seoul, 06719, South Korea
| |
Collapse
|
30
|
Bioremediation of motor oil-contaminated soil and water by a novel indigenous Pseudomonas otitidis strain DU13 and characterization of its biosurfactant. 3 Biotech 2022; 12:68. [PMID: 35223354 PMCID: PMC8837742 DOI: 10.1007/s13205-022-03133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/28/2022] [Indexed: 11/01/2022] Open
Abstract
Production of biosurfactant by a novel indigenous isolate Pseudomonas otitidis strain DU13 and its role in bioremediation of petroleum hydrocarbon is reported. The identity of the isolate was confirmed by 16S rDNA gene sequencing analysis (Genbank accession: MK177190). The biosurfactant produced by the isolate could reduce the surface tension of petroleum supplemented medium by 46% just after 7 days of treatment. The emulsification index (E 24 ) of the surfactant was found 37, 35, and 20%, respectively, against used motor oil, diesel, and kerosene. The FTIR spectrum of the crude biosurfactant showed the presence of υC-H stretch, υCH2, υ-C=C stretch and υC-H bonding. The isolated strain could degrade 26% of TPH content of used motor oil in liquid culture. Whereas, ex situ pilot-scale field trial demonstrated very high bioremediation potential of the isolate in terms of germination rate of Vigna radiata and Cicer arietinum seeds and plant growth just after 20 days of treatment.
Collapse
|
31
|
Purposely Development of the Adaptive Potential of Activated Sludge from Municipal Wastewater Treatment Plant Focused on the Treatment of Landfill Leachate. Processes (Basel) 2022. [DOI: 10.3390/pr10030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Biological treatment is a key technology in landfill leachate treatment However, often its efficiency is not high enough due to the pollutants in concentrations above the critical ones. The present study aimed to investigate the adaptive responses that occur in activated sludge (AS) during landfill leachate purification. A model process with AS from a municipal wastewater treatment plant and landfill leachate in increasing concentrations was constructed. The data showed that when dilutions 25 and 50 times had been applied the structure of the AS was preserved, but the COD cannot be reduced below 209 mg O2/L. The feed of undiluted leachate destroyed the AS structure as SVI was reduced to 1 mL/g, biotic index to 1, floc size was greatly reduced and COD remained high (2526 mg O2/L). The dominant group of protozoa was changed from attached to free-swimming ciliates. An increase of the bacterial groups responsible for the xenobiotics elimination (aerobic heterotrophs, genera Pseudomonas, Acinetobacter, Azoarcus, Thauera, Alcaligenes) was registered. This was accompanied by a significant increase in free bacteria. The obtained data showed that for optimal treatment of this type of water it is necessary to include a combination of biological treatment with another non-biological method (membrane filtration, reverse osmosis, etc.).
Collapse
|
32
|
Sarubbo LA, Silva MDGC, Durval IJB, Bezerra KGO, Ribeiro BG, Silva IA, Twigg MS, Banat IM. Biosurfactants: Production, Properties, Applications, Trends, and General Perspectives. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Khot V, Zorz J, Gittins DA, Chakraborty A, Bell E, Bautista MA, Paquette AJ, Hawley AK, Novotnik B, Hubert CRJ, Strous M, Bhatnagar S. CANT-HYD: A Curated Database of Phylogeny-Derived Hidden Markov Models for Annotation of Marker Genes Involved in Hydrocarbon Degradation. Front Microbiol 2022; 12:764058. [PMID: 35069469 PMCID: PMC8767102 DOI: 10.3389/fmicb.2021.764058] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 02/04/2023] Open
Abstract
Many pathways for hydrocarbon degradation have been discovered, yet there are no dedicated tools to identify and predict the hydrocarbon degradation potential of microbial genomes and metagenomes. Here we present the Calgary approach to ANnoTating HYDrocarbon degradation genes (CANT-HYD), a database of 37 HMMs of marker genes involved in anaerobic and aerobic degradation pathways of aliphatic and aromatic hydrocarbons. Using this database, we identify understudied or overlooked hydrocarbon degradation potential in many phyla. We also demonstrate its application in analyzing high-throughput sequence data by predicting hydrocarbon utilization in large metagenomic datasets from diverse environments. CANT-HYD is available at https://github.com/dgittins/CANT-HYD-HydrocarbonBiodegradation.
Collapse
Affiliation(s)
- Varada Khot
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Jackie Zorz
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Daniel A Gittins
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Anirban Chakraborty
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Emma Bell
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - María A Bautista
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Alexandre J Paquette
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Alyse K Hawley
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Breda Novotnik
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Casey R J Hubert
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Marc Strous
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Srijak Bhatnagar
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
34
|
Gao H, Wu M, Liu H, Xu Y, Liu Z. Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118511. [PMID: 34801626 DOI: 10.1016/j.envpol.2021.118511] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Petroleum hydrocarbon pollution is a global problem. However, the effects of different petroleum pollution levels on soil microbial communities and ecological functions are still not clear. In this study, we analyzed the changes in microbial community structures and carbon and nitrogen transformation functions in oil-contaminated soils at different concentrations by chemical analysis, high-throughput sequencing techniques, cooccurrence networks, and KEGG database comparison functional gene annotation. The results showed that heavy petroleum concentrations (petroleum concentrations greater than 20,000 mg kg-1) significantly decreased soil microbial diversity (p = 0.01), soil microbiome network complexity, species coexistence patterns, and prokaryotic carbon and nitrogen fixation genes. In medium petroleum contamination (petroleum concentrations of between 4000 mg kg-1 and 20,000 mg kg-1), microbial diversity (p > 0.05) and carbon and nitrogen transformation genes showed no evident change but promoted species coexistence patterns. Heavy petroleum contamination increased the Proteobacteria phylum abundance by 3.91%-57.01%, while medium petroleum contamination increased the Actinobacteria phylum abundance by 1.69%-0.26%. The results suggested that petroleum concentrations played a significant role in shifting soil microbial community structures, ecological functions, and species diversities.
Collapse
Affiliation(s)
- Huan Gao
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Manli Wu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Heng Liu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yinrui Xu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Zeliang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| |
Collapse
|
35
|
Posada-Baquero R, Semple KT, Ternero M, Ortega-Calvo JJ. Determining the bioavailability of benzo(a)pyrene through standardized desorption extraction in a certified reference contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150025. [PMID: 34500273 DOI: 10.1016/j.scitotenv.2021.150025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
There is a strong need for certified reference materials in the quality assurance of nonionic soil contaminant bioavailability estimations through physicochemical methods. We applied desorption extraction, a method recently standardized as ISO16751, to determine the bioavailable concentration of the most commonly regulated polycyclic aromatic hydrocarbon (PAH), benzo(a)pyrene (BaP), in the reference industrial soil BCR-524 with a certified BaP total concentration of 8.60 mg kg-1. This concentration represented BaP levels found in many PAH-polluted soils. The method, based on single-point extraction of the analyte desorbed into the aqueous phase by a receiving phase (Tenax or cyclodextrin), was applied ten times. The data fulfilled highly demanding quality criteria based on recovery and repeatability. The bioavailable BaP concentration detected through Tenax extraction, 1.82 mg kg-1, was comparable to bioavailable concentrations determined in field-contaminated soils and to environmental quality standards based on previously observed total BaP concentrations. There was good agreement (Student's t-test, P ≤ 0.05) with the bioavailable BaP concentration determined by cyclodextrin extraction (1.53 mg kg-1). The methods were extended to four other certified 4- and 5-ringed PAHs for comparative purposes. We suggest ways of improving of the ISO16751 standard related to further systematic assessment of the Tenax-to-soil ratio and incorporation of mass balances. Furthermore, BCR-524 is suitable for quality-assurance protocols with these methods when used in site-specific risk assessments of PAH-polluted environments.
Collapse
Affiliation(s)
- Rosa Posada-Baquero
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), C. S. I. C., Seville, Spain
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Miguel Ternero
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - José-Julio Ortega-Calvo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), C. S. I. C., Seville, Spain.
| |
Collapse
|
36
|
Xu J, Sun Y, Tian G, Li X, Yang Z. Fast biodegradation of long-alkanes by enhancing bacteria performance rate by per-oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113933. [PMID: 34731951 DOI: 10.1016/j.jenvman.2021.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The long-alkanes biodegradation rate was generally found slow during widely used pre-oxidation combined with biodegradation for oil contamination treatment, resulting in long and unsustainable removal. In this study, different chitosan content was used to produce iron catalysts for pre-oxidation, and nutrients were added for the long-alkanes biodegradation experiment. Mechanism of Fenton pre-oxidation and improvement in the biodegradation rate of long-alkanes were studied by analyzing the change in organic matter and bacterial community structure, the amount and activity of bacteria in the biological stage, and the degradation amount long-alkanes hydrocarbon before and after pre-oxidation. Results showed that the destruction of bacteria greatly reduced when hydroxyl radical intensity decreased to 4.40 a.u.. Also, the proportion of humic acid-like was high (40.88%), and the community structure was slightly changed with the pre-oxidation for the fast biodegradation (FB) group. In the subsequent biodegradation, it was found that the degradation rate of each long-alkanes in the FB group increased significantly (C30: 4.18-8.32 mg/(kg·d)) with the increase of the degradation of long-alkanes (10-50%). Further studies showed that the high nutrient dynamics (6.05 mg/(kg·d)) of the FB group resulted in high bacteria performance rate (0.53 mol CO2 × log CFU/(104 g2 d)), which further accelerated the substrate transformation(41%). Therefore, the biodegradation rate of long-alkanes was increased (43.8 mg/(kg·d)) with the removal rate of long-alkanes of 76%. The half-life of long-alkanes for the FB group (64 d) was 33 d shorter than the slow biodegradation group (99 d). These results exhibited that pre-oxidation regulation can shorten the bioremediation cycle by improving the biodegradation rate of long-alkanes. This research has good engineering application value.
Collapse
Affiliation(s)
- Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Yanjie Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Guiyong Tian
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Zhengli Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| |
Collapse
|
37
|
Factors Influencing the Bacterial Bioremediation of Hydrocarbon Contaminants in the Soil: Mechanisms and Impacts. J CHEM-NY 2021. [DOI: 10.1155/2021/9823362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The discharge of hydrocarbons and their derivatives to environments due to human and/or natural activities cause environmental pollution (soil, water, and air) and affect the natural functioning of an ecosystem. To minimize or eradicate environmental pollution by hydrocarbon contaminants, studies showed strategies including physical, chemical, and biological approaches. Among those strategies, the use of biological techniques (especially bacterial biodegradation) is critically important to remove hydrocarbon contaminants. The current review discusses the insights of major factors that enhance or hinder the bacterial bioremediation of hydrocarbon contaminants (aliphatic, aromatic, and polyaromatic hydrocarbons) in the soil. The key factors limiting the overall hydrocarbon biodegradation are generally categorized as biotic factors and abiotic factors. Among various environmental factors, temperature range from 30 to 40°C, pH range from 5 to 8, moisture availability range from 30 to 90%, carbon/nitrogen/phosphorous (C/N/P; 100:20:1) ratio, and 10–40% of oxygen for aerobic degradation are the key factors that show positive correlation for greatest hydrocarbon biodegradation rate by altering the activities of the microbial and degradative enzymes in soil. In addition, the formation of biofilm and production of biosurfactants in hydrocarbon-polluted soil environments increase microbial adaptation to low bioavailability of hydrophobic compounds, and genes that encode for hydrocarbon degradative enzymes are critical for the potential of microbes to bioremediate soils contaminated with hydrocarbon pollutants. Therefore, this review works on the identification of factors for effective hydrocarbon biodegradation, understanding, and optimization of those factors that are essential and critical.
Collapse
|
38
|
Wang H, Kuang S, Lang Q, Wang L. Bacterial community structure of aged oil sludge contaminated soil revealed by illumina high-throughput sequencing in East China. World J Microbiol Biotechnol 2021; 37:183. [PMID: 34580778 DOI: 10.1007/s11274-021-03059-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Screening of the dominant or core oil resistant bacteria in Aged Oil Sludge (AOS) contaminated soil in Daqing and Shengli oilfields (DQ and SL) in China was investigated through High-Throughput Sequencing method. Enhanced total organic carbon (TOC, 12.53 to 28.35 g/kg in DQ and 3.07 to 4.97 g/kg in SL) and total petroleum hydrocarbons (TPHs, 21 to 2837 mg/mg in DQ and 13 to 1558 mg/kg in SL) were observed. The internal transcribed spacer (ITS) sequencing by Illumine Miseq platform at each taxonomic level revealed the notable toxicological effect of AOS on the diversity and community structure of bacteria. In this study, sequence analyses showed 77-89% and 92-98% reduction of Firmicutes at phylum level in DQ and SL respectively after treated with AOS. Enhanced universal gene location was observed in Proteobacteria, Actinobacteria, Gemmatimonadetes and Bacteroidetes in DQ and SL. The universal dominant family in the two oilfields was anaerolineaceae. At the genus level, Algiphilus in DQ and Pseudomonas in SL were the majority respectively. In total, 3 negligible genera (Perlucidibaca, Alcanivorax and Algiphilus) in DQ and 13 negligible genera (Salinisphaera, Microbulbifer and Idiomarina, et al.,) in SL were significantly enriched after oil treatment indicating their possible role in the attenuation of petroleum hydrocarbons.
Collapse
Affiliation(s)
- Huihui Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, People's Republic of China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, People's Republic of China.
| | - Qiaolin Lang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, People's Republic of China
| | - Lei Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, People's Republic of China
| |
Collapse
|
39
|
Li J, Lu Q, Odey EA, Lok KS, Pan B, Zhang Y, Shim H. Coupling of biostimulation and bioaugmentation for enhanced bioremoval of chloroethylenes and BTEX from clayey soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1446-1453. [PMID: 33411164 DOI: 10.1007/s10646-020-02323-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The bioremoval potential of Pseudomonas plecoglossicida toward mixed contaminants was explored through the coupled biostimulation and bioaugmentation in soil microcosm. Response surface methodology was employed to optimize nutrients and innoculum size for the cometabolic removal of two representative chloroethylenes, trichloroethylene (TCE) and cis-1,2-dichloroethylene (cis-DCE), mixed with benzene, toluene, ethylbenzene, and xylenes (BTEX). The interactive effects of nutrients [nitrogen (N) and phosphorus (P)] and inoculum size toward the bioremoval of mixture of BTEX (600 mg kg-1), cis-DCE (10 mg kg-1), and TCE (10 mg kg-1) were estimated using principal component analysis and two-dimensional hierarchical cluster analysis. The optimal condition was confirmed with C:N:P ratio of 100:26.7:1.8-4.8 and higher inoculum size (≥25%), where 97.7% of benzene, 98.3% of toluene, 91.2% of ethylbenzene, 45.6% of m,p-xylene, 31.2% of o-xylene, 26.9% of cis-DCE, and 33.5% of TCE were bioremoved.
Collapse
Affiliation(s)
- Junhui Li
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Qihong Lu
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau SAR, 999078, China
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Emmanuel Alepu Odey
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau SAR, 999078, China
| | - Keng Seng Lok
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau SAR, 999078, China
| | - Bingcai Pan
- Department of Environmental Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanyang Zhang
- Department of Environmental Engineering, Nanjing University, Nanjing, 210023, China
| | - Hojae Shim
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau SAR, 999078, China.
| |
Collapse
|
40
|
Song Y, Li R, Chen G, Yan B, Zhong L, Wang Y, Li Y, Li J, Zhang Y. Bibliometric Analysis of Current Status on Bioremediation of Petroleum Contaminated Soils during 2000-2019. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8859. [PMID: 34444608 PMCID: PMC8393949 DOI: 10.3390/ijerph18168859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 01/06/2023]
Abstract
Petroleum contaminated soils have become a great concern worldwide. Bioremediation has been widely recognized as one of the most promising technologies and has played an important role in solving the issues of petroleum contaminated soils. In this study, a bibliometric analysis using VOSviewer based on Web of Science data was conducted to provide an overview on the field of bioremediation of petroleum contaminated soils. A total of 7575 articles were analyzed on various aspects of the publication characteristics, such as publication output, countries, institutions, journals, highly cited papers, and keywords. An evaluating indicator, h-index, was applied to characterize the publications. The pace of publishing in this field increased steadily over last 20 years. China accounted for the most publications (1476), followed by the United States (1032). The United States had the highest h-index (86) and also played a central role in the collaboration network among the most productive countries. The Chinese Academy of Sciences was the institution with the largest number of papers (347) and cooperative relations (52). Chemosphere was the most productive journal (360). Our findings indicate that the influence of developing countries has increased over the years, and researchers tend to publish articles in high-quality journals. At present, mainstream research is centered on biostimulation, bioaugmentation, and biosurfactant application. Combined pollution of petroleum hydrocarbons and heavy metals, microbial diversity monitoring, biosurfactant application, and biological combined remediation technology are considered future research hotspots.
Collapse
Affiliation(s)
- Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Ruiyi Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Lei Zhong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Yuxin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Yihang Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Jinlei Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Yingxiu Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
- China-Australia Centre for Sustainable Urban Development, Tianjin 300350, China
| |
Collapse
|
41
|
Rong L, Zheng X, Oba BT, Shen C, Wang X, Wang H, Luo Q, Sun L. Activating soil microbial community using bacillus and rhamnolipid to remediate TPH contaminated soil. CHEMOSPHERE 2021; 275:130062. [PMID: 33667768 DOI: 10.1016/j.chemosphere.2021.130062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Soil petroleum contamination has become a global environmental problem. In order to develop a new soil remediation technology, this study established bacteria isolation, surfactant toxicity matching and petroleum contaminated soil remediation practice. The simulated field remediation showed that inoculating the soil with Bacillus methylotrophicus and adding 500 mg kg-1 rhamnolipid (N + RL) to soil can remove 80.24% of aged total petroleum hydrocarbons (TPHs) within 30 days. In particular, although the remediated soil has inoculated sufficient bacterial suspension, the microbial abundance of Bacillus was not a significantly dominant genus after remediation, especially in N + RL (0.73% of the total), but the colonies of indigenous petroleum-degrading bacteria (such as Massilia and Streptomyces) increased significantly. The interaction among genera has been further proved to drive soil non-specific oxidases (such as polyphenol oxidase, laccase and catalase) to remove TPHs. This indicates that the interaction among microorganisms, rather than the degradability of exogenous degrading bacteria, plays more critical role in the degradation of organic pollutants, which enriches the traditional understanding of micro-remediation of contaminated soil. It can be concluded from the obtained results that the remediation of pollutants can be achieved by adjusting the purification capacity of the microbial community and the natural environment.
Collapse
Affiliation(s)
- Luge Rong
- School of Environment, Shenyang University, Shenyang, 110044, China
| | - Xuehao Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Belay Tafa Oba
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chenbo Shen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoxu Wang
- School of Environment, Shenyang University, Shenyang, 110044, China
| | - Hui Wang
- School of Environment, Shenyang University, Shenyang, 110044, China
| | - Qing Luo
- School of Environment, Shenyang University, Shenyang, 110044, China
| | - Lina Sun
- School of Environment, Shenyang University, Shenyang, 110044, China.
| |
Collapse
|
42
|
Reddy B, Dubey SK. Exploring the allochthonous pollution influence on bacterial community and co-occurrence dynamics of River Ganga water through 16S rRNA-tagged amplicon metagenome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26990-27005. [PMID: 33501578 DOI: 10.1007/s11356-021-12342-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
River Ganga is one of the largest and most sacred rivers of India. This river is largely affected by anthropogenic activities causing significant increase in water pollution. The impact of drains discharging polluted water on the bacterial community dynamics in the river remains unexplored. To elucidate this, the targeted 16S rRNA V3-V4 variable region amplicon sequencing and bioinformatic analysis were performed using water from upstream, drain, and downstream of river Ganga. Analysis revealed significant difference in relative abundances of bacterial communities. The increase in bacterial abundance and alpha diversity was detected in the downstream compared to the upstream. Environmental factors were found significantly different between upstream and downstream water. At the phyla level, highly abundant taxa such as Proteobacteria, Actinobacteria, Planctomycetes, Bacteroidetes, and Verrucomicrobia were observed. Bacterial genera like Prevotella, Bacteroides, Blautia, and Faecalibacterium (fecal indicator) had higher abundance in the downstream site. Network co-occurrence revealed that bacterial communities have a modular profile with reduced interaction in drain and downstream water. The network of co-occurring bacterial communities consists of 283 nodes with edge connectivity of 6900, 7074, and 5294 in upstream, drain, and downstream samples, respectively. Upstream communities exhibited the highest positive interaction followed by the drain and the downstream sites. Additionally, highly abundant pathogenic species such as Acinetobacter baumannii and Prevotella copri were also detected in all samples. This study suggests the drain to be allochthonous pollution vector that significantly contributes to bacterial community enrichment. From the results of this study, it is apparent that the lotic water may be used as the ecological reference to understand and monitor the variations in the bacterial communities and their co-occurrence dynamics in the fresh water ecosystems.
Collapse
Affiliation(s)
- Bhaskar Reddy
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
43
|
Zhen L, Hu T, Lv R, Wu Y, Chang F, Jia F, Gu J. Succession of microbial communities and synergetic effects during bioremediation of petroleum hydrocarbon-contaminated soil enhanced by chemical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124869. [PMID: 33422735 DOI: 10.1016/j.jhazmat.2020.124869] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Biotechnologies integrated with chemical techniques are promising in treating the soils contaminated by petroleum hydrocarbons. Experiments by applying the degrading consortium and the modified Fenton (MF) with the chelator sodium citrate simultaneously were carried out to investigate the effects of the MF reagents on the degradation of total petroleum hydrocarbons (TPHs), changes in enzyme activities and the succession of microbial communities at the 0, 20, 100 and 500 mmol/kg hydrogen peroxide concentration levels. The ratio between hydrogen peroxide, ferrous sulfate and sodium citrate in the MF reagents was 100:1:1. The results indicated that the degradation of TPHs conformed to first-order kinetics and MF treatments increased the total removal rates of TPHs (4.73-24.26%) and activated dehydrogenase and polyphenol oxidase activities. A shift in microbial communities from Proteobacteria to Bacteroidetes was observed during the enhanced bioremediation, and the predominant genus shifted from Pseudomonas with an average relative abundance (ARAs) of 76.61% at the beginning to Sphingobacterium with ARAs of 52.06% at the later stage. The MF reagents at the proper level could simplify the relationship among the community populations, alleviate their competition and strengthen their associations, which would optimize the removal efficiency.
Collapse
Affiliation(s)
- Lisha Zhen
- Shaanxi Province Institute of Microbiology, Xi'an, Shaanxi 710043, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A & Forestry University, Yangling, Shaanxi 712100, China
| | - Rui Lv
- Shaanxi Province Institute of Microbiology, Xi'an, Shaanxi 710043, China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fan Chang
- Shaanxi Province Institute of Microbiology, Xi'an, Shaanxi 710043, China
| | - Feng'an Jia
- Shaanxi Province Institute of Microbiology, Xi'an, Shaanxi 710043, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A & Forestry University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
44
|
Hongxia M, Jingfeng F, Jiwen L, Zhiyi W, Yantao W, Dongwei L, Mengfei L, Tingting S, Yuan J, Huiling H, Jixue S. Full-length 16S rRNA gene sequencing reveals spatiotemporal dynamics of bacterial community in a heavily polluted estuary, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116567. [PMID: 33578312 DOI: 10.1016/j.envpol.2021.116567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Understanding the bacterial community structure of the river estuary could provide insights into the resident microorganisms in response to environmental pollution. In this study, the bacterial community structure of Liaohe Estuary was investigated using single-molecule real-time sequencing (SMRT). A total of 57 samples were collected and grouped according to habitat, space, season, and lifestyle. In seawater, regardless of whether it is particle-attached (PA) or free-living (FL) bacteria, the area with higher alpha diversity is the nearshore area in the dry season, while it is the midstream area in the wet season. The bacterial communities in sediment and seawater samples were different at the genus level in the nearshore area, and habitat type was the main factor. A marked difference in the bacterial community was observed in the dry season between different lifestyles but not in the wet season, which resulted from lifestyle transitions of bacterioplankton. Bacterial community varied spatially but not seasonally in sediment samples. In seawater, both FL and PA bacterial communities varied spatially during the wet season. Seasonal differences were only observed in FL bacterial community. Zn and sand were the principal determining factors of the bacterial community in the sediment, Cu and salinity were the main environmental factors for FL bacteria, and Cu, salinity, Zn and temperature were the main environmental factors for PA bacteria. Besides, the tide and nutrients were also the main drivers of the bacterial community in seawater. The indicative taxa, related to Cyanobium_PCC-6307, Pseudomonas and Vibrio, further evidenced the presence of possible bloom, crude oil and pathogen contamination. Overall, our results can contribute to the knowledge of the bacterial community and anthropogenic impacts on the Liaohe Estuary.
Collapse
Affiliation(s)
- Ming Hongxia
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Fan Jingfeng
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Liu Jiwen
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Wan Zhiyi
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Wang Yantao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China; Dalian Ocean University, Dalian, 116023, China
| | - Li Dongwei
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China; Dalian Maritime University, Dalian, 116026, China
| | - Li Mengfei
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China; Dalian Ocean University, Dalian, 116023, China
| | - Shi Tingting
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Jin Yuan
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Huang Huiling
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China; Dalian Ocean University, Dalian, 116023, China
| | - Song Jixue
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| |
Collapse
|
45
|
Gielnik A, Pechaud Y, Huguenot D, Cébron A, Esposito G, van Hullebusch ED. Functional potential of sewage sludge digestate microbes to degrade aliphatic hydrocarbons during bioremediation of a petroleum hydrocarbons contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111648. [PMID: 33213993 DOI: 10.1016/j.jenvman.2020.111648] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Sewage sludge digestate is a valuable organic waste which can be used as fertilizer in soil bioremediation. Sewage sludge digestate is not only a good source of nutrients but is also rich in bacteria carrying alkB genes, which are involved in aliphatic hydrocarbons metabolism. Increase of alkB genes ratio in polluted soils has been observed to improve bioremediation efficiency. In this study, for the first time, the genetic potential of indigenous microorganisms of digestate to degrade petroleum products was assessed. The objectives were to study petroleum hydrocarbons (PHCs) removal together with shifts in soil taxa and changes in the concentration of alkB genes after digestate application. Initial alkB genes concentration in contaminated soils and digestate was 1.5% and 4.5%, respectively. During soil incubation with digestate, alkB genes percentage increased up to 11.5% and after the addition of bacteria immobilized onto biochar this value increased up to 60%. Application of digestate positively affected soil respiration and bacterial density, which was concomitant with enhanced PHCs degradation. Incubation of soil amended with digestate resulted in 74% PHCs decrease in 2 months, while extra addition of bacteria immobilized onto biochar increased this value up to 95%. The use of digestate affected the microbial community profiles by increasing initial bacterial density and diversity, including taxa containing recognized PHCs degraders. This study reveals the great potential of digestate as a soil amendment which additionally improves the abundance of alkB genes in petroleum contaminated soils.
Collapse
Affiliation(s)
- Anna Gielnik
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée, France; University of Napoli "Federico II", Department of Civil, Architectural and Environmental Engineering, 80125, Napoli, Italy.
| | - Yoan Pechaud
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - David Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | - Giovanni Esposito
- University of Napoli "Federico II", Department of Civil, Architectural and Environmental Engineering, 80125, Napoli, Italy
| | - Eric D van Hullebusch
- IHE Delft Institute for Water Education, Department of Environmental Engineering and Water Technology, P.O. Box 3015, 2601 DA, Delft, the Netherlands; Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
46
|
Andreolli M, Lampis S, Brignoli P, Vallini G. Mesocosm-based simulations to optimize a bioremediation strategy for the effective restoration of wildfire-impacted soils contaminated with high-molecular-weight hydrocarbons. J Appl Microbiol 2021; 131:1249-1260. [PMID: 33507603 DOI: 10.1111/jam.15018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/03/2021] [Accepted: 01/23/2021] [Indexed: 11/29/2022]
Abstract
AIMS We obtained four microbial isolates from soil exposed to forest fire and evaluated their potential bioremediation activity when combined with a biosurfactant-producing bacterial strain for the decontamination of wildfire-impacted soil polluted with high-molecular-weight (HMW) hydrocarbons. METHODS AND RESULTS We established mesocosm trials to compare three bioremediation strategies: natural attenuation, bioaugmentation and biostimulation. Chemical analysis, culture-dependent and culture-independent methods were used to evaluate the bioremediation efficiency and speciation of the microbial cenoses based on these approaches. After treatment for 90 days, bioaugmentation removed 75·2-75·9% of the HMW hydrocarbons, biostimulation removed 63·2-69·5% and natural attenuation removed ~22·5%. Hydrocarbon degradation was significantly enhanced in the mesocosm supplemented with the biosurfactant-producing bacterial strain after 20 and 50 days of treatment compared to the other bioremediation strategies. CONCLUSIONS We found that the bioaugmentation approach was more effective than biostimulation and natural attenuation for the removal of HMW hydrocarbons from fire-impacted soil. SIGNIFICANCE AND IMPACT OF THE STUDY Our study showed that micro-organisms from wildfire-impacted soil show significant potential for bioremediation, and that biosurfactant-producing bacterial strains can be combined with them as part of an effective bioremediation strategy.
Collapse
Affiliation(s)
- M Andreolli
- Department of Biotechnology, University of Verona, Verona, Italy
| | - S Lampis
- Department of Biotechnology, University of Verona, Verona, Italy
| | - P Brignoli
- Centre for Geotechnologies, University of Siena, San Giovanni Valdarno, Italy
| | - G Vallini
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
47
|
Varjani S, Pandey A, Upasani VN. Oilfield waste treatment using novel hydrocarbon utilizing bacterial consortium - A microcosm approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141043. [PMID: 32717605 DOI: 10.1016/j.scitotenv.2020.141043] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Oily sludge is a hazardous waste generated through petroleum producing and processing industrial units. Due to its harmful environmental impacts, it needs to be treated in sustainable manner. The present study aimed to evaluate influence of bioaugmentation on oily sludge biodegradation efficiency of a novel hydrocarbon utilizing bacterial consortium (HUBC) using microcosms. Three approaches (bioaugmentation, natural attenuation and abiotic factors) were used for microcosm studies. Bioaugmentation treatment showed best results for oily sludge degradation than natural attenuation and abiotic factors, resulting 82.13 ± 1.21% oily sludge degradation in 56 days. In bioaugmented microcosm on 56th day 0.30 ± 0.07 × 108 CFU/g hydrocarbon utilizing bacteria were noted. Results showed that HUBC could be used to remediate soil polluted with oily sludge. This study imparts a notable approach for farming application(s).
Collapse
Affiliation(s)
- Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Ashok Pandey
- Centre of Innovation and Translation Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Vivek N Upasani
- Department of Microbiology, M. G. Science Institute, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
48
|
Varjani S, Upasani VN, Pandey A. Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139766. [PMID: 32526573 DOI: 10.1016/j.scitotenv.2020.139766] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Agricultural land pollution is key a problem globally, which is linked with growth of industries. Petroleum industrial sector is one of the major industrial sectors and the activities of petroleum industry lead to the agricultural land pollution. Oily sludge is a type of solid and hazardous waste generated from petroleum industrial activities. Hence, there is an urgent need to find remediation methods of the oily sludge contaminated agricultural land. Thus, the aim of this work was to study bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and evaluation of phytotoxicity on germination of Vigna radiata seed in pots. Five different approaches were adopted for the bioremediation studies, which included Bioaugmentation + Biostimulation, bioaugmentation, biostimulation, natural attenuation and abiotic factors. Simultaneous application of P. aeruginosa NCIM 5514 and nutrients in microcosm showed 92.97 ± 0.92% decrease in oily sludge with good hydrocarbon utilizing bacterial count and decreased nutrient level in 56 days. Pot experiments on seed germination of mung beans (Vigna radiata) seeds was performed by pot experiments. 80.95% germination in five days in treated soil. From the results it was concluded that simultaneous use of oily sludge degraders and nutrient supplement could revive seed germination ability of oily sludge polluted soil effectively. This is first report of comparing five techniques to bioremediate oily sludge polluted soil using Pseudomonas aeruginosa, followed by pot study using V. radiata seeds, showing that P. aeruginosa can be an efficient bioremediation agent and can be effectively used for remediation of oily sludge contaminated soil.
Collapse
Affiliation(s)
- Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Vivek N Upasani
- Department of Microbiology, M. G. Science Institute, Ahmedabad 380009, Gujarat, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| |
Collapse
|
49
|
Pseudomonas fluorescens: A Bioaugmentation Strategy for Oil-Contaminated and Nutrient-Poor Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17196959. [PMID: 32977570 PMCID: PMC7579645 DOI: 10.3390/ijerph17196959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Bioremediation technology is one of the most profitable and sustainable strategies for remediating soils contaminated with hydrocarbons. This study focuses on assessing the influence of biostimulation and bioaugmentation with Pseudomonas fluorescens to contribute to the removal of total petroleum hydrocarbons (TPHs) of a soil. Laboratory studies were carried out (measurements of emitted CO2, surface tension, and residual TPH) to select the best bioaugmentation and biostimulation treatment. The sources of C, N, and P were glucose–yeast extract, NH4Cl–NaNO3, and K2HPO4–K3PO4, respectively. The effect of culture conditions on the reduction of TPH and respiratory activity was evaluated through a factorial design, 23, in a solid culture system. After 80 days of incubation, it was observed that treatments of yeast extract–NH4Cl–K2HPO4 (Y4) and glucose–NaNO3–K3PO4 (Y5) presented a higher level of TPH removal (20.91% and 20.00% degradation of TPH, respectively). Biostimulation favors the production of biosurfactants, indirectly measured by the change in surface tension in the soil extracts. The treatments Y4 and Y5 showed a lower change value of the surface tension (23.15 and 23.30 mN·m−1 at 25 °C). A positive correlation was determined between the change in surface tension and the removal of TPH; hence there was a contribution of the biosurfactants produced to the removal of hydrocarbons.
Collapse
|
50
|
Chen C, Chen S, Zhang W, Yuan F, Yu J, Liu Q. Streptomyces sp. S501, a Marine Petroleum-Degrading Actinobacterium Isolated from Sediment of Yalujiang Estuary, Northern China, and Its Genome Annotation. Curr Microbiol 2020; 77:3643-3650. [PMID: 32895802 DOI: 10.1007/s00284-020-02181-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Streptomyces sp. S501, which was isolated from the sediment of Yalujiang Estuary in China, was the first marine Streptomyces species discovered to act as an excellent petroleum degrader. We analyzed the effect of pH, temperature, and concentration of NH4NO3 on the petroleum degradation of strain S501, and the optimum biodegradation rate reached 63.02% under the condition of 2 g/L NH4NO3 addition at 30 °C and pH 8. The complete genome sequence of Streptomyces sp. S501 was determined by using the PacBio RSII platform, which contains a linear chromosome with 7,173,651 bp and a linear plasmid with 288,181 bp, with GC contents of 71.19% and 67.57%, respectively. The genome sequence suggests that Streptomyces sp. S501 has the ability to degrade several hazardous pollutants, as well as the ability to biosynthesize diverse secondary metabolites and enzymes. There are fifty annotated genes involved in oil component degradation, and there are three genes without known annotation information in Streptomyces sp. S501, which have high homology with genes encoding P450 family enzymes and should be novel genes involved in alkane degradation. This study provides useful genetic information for investigating the molecular mechanisms of marine Streptomyces, with biodegradation and application potential.
Collapse
Affiliation(s)
- Chao Chen
- Institute of Marine Microbiology, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, People's Republic of China
| | - Shuai Chen
- Institute of Marine Microbiology, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, People's Republic of China
| | - Wanxing Zhang
- Institute of Marine Microbiology, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, People's Republic of China
| | - Fenghao Yuan
- Institute of Marine Microbiology, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, People's Republic of China
| | - Jicheng Yu
- Institute of Marine Microbiology, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, People's Republic of China.
| | - Qiu Liu
- Institute of Marine Microbiology, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, People's Republic of China.
| |
Collapse
|