1
|
Miao Q, Ji W, Dong H, Zhang Y. Occurrence of phthalate esters in the yellow and Yangtze rivers of china: Risk assessment and source apportionment. J Environ Sci (China) 2025; 149:628-637. [PMID: 39181673 DOI: 10.1016/j.jes.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 08/27/2024]
Abstract
Phthalate esters (PAEs), recognized as endocrine disruptors, are released into the environment during usage, thereby exerting adverse ecological effects. This study investigates the occurrence, sources, and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins. The total concentration of PAEs in the Yellow River spans from 124.5 to 836.5 ng/L, with Dimethyl phthalate (DMP) (75.4 ± 102.7 ng/L) and Diisobutyl phthalate (DiBP) (263.4 ± 103.1 ng/L) emerging as the predominant types. Concentrations exhibit a pattern of upstream (512.9 ± 202.1 ng/L) > midstream (344.5 ± 135.3 ng/L) > downstream (177.8 ± 46.7 ng/L). In the Yangtze River, the total concentration ranges from 81.9 to 441.6 ng/L, with DMP (46.1 ± 23.4 ng/L), Diethyl phthalate (DEP) (93.3 ± 45.2 ng/L), and DiBP (174.2 ± 67.6 ng/L) as the primary components. Concentration levels follow a midstream (324.8 ± 107.3 ng/L) > upstream (200.8 ± 51.8 ng/L) > downstream (165.8 ± 71.6 ng/L) pattern. Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH, and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate (DNOP). Conversely, in other regions, the associated risk with PAEs is either low or negligible. The main source of PAEs in Yellow River is attributed to the release of construction land, while in the Yangtze River Basin, it stems from the accumulation of pollutants in lakes and forests discharged into the river. These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers, providing valuable insights for global PAEs research in other major rivers.
Collapse
Affiliation(s)
- Qinkui Miao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenxiang Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ying Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Lv J, Sun S, Wu R, Li X, Bai Y, Xu J, Guo C. Phthalate esters in dusts from different indoor and outdoor microenvironment and potential human health risk: A case study in Beijing. ENVIRONMENTAL RESEARCH 2025; 266:120513. [PMID: 39631649 DOI: 10.1016/j.envres.2024.120513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Phthalate esters (PAEs) are widely used plasticizers that can easily migrate from plastic products, thereby presenting potential health risks through exposure. While PAE concentrations in dust have received increasing attention, there is still a lack of comprehensive understanding regarding their environmental distribution, composition profiles, and associated human exposure risks in Beijing. This study investigated the presence of seven PAEs in 124 dust samples collected from eight indoor and four outdoor microenvironment types across the Beijing metropolitan area. The PAEs were detected universally in all samples, with di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and di-iso-butyl phthalate (DIBP) as the predominant compounds, accounting for 91.78%-99.91% and 91.22%-99.76% of total PAE concentrations (Σ7PAEs) in indoor and outdoor dust, respectively. Indoor dust exhibited significantly higher Σ7PAEs (range: 45.33-1212.41 μg/g, mean: 130.61 μg/g) compared to outdoor dust (range: 2.10-5.41 μg/g, mean: 3.38 μg/g). Among indoor microenvironments, taxis had the highest Σ7PAEs (mean: 1250.59 μg/g), followed by private cars, print shops, residences, furniture shops, shopping malls, dormitories and offices. Outdoor Σ7PAEs levels decreased in the order of roads, residential areas, green belts, and parks. Estimated daily exposure doses through dust ingestion were significantly higher than those from dermal absorption and inhalation for five occupational groups (taxi drivers, print shop workers, road workers, office workers, jobless people), indicating dust ingestion as the primary exposure route, with DEHP and DBP as the main contributors. While current exposure levels may not present significant non-cancer risks based on hazard quotient and hazard index estimations, it's noteworthy that DEHP may pose a carcinogenic risk to taxi drivers. Potential risks cannot be overlooked considering the absence of toxicity thresholds, additional exposure pathways, and possible cocktail effects from coexisting pollutants.
Collapse
Affiliation(s)
- Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shanwei Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Rongshan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xu Li
- Beijing Jianhua Experimental E-Town School, Beijing, 100023, China
| | - Yangwei Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
3
|
Zhang Q, Wang L, Wu Q. Occurrence and combined exposure of phthalate esters in urban soil, surface dust, atmospheric dustfall, and commercial food in the semi-arid industrial city of Lanzhou, Northwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124170. [PMID: 38759748 DOI: 10.1016/j.envpol.2024.124170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
A total of 138 samples including urban soil, surface dust, atmospheric dustfall, and commercial food were collected from the semi-arid industrial city of Lanzhou in Northwest China, and 22 phthalate esters (PAEs) were analyzed in these samples by gas chromatography-mass spectrometry for the pollution characteristics, potential sources, and combined exposure risks of PAEs. The results showed that the total concentration of 22 PAEs (Ʃ22PAEs) presented surface dust (4.94 × 104 ng/g) ≫ dustfall (1.56 × 104 ng/g) ≫ food (2.14 × 103 ng/g) ≫ urban soil (533 ng/g). Di-n-butyl phthalate (DNBP), di-isobutyl phthalate, di(2-ethylhexyl) phthalate (DEHP), and di-isononyl phthalate/di-isodecyl phthalate were predominant in the environmental media and commercial food, being controlled by priority (52.1%-65.5%) and non-priority (62.1%) PAEs, respectively. Elevated Ʃ22PAEs in the urban soil and surface dust was found in the west, middle, and east of Lanzhou. Principal component analysis indicated that PAEs the urban soil and surface dust were related with the emissions of products containing PAEs, atmosphere depositions, and traffic and industrial emissions. PAEs in the foods were associated with the growth and processing environment. The health risk assessment of United States Environmental Protection Agency based on the Chinese population exposure parameters indicated that the total exposure dose of 22 PAEs was from 0.111 to 0.226 mg/kg/day, which were above the reference dose (0.02 mg/kg/day) and tolerable daily intake (TDI, 0.05 mg/kg/day) for DEHP (0.0333-0.0631 mg/kg/day), and TDI (0.01 mg/kg/day) for DNBP (0.0213-0.0405 mg/kg/day), implying that the exposure of PAEs via multi-media should not be ignored; the total non-carcinogenic risk of six priority PAEs was below 1 for the three environmental media (1.21 × 10-5-2.90 × 10-3), while close to 1 for food (4.74 × 10-1-8.76 × 10-1), suggesting a potential non-carcinogenic risk of human exposure to PAEs in food; the total carcinogenic risk of BBP and DEHP was below 1 × 10-6 for the three environmental media (9.13 × 10-10-5.72 × 10-7), while above 1 × 10-4 for DEHP in food (1.02 × 10-4), suggesting a significantly carcinogenic risk of human exposure to DEHP in food. The current research results can provide certain supports for pollution and risk prevention of PAEs.
Collapse
Affiliation(s)
- Qian Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Qianlan Wu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
4
|
Kou L, Chen H, Zhang X, Liu S, Zhang B, Zhu H, Du Z. Enhanced degradation of phthalate esters (PAEs) by biochar-sodium alginate immobilised Rhodococcus sp. KLW-1. ENVIRONMENTAL TECHNOLOGY 2024; 45:3367-3380. [PMID: 37191443 DOI: 10.1080/09593330.2023.2215456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
In this study, a new strain of bacteria, named Rhodococcus sp. KLW-1, was isolated from farmland soil contaminated by plastic mulch for more than 30 years. To improve the application performance of free bacteria and find more ways to use waste biochar, KLW-1 was immobilised on waste biochar by sodium alginate embedding method to prepare immobilised pellet. Response Surface Method (RSM) predicted that under optimal conditions (3% sodium alginate, 2% biochar and 4% CaCl2), di (2-ethylhexyl) phthalate (DEHP) degradation efficiency of 90.48% can be achieved. Under the adverse environmental conditions of pH 5 and 9, immobilisation increased the degradation efficiency of 100 mg/L DEHP by 16.42% and 11.48% respectively, and under the high-stress condition of 500 mg/L DEHP concentration, immobilisation increased the degradation efficiency from 71.52% to 91.56%, making the immobilised pellets have strong stability and impact load resistance to environmental stress. In addition, immobilisation also enhanced the degradation efficiency of several phthalate esters (PAEs) widely existing in the environment. After four cycles of utilisation, the immobilised particles maintained stable degradation efficiency for different PAEs. Therefore, immobilised pellets have great application potential for the remediation of the actual environment.
Collapse
Affiliation(s)
- Liangwei Kou
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Hanyu Chen
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Xueqi Zhang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Shaoqin Liu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Huina Zhu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Zhimin Du
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| |
Collapse
|
5
|
Karamianpour J, Arfaeinia H, Ranjbar Vakilabadi D, Ramavandi B, Dobaradaran S, Fazlzadeh M, Torkshavand Z, Banafshehafshan S, Shekarizadeh H, Ahmadi S, Badeenezhad A. Accumulation, sources, and health risks of phthalic acid esters (PAEs) in road dust from heavily industrialized, urban and rural areas in southern Iran. Heliyon 2023; 9:e23129. [PMID: 38144273 PMCID: PMC10746467 DOI: 10.1016/j.heliyon.2023.e23129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
In this research, a total of 51 road dust samples were collected from three districts (Asaluyeh, Bushehr, and Goshoui) in the south of Iran from April to June 2022 and analyzed for the concentration of 7 phthalic acid esters (PAEs) compounds. Asaluyeh was considered as an industrial area (near gas and petrochemical industries), Bushehr as an urban area, and Goshoui as a rural area (far from pollution sources). The PAEs concentration of the street dust samples was determined using a mass detection gas chromatography (GC/MS). The mean ± SD levels of ƩPAEs in samples from industrial, urban, and rural sources were 56.9 ± 11.5, 18.3 ± 9.64, and 5.68 ± 1.85 μg/g, respectively. The mean concentration levels of ƩPAEs was significantly (P < 0.05) higher in samples from the industrial area than urban and rural areas. The mean levels of di(2-Ethylhexyl) phthalate (DEHP) in industrial, urban, and rural areas were 20.3 ± 8.76, 4.59 ± 1.71, and 2.35 ± 0.98 μg/g, respectively. The results of the PCA analysis indicate that the likely major sources of PAEs in the road dust in the studied areas are the application of various plasticizers in industry, solvents, chemical fertilizers, waste disposal, wastewater (e.g., agricultural, domestic, and industrial), and the use of plastic films and plastic-based irrigation pipes in greenhouses. As well as, it was found that the non-cancer risk of exposure to dust-bound PAEs was higher for children than for adults. These values were <1 for both age groups (children and adults) and the exposure of inhabitants to PAEs in road dust did not pose a notable non-cancer risk. The cancer risk from exposure to DEHP in road dust was below the standard range of 10-6 in all three areas. Further studies that consider different routes of exposure to these contaminants are needed for an accurate risk assessment. Moreover, since higher PAEs level was found in industrial area, decision-makers should adopt strict strategies to control the discharging of pollution from industries to the environment and human societies.
Collapse
Affiliation(s)
- Javid Karamianpour
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Dariush Ranjbar Vakilabadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Fazlzadeh
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zahra Torkshavand
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sara Banafshehafshan
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hanyeh Shekarizadeh
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sami Ahmadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ahmad Badeenezhad
- Department of Environmental Health Engineering, Behbahan University of Medical Sciences, Behbahan, Iran
| |
Collapse
|
6
|
Celik-Saglam I, Yurtsever M, Civan M, Yurdakul S, Cetin B. Evaluation of levels and sources of microplastics and phthalic acid esters and their relationships in the atmosphere of highly industrialized and urbanized Gebze, Türkiye. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163508. [PMID: 37059133 DOI: 10.1016/j.scitotenv.2023.163508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023]
Abstract
The presence of microplastics (MPs) in the atmosphere and their relationship with other pollutants have been gaining attention due to both their ubiquity and threatening human health. As well phthalic acid esters (PAEs) regarding as plasticizers for being added in plastic materials are key role for plastic pollution. In this study, the concentrations and sources of airborne MPs together with major PAEs and their relationships were investigated for four seasons. MP particles <20 μm, constituting the majority of the samples, were successfully revealed by NR fluorescent analysis. As a result of the μATR-FTIR analyzes, it was seen that besides different polymer derivatives, dye-pigment types, some minerals and compounds, and abundant semi-synthetic fibers and natural fibers were also present. MPs concentration were found in the range of 7207-21,042 MP/m3 in summer, 7245-32,950 MP/m3 in autumn, 4035-58,270 MP/m3 in winter and 7275-37,094 MP/m3 in spring. For the same period, the concentrations of PAEs ranged from 9.24 to 115.21 ng/m3 with an average value of 38.08 ± 7.92 ng/m3. PMF was also applied and four factors were extracted. Factor 1, accounts 52.26 % and 23.27 % of the total PAEs and MPs variances, was attributed to PVC sources. Factor 2, explaining 64.98 % of the total MPs variance had the highest loading of MPs and moderate loadings of relatively low molecular weight of PAEs, was attributed to plastics and personal care products. Factor 3, explaining the 28.31 % of the total PAEs variance was laden with BBP, DnBP, DiBP and DEP and was attributed to various plastic input during the sampling campaign coming from the industrial activities. The last factor accounts for 11.65 % of the total PAEs variance and was dominated by DMEP and it was linked to a source of the activities performed in the laboratories of the university.
Collapse
Affiliation(s)
- Isıl Celik-Saglam
- Gebze Technical University, Department of Environmental Engineering, Gebze, Kocaeli, Turkiye
| | - Meral Yurtsever
- Sakarya University, Department of Environmental Engineering, Sakarya, Turkiye
| | - Mihriban Civan
- Kocaeli University, Department of Environmental Engineering, Kocaeli, Turkiye
| | - Sema Yurdakul
- Suleymen Demirel University, Department of Environmental Engineering, Isparta, Turkiye
| | - Banu Cetin
- Gebze Technical University, Department of Environmental Engineering, Gebze, Kocaeli, Turkiye.
| |
Collapse
|
7
|
Kou L, Chen H, Zhang X, Liu S, Zhang B, Zhu H. Biodegradation of di(2-ethylhexyl) phthalate by a new bacterial consortium. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:92-105. [PMID: 37452536 PMCID: wst_2023_198 DOI: 10.2166/wst.2023.198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) with continuous high concentration was used as the sole carbon and energy source to isolate a new bacterial consortium (K1) from agricultural soil covered with plastic film for a long time. Unclassified Comamonadaceae, Achromobacter, and Pseudomonas in K1 were identified as major genera of the consortium by high-throughput sequencing, and unclassified Commanadaceae was first reported to be related to DEHP degradation. Response surface method (RSM) showed that the optimum conditions for K1 to degrade DEHP were 31.4 °C, pH 7.3, and a concentration of 420 mg L-1. K1 maintains normal cell viability and stable DEHP degradation efficiency in the range of 10-3000 mg L-1 DEHP concentration, which is superior to existing research. The biodegradation of DEHP followed first-order kinetics when the initial concentration of DEHP was between 100 and 3,000 mg L-1. GC-MS analysis of different treatment groups showed that DEHP was degraded by the consortium group through the de-esterification pathway, and treatment effect was significantly better than that of the single bacteria treatment group. The subsequent substrate utilization experiment further confirmed that K1 could quickly mineralize DEHP. In addition, K1 has high degradation capacity for the most common phthalate acid esters in the environment.
Collapse
Affiliation(s)
- Liangwei Kou
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou 450001, Henan Province, China E-mail:
| | - Hanyu Chen
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou 450001, Henan Province, China
| | - Xueqi Zhang
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou 450001, Henan Province, China
| | - Shaoqin Liu
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou 450001, Henan Province, China
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou 450001, Henan Province, China
| | - Huina Zhu
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
8
|
Zhang T, Ma B, Wang L. Phthalic acid esters in grains, vegetables, and fruits: concentration, distribution, composition, bio-accessibility, and dietary exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2787-2799. [PMID: 35939188 DOI: 10.1007/s11356-022-22415-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Grain, vegetable, and fruit samples were collected from Xi'an City in Northwest China and analyzed for the characteristics, bio-accessibility, and dietary exposure of 22 phthalic acid esters (PAEs). All the studied PAEs were ubiquitously detected, except for diethyl phthalate in vegetables and fruits. In grains, the sum of detectable PAEs (∑22PAEs) varied between 0.0840 and 40.0 µg/g, with a mean of 4.19 µg/g, presenting rice > > beans > flour, and the major PAEs were di-n-butyl phthalate (DnBP) and bis(2-ethylhexyl) phthalate (DEHP). In vegetables, the ∑21PAEs ranged from 0.190 to 56.8 µg/g, with a mean of 8.07 µg/g, exhibiting leafy vegetables > root vegetables > fruits-vegetables > fungus > cauliflower > beans, and the main PAEs were di-iso-butyl phthalate (DiBP), DnBP, DEHP, di-iso-nonyl phthalate (DiNP), and di-iso-decyl phthalate (DiDP). In fruits, the ∑21PAEs varied between 0.300 and 12.6 µg/g, with a mean of 3.97 µg/g, presenting spring-winter season fruits > summer-autumn season fruits and shell-less fruits > shelled fruits, and the predominant PAEs were DiBP, DnBP, DEHP, DiNP, and DiDP. The bio-accessibility of PAEs in the gastrointestinal fluid simulant was higher than that in the single gastric or intestinal fluid simulant. The bio-accessibility of PAEs was correlated with the physiochemical properties of PAEs. The estimated daily intakes (EDIs) of human dietary exposure to PAEs were lower than the reference doses of United States Environmental Protection Agency and the tolerable dairy intakes (TDIs) of European Food Safety Authority (EFSA), except for the EDI of DnBP in the grains and DiBP in the vegetables higher than or close to the TDI of the EFSA. The research suggested that special attention should be paid to human dietary exposure to DnBP and DiBP, especially for children and adolescents.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Environmental Science and Engineering, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Bianbian Ma
- Department of Environmental Science and Engineering, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Lijun Wang
- Department of Environmental Science and Engineering, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
| |
Collapse
|
9
|
Kang SF, Lin JY, Chong KY, Lin YT, Chen CF. Assessing wastewater pollution from outdoor night markets and its impacts on river quality. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2288-2302. [PMID: 36378181 DOI: 10.2166/wst.2022.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Night markets are attractive tourist sites in Asian cities. However, the outdoor activities produce different types of pollutants. Air pollution and solid waste in night markets have received much attention, but wastewater pollution from night markets has rarely been examined. The untreated wastewater are discharged into roadside gutters and might contaminate receiving waterbodies. In this study, night markets in Taipei city, Taiwan, were surveyed to clarify the characteristics of wastewater. The sampled wastewater showed high levels of organic substances, oil and grease, and phosphorous but low levels of nitrogen compounds. In addition, the unit pollution loads in night market stalls were obtained. The BOD load of each stall in the night markets was 2,509 g/day, which is higher than the sewage emissions of 50 people. In order to know the impacts of night market wastewater on the receiving waterbody, a water quality model, the Water Quality Analysis Simulation Program (WASP), was used in the studied river, Keelung River. If night market wastewater could be collected (not discharged), the BOD concentration could be reduced by 9.8%, but the NH3-N and DO concentration could be reduced by less than 1%.
Collapse
Affiliation(s)
- Shyh-Fang Kang
- Department of Water Resources and Environmental Engineering, Tamkang University, No.151, Yingzhuan Rd., Tamsui Dist., New Taipei City 251301, Taiwan
| | - Jen-Yang Lin
- Department of Civil Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan E-mail:
| | - Kean-Yip Chong
- Department of Civil Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan E-mail:
| | - Yu-Tse Lin
- Department of Civil Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan E-mail:
| | - Chi-Feng Chen
- Department of Civil Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan E-mail:
| |
Collapse
|
10
|
Tran HT, Nguyen MK, Hoang HG, Hutchison JM, Vu CT. Composting and green technologies for remediation of phthalate (PAE)-contaminated soil: Current status and future perspectives. CHEMOSPHERE 2022; 307:135989. [PMID: 35988768 PMCID: PMC10052775 DOI: 10.1016/j.chemosphere.2022.135989] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/29/2023]
Abstract
Phthalate esters (PAEs) are hazardous organic compounds that are widely added to plastics to enhance their flexibility, temperature, and acidic tolerance. The increase in global consumption and the corresponding environmental pollution of PAEs has caused broad public concerns. As most PAEs accumulate in soil due to their high hydrophobicity, composting is a robust remediation technology for PAE-contaminated soil (efficiency 25%-100%), where microbial activity plays an important role. This review summarized the roles of the microbial community, biodegradation pathways, and specific enzymes involved in the PAE degradation. Also, other green technologies, including biochar adsorption, bioaugmentation, and phytoremediation, for PAE degradation were also presented, compared, and discussed. Composting combined with these technologies significantly enhanced removal efficiency; yet, the properties and roles of each bacterial strain in the degradation, upscaling, and economic feasibility should be clarified in future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA.
| | - Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Justin M Hutchison
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA
| | - Chi Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
11
|
Zhang Y, Li X, Zhang H, Liu W, Liu Y, Guo C, Xu J, Wu F. Distribution, source apportionment and health risk assessment of phthalate esters in outdoor dust samples on Tibetan Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155103. [PMID: 35398431 DOI: 10.1016/j.scitotenv.2022.155103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The urbanization of Tibetan Plateau (TP) probably results in a significant contamination of organic pollutants in the area, such as phthalate esters (PAEs). However, there is a lack of monitoring and evaluation of their occurrence and risks in the outdoor dust on TP. This study for the first time investigated the concentrations, distributions and health risk of PAEs in outdoor dust samples on TP, China. A total of 132 outdoor dust samples were collected from five different functional areas, and results showed the ubiquitous detection of all PAEs in the samples. The Σ6PAEs concentrations ranged from 0.08 to 31.49 μg·g-1 with a mean of 3.57 μg·g-1. High concentrations of Σ6PAEs in the outdoor dust were found in commercial districts, which were attributed to the heavy use of PAEs in the public commerce such as consumer products, commodities, and building materials. Di-n-butyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP) were the dominant components accounting for 30.65% and 53.19% of the Σ6PAEs. Principal component analysis, positive matrix factorization, and correlation analysis were used to apportion the potential sources of PAEs in outdoor dust samples. The PAEs in the outdoor dust originated mainly from wide application of plasticizers as well as cosmetics and personal care products. The main pathways of human exposure to PAEs in the outdoor dust were ingestion and dermal absorption of dust particles. The total intakes of PAEs from outdoor dusts for children and adults were 1.50 × 10-5 and 2.47 × 10-6 mg·kg-1·d-1, respectively. Children were more susceptible to the PAEs intake than the adults. Although the estimated health risks of the six PAEs are currently acceptable, caution is needed given the likely future increase in use of these PAEs and the currently unknown contribution to human exposure by other medium.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Xu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenxiu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| |
Collapse
|
12
|
Zhao X, Zheng Y, Quan F, Hu S, Wu Q, Luo M, Gu Y, Tang S, Jiang J. Road runoff as a significant nonpoint source of parabens and their metabolites in urban rivers. CHEMOSPHERE 2022; 301:134632. [PMID: 35439487 DOI: 10.1016/j.chemosphere.2022.134632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Parabens are widely added to food, cosmetics, and medicines as preservatives and are typical contaminants of pharmaceuticals and personal care products (PPCPs). However, their fate and transport in urban watersheds remain largely unexplored. This study investigated the role of road runoff as a critical nonpoint source of parabens and their metabolites in urban rivers based on 73 multimedia (road runoff and dust in different urban land uses, wastewater, stormwater discharge and river water) samples collected from a highly urbanized drainage area. Seven parabens and five metabolites were detected in the road runoff, with mean concentrations of ∑parabens and ∑metabolites equal to 47.5 ng/L and 4710 ng/L, respectively. The concentrations in road runoff were comparable to those in treated wastewater and river water and showed a land use pattern of residential > industrial > commercial. A first flush effect of the contaminants was observed in a heavy rainfall event with an antecedent dry period. In general, the population-based and area-based emission intensities of ∑parabens and ∑metabolites in road runoff were one order of magnitude higher than those in wastewater effluent during the rainfall events. This study provides quantitative evidence that road runoff can be a major pollution source of parabens and their metabolites in rapidly growing cities during the wet season and calls for the integrated management of nonpoint sources to prevent urban river contamination by typical PPCPs.
Collapse
Affiliation(s)
- Xue Zhao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Feng Quan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shiyao Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingping Wu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Meiyu Luo
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Gu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sijie Tang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiping Jiang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
13
|
Chen CF, Ju YR, Lim YC, Wang MH, Patel AK, Singhania RR, Chen CW, Dong CD. The effect of heavy rainfall on the exposure risks of sedimentary phthalate esters to aquatic organisms. CHEMOSPHERE 2022; 290:133204. [PMID: 34914947 DOI: 10.1016/j.chemosphere.2021.133204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Phthalate esters (PAEs) have known widely being used in plastic products leading to being ubiquitous in the environment by easy to release from those products. This study aims to understand the impact of heavy rainfall on the concentration of PAEs in surface sediments of the Salt River in Kaohsiung, Taiwan, and its potential ecological risks on aquatic organisms. The potential ecological risk assessment of sediment PAEs is based on the total risk quotient (TRQ) method. The total concentration of 10 PAEs (∑PAE10) in sediments of the Salt River is 333-13,615 ng/g dw, with an average of 4212 ± 3753 ng/g dw. Before the rainy season, the ∑PAE10 concentration in sediments at the outlets of domestic sewage in upstream was 9768-13,615 ng/g dw, which were relatively higher than other sites (542-3721 ng/g dw). During the rainy season, the ∑PAE10 concentration was 2820-12,041 ng/g dw, which was 1-11 times higher than that determined before the rainy season. After the rainy season, the ∑PAE10 concentration recorded was 530-6652 ng/g dw, which is 1-11 times lower than the value obtained during the rainy season. PAEs in sediments of the Salt River may have low to moderate potential risks to algae, crustaceans, and fish. Bis(2-ethylhexyl) phthalate (DEHP) and diisobutyl phthalate (DiBP) are the main PAE that poses a potential risk to algae and crustaceans, and to fish respectively, whose values of risk quotient accounts for 40-69% of the TRQ value. The distribution of TRQ values for these aquatic organisms show a decreasing trend of PAEs level with respect to the rainy season: during the rainy season > after the rainy season > before the rainy season. Heavy rainfall may cause more serious pollution in sediments and increase the exposure risk of PAEs to aquatic organisms.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
14
|
An D, Xing X, Tang Z, Li Y, Sun J. Concentrations, distribution and potential health risks of organic ultraviolet absorbents in street dust from Tianjin, a megacity in northern China. ENVIRONMENTAL RESEARCH 2022; 204:112130. [PMID: 34571034 DOI: 10.1016/j.envres.2021.112130] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The distribution of organic ultraviolet absorbers (OUVAs) in outdoor dust remains poorly understood, especially in megacities. We measured the concentrations of 11 OUVAs in street dust from Tianjin, China, by a gas chromatography-mass spectrometry, and found total concentrations in the range of 10.3-129 ng/g. These OUVAs were prevalent in the study street dust, but their concentrations were much lower than those in indoor dust reported in other areas previously. Benzophenone and octocrylene were the dominant OUVAs, representing medians of 15.5% and 13.1% of total OUVA concentrations, respectively. Total concentrations of dust OUVAs in the industrial area were higher than the residential, cultural and new urban areas. Source assessment indicated that the OUVAs likely originated mainly from the manufacture and consumption of cosmetics and personal care products, and some may have been from the production and use of OUVA-containing consumer products. The calculated non-carcinogenic risks of OUVAs in street dust were low. Our results further confirmed that the OUVAs were prevalent in the environment, provide useful information for understanding potential risks of these chemicals and developing risk management strategies. Further studies are needed to investigate the occurrence, environmental behaviors and potential risks of these emerging contaminants in outdoor environment.
Collapse
Affiliation(s)
- Di An
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Xiangyang Xing
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yonghong Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Jiazheng Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
15
|
Hung CC, Yu TH, Simaremare SRS, Hsieh CJ, Yiin LM. Associations between phthalic acid esters in house dust and home characteristics/living habits in a rural region of Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67362-67369. [PMID: 34254238 DOI: 10.1007/s11356-021-15324-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Phthalic acid esters (PAEs) commonly used as plasticizers are distributed ubiquitously in the living environment. We conducted a field study to examine the associations between PAE residue in dust and home characteristics/living habits in 47 rural homes in Taiwan. A questionnaire regarding home characteristics/living habits and composite sampling of house dust were conducted in each participating home. Five PAEs were selected for analysis on gas chromatography-mass spectrometry with the limits of quantification being 0.5 ng/g or lower. Uni- and multivariate linear regression analyses were performed for examining the associations. The five PAEs were prevalently detected from the samples, and the concentrations were below 1000 ng/g; di(2-ethylhexyl) phthalate (DEHP) was the most frequently detected PAE (85%), whereas di-isobutyl phthalate (DiBP) appeared to the most abundant congener with the maximum concentration of 807.65 ng/g. Floor cleaning frequency and use of detergents for floor cleaning were significantly associated with DEHP in dust (P < 0.05), suggesting additives of plasticizers in detergent products. The factors of plastic wraps in storage and use of disposable cups were both significantly related to DiBP (P < 0.01), which could be extensively used in food packaging products. We confirmed that several home characteristics/living habits were related to certain PAE residue in dust.
Collapse
Affiliation(s)
- Chien-Che Hung
- Department of Public Health, Tzu Chi University, 701, Sec. 3, Zhongyang Road, Hualien City, 970374, Taiwan
| | - Tzu-Hsien Yu
- Department of Public Health, Tzu Chi University, 701, Sec. 3, Zhongyang Road, Hualien City, 970374, Taiwan
- TCU Center for Health and Welfare Data Science, 701, Sec. 3, Zhongyang Road, Hualien City, 970374, Taiwan
| | | | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, 701, Sec. 3, Zhongyang Road, Hualien City, 970374, Taiwan
| | - Lih-Ming Yiin
- Department of Public Health, Tzu Chi University, 701, Sec. 3, Zhongyang Road, Hualien City, 970374, Taiwan.
- Institute of Medical Sciences, Tzu Chi University, 701, Sec. 3, Zhongyang Road, Hualien City, 970374, Taiwan.
| |
Collapse
|
16
|
Xu H, Sheng J, Wu X, Zhan K, Tao S, Wen X, Liu W, Cudjoe O, Tao F. Moderating effects of plastic packaged food on association of urinary phthalate metabolites with emotional symptoms in Chinese adolescents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112171. [PMID: 33812210 DOI: 10.1016/j.ecoenv.2021.112171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 05/26/2023]
Abstract
Previous research reports that diet is the main source of phthalate exposure to adolescents, and phthalate is associated with adolescent mental and behavioral problems. However, no study has explored the moderating effects of eating behavior in this association. This study aimed to analyze the moderating effects of plastic packaged food consumption in the longitudinal association between phthalate metabolite concentration and emotional symptoms in adolescents. This school-based survey was carried out among adolescents in two Chinese provinces. We conducted a baseline and follow-up surveys for 893 freshmen using the purposive sampling method from December 2018 to November 2019. We used food frequency questionnaire to assess eating behavior. The Chinese version of 21-item Depression Anxiety Stress Scales was used to assess emotional symptoms, and high-performance liquid chromatography-tandem mass spectrometry was used to analyze the concentration of six urine phthalate metabolites. The results of latent moderation model indicated that plastic packaged food consumption moderated the association of low molecular weight phthalate (LMWP) with depressive symptoms (β = 0.27, P = 0.002), anxiety symptoms (β = 0.89, P < 0.01), and stress symptoms (β = 0.23, P = 0.019). The moderating effects were significant at the higher scores (β = 0.14-0.35, P < 0.05) and/or the lower scores (β = -0.35 to -0.12, P < 0.05) of plastic packaged food consumption. The results suggest that plastic packaged food consumption to some extent moderates the longitudinal association of phthalate exposure with emotional symptoms in adolescents.
Collapse
Affiliation(s)
- Honglv Xu
- School of Medicine, Kunming University, 2 Puxin Road, Kunming 650214, Yunnan, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - Jie Sheng
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - Kai Zhan
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Science, Hefei 230031, Anhui, PR China
| | - Shuman Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - Xing Wen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - Wenwen Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - Obed Cudjoe
- University of Cape Coast, Department of Microbiology and Immunology, School of Medical Sciences, Cape Coast, Ghana; Department and the Key Laboratory of Microbiology and Parasitology, Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China.
| |
Collapse
|
17
|
Farooq MS, Salam M. Cleaner production practices at company level enhance the desire of employees to have a significant positive impact on society through work. JOURNAL OF CLEANER PRODUCTION 2021; 283:124605. [PMID: 33071478 PMCID: PMC7552993 DOI: 10.1016/j.jclepro.2020.124605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/27/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Implementation of cleaner production practices (CPP), service quality (SQ) and corporate social responsibility (CSR) is often studied at organizational level. A number of studies on trio have reported it's significant impact on overall organizational performance and profitability across the globe. However, not much is studied about the individual level micro influence of these constructs on employee engagement (EE), organizational pride (OP), organizational identification (OI) and "desire to have a significant impact through work" (DSIW). Therefore, this study presents a comprehensive framework for assessing the impact of the implementation of CPP, SQ and CSR on EE, OP, OI and DSIW. Data collected from 320 non-managerial staff members employed at a garments manufacturing company in Pakistan was analyzed using partial least square (PLS) approach. Findings revealed that the implementation of CPP, SQ and CSR plays an important role in shaping EE, OP, OI and DSIW in the garments manufacturing industry. Further, it is found that the implementation of CPP has a non-significant impact on SQ. Additionally, results of the importance-performance map analysis (IPMA) have also confirmed that the implementation of CPP at company level has shown a highest importance and performance amongst all the latent constructs proposed as predictors of DSIW in the garments manufacturing industry. These findings are a step forward and unique contribution of this study in the domain of CPP, SQ, CSR, EE, OP, OI and DSIW.
Collapse
Affiliation(s)
- Muhammad Shoaib Farooq
- Institute of Business and Management, University of Engineering and Technology, Lahore, Pakistan
| | - Maimoona Salam
- Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
18
|
Li B, Zhao ZB, Thapa S, Sun SJ, Ma LX, Geng JL, Wang K, Qi H. Occurrence, distribution and human exposure of phthalic esters in road dust samples across China. ENVIRONMENTAL RESEARCH 2020; 191:110222. [PMID: 32946888 DOI: 10.1016/j.envres.2020.110222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/31/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
203 road dust samples were conducted across China covering 28 provinces from January to February,2016 to comprehensively investigates the occurrence, distribution and human exposure of 21 phthalic esters (PAEs). The concentration of Σ21PAEs in road dust ranged from 2.3 to 531 mg/kg, with a mean concentration of 64.1 ± 57.2 mg/kg. DEHP, DnBP and DiBP were the dominant components accounting for 63.3-97.9% (mean: 92.1%) of the Σ21PAEs. Significant Pearson correlation (r = 0.51, p < 0.0001) between Σ21PAEs concentrations and longitude demonstrated a distinguished geographical trend. Higher concentration of PAEs in sidewalk (SW) and trunk road (TR) may reflect influence of human activities such as shoe wear and traffic load. Significant differences were found among different human activities area (urban commercial, urban residential, and suburbs/rural). For total daily intake of Ʃ21PAEs via street dust, children had the highest exposure risk followed by teenagers and adults with the median values of 160.8, 43.6, and 37.7 ng/kg-bw/day, respectively. The maximum exposure risk of PAEs calculated based on measurement and simulation were all far below reference values. The sensitivity analysis results demonstrated that concentrations, ingestion rate (IR) and fraction of PAEs absorbed in the skin (AF) were most important parameters on the assessment of exposure risk of PAEs via street dust. Specific parameters based on China and Chinses population is needed to obtain more reliable exposure risk via street dust.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ze-Bin Zhao
- School of Management, Harbin Institute of Technology, Harbin, 150090, China
| | - Samit Thapa
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shao-Jing Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li-Xin Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jia-Lu Geng
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
19
|
Yeh G, Hoang HG, Lin C, Bui XT, Tran HT, Shern CC, Vu CT. Assessment of heavy metal contamination and adverse biological effects of an industrially affected river. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34770-34780. [PMID: 32016863 DOI: 10.1007/s11356-020-07737-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
One of the most industrially affected rivers in Taiwan, the Houjing River, was studied in this research. The water and sediment samples were collected at five locations to measure the concentration of eight metals (As, Cd, Cr, Cu, Hg, Pb, Ni, and Zn). In order to assess the heavy metal contamination and its adverse biological effect, the heavy metal pollution index (HPI), the degree of contamination index (DC), the contamination factor (CF), the index of geo-accumulation (Igeo), and hazard quotients (HQs) were employed. The results showed that the Houjing River's water and sediment were contaminated with heavy metals. The annually averaged values of HPI (128.3) and DC (21.3) indicate that the water is unsafe for potable use and the sediment contamination level is at considerable degree of contamination. CF and Igeo calculation show that Zn, Cu, and Cd are the three main metals contributing to heavy metal contamination in sediment. Evaluation of adverse biological effects suggests that Zn, Cu, and Ni are the major metals that cause adverse effects on organisms. This study provides an overview of the synergistic heavy metal contamination degree of the Houjing River and its adverse biological effects, which should be a reliable reference for future contamination control and management plans.
Collapse
Affiliation(s)
- Gavin Yeh
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan (Republic of China)
| | - Hong-Giang Hoang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan (Republic of China)
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan (Republic of China).
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University - Ho Chi Minh, Ho Chi Minh City, 700000, Vietnam
| | - Huu-Tuan Tran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan (Republic of China)
| | - Chien-Chuan Shern
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan (Republic of China)
| | - Chi-Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| |
Collapse
|
20
|
Başaran B, Soylu GN, Yılmaz Civan M. Concentration of phthalate esters in indoor and outdoor dust in Kocaeli, Turkey: implications for human exposure and risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1808-1824. [PMID: 31758479 DOI: 10.1007/s11356-019-06815-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The interest in phthalate esters (PAEs) has increased in recent years because elevated phthalate levels have been detected in environmental matrices and they have certain adverse effects on human health. Indoor dust from 90 homes and outdoor (street) dust from outside these homes were collected in Kocaeli province between February and April 2016 and analyzed for eight PAEs. The total indoor dust concentrations of eight PAEs (Σ8PAEs) ranged from 21.33 μg g-1 to 1802 μg g-1 (median, 387.67 μg g-1), significantly higher than outdoor dust concentrations (0.16-36.85 μg g-1 with median 4.84 μg g-1). Di-2-ethylhexyl phthalate (DEHP) was the most dominant pollutant in both indoor and outdoor environments with a median value of 316.02 μg g-1 and 3.89 μg g-1, respectively, followed by di-n-butyl phthalate and butylbenzyl phthalate (BBP). DEHP was measured within the range of 198.54-816.92 μg g-1 and BBP within the range of 15.52-495.33 μg g-1 in homes with PVC coating, significantly higher than the levels in homes with parquet and tiled floor (p<0.05). Monte Carlo simulation was applied to probabilistically estimate exposure to PAEs and associated carcinogenic risk. The Σ5PAE median values of non-dietary ingestion and dermal absorption exposure were estimated as 1.57 μg kg day-1 and 0.007 μg kg day-1 for children and 0.09 μg kg day-1 and 0.04 μg kg day-1 for adults while inhalation route exposure to PAE in dust was at a negligible level for both groups. Children were more exposed to PAEs through ingestion route (92.74% to 99.54% of the total exposure) while adult exposure through ingestion routes (62-68.4%) and dermal absorption (29.74% and 31.87% of the total exposure) were comparable. The mean cancer risk level via non-dietary ingestion of DEHP for children was 2.33×10-6, about eight times higher than the levels for adults. The risk levels of about 16% of adults and 95% of children are greater than the threshold value of 10-6 when the population is exposed to DEHP in indoor dust. Looking from the viewpoint of child health, the most effective method to reduce exposure among the measured PAEs is to keep the release of DEHP under control, especially in indoor environment, and to take precautions to reduce exposure.
Collapse
Affiliation(s)
- Bilgehan Başaran
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey
| | - Gizem Nur Soylu
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey
| | - Mihriban Yılmaz Civan
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey.
| |
Collapse
|