1
|
Studziński W, Gackowska A, Kudlek E, Przybyłek M. Environmental and toxicological aspects of sulfamethoxazole photodegradation in the presence of oxidizing agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4733-4753. [PMID: 39890762 DOI: 10.1007/s11356-025-36000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Sulfamethoxazole (SMX) is a popular active substance, which is extensively applied to treat bacterial infections in humans and animals. Due to its widespread use, SMX enters the natural environment, where it can undergo degradation. Similarly to other emerging contaminants, SMX photodegradation and the use of oxidants in wastewater treatment processes can lead to the formation of potentially adverse transformation products for ecosystems. This study investigated the efficiency of SMX photodegradation in the presence of oxidizing agents (H2O2 and Fenton reagent). The potential environmental consequences of degradation product formation were analyzed based on experimental toxicity characterization. Standardized tests employing diverse organisms were utilized: Alivibrio fischeri (Microtox®), Daphnia magna (Daphtoxkit F®), and Lemna minor (Lemna sp. GIT). The potential environmental impact of the products identified in the reaction mixtures was evaluated using parameters describing aqueous solubility, hydrophobicity, toxicity, bioconcentration, persistence, and mobility. The analysis revealed that photodegradation produces transformation products with higher toxicity than SMX, as confirmed by in vitro tests of the reaction mixtures. Most of the detected compounds were found to have low mobility potential. The formation rates of key environmentally relevant transformation products, such as 1,4-benzoquinone, aniline, and phenol, were also discussed. The changes in total organic carbon (TOC) affected by photodegradation under the influence of the considered oxidizing agents were characterized.
Collapse
Affiliation(s)
- Waldemar Studziński
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Alicja Gackowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Edyta Kudlek
- Department of Water and Wastewater Engineering, Faculty of Energy And Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100, Gliwice, Poland
| | - Maciej Przybyłek
- Department of Physical Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Kurpińskiego 5, 85-950, Bydgoszcz, Poland.
| |
Collapse
|
2
|
Diogo BS, Rodrigues S, Golovko O, Antunes SC. From bacteria to fish: ecotoxicological insights into sulfamethoxazole and trimethoprim. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52233-52252. [PMID: 39138731 PMCID: PMC11374860 DOI: 10.1007/s11356-024-34659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Sulfamethoxazole (SMX) and trimethoprim (TRIM) are two of the most used antibiotics in the last 50 years, to prevent and treat bacterial infections; however, the available literature about toxicity to non-target organisms is quite discrepant and incomplete. This study aims to assess the SMX and TRIM ecotoxicological effects in standard species: Aliivibrio fischeri (bioluminescence inhibition), Escherichia coli ATCC 25922 (growth inhibition), Lemna minor (growth inhibition and biochemical biomarkers), Daphnia magna (immobilization/mortality, life history traits, and biochemical biomarkers), and Danio rerio (survival, hatching, abnormalities, and biochemical biomarkers). The species tested showed different acute sensitivities to SMX (A. fischeri < D. magna < E. coli < L. minor) and TRIM (L. minor < A. fischeri < D. magna < E. coli). Overall, TRIM reveals less toxicity than SMX, except for E. coli (Ecotoxicological approach based on Antimicrobial Susceptibility Testing - EcoAST procedure). Both antibiotics affect individually (e.g., growth and survival) and sub-individually (e.g., antioxidant defenses) L. minor, D. magna, and D. rerio. This study allowed us to generate relevant data and fill gaps in the literature regarding the effects of SMX and TRIM in aquatic organisms. The here-obtained results can be used to (i) complete and re-evaluate the Safety Data Sheet to improve the assessment of environmental safety and management of national and international entities; (ii) clarify the environmental risks of these antibiotics in aquatic ecosystems reinforcing the inclusion in the 4th Watch List of priority substances to be monitored in whole inland waters by the Water Framework Directive; and (iii) combat the development of antimicrobial resistance, as well as supporting the definition of environmental measurements in the context of European One Health Action Plan. However, it is essential to continue studying these antibiotics to better understand their toxicity at ecologically relevant concentrations and their long-term effects under different climatic change scenarios.
Collapse
Affiliation(s)
- Bárbara S Diogo
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Sara Rodrigues
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden
| | - Sara C Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
3
|
Sharmin A, Asif MB, Zhang G, Bhuiyan MA, Pramanik B. Ranitidine degradation in layered double hydroxide activated peroxymonosulfate system: impact of transition metal composition and reaction mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34331-5. [PMID: 39007978 DOI: 10.1007/s11356-024-34331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Ranitidine, a competitive inhibitor of histamine H2 receptors, has been identified as an emerging micropollutant in water and wastewater, raising concerns about its potential impact on the environment and human health. This study aims to address this issue by developing an effective removal strategy using two types of layered double hydroxide (LDH) catalysts (i.e., CoFeLDH and CoCuLDH). Characterization results show that CoFeLDH catalyst has superior catalytic properties due to its stronger chemical bond compared to CoCuLDH. The degradation experiment shows that 100% degradation of ranitidine could be achieved within 20 min using 25 mg/L of CoFeLDH and 20 mg/L of peroxymonosulfate (PMS). On the other hand, CoCuLDH was less effective, achieving only 70% degradation after 60 min at a similar dosage. The degradation rate constant of CoFeLDH was 10 times higher than the rate constant of CoCuLDH at different pH range. Positive zeta potential of CoFeLDH made it superior over CoCuLDH regarding catalytic oxidation of PMS. The catalytic degradation mechanism shows that sulfate radicals played a more dominant role than hydroxyl radicals in the case of LDH catalysts. Also, CoFeLDH demonstrated a stronger radical pathway than CoCuLDH. XPS analysis of CoFeLDH revealed the cation percentages at different phases and proved the claim of being reusable even after 8 cycles. Overall, the findings suggest that CoFeLDH/PMS system proves to be a suitable choice for attaining high degradation efficiency and good stability in the remediation of ranitidine in wastewater.
Collapse
Affiliation(s)
- Afia Sharmin
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Guomin Zhang
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | | | - Biplob Pramanik
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
4
|
Wu J, Ye W, Feng Y, Lao W, Li J, Lu H, Liu G, Su G, Deng Y. Aquatic photolysis of high-risk fluorinated liquid crystal monomers: Kinetics, toxicity evaluation, and mechanisms. WATER RESEARCH 2024; 255:121510. [PMID: 38555780 DOI: 10.1016/j.watres.2024.121510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Despite the frequent detection of fluorinated liquid-crystal monomers (FLCMs) in the environment, the level of understanding of their fate, toxicity, and transformation remains insufficient. Herein, we investigated the degradation kinetics and mechanism of an FLCM (4-cyano-3-fluorophenyl 4-ethylbenzoate, CEB-F) under ultraviolet (UV) photolysis in aquatic environment. Our findings demonstrated that the UV photolysis of CEB-F followed first-order kinetics. Photodegradation products were identified using liquid chromatography with mass spectrometry, and detailed reaction pathways were proposed. It is postulated that through the attack of reactive oxygen species, hydroxylation, and CO/C-F bond cleavage, CEB-F gradually degraded into small molecular compounds, releasing fluorine ions. Acute immobilization tests with Daphnia magna (D. magna) revealed significant acute toxicity of CEB-F, with LC50 values ranging from 1.023 to 0.0536 μM over 24 to 96 h, emphasizing the potential high risk of FLCMs in aquatic ecosystems if inadvertently discharged. Interestingly, we found that the toxicity of CEB-F photolysis reaction solutions was effectively reduced. Through catalase and acetylcholinesterase activities analysis along with molecular docking simulation, we proposed differences in the underlying toxicity mechanisms of CEB-F and its photolysis products to D. magna. These findings highlight the potential harmful effects of FLCMs on aquatic ecosystems and enrich our understanding of the photolysis behavior of FLCMs.
Collapse
Affiliation(s)
- Jingyi Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weibiao Ye
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yiping Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Wenhao Lao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Junchun Li
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Haijian Lu
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Research Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yirong Deng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China.
| |
Collapse
|
5
|
Schuijt LM, van Drimmelen CKE, Buijse LL, van Smeden J, Wu D, Boerwinkel MC, Belgers DJM, Matser AM, Roessink I, Beentjes KK, Trimbos KB, Smidt H, Van den Brink PJ. Assessing ecological responses to exposure to the antibiotic sulfamethoxazole in freshwater mesocosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123199. [PMID: 38128712 DOI: 10.1016/j.envpol.2023.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Antibiotics are a contaminant class of worldwide concern as they are frequently detected in aquatic ecosystems. To better understand the impacts of antibiotics on aquatic ecosystems, we conducted an outdoor mesocosm experiment in which aquatic communities were exposed to different concentrations of the antibiotic sulfamethoxazole (0, 0.15, 1.5, 15 and 150 μg/L). These concentrations include mean (0.15 μg/L) and maximum detected concentrations (15 and 150 μg/L) in aquatic ecosystems worldwide. Sulfamethoxazole was applied once a week for eight consecutive weeks to 1530 L outdoor mesocosms in the Netherlands, followed by an eight-week recovery period. We evaluated phytoplankton-, bacterial- and invertebrate responses during and after sulfamethoxazole exposure and assessed impacts on organic matter decomposition. Contrary to our expectations, consistent treatment-related effects on algal and bacterial communities could not be demonstrated. In addition, sulfamethoxazole did not significantly affect zooplankton and macroinvertebrate communities. However, some effects on specific taxa were observed, with an increase in Mesostoma flatworm abundance (NOEC of <0.15 μg/L). In addition, eDNA analyses indicated negative impacts on the insects Odonata at a sulfamethoxazole concentration of 15 μg/L. Overall, environmentally relevant sulfamethoxazole concentration did not result in direct or indirect impairment of entire aquatic communities and ecological processes in our mesocosms. However, several specific macroinvertebrate taxa demonstrated significant (in)direct effects from sulfamethoxazole. Comparison of the results with the literature showed inconsistent results between studies using comparable, environmentally relevant, concentrations. Therefore, our study highlights the importance of testing the ecological impacts of pharmaceuticals (such as sulfamethoxazole) across multiple trophic levels spanning multiple aquatic communities, to fully understand its potential ecological threats.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Chantal K E van Drimmelen
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands; Hamburg University of Applied Science, Ulmenliet 20, D-21033, Hamburg, Germany
| | - Laura L Buijse
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Jasper van Smeden
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Dailing Wu
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Marie-Claire Boerwinkel
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Dick J M Belgers
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Arrienne M Matser
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Krijn B Trimbos
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and & Research, Wageningen, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
6
|
Bueno I, He H, Kinsley AC, Ziemann SJ, Degn LR, Nault AJ, Beaudoin AL, Singer RS, Wammer KH, Arnold WA. Biodegradation, photolysis, and sorption of antibiotics in aquatic environments: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165301. [PMID: 37414169 DOI: 10.1016/j.scitotenv.2023.165301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
The presence of antibiotics in surface waters is a potential driver of antibiotic resistance and thus of concern to human and environmental health. Key factors driving the potential impact of antibiotics are their persistence and transport in rivers and lakes. The goal of this study was to describe the peer-reviewed published literature on the photolysis (direct and indirect), sorption, and biodegradation of a selected group of antibiotic compounds following a scoping review methodology. Primary research from 2000 to 2021 was surveyed to compile information on these processes for 25 antibiotics from 6 classes. After compilation and assessment of the available parameters, the results indicate that information is present to predict the rates of direct photolysis and reaction with hydroxyl radical (an indirect photolysis process) for most of the selected antibiotics. There is insufficient or inconsistent information for including other indirect photolysis processes, biodegradation, or removal via sorption to settling particles for most of the targeted antibiotic compounds. Future research should focus on collecting fundamental parameters such as quantum yields, second-order rate constants, normalized biodegradation rates, and organic carbon or surface area normalized sorption coefficients rather than pseudo-first order rate constants or sorption equilibrium constants that apply only to specific conditions/sites.
Collapse
Affiliation(s)
- Irene Bueno
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN 55108, USA.
| | - Huan He
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, MN 55455, USA
| | - Amy C Kinsley
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN 55108, USA
| | - Sarah J Ziemann
- Department of Chemistry, College of Arts & Sciences, University of St. Thomas, 2115 Summit Ave, St. Paul, MN 55015, USA
| | - Lauren R Degn
- Department of Chemistry, College of Arts & Sciences, University of St. Thomas, 2115 Summit Ave, St. Paul, MN 55015, USA
| | - André J Nault
- Health Sciences Libraries, University of Minnesota, 1988 Fitch Avenue, Saint Paul, MN 55108, USA
| | - Amanda L Beaudoin
- Health Sciences Libraries, University of Minnesota, 1988 Fitch Avenue, Saint Paul, MN 55108, USA
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN 55108, USA
| | - Kristine H Wammer
- Department of Chemistry, College of Arts & Sciences, University of St. Thomas, 2115 Summit Ave, St. Paul, MN 55015, USA
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Wagner TV, Rempe F, Hoek M, Schuman E, Langenhoff A. Key constructed wetland design features for maximized micropollutant removal from treated municipal wastewater: A literature study based on 16 indicator micropollutants. WATER RESEARCH 2023; 244:120534. [PMID: 37659177 DOI: 10.1016/j.watres.2023.120534] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
The removal of micropollutants from wastewater by constructed wetlands (CWs) has been extensively studied and reviewed over the past years. However, most studies do not specifically focus on the removal of micropollutants from the effluent of conventional wastewater treatment plants (WWTP) that still contains micropollutants, but on the removal of micropollutants from raw wastewater. Raw wastewater has a significantly different composition compared to WWTP effluent, which positively or negatively affects micropollutant removal mechanisms. To determine the optimal CW design for post-treatment of WWTP effluent to achieve additional micropollutant removal, this review analyzes the removal of 16 Dutch indicator micropollutants for post-treatment technology evaluation from WWTP effluent by different types of CWs. It was concluded that CW systems with organic enhanced adsorption substrates reach the highest micropollutant removal efficiency as a result of adsorption, but that the longevity of the enhanced adsorption effect is not known in the systems studied until now. Aerobic biodegradation and photodegradation are other relevant removal mechanisms for the studied micropollutants. However, a current knowledge gap is whether active aeration to stimulate the aerobic micropollutant biodegradation results in an increased micropollutant removal from WWTP effluent. Further knowledge gaps that impede the wider application of CW systems for micropollutant removal from WWTP effluent and allow a fair comparison with other post-treatment technologies for enhanced micropollutant removal, such as ozonation and activated carbon adsorption, relate to i) saturation of enhanced adsorption substrate; ii) the analysis of transformation products and biological effects; iii) insights in the relationship between microbial community composition and micropollutant biodegradation; iv) plant uptake and in-plant degradation of micropollutants; v) establishing design rules for appropriate hydraulic loading rates and/or hydraulic retention times for CWs dedicated to micropollutant removal from WWTP effluent; and vi) the energy- and carbon footprint of different CW systems. This review finishes with detailed suggestions for future research directions that provide answers to these knowledge gaps.
Collapse
Affiliation(s)
- Thomas V Wagner
- Department of Environmental Technology, Wageningen University & Research, P. O. Box 17, 6700 EV, Wageningen, the Netherlands.
| | - Fleur Rempe
- TAUW B.V., Handelskade 37, 7400 AC Deventer, the Netherlands
| | - Mirit Hoek
- TAUW B.V., Handelskade 37, 7400 AC Deventer, the Netherlands
| | - Els Schuman
- LeAF B.V., Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Alette Langenhoff
- Department of Environmental Technology, Wageningen University & Research, P. O. Box 17, 6700 EV, Wageningen, the Netherlands
| |
Collapse
|
8
|
Masrura SU, Abbas T, Jones-Lepp TL, Kaewlom P, Khan E. Combining environmental, health, and safety features with a conductor like Screening Model for selecting green solvents for antibiotic analyses. ENVIRONMENTAL RESEARCH 2023; 218:114962. [PMID: 36460072 DOI: 10.1016/j.envres.2022.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Extraction and chromatographic techniques for analyzing pharmaceutically active compounds necessitate large quantities of organic solvents, resulting in a high volume of hazardous waste. The concept of green solvents focuses on protecting the environment by reducing or even eliminating the use of toxic solvents. The main objective of this critical review article is to build a framework for choosing green solvents for antibiotic analyses. The article briefly discusses the chemical properties of ciprofloxacin, sulfamethoxazole, tetracycline, and trimethoprim, and the current state of methodologies for their analyses in water and wastewater. It evaluates the greenness of solvents used for antibiotic analyses and includes insights on the comparison between conventional and green solvents for the analyses. An economic and environmental health and safety analysis combined with a Conductor-like Screening Model for Real Solvent (COSMO-RS) molecular simulation technique for predicting extraction efficiency was used in the evaluation. Methyl acetate and propylene carbonate tied for the greenest solvents from an environmental and economic perspective, whereas the COSMO-RS approach suggests dimethyl sulfoxide (DMSO) as the most suitable candidate. Although DMSO ranked third environmentally and economically, after methyl acetate and propylene carbonate, it would be an ideal replacement of hazardous solvents if it could be manufactured at a lower cost. DMSO showed the highest extraction capacity, as it can interact with antibiotics through hydrophobic interaction and hydrogen bonding. This article can be used as a green solvent selection guide for developing sustainable processes for antibiotic analyses.
Collapse
Affiliation(s)
- Sayeda Ummeh Masrura
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| | - Tauqeer Abbas
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA; Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| | - Tammy L Jones-Lepp
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| | - Puangrat Kaewlom
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
9
|
Zhang Y, Li M, Chang F, Yi M, Ge H, Fu J, Dang C. The distinct resistance mechanisms of cyanobacteria and green algae to sulfamethoxazole and its implications for environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158723. [PMID: 36108830 DOI: 10.1016/j.scitotenv.2022.158723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria and green algae are the OECD recommended test organisms for environmental toxicity assessments of chemicals. Whether the differences in these two species' responses to the identical chemical affect the assessment outcomes is a question worth investigating. Firstly, we investigated the distinct resistance mechanisms of Synechococcus sp. (cyanobacteria) and R. subcapitata (green algae) to sulfamethoxazole (SMX). The antioxidant system analysis demonstrated that R. subcapitata mainly relies on enhancing the activity of first line defense antioxidants, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), which is the most powerful and efficient response to get rid of ROS, whereas Synechococcus sp. depends upon increasing the activity of glutathione-S-transferase (GST) and GPx to resist oxidative stress. Besides, a total 7 transformation products (TPs) of SMX were identified in R. subcapitata culture medium. The analysis of conjectural transformation pathways and the predicted toxicity indicates that R. subcapitata could relieve SMX toxicity by degrading it to low eco-toxic TPs. Additionally, we summarized numerous exposure data and assessed the environmental risk of various antibiotics, revealing an inconsistent result for the same type of antibiotic by using cyanobacteria and green algae, which is most likely due to the different resistance mechanisms. In the future, modified indicators or comprehensive assessment methods should be considered to improve the rationality of environmental toxicity assessments.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ming Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fang Chang
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, PR China
| | - Malan Yi
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, PR China
| | - Hongmei Ge
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
10
|
Stratulat A, Sousa ÉM, Calisto V, Lima DL. Solid phase extraction using biomass-based sorbents for the quantification of pharmaceuticals in aquatic environments. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Palm WU, Schmidt N, Stahn M, Grimme S. A kinetic study of the photolysis of sulfamethoxazole with special emphasis on the photoisomer. Photochem Photobiol Sci 2022; 22:615-630. [PMID: 36471235 DOI: 10.1007/s43630-022-00340-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Abstract
The previously not studied photochemical degradation of sulfamethoxazole (SMX) to the isomer of SMX (ISO) was measured via a polychromatic (Xe) and a monochromatic (Hg) light source and accompanied by quantum chemical DFT calculations. In addition to the $$\mathrm{p}K_\mathrm{a} = \;7.0 \pm 0.1$$
p
K
a
=
7.0
±
0.1
of ISO, tautomer-dependent properties such as the $$K_\mathrm{OW}$$
K
OW
were measured and theoretically confirmed by DFT. The kinetics in solutions below and above the $$\mathrm{p}K_\mathrm{a} = 5.6$$
p
K
a
=
5.6
of SMX were studied for the available and quantifiable products SMX, ISO, 3-amino-5-methylisoxazole (AMI), 2-amino-5-methyloxazole (AMO), and sulfanilic acid (SUA). The quantum yields of the neutral ($$\Phi _\mathrm{N}$$
Φ
N
) and anionic $$\Phi _\mathrm{A}$$
Φ
A
) forms of SMX ($$\Phi _\mathrm{A} = 0.03 \pm 0.001$$
Φ
A
=
0.03
±
0.001
, $$\Phi _\mathrm{N} = 0.15 \pm 0.01$$
Φ
N
=
0.15
±
0.01
) and ISO ($$\Phi _\mathrm{A} = 0.05 \pm 0.01$$
Φ
A
=
0.05
±
0.01
and $$\Phi _\mathrm{N} = 0.06 \pm 0.02$$
Φ
N
=
0.06
±
0.02
) were found to be wavelength-independent. In a competitive reaction to the formation of ISO from SMX, the degradation product TP271 is formed. Various proposed structures for TP271 described in the literature have been studied quantum mechanically and can be excluded for thermodynamic reasons. In real samples in a northern German surface water in summer 2021 mean concentrations of SMX were found in the range of 120 ng/L. In agreement with the pH-dependent yields, concentrations of ISO were low in the range of 8 ng/L.
Graphical abstract
Collapse
|
12
|
Fang S, Zhang W, Sun K, Tong T, Lim AI, Bao J, Du Z, Li Y, Hu YH. Critical role of tetracycline's self-promotion effects in its visible-light driven photocatalytic degradation over ZnO nanorods. CHEMOSPHERE 2022; 309:136691. [PMID: 36209848 DOI: 10.1016/j.chemosphere.2022.136691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Zinc oxide (ZnO), which is widely applied for ultraviolet-light driven photocatalysis, has no activity in visible-light photocatalytic process due to its large band gap of ∼3.2 eV. Herein, however, we demonstrated the multiple self-promotion effects of tetracycline as band adjuster, photo-sensitizer, and charge transfer promoter for ZnO nanorods, realizing its visible-light photocatalytic degradation with an excellent removal efficiency up to 91.1% within only 2 h. Besides, the influence of complex realistic factors on this unique process was evaluated together with tests with realistic water matrices. Furthermore, the active species and degradation products were identified. Both acute and developmental toxicities were found to be reduced as the degradation proceeds. These results pave the path for the brand-new self-driven visible-light photocatalysis.
Collapse
Affiliation(s)
- Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, 49931, United States
| | - Wei Zhang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, 49931, United States
| | - Kai Sun
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Tian Tong
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, United States
| | - Aniqa Ibnat Lim
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, United States
| | - Jiming Bao
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, United States
| | - Zichen Du
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, United States
| | - Ying Li
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, United States
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, 49931, United States.
| |
Collapse
|
13
|
Li J, Li W, Liu K, Guo Y, Ding C, Han J, Li P. Global review of macrolide antibiotics in the aquatic environment: Sources, occurrence, fate, ecotoxicity, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129628. [PMID: 35905608 DOI: 10.1016/j.jhazmat.2022.129628] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The extensive use of macrolide antibiotics (MCLs) has led to their frequent detection in aquatic environments, affecting water quality and ecological health. In this study, the sources, global distribution, environmental fate, ecotoxicity and global risk assessment of MCLs were analyzed based on recently published literature. The results revealed that there are eight main sources of MCLs in the water environment. These pollution sources resulted in MCL detection at average or median concentrations of up to 3847 ng/L, and the most polluted water bodies were the receiving waters of wastewater treatment plants (WWTPs) and densely inhabited areas. Considering the environmental fate, adsorption, indirect photodegradation, and bioremoval may be the main attenuation mechanisms in natural water environments. N-demethylation, O-demethylation, sugar and side chain loss from MCL molecules were the main pathways of MCLs photodegradation. Demethylation, phosphorylation, N-oxidation, lactone ring hydrolysis, and sugar loss were the main biodegradation pathways. The median effective concentration values of MCLs for microalgae, crustaceans, fish, and invertebrates were 0.21, 39.30, 106.42, and 28.00 mg/L, respectively. MCLs induced the generation of reactive oxygen species, that caused oxidative stress to biomolecules, and affected gene expression related to photosynthesis, energy metabolism, DNA replication, and repair. Moreover, over 50% of the reported water bodies represented a medium to high risk to microalgae. Further studies on the development of tertiary treatment technologies for antibiotic removal in WWTPs, the combined ecotoxicity of antibiotic mixtures at environmental concentration levels, and the development of accurate ecological risk assessment models should be encouraged.
Collapse
Affiliation(s)
- Jiping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Kai Liu
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yanhui Guo
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Chun Ding
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiangang Han
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Pingping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
14
|
Castañeda-Juárez M, Linares-Hernández I, Martínez-Miranda V, Teutli-Sequeira EA, Castillo-Suárez LA, Sierra-Sánchez AG. SARS-CoV-2 pharmaceutical drugs: a critical review on the environmental impacts, chemical characteristics, and behavior of advanced oxidation processes in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67604-67640. [PMID: 35930148 PMCID: PMC9362221 DOI: 10.1007/s11356-022-22234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This review summarizes research data on the pharmaceutical drugs used to treat the novel SARS-CoV-2 virus, their characteristics, environmental impacts, and the advanced oxidation processes (AOP) applied to remove them. A literature survey was conducted using the electronic databases Science Direct, Scopus, Taylor & Francis, Google Scholar, PubMed, and Springer. This complete research includes and discusses relevant studies that involve the introduction, pharmaceutical drugs used in the SARS-CoV-2 pandemic: chemical characteristics and environmental impact, advanced oxidation process (AOP), future trends and discussion, and conclusions. The results show a full approach in the versatility of AOPs as a promising solution to minimize the environmental impact associated with these compounds by the fact that they offer different ways for hydroxyl radical production. Moreover, this article focuses on introducing the fundamentals of each AOP, the main parameters involved, and the concomitance with other sources and modifications over the years. Photocatalysis, sonochemical technologies, electro-oxidation, photolysis, Fenton reaction, ozone, and sulfate radical AOP have been used to mineralize SARS-CoV-2 pharmaceutical compounds, and the efficiencies are greater than 65%. According to the results, photocatalysis is the main technology currently applied to remove these pharmaceuticals. This process has garnered attention because solar energy can be directly utilized; however, low photocatalytic efficiencies and high costs in large-scale practical applications limit its use. Furthermore, pharmaceuticals in the environment are diverse and complex. Finally, the review also provides ideas for further research needs and major concerns.
Collapse
Affiliation(s)
- Monserrat Castañeda-Juárez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México.
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
| | - Elia Alejandra Teutli-Sequeira
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
- Cátedras CONACYT-IITCA, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, Ciudad de Mexico, C.P 03940, México
| | - Luis Antonio Castillo-Suárez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
- Cátedras COMECYT. Consejo Mexiquense de Ciencia Y Tecnología COMECYT, Paseo Colón núm.: 112-A, col. Ciprés, Toluca, Estado de México, C.P. 50120, México
| | - Ana Gabriela Sierra-Sánchez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
| |
Collapse
|
15
|
Li J, Han J, Lan T, Mu S, Hu D, Zhang K. Enantioselective hydrolysis and photolysis of mandipropamid in different aquatic environments - evaluation of influencing factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60244-60258. [PMID: 35419689 DOI: 10.1007/s11356-022-20202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The hydrolysis and photolysis of the chiral fungicide mandipropamid were investigated, and the potential enantioselectivity of mandipropamid in solutions was further assessed. The aqueous solutions were filtered and directly injected into the liquid chromatography with tandem mass spectrometry. In the hydrolysis experiments, mandipropamid enantiomers hydrolyzed slowly in aquatic solutions with half-lives > 200 days; nevertheless, rise of the pH and incubation temperature could increase the hydrolysis rates more than 1.1 times (half-lives decreased from 495.1 to 216.6 days). Compared with the hydrolysis results, photolysis was found to be the main degradation pathway for mandipropamid in different solutions (half-lives < 14 h, except in pH = 5.05 buffer solution). Organic solvents were able to accelerate the photolysis of mandipropamid, but acidic solutions and the addition of flavonoids or inorganic salts significantly inhibited the photolysis of mandipropamid. During the hydrolysis and photolysis processes, the configuration of mandipropamid enantiomers was stable and five possible transformation products were identified by high resolution mass spectrometry. Due to the enantiomeric fraction values > 0.5, the hydrolysis and photolysis of mandipropamid were enantioselective, and S-( +)-mandipropamid preferentially disspated in certain aqueous solutions. The systematic evaluation of the hydrolysis and photolysis of mandipropamid enantiomers may provide more accurate data for better assessment of environmental and ecological risks in aquatic ecosystems.
Collapse
Affiliation(s)
- Jianmin Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Jiahua Han
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Tingting Lan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Shiyin Mu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Kankan Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
16
|
El-Beltagi HS, Ahmad I, Basit A, Shehata WF, Hassan U, Shah ST, Haleema B, Jalal A, Amin R, Khalid MA, Noor F, Mohamed HI. Ascorbic Acid Enhances Growth and Yield of Sweet Peppers (Capsicum annum) by Mitigating Salinity Stress. GESUNDE PFLANZEN 2022; 74:423-433. [DOI: 10.1007/s10343-021-00619-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/21/2021] [Indexed: 10/26/2023]
|
17
|
Wu D, Li M, Du L, Ren D, Wang J. Straw return in paddy field alters photodegradation of organic contaminants by changing the quantity rather than the quality of water-soluble soil organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153371. [PMID: 35085639 DOI: 10.1016/j.scitotenv.2022.153371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 05/27/2023]
Abstract
Straw return, an important agricultural management practice, is worldwide adopted to enhance soil carbon sequestration and soil fertility. Although water-soluble soil organic matter (WSOM) in paddy field is known to affect the photodegradation of organic contaminants, how straw return regulates the photosensitization of WSOM by changing its properties remain unclear. Here, we determined the temporal variations in the content, chemical characteristics, and photosensitizing ability of WSOM after wheat straw return in a wheat-rice rotation system using optical spectroscopy and steady-state photodegradation tests. After straw return, the WSOM content first increased to a maximum and then gradually decreased to pre-return level at day 90. Nevertheless, the relative abundance of humic-like components in WSOM was not shifted by straw return, and protein-like component in WSOM just showed a slight decrease at day 45. All the WSOM samples inhibited sulfamethoxazole (SMX) photodegradation by light filtering, reactive species quenching and other mechanisms, while promoted diuron (DIU) degradation via reacting with •OH, 1O2 and excited triplet WSOM. The photodegradation of SMX and DIU was little affected by straw return changing WSOM composition and photochemical activity. However, straw return could decelerate SMX and DIU photodegradation by elevating WSOM content in a relatively short-term. This study emphasizes that straw return may reduce the photodegradation of organic contaminants by increasing WSOM concentration instead of altering WSOM chemical characteristics.
Collapse
Affiliation(s)
- Dongming Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Min Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Ling Du
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China.
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
18
|
Li W, Ding C, Korshin G, Li J, Cheng H. Effect of chlorination on the characteristics of effluent organic matter and the phototransformation of sulfamethoxazole in secondary wastewater. CHEMOSPHERE 2022; 295:133193. [PMID: 34971627 DOI: 10.1016/j.chemosphere.2021.133193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/12/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Chlorination is the most common disinfection technology used to treat wastewater effluent discharged into receiving aquatic environments. Effluent organic matter (EfOM) abundant in wastewater is a well-known photosensitizer and it greatly affects phototransformation of antibiotics in water. However, effects of chlorination on the characteristics and photochemical properties of EfOM have not been studied in sufficient detail. This paper investigated effects of chlorination on the characteristics of EfOM, and its impact on the phototransformation of sulfamethoxazole (SMX). Correlations between the EfOM characteristics and steady-state concentrations of reactive intermediates (RI) formed in the system were established. Chlorination was shown to preferentially remove the aromatic protein-like substances in EfOM, and the incorporation of chlorine into followed by the cleavage of the aromatic rings in EfOM molecules led to the formation of low molecular aliphatic organic matter. Both unaltered and chlorinated EfOM promoted the photodegradation of SMX whose rate constant in the wastewater was 1.32-1.65 times higher than that in pH 8 phosphate buffer. However, the rate of SMX photodegradation decreased at higher chlorination concentrations. The photodegradation of SMX was found to proceed through direct photolysis and oxidation by the RIs generated from EfOM and the self-sensitization of SMX. The steady-state concentrations of ·OH, 1O2 and 3EfOM* were 2.15-5.50 × 10-16, 0.42-1.51 × 10-13, and 2.54-5.82 × 10-14 M in unaltered and chlorinated wastewater. The steady-state concentrations of ·OH were well correlated with the removal of the fluorescence regional integration (ΔFRI) for humic-like and soluble microbial products (SMPs), while the photodegradation rate constant of SMX and the steady-state concentration of 1O2 and 3EfOM* showed good correlations with ΔFRI for tryptophan and fulvic-like substances. Six transformation products (TPs) of SMX were identified. These findings provide new insights into the photochemical properties of chlorinated EfOM in the aquatic environments and its roles in the degradation of antibiotics and other trace-level pharmaceuticals.
Collapse
Affiliation(s)
- Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China.
| | - Chun Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| | - Gregory Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, United States
| | - Jiping Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| | - Hu Cheng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| |
Collapse
|
19
|
Zhang B, Meng F, Li D. Intermediates formed during natural attenuation of C9 aromatics under simulated marine conditions: Identification, transformation pathway, and toxicity to microalgae. ENVIRONMENTAL RESEARCH 2022; 206:112558. [PMID: 34932976 DOI: 10.1016/j.envres.2021.112558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
C9 aromatics - benzene hydrocarbon containing nine carbon atoms among - leakage accident has caused serious damage to the marine ecology near Quangang District, Fujian Province, China. The ecological restoration of the accident sea area is basically realized through natural attenuation. To determine whether the natural attenuation of C9 aromatics in the marine environment will generate highly toxic intermediates, and thus cause more serious harm to marine ecology, the intermediates of C9 aromatics (n-propylbenzene, isopropylbenzene, 2-ethyltoluene, 3-ethyltoluene, 4-ethyltoluene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and indene) in the process of natural attenuation were studied under the marine conditions simulated by a microcosm. The acute toxic effects of 12 intermediates with longer residual time on Phaeodactylum tricornutum were also ascertained. Twenty natural attenuation intermediates of C9 aromatics were identified. These products primarily include the derivatives of phenols, aromatic alcohols, aromatic aldehydes, aromatic ketones, and aromatic acids, as well as an aromatic lactone compound. No intermediates of 1,3,5-trimethylbenzene and indene during the attenuation process were determined. The indirect photooxidation initiated by hydroxyl radical might play an essential role in the formation of intermediates of C9 aromatic. Based on the 96-h EC50 values for P. tricornutum, the toxicity of the 12 intermediates, in descending order, was: 4-ethylphenol, 2-methylacetophenone, 2,3-dimethylbenzyl alcohol, 4-methylacetophenone, 3-methylacetophenone, 1-phenyl-1-propanol, 1-(2-methylphenyl) ethanol, 2-phenyl-2-propanol, 3,4-dimethylbenzoic acid, 2,4-dimethylbenzoic acid, 2,5-dimethylbenzoic acid, then 4-tolylacetic acid. The 96-h EC50 values of the intermediates of C9 aromatics to P. tricornutum ranged from 8.4 to 199.1 mg/L, which were lower than that of their corresponding parent compound. The findings provided essential fundamental insights for the assessment of marine environmental risk of C9 aromatics leakage accidents, and subsequent emergency disposal countermeasures.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Shandong Province, Qingdao, PR China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Shandong Province, Qingdao, PR China.
| | - Dawei Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Shandong Province, Qingdao, PR China
| |
Collapse
|
20
|
Sun W, Hu X, Xiang Y, Ye N. Adsorption behavior and mechanism of sulfonamides on controllably synthesized covalent organic frameworks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18680-18688. [PMID: 34697714 DOI: 10.1007/s11356-021-17169-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this work, four kinds of covalent organic framework (COF) materials (TpPa-1, TpBD, TpDT, and TFBBD) with different pore sizes or functional groups were synthesized by an ultrasonic method for the adsorption of five sulfonamides. Optimization experiments regarding the adsorption time, vortex speed, and pH were carried out to improve adsorption efficiency. In addition, kinetic and thermodynamic experiments were conducted to explore the adsorption mechanism of the sulfonamides on the different COFs. The adsorption processes of the five sulfonamides on the four COFs fit the pseudo-second-order kinetic model and Langmuir adsorption isotherm model. Additionally, pore filling, hydrogen bond interactions, and electrostatic attraction were found to be the main adsorption mechanisms.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Xiaoyu Hu
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China.
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China.
| |
Collapse
|
21
|
Zhang Y, Wan J, Li Z, Wu Z, Dang C, Fu J. Enhanced removal efficiency of sulfamethoxazole by acclimated microalgae: Tolerant mechanism, and transformation products and pathways. BIORESOURCE TECHNOLOGY 2022; 347:126461. [PMID: 34863845 DOI: 10.1016/j.biortech.2021.126461] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
This study utilized sulfamethoxazole (SMX) acclimatization to enhance the tolerance and biodegradation capacity of Chlorella vulgaris. Compared to wild C. vulgaris, the growth inhibition and oxidative damage induced by SMX evidently decreased in acclimated C. vulgaris, and meanwhile photosynthetic and antioxidant activities were significantly promoted. The physiological analyses with the aid of principal component analysis revealed the increase of catalase and glutathione reductase activities was the critical tolerant mechanism of acclimated C. vulgaris. As the consequence, the acclimated C. vulgaris exhibited enhanced efficiency and (pseudo-first-order) kinetic rate for removal of SMX. The distribution analysis of residual SMX demonstrated the biodegradation was the major removal mechanism of SMX by C. vulgaris, while bioadsorption and bioaccumulation made pimping contributions. During the degradation process of SMX, nine transformation products (TPs) were identified. Based on the identified TPs, a possible transformation pathway was proposed.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhang Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenbing Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
22
|
Ahmad HA, Ahmad S, Cui Q, Wang Z, Wei H, Chen X, Ni SQ, Ismail S, Awad HM, Tawfik A. The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151926. [PMID: 34838908 DOI: 10.1016/j.scitotenv.2021.151926] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Emerging pollutants (EPs) create a worldwide concern owing to their low concentration and severe toxicity to the receptors. The prominent emerging pollutants categories as pharmaceutical and personal care product, plasticizer, surfactants, and persistent organic pollutants. Typically, EPs are widely disseminated in the aquatic ecosystem and capable of perturbing the physiology of water bodies as well as humans. The primary sources of EPs in the environment include anthropogenic release, atmospheric deposition, untreated or substandard treated wastewater, and extreme weather events. Intensive research has been done covering the environmental distribution, ecological disturbance, fate, and removal of EPs in the past decades. However, a systematic review on the distribution of EPs in the engineered and natural aquatic environment and the degradation of different EPs by using anaerobic sludge, aerobic bacteria, and isolated strains are limited. This review article aims to highlight the importance, application, and future perceptions of using different microbes to degrade EPs. Overall, this review article illustrates the superiority of using non-cultivable and cultivable microbes to degrade the EPs as an eco-friendly approach. Practically, the outcomes of this review paper will build up the knowledge base solutions to remove EPs from the wastewater.
Collapse
Affiliation(s)
- Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China; Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518052, China
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Qingjie Cui
- Department of Mechanical and Environmental Protection, Shandong Electric Power Engineering Consulting Institute Ltd. (SDEPCI), Jinan, Shandong 250013, China
| | - Zhibin Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Haiwei Wei
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xue Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China; Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518052, China.
| | - Sherif Ismail
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Environmental Engineering Department, Zagazig University, Zagazig 44519, Egypt
| | - Hanem M Awad
- National Research Centre, Tanning Materials & Proteins Department, Dokki, Giza 12622, Egypt
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki, Giza 12622, Egypt
| |
Collapse
|
23
|
Anthony ET, Oladoja NA. Process enhancing strategies for the reduction of Cr(VI) to Cr(III) via photocatalytic pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8026-8053. [PMID: 34837612 DOI: 10.1007/s11356-021-17614-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
This discourse aimed at providing insight into the strategies that can be adopted to boost the process of photoreduction of Cr(VI) to Cr(III). Cr(VI) is amongst the highly detestable pollutants; thus, its removal or reduction to an innocuous and more tolerable Cr(III) has been the focus. The high promise of photocatalysis hinged on the sustainability, low cost, simplicity, and zero sludge generation. Consequently, the present dissertation provided a comprehensive review of the process enhancement procedures that have been reported for the photoreduction of Cr(VI) to Cr(III). Premised on the findings from experimental studies on Cr(VI) reductions, the factors that enhanced the process were identified, dilated, and interrogated. While the salient reaction conditions for the process optimization include the degree of ionization of reacting medium, available photogenerated electrons, reactor ambience, type of semiconductors, surface area of semiconductor, hole scavengers, quantum efficiency, and competing reactions, the relevant process variables are photocatalyst dosage, initial Cr(VI) concentration, interfering ion, and organic load. In addition, the practicability of photoreduction of Cr(VI) to Cr(III) was explored according to the potential for photocatalyst recovery, reactivation, and reuse reaction conditions and the process variables.
Collapse
Affiliation(s)
- Eric Tobechukwu Anthony
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Nurudeen Abiola Oladoja
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria.
| |
Collapse
|
24
|
Albornoz LL, Soroka VD, Silva MCA. Photo-mediated and advanced oxidative processes applied for the treatment of effluents with drugs used for the treatment of early COVID-19: Review. ENVIRONMENTAL ADVANCES 2021; 6:100140. [PMID: 34845441 PMCID: PMC8603826 DOI: 10.1016/j.envadv.2021.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The COVID-19 pandemic is proving to be one of the most challenging health and social crises ever faced by humanity. Several drugs have been proposed as potential antiviral agents for the treatment of COVID-19 since the beginning of the health crisis. Among them are chloroquine (CQ), hydroxychloroquine (HCQ), ivermectin (IVM), and the combination of QC or HCQ and azithromycin (AZI). The use of these and several other drugs has grown sharply, even if there is proof of ineffectiveness in the early treatment or mild cases of COVID-19. Thus, there is great concern about the potential environmental impacts of the effluents released with the presence of these drugs. Therefore, this work aimed to carry out a literature review on wastewater treatment processes, focusing on removing these substances through advanced oxidation process. As the conventional effluent treatment processes do not have high efficiency for removal, it was concentrated in the literature that had as scope advanced and photo-mediated techniques to remove CQ, HCQ, IVM, and AZI. It is expected, with this work, to highlight the importance of conducting research that contributes to the control of pollution and contamination.
Collapse
Affiliation(s)
- L L Albornoz
- Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | - V D Soroka
- Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | - M C A Silva
- UFRGS, Instituto de Pesquisas Hidráulicas (IPH), Programa de Pós-Graduação em Recursos Hídricos e Saneamento Ambiental, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
An B, Xu X, Ma W, Huo M, Wang H, Liu Z, Cheng G, Huang L. The adsorption-desorption characteristics and degradation kinetics of ceftiofur in different agricultural soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112503. [PMID: 34273851 DOI: 10.1016/j.ecoenv.2021.112503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Cephalosporins are one of the most widely used antibiotics. When cephalosporins are discharged into the environment, they not only induce the production of antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARBs) but also cause toxic effects on animals and plants. Due to their complicated environmental behavior and lack of relevant data, the environmental behavior remains unclear. In this study, the adsorption-desorption and degradation characteristics of the third-generation cephalosporin drug ceftiofur (CEF) were investigated in three agricultural soils (sandy loam, loam and clay). According to the relevant parameters of the Freundlich adsorption isotherm (the Kf range was 57.63-122.44 μg1-1/n L1/n kg-1), CEF was adsorbed moderately in the soils and had the potential to migrate into groundwater. CEF exhibited low persistence in the soils and faster degradation than other antibiotics, such as tetracyclines and fluoroquinolones. The degradation half-lives (DT50) of CEF in soils ranged from 0.76 days to 4.31 days. Adding feces, increasing the water content, providing light and increasing the temperature significantly accelerated the degradation of CEF in soils. The DT50 values of CEF in soils were significantly prolonged when the soils were sterilized, indicating that both physical degradation and biodegradation played important roles in the degradation of CEF in soils. The DT50 values of CEF in soils were significantly prolonged at high concentrations, indicating that the degradability of CEF in soils was affected by the initial concentration. No significant differences were observed in the DT50 values for the different soil types (p > 0.05). This study provides useful information about the environmental behavior of CEF and improves the environmental risk assessment of CEF.
Collapse
Affiliation(s)
- Boyu An
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Hanyu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
26
|
Chen S, Shen Z, Ding J, Qu M, Li T, Tong M, Di Y. Sulfamethoxazole induced systematic and tissue-specific antioxidant defense in marine mussels (Mytilus galloprovincialis): Implication of antibiotic's ecotoxicity. CHEMOSPHERE 2021; 279:130634. [PMID: 34134424 DOI: 10.1016/j.chemosphere.2021.130634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/29/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Sulfamethoxazole (SMX), recognized as emerging pollutant, has been frequently detected in aquatic environment. However, effects induced by SMX and the underneath mechanism on non-target aquatic organisms, marine mussels (Mytilus galloprovincialis), are still largely unknown. In present study, marine mussels were exposed to SMX (nominal concentrations 0.5, 50 and 500 μg/L) for 6 days, followed by 6 days depuration and responses of antioxidant defenses, e.g. superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST), etc., at transcriptional, translational and functional levels were evaluated in two vital tissues, gills and digestive glands. Results showed SMX can be accumulated in mussels while the bio-accumulative ability was low under the experimental condition. A systemic but not completely synchronous antioxidant defense at different levels upon SMX exposure. The transcriptional alteration was more sensitive and had the potential to be used as early warning of SMX induced ecotoxicity. Complementary function of antioxidant enzymes with specific alteration of metabolism related gene (gst) suggested that further researches should focused on SMX metabolism and SMX induced effects simultaneously. Significant tissue-specific antioxidant responses were discovered and gills showed earlier and quicker reacting ability than digestive glands, which was closely related to the functional diversity and different thresholds of xenobiotics allowance.
Collapse
Affiliation(s)
- Siyu Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Zeyue Shen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Jiawei Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Mengjie Qu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Taiwei Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Mengmeng Tong
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Yanan Di
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, China.
| |
Collapse
|
27
|
Silva CP, Louros V, Silva V, Otero M, Lima DLD. Antibiotics in Aquaculture Wastewater: Is It Feasible to Use a Photodegradation-Based Treatment for Their Removal? TOXICS 2021; 9:toxics9080194. [PMID: 34437512 PMCID: PMC8402555 DOI: 10.3390/toxics9080194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Aquacultures are a sector facing a huge development: farmers usually applying antibiotics to treat and/or prevent diseases. Consequently, effluents from aquaculture represent a source of antibiotics for receiving waters, where they pose a potential threat due to antimicrobial resistance (AMR) induction. This has recently become a major concern and it is expectable that regulations on antibiotics’ discharge will be established in the near future. Therefore, it is urgent to develop treatments for their removal from wastewater. Among the different possibilities, photodegradation under solar radiation may be a sustainable option. Thus, this review aims at providing a survey on photolysis and photocatalysis in view of their application for the degradation of antibiotics from aquaculture wastewater. Experimental facts, factors affecting antibiotics’ removal and employed photocatalysts were hereby addressed. Moreover, gaps in this research area, as well as future challenges, were identified.
Collapse
Affiliation(s)
- Carla Patrícia Silva
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
- Correspondence:
| | - Vitória Louros
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
| | - Valentina Silva
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
- CESAM & Department of Environment and Planning, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marta Otero
- CESAM & Department of Environment and Planning, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Diana L. D. Lima
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
| |
Collapse
|
28
|
Cheng D, Liu H, E Y, Liu F, Lin H, Liu X. Effects of natural colloidal particles derived from a shallow lake on the photodegradation of ofloxacin and ciprofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145102. [PMID: 33582325 DOI: 10.1016/j.scitotenv.2021.145102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Natural colloidal particles (NCPs), which are ubiquitous and abundant in surface waters, may play a crucial role in the sunlight-driven transformation of organic contaminants. This research focused on the effects of NCPs on the photodegradation of two fluoroquinolone antibiotics (FQs), ofloxacin (OFL) and ciprofloxacin (CIP), and assessed the photosensitivity of colloidal organic matter (COM). Results showed that the photodegradation rate constants (kobs) of OFL and CIP in NCP solutions ranged from 9.28 × 10-2 h-1 to 15.98 × 10-2 h-1 and 63.88 × 10-2 h-1 to 196.59 × 10-2 h-1, respectively, and NCPs can significantly accelerate the photodegradation rate of OFL and CIP. Indirect photodegradation (IP) accounted for >50% of the overall observed degradation in most treatments and was the dominant degradation pathway for the two FQs, especially for CIP, for which IP reached 82%-94%. In the IP process, the contributions of triplet states of colloidal organic matter (3COM⁎) to the photolysis of OFL and CIP were close to 42% and 46%, respectively. The compositions of COM played an important role in the IP of the FQs, among which terrestrial sources of COM tended to have higher photoreactivity than biological sources. This study is essential in predicting the photochemical effect of FQs and also allows for a better understanding of the real environmental fate of antibiotic contaminants.
Collapse
Affiliation(s)
- Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Haifan Liu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Yang E
- Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Fang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Xinhui Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
29
|
Nava-Andrade K, Carbajal-Arízaga GG, Obregón S, Rodríguez-González V. Layered double hydroxides and related hybrid materials for removal of pharmaceutical pollutants from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112399. [PMID: 33774560 DOI: 10.1016/j.jenvman.2021.112399] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/23/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals and their by-products are recalcitrant contaminants in water. Moreover, the high consumption of these drugs has many detrimental effects on body waters and ecosystems. In this timely review, the advances in molecular engineering of layered double hydroxides (LDH) that have been used for the removal of pharmaceutical pollutants are discussed. The approach starts from the strategies to obtain homogeneous synthesis of LDH that allow the doping and/or surface functionalization of different metals and oxides, producing heterojunction systems as well as composites with carbon and silica-based materials with high surface area. Adsorption is considered as a traditional removal of pharmaceutical pollutants, so the kinetic and mechanism of this phenomenon are analyzed based on pH, temperature, ionic strength, in order to obtain new insights for the formation of multifunctional LDH. Advanced oxidation methodologies, mainly heterogeneous photocatalysis and Fenton-like processes, stand out as the more efficient even to obtain the mineralization of the drugs. The LDH have the advantage of structural memory that favors regeneration processes. The reconstruction of calcined LDH can be used to improve drug removal, through a combination of adsorption capacity/catalytic activity. A meticulous analysis of the persistence, toxicity and bioaccumulation of the most common pharmaceuticals has allowed us to highlight the ability of the LDH to remove recalcitrant drugs at relatively low concentrations (ppm, ppb), in contrast to other mixed oxide nanostructures and homogeneous oxidation processes. In this sense, the mechanism of drug removal by LDH is discussed based on the importance of the use of composites, scavenger agents, Fenton and electro-Fenton processes, membranes, thin films and coatings, among others. In addition, the ecotoxicity of LDH is also reviewed to indicate that these layered structures can exhibit biocompatibility or high toxicity depending on the adsorbed drug and ions/metals that compose them. Undoubtedly, the LDH have a unique flexible structure with adsorption capacity and catalytic activity, facts that explain the important reasons for their extensive use in the environmental remediation of pharmaceutical pollutants from water.
Collapse
Affiliation(s)
- K Nava-Andrade
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco, Mexico.
| | - G G Carbajal-Arízaga
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco, Mexico.
| | - S Obregón
- Universidad Autónoma de Nuevo León, UANL, CICFIM-Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455, Nuevo León, Mexico.
| | - V Rodríguez-González
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), División de Materiales Avanzados, Camino a la Presa San José 2055, Lomas 4ta, Sección, 78216, San Luis Potosí, Mexico.
| |
Collapse
|
30
|
Lastre-Acosta AM, Cristofoli BS, Parizi MPS, do Nascimento CAO, Teixeira ACSC. Photochemical persistence of sulfa drugs in aqueous medium: kinetic study and mathematical simulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23887-23895. [PMID: 33236308 DOI: 10.1007/s11356-020-11715-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
This study aimed at investigating the photochemical behavior of sulfa drugs containing five and six-membered heterocyclic substituents (sulfamethoxazole (SMX) and sulfadiazine (SDZ), respectively), in an aqueous medium. Despite their importance, studies devoted to the use of photochemical models to predict the environmental phototransformation of pollutants in surface waters, by combining laboratory results and natural aquatic systems parameters, are still scarce in the scientific literature. In this work, the second-order reaction rate constants of SDZ and SMX with hydroxyl radicals (●OH), singlet oxygen (1O2), and triplet excited states of chromophoric dissolved organic matter (3CDOM*) were experimentally determined at pH 7, using the competition kinetics approach. The results show that ●OH and 3CDOM* are the key species involved in sulfonamide degradation, with anionic SMX, most prevalent at pH 6-9, being degraded much slower than the anionic form of SDZ. Moreover, SDZ and SMX photodegradation in natural water samples (spring-fed natural pond, public supply reservoir, and sea water) was significantly enhanced relative to depletion in pure water. Finally, from mathematical simulations of the sunlight-driven sulfonamide degradation, half-life times were predicted for these drugs varying from less than 2 to about 90 days, depending on the water depth, concentration of key species (DOC, HCO3-, NO2-, CO32-) in natural aqueous systems, as well as on the particular heterocyclic substituent.
Collapse
Affiliation(s)
- Arlen Mabel Lastre-Acosta
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, 380, São Paulo, SP, Brazil.
- Chemical Systems Engineering Center, Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, 380, São Paulo, SP, Brazil.
| | - Bruno Segawa Cristofoli
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, 380, São Paulo, SP, Brazil
| | - Marcela Prado Silva Parizi
- Energy Engineering Department, São Paulo State University (UNESP), Av. Dos Barrageiros, 1881, Rosana, SP, Brazil
| | - Claudio Augusto Oller do Nascimento
- Chemical Systems Engineering Center, Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, 380, São Paulo, SP, Brazil
| | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, 380, São Paulo, SP, Brazil
| |
Collapse
|
31
|
Ren Z, Zhang H, Wang Y, Lu L, Ren D, Wang J. Multiple roles of dissolved organic matter released from decomposing rice straw at different times in organic pollutant photodegradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123434. [PMID: 32763715 DOI: 10.1016/j.jhazmat.2020.123434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Rice straw returning causes a considerable amount of dissolved organic matter (DOM) release into aquatic croplands in a relatively short-term. The presence of rice straw-derived DOM in cropland waters may alter the photochemical behaviors of organic pollutants. However, the photochemical activity and photosensitization role of the DOMs are poorly understood. Here, eight DOM samples were extracted from decomposing rice straw at different times in 49 days to explore their photosensitizing capacities toward diuron (DIU), 17β-estradiol (E2), and sulfamethoxazole (SMX). All of the DOMs were photosensitive and mainly composed of tryptophan-, tyrosine- and fulvic-like substances. Over the decomposition period, the amount of photochemically produced reactive intermediates (PPRIs) by the DOMs peaked on days 7 and 14. The evolution of the DOM photosensitizing capacity towards DIU and E2 was consistent with the variations of PPRIs, and HO· was confirmed as a critical factor. However, the influence of the DOMs on SMX photodegradation was opposite to that on DIU and E2. The positive role of the DOMs in SMX photodegradation was attributed to the tryptophan-like components. The results suggest that straw-derived DOM is an important photosensitizer and that its photosensitization towards organic pollutants is dependent on straw decomposing time and pollutant type.
Collapse
Affiliation(s)
- Zhaogang Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Haiyang Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yunwen Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China.
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
32
|
Louros VLD, Silva CP, Nadais H, Otero M, Esteves VI, Lima DLD. Oxolinic acid in aquaculture waters: Can natural attenuation through photodegradation decrease its concentration? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141661. [PMID: 33370895 DOI: 10.1016/j.scitotenv.2020.141661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 06/12/2023]
Abstract
Quinolones, such as oxolinic acid (OXA), are antimicrobials commonly used in aquaculture. Thus, its presence in the aquatic environment surrounding aquaculture facilities is quite easy to understand. When present in aquatic environment, pharmaceuticals may be subjected to several attenuation processes that can influence their persistence. Photodegradation, particularly for antibiotics, can have significant importance since these compounds may be resistant to microbial degradation. OXA photodegradation studies reported in literature are very scarce, especially using aquaculture waters, but are markedly important for an appropriate risk assessment. Results hereby presented showed a decrease on photodegradation rate constant from 0.70 ± 0.02 h-1 in ultrapure water to 0.42 ± 0.01 h-1 in freshwater. The decrease on photodegradation rate constant was even more pronounced when brackish water was used (0.172 ± 0.003 h-1). In order to understand which factors contributed to the observed behaviour, environmental factors, such as natural organic matter and salinity, were studied. Results demonstrated that dissolved organic matter (DOM) may explain the decrease of OXA photodegradation observed in freshwater. However, a very sharp decrease of OXA photodegradation was observed in solutions containing NaCl and in synthetic sea salts, which explained the higher decrease observed in brackish water. Moreover, under solar radiation, the use of an 1O2 scavenger allowed us to verify a pronounced retardation of OXA decay, suggesting that 1O2 plays an important role in OXA photodegradation process.
Collapse
Affiliation(s)
- Vitória Loureiro Dos Louros
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Patrícia Silva
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Helena Nadais
- CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Marta Otero
- CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Diana L D Lima
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
33
|
Loureiro Dos Louros V, Silva CP, Nadais H, Otero M, Esteves VI, Lima DLD. Photodegradation of sulfadiazine in different aquatic environments - Evaluation of influencing factors. ENVIRONMENTAL RESEARCH 2020; 188:109730. [PMID: 32516634 DOI: 10.1016/j.envres.2020.109730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The presence of antibiotics, such as sulfadiazine (SDZ), in the aquatic environment contributes to the generation of antimicrobial resistance, which is a matter of great concern. Photolysis is known to be a major degradation pathway for SDZ in surface waters. Therefore, influencing factors affecting SDZ photodegradation in different aquatic environments were here evaluated in order to have a better knowledge about its persistence in the environment. Photodegradation of SDZ was found to be more efficient at higher pH (t1/2 = 6.76 h, at pH = 7.3; t1/2 = 12.2 h, at pH = 6.3), in the presence of humic substances (HS) (t1/2 between 1.76 and 2.42 h), as well as in the presence of NaCl (t1/2 = 1.00 h) or synthetic sea salts (t1/2 = 0.78 h). Using ˙OH and 1O2 scavengers, it was possible to infer that direct photolysis was the main pathway for SDZ photodegradation in ultrapure water. Furthermore, results under N2 purging confirmed that 1O2 was not relevant in the phototransformation of SDZ. Then, the referred observations were used for the interpretation of results obtained in environmental matrices, namely the final effluent of a sewage treatment plant (STPF), fresh and brackish water (t1/2 between 2.3 and 3.48 h), in which SDZ photodegradation was found to be much faster than in ultrapure water (t1/2 = 6.76 h).
Collapse
Affiliation(s)
- Vitória Loureiro Dos Louros
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Carla Patrícia Silva
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Helena Nadais
- CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Marta Otero
- CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Diana L D Lima
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
34
|
Andrade KN, Arízaga GC, Bautista E, Rodríguez-González V. Dysprosium doped double layered hydroxide as an efficient catalyst for photooxidation of pharmaceutical pollutants. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Hernández-Pérez A, Noonin C, Söderhäll K, Söderhäll I. Environmental concentrations of sulfamethoxazole increase crayfish Pacifastacus leniusculus susceptibility to White Spot Syndrome Virus. FISH & SHELLFISH IMMUNOLOGY 2020; 102:177-184. [PMID: 32311459 DOI: 10.1016/j.fsi.2020.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics used for humans and livestock are emerging as pollutants in aquatic environments. However, little is known about their effect on aquatic organisms, especially in crustaceans. In the present study, the freshwater crayfish Pacifastacus leniusculus was exposed during 21 days to environmental concentrations of sulfamethoxazole (SMX) (100 ng/L and 1 μg/L). Subsequently, the crayfish susceptibility to infection was evaluated by using White Spot Syndrome Virus (WSSV) challenge, a well-known crustacean pathogen. The median survival time of the infected crayfish exposed to 100 ng/L SMX was one day, whereas the control and the group exposed to 1 μg/L SMX survived for two and three days, respectively. In order to elucidate the effect of SMX upon the crayfish immune response, new sets of crayfish were exposed to the same SMX treatments to evaluate mRNA levels of immune-related genes which are expressed and present in hemocytes and intestine, and to perform total and differential hemocyte counts. These results show a significant down-regulation of the antimicrobial peptide (AMP) Crustin 3 in hemocytes from the 100 ng/L SMX group, as well as a significant up-regulation of the AMP Crustin 1 in intestines from the 1 μg/L SMX group. Semigranular and total hemocyte cell number were observed to be significantly lower after exposure to 100 ng/L SMX in comparison with the control group. The present study demonstrates that environmentally relevant SMX concentrations in the water at 100 ng/L led to an increased WSSV susceptibility, that may have been caused by a reduction of circulating hemocytes. Nevertheless, SMX concentrations of 1 μg/L could marginally and for a few days have an immunostimulatory effect.
Collapse
Affiliation(s)
- Ariadne Hernández-Pérez
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Kenneth Söderhäll
- SciLife Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Irene Söderhäll
- SciLife Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden.
| |
Collapse
|
36
|
Mourid EH, El Mouchtari EM, El Mersly L, Benaziz L, Rafqah S, Lakraimi M. Development of a new recyclable nanocomoposite LDH-TiO2 for the degradation of antibiotic sulfamethoxazole under UVA radiation: An approach towards sunlight. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Chen G, Qiao Y, Liu F, Zhang X, Liao H, Zhang R, Dong J. Effects of fertilization on the triafamone photodegradation in aqueous solution: Kinetic, identification of photoproducts and degradation pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110363. [PMID: 32120175 DOI: 10.1016/j.ecoenv.2020.110363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/01/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Triafamone is a highly effective, low toxicity sulfonamide herbicide widely used for weeding paddy fields. The triafamone photodegradation in water environment must be explored for its ecological risk assessment. In this work, the effects of chemical fertilizer (urea, diammonium phosphate, potassium chloride, and potassium sulfate), urea metabolites (CO32- and HCO3-), and organic fertilizers (unfermented organic fertilizer [UOF] and fermented organic fertilizer [FOF]) on the triafamone photodegradation in aqueous solution under simulated sunlight were evaluated. Results showed that the triafamone photodegradation rate was unaffected by urea. The half-life of triafamone decreased from 106.8 h to 68.4 h with increasing diammonium phosphate concentration. Potassium chloride, potassium sulfate, CO32-, and HCO3- could accelerate the triafamone photodegradation at all concentrations, whereas the degradation rate of triafamone decreased when the concentration of potassium sulfate or CO32- was 2000 mg/L. Triafamone photodegradation was promoted by 20-200 mg/L UOF and FOF but decreased to 236.6 and 142.3 h when the concentration reached 2000 mg/L. Twenty-three transformation products were isolated and identified from triafamone by using ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry under simulated sunlight irradiation, and the kinetic evolution of these products was explored. Five possible degradation pathways were inferred, including the cleavage of C-N, C-C, and C-O bonds; CO bond hydrogenation; the cleavage of triazine ring; the cleavage of the sulfonamide bridge; hydroxylation; hydroxyl substitution; methylation; demethylation; amination; and rearrangement. In summary, these results are important for elucidating the environmental fate of triafamone in aquatic systems and further assessing environmental risks.
Collapse
Affiliation(s)
- Guofeng Chen
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Yuxin Qiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Liu
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaobo Zhang
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Hui Liao
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ruiying Zhang
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jiannan Dong
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| |
Collapse
|
38
|
Thiebault T. Sulfamethoxazole/Trimethoprim ratio as a new marker in raw wastewaters: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136916. [PMID: 32041046 DOI: 10.1016/j.scitotenv.2020.136916] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 05/23/2023]
Abstract
Global Trimethoprim (TMP) and Sulfamethoxazole (SMX) occurrences in raw wastewaters were systematically collected from the literature (n = 140 articles) in order to assess the relevance of using the SMX/TMP ratio as a marker of the main origin of wastewaters. These two antibiotics were selected due to their frequent use in association (i.e. co-trimoxazole) in a 5:1 ratio (SMX:TMP) for medication purposes, generating a unique opportunity to globally evaluate the validity of this ratio based on concentration values. Several parameters (e.g. sorption, biodegradation) may affect the theoretical SMX/TMP ratio. However, the collected data highlighted the good agreement between the theoretical ratio and the experimental one, especially in wastewater treatment plant influents and hospital effluents. Only livestock effluents displayed a very high SMX/TMP ratio, indicative of the very significant use of sulfonamide alone in this industry. Conversely, several countries displayed low SMX/TMP ratio values, highlighting local features in the human pharmacopoeia. This review provides new insights in order to develop an easy to handle and sound marker of wastewater origins (i.e. human/livestock), beyond atypical local customs.
Collapse
Affiliation(s)
- Thomas Thiebault
- EPHE, PSL University, UMR 7619 METIS, Sorbonne University, CNRS, F-75005, Paris, France.
| |
Collapse
|
39
|
Jiang Y, Liu Y, Zhang J. Antibiotics induced alterations in cell density, photosynthesis, microcystin synthesis and proteomic expression of Microcystis aeruginosa during CuSO 4 treatment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105473. [PMID: 32203795 DOI: 10.1016/j.aquatox.2020.105473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Antibiotic contaminants have the potential to interfere with the control of cyanobacterial bloom through generating hormesis in cyanobacteria at current contamination level of ng L-1. This study investigated the influence of a mixture of four frequently detected antibiotics, amoxicillin, ciprofloxacin, sulfamethoxazole and tetracycline, during the treatment of Microcystis aeruginosa by copper sulfate (CuSO4) algaecide. CuSO4 significantly (p < 0.05) inhibited cell density, growth rate, Fv/Fm value, chlorophyll a content and microcystin production ability of M. aeruginosa in a dose-dependent manner at application doses of 0.01-0.05 mg L-1. Besides, CuSO4 inhibited oxidation-reduction process, photosynthesis and biosynthesis in M. aeruginosa at the proteomic level. Preventative application of CuSO4 to a low density (4 × 105 cells mL-1) of M. aeruginosa effectively prevented the formation of bloom at low CuSO4 doses, which is a possible route for eliminating the negative effects of CuSO4 algaecide in aquatic environments. The presence of mixed antibiotics alleviated the toxicity of CuSO4 in M. aeruginosa, through the downregulation of cation transport proteins and the upregulation of proteins related with chlorophyll a synthesis, photosynthesis, gene expression and oxidation-reduction. Mixed antibiotics also promoted microcystin synthesis in CuSO4 treated cells through the upregulation of microcystin synthetases. Mixed antibiotics significantly (p < 0.05) increased cell density, growth rate, Fv/Fm value, chlorophyll a content and microcystin production ability in CuSO4 treated cells at test concentrations of 80 and 200 ng L-1. A no-impact threshold of 20 ng L-1 for mixed antibiotics (5 ng L-1 for each antibiotic) was suggested for eliminating the interference of antibiotic contaminants on cyanobacterial bloom control.
Collapse
Affiliation(s)
- Yunhan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
40
|
Yin R, Guo W, Ren N, Zeng L, Zhu M. New insight into the substituents affecting the peroxydisulfate nonradical oxidation of sulfonamides in water. WATER RESEARCH 2020; 171:115374. [PMID: 31881498 DOI: 10.1016/j.watres.2019.115374] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
The large consumption and discharge of sulfonamides (SAs) have potentially induced antibiotic resistance genes, posing inestimable threats to humans and ecosystems. In the present study, five SAs with different substituents were regarded as target compounds to be degraded using the nonradical dominated peroxydisulfate (PDS) activation process by the combination of 1O2 oxidation and direct electron transfer. The degradation rates, toxicities and pathways of SAs largely varied with their substituents. For instance, sulfathiazole with five-membered substituent had the highest degradation rate of 0.19 min-1, which was 3.8 times as the rate of sulfanilamide (0.05 min-1) without substituent. Then the theoretical calculation was adopted to further confirm that different substituents on the SAs could influence the molecular orbital distribution and their stability, thus resulting in the different removal rate of SAs. Finally, the products of different SAs were concisely deduced to take insight into the effects of different substituents on SAs degradation pathways. It was demonstrated that the geometrical differences among various SAs caused by the different substituents contributed to the different degradation pathways of SAs. Representatively, the special Smiles-type rearrangement pathway was occurred in the six-membered SAs instead of in the five-membered SAs, which inversely resulted in the slower degradation rate of six-membered SAs than the five-membered SAs. Thus, the present study provides a valuable insight into the effects of substituents on the degradation rate and transformation pathways of SAs in the nonradical PDS activation process.
Collapse
Affiliation(s)
- Renli Yin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China.
| |
Collapse
|
41
|
Hong B, Yu S, Niu Y, Ding J, Lin Q, Lin X, Hu W. Spectrum and environmental risks of residual pharmaceuticals in stream water with emphasis on its relation to epidemic infectious disease and anthropogenic activity in watershed. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121594. [PMID: 31732356 DOI: 10.1016/j.jhazmat.2019.121594] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/19/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals vastly consumed by modern human for health and food might track anthropogenic impacts on aquatic ecosystem via their wide residual spectrum. This study investigated the spectrum of pharmaceutical residuals in stream water at confluence point of each subwatershed with various land use pattern in Jiulong River watershed, southeastern China. Stream water was sampled in both wet and dry seasons of 2016. Results showed that 59 out of the selected 94 compounds from 6 pharmaceutical categories were quantified among these stream water samples, up to 1488 ng L-1 for caffeine (CAF). Antibiotics and central nervous system drugs (CNs) collectively dominated the quantified instream pharmaceutical residuals. Outbreaks of epidemic infectious diseases for human and livestock partially but significantly matched seasonality of instream pharmaceutical residuals. Anthropogenic impact as land use composition of subwatersheds was significant on instream pharmaceutical loadings, especially urban land use. Cocktail risk of instream pharmaceutical residuals to aquatic organisms was assessed ranging from low to medium among the subwatersheds except high risk for the W-01 subwatershed in the dry season. Evidence from this study indicated that seasonality and wide spectrum of instream pharmaceutical residual determination could reveal anthropogenic impacts to aquatic ecosystem, such as epidemic disease and land use.
Collapse
Affiliation(s)
- Bing Hong
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shen Yu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yong Niu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jing Ding
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoying Lin
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodan Lin
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenwen Hu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
42
|
Silva CP, Oliveira C, Ribeiro A, Osório N, Otero M, Esteves VI, Lima DLD. Sulfamethoxazole exposure to simulated solar radiation under continuous flow mode: Degradation and antibacterial activity. CHEMOSPHERE 2020; 238:124613. [PMID: 31450110 DOI: 10.1016/j.chemosphere.2019.124613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Among pharmaceuticals, the occurrence of antibiotics in the environment is a subject of special concern due to their environmental impact, namely the development of bacterial resistance. Sulfamethoxazole (SMX) is one of the most commonly used antibiotics and it is regularly found, not only in effluents from sewage treatment plants (STPs), but also in the aquatic environment. Photodegradation appears as an alternative process for the removal of this type of pollutants from contaminated waters. In order to be used for a remediation purpose, its evaluation under continuous flow mode is essential, as well as the determination of the final effluent antibacterial activity, which were assessed in this work. As compared with batch operation, the irradiation time needed for SMX elimination under continuous flow mode sharply decreased, which is very advantageous for the target application. Moreover, the interrelation between SMX removal, mineralization and antibacterial activity was evaluated before and during photodegradation in ultrapure water. Although mineralization was slower than SMX removal, bacterial activity increased after SMX photodegradation. Such increase was also verified in environmental water matrices. Thus, this study has proven that photodegradation is an efficient and sustainable process for both (i) the remediation of waters contaminated with antibiotics, and (ii) the minimization of the bacterial resistance.
Collapse
Affiliation(s)
- Carla Patrícia Silva
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Cindy Oliveira
- Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Ribeiro
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Biomedical Laboratory Sciences Department, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854, Coimbra, Portugal
| | - Nádia Osório
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Biomedical Laboratory Sciences Department, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854, Coimbra, Portugal
| | - Marta Otero
- CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Diana L D Lima
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Complementary Sciences Department, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854, Coimbra, Portugal.
| |
Collapse
|
43
|
Dabić D, Babić S, Škorić I. The role of photodegradation in the environmental fate of hydroxychloroquine. CHEMOSPHERE 2019; 230:268-277. [PMID: 31108437 DOI: 10.1016/j.chemosphere.2019.05.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/18/2019] [Accepted: 05/04/2019] [Indexed: 05/23/2023]
Abstract
For many organic pollutants present in surface waters, photolysis is considered as a major abiotic degradation process. The present study aimed to explore the role of photolysis in the environmental fate of hydroxychloroquine (HCQ) for the first time. The photolytic degradation of HCQ was investigated under simulated solar radiation (300-800 nm) in ultrapure, spring, river, and sea water. The effect of pH on the photodegradation rate was substantial and it was observed that degradation was faster at higher pH-values. Obtained half-lives ranged from 5.5 min at pH 9 to 23.1 h at pH 4. Humic acids, nitrate and iron(III) enhanced photodegradation of HCQ due to formation of hydroxyl radicals and its attack on HCQ molecule. In contrast, chloride, sulfate and bromide inhibited photodegradation. Additionally, the humic acids exhibited a dual role, photosensitization and inner filter effect. The study of the reaction kinetics was performed with HPLC-PDA, while the identification of degradation products formed during photolytic degradation was carried out using HPLC-MS/MS and NMR spectroscopy. The hydroxylation was recognized as the dominant path of photoproducts formation. The results of this research reveal the importance of photolytic degradation in environmental fate of HCQ and enable a better understanding of its behavior in the environment. Moreover, the results showing the significant effect of pH on the photodegradation of HCQ can be very useful in water treatment processes.
Collapse
Affiliation(s)
- Dario Dabić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, Croatia
| | - Sandra Babić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, Croatia.
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, Croatia
| |
Collapse
|
44
|
Miazek K, Brozek-Pluska B. Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review. Int J Mol Sci 2019; 20:ijms20102492. [PMID: 31137560 PMCID: PMC6567089 DOI: 10.3390/ijms20102492] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
In this review, the effect of pharmaceuticals (PHRs) and personal care products (PCPs) on microalgal growth and metabolism is reported. Concentrations of various PHRs and PCPs that cause inhibition and toxicity to growths of different microalgal strains are summarized and compared. The effect of PHRs and PCPs on microalgal metabolism (oxidative stress, enzyme activity, pigments, proteins, lipids, carbohydrates, toxins), as well as on the cellular morphology, is discussed. Literature data concerning the removal of PHRs and PCPs from wastewaters by living microalgal cultures, with the emphasis on microalgal growth, are gathered and discussed. The potential of simultaneously bioremediating PHRs/PCPs-containing wastewaters and cultivating microalgae for biomass production in a single process is considered. In the light of reviewed data, the feasibility of post-bioremediation microalgal biomass is discussed in terms of its contamination, biosafety and further usage for production of value-added biomolecules (pigments, lipids, proteins) and biomass as a whole.
Collapse
Affiliation(s)
- Krystian Miazek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Beata Brozek-Pluska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
45
|
Espíndola JC, Szymański K, Cristóvão RO, Mendes A, Vilar VJ, Mozia S. Performance of hybrid systems coupling advanced oxidation processes and ultrafiltration for oxytetracycline removal. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.12.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Khaleel NDH, Mahmoud WMM, Olsson O, Kümmerer K. Studying the fate of the drug Chlorprothixene and its photo transformation products in the aquatic environment: Identification, assessment and priority setting by application of a combination of experiments and various in silico assessments. WATER RESEARCH 2019; 149:467-476. [PMID: 30472549 DOI: 10.1016/j.watres.2018.10.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/28/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
Chlorprothixene (CPTX) is an antipsychotic drug of the thioxanthene class. Although it is widely used as a tranquillizer in psychiatry, anesthesiology, pediatrics, and in general medical practice, there is a gap in knowledge regarding its occurrence and fate in the environment. Therefore, we provide for the first-time data on the environmental fate and ecotoxicity of CPTX and its potential photo-transformations products (PTPs). Firstly, two standardized biodegradation tests (Closed Bottle test (CBT) and Manometric Respiratory test (MRT)) were performed to assess CPTX's environmental biodegradability. Then, its photodegradability was studied using Xenon and UV lamps. Effects of different conditions (initial drug concentration, pH, and temperature) were applied during UV-photodegradation. Subsequently, the time courses of CPTX and dissolved organic carbon (DOC) concentrations were monitored throughout the photodegradation tests. After that, high-resolution mass spectrometry was employed to elucidate the structures of the formed photo-transformation products (PTPs). In addition, biodegradation tests were performed for the photolytic mixtures to assess the biodegradability of the PTPs. Finally, the (eco)toxicity assessment for CPTX and its photolytic mixtures was predicted using different (quantitative) structure-activity relationship ((Q)SAR) software. CPTX was found to be not readily biodegradable in CBT and MRT. CPTX was not eliminated by irradiation with the Xenon lamp, however primarily eliminated using the UV-lamp. The CPTX elimination during UV-irradiation was faster at lower concentrations. CPTX UV-photodegradation was affected by pH value, while not affected by the temperature of the irradiated solution. 13 PTPs were detected in UV-photolysis mixtures. One additional product was detected in CPTX standard solution, and it was degraded simultaneously with CPTX during UV-irradiation. On one hand, Biodegradation assays revealed that UV-photolytic mixtures of CPTX, containing its PTPs, were not better biodegradable than CPTX itself. On the other hand, LC-MS analysis showed some PTPs which were eliminated after the biodegradation tests indicating possible biodegradability of these PTPs. This because those PTPs are present in low concentrations in the photolysis mixture and their effect can be hindered by the effect of CPTX and other non-biodegradable PTPs. QSAR analysis revealed that CPTX and some of its PTPs may have some human and/or eco-toxic properties. In conclusion, the release of CPTX into aquatic environments could be harmful. Therefore, further research focusing on CPTX and its PTPs are strongly recommended.
Collapse
Affiliation(s)
- Nareman D H Khaleel
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1 C13, DE-21335, Lüneburg, Germany; Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Waleed M M Mahmoud
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1 C13, DE-21335, Lüneburg, Germany; Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Oliver Olsson
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1 C13, DE-21335, Lüneburg, Germany
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1 C13, DE-21335, Lüneburg, Germany.
| |
Collapse
|