1
|
Conceicao KC, Freitas LS, Villamar-Ayala CA. Behavior space-temporal of biofilters based on hazelnut shells/sawdust treating pharmaceutical and personal care products from domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178891. [PMID: 40010246 DOI: 10.1016/j.scitotenv.2025.178891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Nature-based solutions (NBS) such as biofiltration are an efficient, eco-friendly, and economical alternative for wastewater treatment under decentralized contexts. However, the influence on removing emerging contaminants (pharmaceuticals and personal care products or PPCPs), considering different typologies and seasonality fate, has been little studied. In this work, four lab-scale biofiltration typologies (BM: Biofilter + microorganisms, BEM: Biofilter + earthworms + microorganisms, BH: Biofilter + microorganisms + plants + earthworms or Biofilter hybrid, BPM: Biofilter + plants + microorganisms) were monitored seasonally (April-December, 250 days), being fed with rural domestic wastewater. Zantedeschia aethiopica (L.) and Eisenia foetida Savigny were used as biotic components, interacting with organic support components (hazelnut shells and sawdust) for removal of organic matter, nutrients, and 4 PPCPs (caffeine, ibuprofen, losartan, and triclosan). The mass balance of PPCPs was carried out considering the input (influent), output (effluent), support (soil), and plant (root and stem/leaf). The results showed that the different evaluated typologies removed close to 100 % COD, up to 89 % NH4+-N, and up to 99 % coliforms. Meanwhile, caffeine, ibuprofen, losartan, and triclosan were removed between 34 and 100 %. Seasonality or biofiltration typology was non-significantly influential (p > 0.05). However, biofilter hybrid and the warm season were the most efficient for removing organic matter, nutrients, coliforms, and PPCPs. The PPCPs' fate was plants/substrate/effluent with values up to 36, 95, and 64 %, respectively. The effluent was caffeine's main fate. Substrate was the main fate of ibuprofen, losartan, and triclosan. Plants uptake caffeine as a carbon source.
Collapse
Affiliation(s)
- Kennedy C Conceicao
- Facultad de Ingeniería, Departamento de Ingeniería Civil en Obras Civiles, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile; Facultad de Ingeniería, Departamento de Ingeniería Civil Química, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O ́Higgins 3363, Estación Central, Santiago, Chile; Escuela de Ingeniería, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 7500994, Chile
| | - Lisiane S Freitas
- Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Cristina A Villamar-Ayala
- Facultad de Ingeniería, Departamento de Ingeniería Civil en Obras Civiles, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile; Programa para el Desarrollo de Sistemas Productivos Sostenibles, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3769, Estación Central, Santiago, Chile.
| |
Collapse
|
2
|
Huang J, Zimmerman AR, Wan Y, Bai X, Chen H, Zheng Y, Zhang Y, Yang Y, Fan Y, Gao B. Removal of Sulfamethoxazole Using Fe-Mn Biochar Filtration Columns: Influence of Co-existing Polystyrene Microplastics. JOURNAL OF CLEANER PRODUCTION 2024; 477:143877. [PMID: 40018068 PMCID: PMC11864291 DOI: 10.1016/j.jclepro.2024.143877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Emerging contaminants, particularly antibiotics and microplastics (MPs), present significant challenges in wastewater treatment and pose large ecological risks. This study investigates the removal efficiency of sulfamethoxazole (SMX) using Fe-Mn modified biochar (BFM) in fixed bed filtration columns, emphasizing the effect of the presence of polystyrene microplastics (PS-MPs) on SMX behavior in both water (pH≈5.6) and selected wastewater (pH≈8) systems. Batch sorption results show that 10 mg/L SMX in 50 mL water can be completely removed by 100 mg BFM sorbent. The Bed Depth Service Time model indicated the BFM column is feasible for SMX removal in scaled-up continuous wastewater flow operations, while the Yan model best elucidates SMX filtration behavior and suggests the dominant adsorption mechanisms include external mass transfer and intraparticle diffusion. The present of both 20 mg/L and 100 mg/L PS-MPs (pH≈5.6) significantly reduced SMX retention due to competitive sorption. However, at pH 3.2, competitive sorption became negligible due to electrostatic interactions driving the PS-MPs sorption, while neutral charged SMX bound through hydrogen-bonds or π-π EDA interactions. Elevated pH shifted both PS-MPs and SMX sorption to non-electrostatic thus intensifying sorption competition, highlighting the influence of pH on their interaction dynamics. In wastewater, SMX filtration was slightly inhibited by 100 mg/L PS-MPs in BFM columns, whereas PS-MPs removal remained unaffected due to the high ionic strength and alkaline pH. These findings highlight the impact of MPs on pollution removal efficiency in filtration system, essential for enhancing biochar-based wastewater treatment strategies.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Andrew R. Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Yongshan Wan
- Center for Environmental Measurement and Modeling, US EPA, Gulf Breeze, FL 32561, USA
| | - Xue Bai
- Soil, Water, and Ecosystem Sciences, Everglades Research and Education Center, University of Florida, Belle Glade, FL 33430, USA
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, US
- Department of Agriculture, Landscape, and Environment, University of Vermont, Burlington, VT 05405 USA
| | - Yulin Zheng
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yue Zhang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yicheng Yang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yuchuan Fan
- Mississippi State University, Geosystems Research Institute, Starkville, MS, 39759, USA
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
3
|
Ilyas H, Rousseau DPL. Advances in the process-based models of constructed wetlands and a way forward for integrating emerging organic contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44518-44541. [PMID: 38955972 DOI: 10.1007/s11356-024-34036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024]
Abstract
This research examines advancements in the development of process-based models of constructed wetlands (CWs) tailored for simulating conventional water quality parameters (CWQPs). Despite the promising potential of CWs for emerging organic contaminant (EOC) removal, the available CW models do not yet integrate EOC removal processes. This study explores the need and possibility of integrating EOCs into existing CW models. Nevertheless, a few researchers have developed process-based models of other wastewater treatment systems (e.g., activated sludge systems) to simulate certain EOCs. The EOC removal processes observed in other wastewater treatment systems are analogous to those in CWs. Therefore, the corresponding equations governing these processes can be tailored and integrated into existing CW models, similarly to what was done successfully in the past for CWQPs. This study proposed the next generation of CW models, which outlines 12 areas for future work: integrating EOC removal processes; ensuring data availability for model calibration and validation; considering quantitative and sensitive parameters; quantifying microorganisms in CWs; modifying biofilm dynamics models; including pH, aeration, and redox potential; integrating clogging and plant sub-models; modifying hydraulic sub-model; advancing computer technology and programming; and maintaining a balance between simplicity and complexity. These suggestions provide valuable insights for enhancing the design and operational features of current process-based models of CWs, facilitating improved simulation of CWQPs, and integration of EOCs into the modelling framework.
Collapse
Affiliation(s)
- Huma Ilyas
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500, Kortrijk, Belgium.
| | - Diederik P L Rousseau
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500, Kortrijk, Belgium
| |
Collapse
|
4
|
Xia C, Yuan Y, Mathimani T, Rene ER, Brindhadevi K, Hoang Le Q, Pugazhendhi A. Process intensification approaches in wastewater and sludge treatment for the removal of pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118837. [PMID: 37634401 DOI: 10.1016/j.jenvman.2023.118837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Process Intensification (PI) is the modification or integration of conventional or novel processes within a single unit operation in order to improve product quality and reduce waste. PI offers numerous advantages, including a reduction in the initial and operational costs, an improvement in product quality/quantity, the generation of less waste, and an increase in process safety. The synergistic effect of PI in comparison to the conventional procedure ensures maximizing resource efficiency. PI can be accomplished in two ways: either by integrating various processes or by modifying the design of equipment to improve operational efficiency. In this regard, the present review provides a comprehensive insight into the application of PI in wastewater and sludge treatment methods and discusses the operational advantages. This review provides a comprehensive list of different PI approaches applied in wastewater and sludge treatment to remove pollutants and the various equipment, techniques and reactors used in PI. The second section addresses the challenges of PI in wastewater treatment that removes dyes, pesticides, organic and inorganic pollutants, micro- and nano-plastics, persistent organic pollutants, pharmaceutical and personal care pollutants.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China
| | - Yan Yuan
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, PR China
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft, 2601DA, the Netherlands
| | - Kathirvel Brindhadevi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, Punjab, 140103, India
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
5
|
Cai Q, Zeng J, Lin X, Xia D, Yu W, Qiu J, Yang M, Wang X. Study on the Effect of AO-Coupled Constructed Wetlands on Conventional and Trace Organic Pollutant Treatment. ACS OMEGA 2023; 8:38983-38990. [PMID: 37901527 PMCID: PMC10601076 DOI: 10.1021/acsomega.3c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023]
Abstract
In this study, a pilot-scale integrated process was developed, which combined the integrated biological contact oxidation technology (AO) and the improved constructed wetland technology. The results showed significant removal efficiency for both conventional and trace organic pollutants. The average removal efficiencies for COD, NH4+-N, and TP were 78.52, 85.95, and 49.47%, respectively. For trace organic pollutants, triclocarban, triclosan, and sulfadiazine, the removal efficiencies reached 60.14, 57.42, and 84.29%, respectively. The AO stage played a crucial role in removing trace organic pollutants, achieving removal efficiencies of 37.28, 43.44, and 83.82% for triclocarban, triclosan, and sulfadiazine, respectively. Subsequent treatment using improved constructed wetland technology with coal slag + gravel fillers demonstrated the highest removal efficiency, with average efficiencies of 68.66, 63.38, and 81.32% for triclocarban, triclosan, and sulfadiazine, respectively. Correlation analysis revealed positive correlations between temperature, precipitation, and the removal efficiency of COD, NH4+-N, and TP, while negative correlations were observed with the removal efficiency of triclocarban, triclosan, and sulfadiazine. Furthermore, the influent concentrations of triclocarban and triclosan were significantly negatively correlated with the removal efficiency of COD and TP. The presence of triclocarban and triclosan potentially reduced the microbial diversity and hindered sludge sedimentation performance.
Collapse
Affiliation(s)
- Qianyi Cai
- College
of Forestry, Guangxi University, Nanning 530004, China
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jingwen Zeng
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaojun Lin
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Di Xia
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Weida Yu
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jinrong Qiu
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mei Yang
- College
of Forestry, Guangxi University, Nanning 530004, China
| | - Xiujuan Wang
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
6
|
Kumar M, Silori R, Mazumder P, Tauseef SM. Screening of pharmaceutical and personal care products (PPCPs) along wastewater treatment system equipped with root zone treatment: A potential model for domestic waste leachate management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117494. [PMID: 36871357 DOI: 10.1016/j.jenvman.2023.117494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
We present the use of root zone treatment (RZT) based system for the removal of pharmaceutical and personal care products (PPCPs) from domestic wastewater. The occurrence of more than a dozen PPCPs were detected in an academic institution wastewater treatment plant (WWTP) at three specific locations, i.e., influent, root treatment zone, and effluents. The comparisons of observed compounds detected at various stages of WWTP suggest that the presence of PPCPs, like homatropine, cytisine, carbenoxolone, 4,2',4',6'-tetrahydroxychalcone, norpromazine, norethynodrel, fexofenadine, indinavir, dextroamphetamine, 3-hydroxymorphinan, phytosphingosine, octadecanedioic acid, meradimate, 1-hexadecanoyl-sn-glycerol, and 1-hexadecylamine, are unusual than the usual reported PPCPs in the WWTPs. In general, carbamazepine, ibuprofen, acetaminophen, trimethoprim, sulfamethoxazole, caffeine, triclocarban, and triclosan are often reported in wastewater systems. The normalized abundances of PPCPs range between 0.037-0.012, 0.108-0.009, and 0.208-0.005 in main influent, root zone effluent, and main effluents, respectively, of the WWTP. In addition, the removal rates of PPCPs were observed from -200.75% to ∼100% at RZT phase in the plant. Interestingly, we observed several PPCPs at later stages of treatment which were not detected in the influent of the WWTP. This is probably owing to the presence of conjugated metabolites of various PPCPs present in the influent, which subsequently got deconjugated to reform the parent compounds during the biological wastewater treatment. In addition, we suspect the potential release of earlier absorbed PPCPs in the system, which were absent on that particular day of sampling but have been part of earlier influents. In essence, RZT-based WWTP was found to be effective in removing the PPCPs and other organic contaminants in the study but results in stress the need for further comprehensive research on RZT system to conclude the exact removal efficacy and fate of PPCPs during treatment in the system. As a current research gap, the study also recommended RZT to be appraised for PPCPs in-situ remediation from landfill leachates, an underestimated source of PPCPs intrusion in the environment.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, UPES, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Rahul Silori
- Sustainability Cluster, School of Engineering, UPES, Dehradun, Uttarakhand, 248007, India
| | - Payal Mazumder
- Sustainability Cluster, School of Engineering, UPES, Dehradun, Uttarakhand, 248007, India
| | - Syed Mohammad Tauseef
- Sustainability Cluster, School of Engineering, UPES, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
7
|
Salah M, Zheng Y, Wang Q, Li C, Li Y, Li F. Insight into pharmaceutical and personal care products removal using constructed wetlands: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163721. [PMID: 37116812 DOI: 10.1016/j.scitotenv.2023.163721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) were regarded as emerging environmental pollutants due to their ubiquitous appearance and high environmental risks. The wastewater treatment plants (WWTPs) became the hub of PPCPs receiving major sources of PPCPs used by humans. Increasing concern has been focused on promoting cost-effective ways to eliminate PPCPs within WWTPs for blocking their route into the environment through effluent discharging. Among all advanced technologies, constructed wetlands (CWs) with a combination of plants, substrates, and microbes attracted attention due to their cost-effectiveness and easier maintenance during long-term operation. This study offers baseline data for risk control and future treatment by discussing the extent and dispersion of PPCPs in surface waters over the past ten years and identifying the mechanisms of PPCPs removal in CWs based on the up-to-present research, with a special focus on the contribution of sediments, vegetation, and the interactions of microorganisms. The significant role of wetland plants in the removal of PPCPs was detailed discussed in identifying the contribution of direct uptake, adsorption, phytovolatilization, and biodegradation. Meanwhile, the correlation between the physical-chemical characteristics of PPCPs, the configuration operation of wetlands, as well as the environmental conditions with PPCP removal were also further estimated. Finally, the critical issues and knowledge gaps before the real application were addressed followed by promoted future works, which are expected to provide a comprehensive foundation for study on PPCPs elimination utilizing CWs and drive to achieve large-scale applications to treat PPCPs-contaminated surface waters.
Collapse
Affiliation(s)
- Mohomed Salah
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yu Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Qian Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Chenguang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yuanyuan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
8
|
McCorquodale-Bauer K, Grosshans R, Zvomuya F, Cicek N. Critical review of phytoremediation for the removal of antibiotics and antibiotic resistance genes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161876. [PMID: 36716878 DOI: 10.1016/j.scitotenv.2023.161876] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics in wastewater are a growing environmental concern. Increased prescription and consumption rates have resulted in higher antibiotic wastewater concentration. Conventional wastewater treatment methods are often ineffective at antibiotic removal. Given the environmental risk of antibiotics and associated antibiotic resistant genes (ARGs), finding methods of improving antibiotic removal from wastewater is of great importance. Phytoremediation of antibiotics in wastewater, facilitated through constructed wetlands, has been explored in a growing number of studies. To assess the removal efficiency and treatment mechanisms of plants and microorganisms within constructed wetlands for specific antibiotics of major antibiotic classes, the present review paper considered and evaluated data from the most recent published research on the topics of bench scale hydroponic, lab and pilot scale constructed wetland, and full scale constructed wetland antibiotic remediation. Additionally, microbial and enzymatic antibiotic degradation, antibiotic-ARG correlation, and plant effect on ARGs were considered. It is concluded from the present review that plants readily uptake sulfonamide, macrolide, tetracycline, and fluoroquinolone antibiotics and that constructed wetlands are an effective applied phytoremediation strategy for the removal of antibiotics from wastewater through the mechanisms of microbial biodegradation, root sorption, plant uptake, translocation, and metabolization. More research is needed to better understand the effect of plants on microbial community and ARGs. This paper serves as a synthesis of information that will help guide future research and applied use of constructed wetlands in the field antibiotic phytoremediation and wastewater treatment.
Collapse
Affiliation(s)
- Kenton McCorquodale-Bauer
- Department of Biosystems Engineering, University of Manitoba, E2-376 Engineering and Information Technology Complex (EITC), 75A Chancellor's Circle, Winnipeg, MB R3T 5V6, Canada.
| | - Richard Grosshans
- International Institute for Sustainable Development (IISD), 111 Lombard Avenue, Suite 325, Winnipeg, MB R3B 0T4, Canada
| | - Francis Zvomuya
- Department of Soil Science, University of Manitoba, 362 Ellis Building, Winnipeg, MB R3T 2N2, Canada
| | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, E2-376 Engineering and Information Technology Complex (EITC), 75A Chancellor's Circle, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
9
|
khalidi-idrissi A, Madinzi A, Anouzla A, Pala A, Mouhir L, Kadmi Y, Souabi S. Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-22. [PMID: 37360558 PMCID: PMC10019435 DOI: 10.1007/s13762-023-04867-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
Pharmaceuticals and personal care products present potential risks to human health and the environment. In particular, wastewater treatment plants often detect emerging pollutants that disrupt biological treatment. The activated sludge process is a traditional biological method with a lower capital cost and limited operating requirements than more advanced treatment methods. In addition, the membrane bioreactor combines a membrane module and a bioreactor, widely used as an advanced method for treating pharmaceutical wastewater with good pollution performance. Indeed, the fouling of the membrane remains a major problem in this process. In addition, anaerobic membrane bioreactors can treat complex pharmaceutical waste while recovering energy and producing nutrient-rich wastewater for irrigation. Wastewater characterizations have shown that wastewater's high organic matter content facilitates the selection of low-cost, low-nutrient, low-surface-area, and effective anaerobic methods for drug degradation and reduces pollution. However, to improve the biological treatment, researchers have turned to hybrid processes in which all physical, chemical, and biological treatment methods are integrated to remove various emerging contaminants effectively. Hybrid systems can generate bioenergy, which helps reduce the operating costs of the pharmaceutical waste treatment system. To find the most effective treatment technique for our research, this work lists the different biological treatment techniques cited in the literature, such as activated sludge, membrane bioreactor, anaerobic treatment, and hybrid treatment, combining physicochemical and biological techniques.
Collapse
Affiliation(s)
- A. khalidi-idrissi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Madinzi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Anouzla
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Pala
- Environmental Research and Development Center (CEVMER), Dokuz Eylul University, Izmir, Turkey
| | - L. Mouhir
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - Y. Kadmi
- CNRS, UMR 8516 - LASIR, University Lille, 59000 Lille, France
| | - S. Souabi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| |
Collapse
|
10
|
Suthar S, Chand N, Singh V. Fate and toxicity of triclosan in tidal flow constructed wetlands amended with cow dung biochar. CHEMOSPHERE 2023; 311:136875. [PMID: 36270527 DOI: 10.1016/j.chemosphere.2022.136875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Triclosan (TC) is one of the threats to the environment due to its bioaccumulative nature, persistency, combined toxicity in aquatic biota, and endocrine-disrupting nature. This study revealed the removal of TC via three distinct setups of vertical flow constructed wetlands (VFCW: B-VFCW (with biochar); PB-VFCW (with plant Colocasia and biochar); C-VFCW (without biochar but with plant)) operated with normal flow and tidal-flow (flooding/drying cycles of 72 h/24 h: B-TFCW; PB-TFCW; C-TFCW) mode for 216 h of the operation cycle. The effluent was analyzed for changes in TC load and wastewater parameters (COD, NO3-N, NH4+-N, and DO). TC reduction efficiency (%) was found to be higher in PB-TFCW (98.41) followed by, C-TFCW (82.41), B-TFCW (77.51), PB-VFCW (71.83), C-VFCW (64.25), and B-VFCW (52.19) (p < 0.001). Reduction efficiency for COD (29-75 - 53.10%), and NH4+-N (86.5-97.9%) was better in TFCWs than that of setups with a normal mode of operation. TFCWs showed higher DO (3.87-4.89 mg L-1) during the operation period than that of VFCWs. The toxic impact of TC in plant stand was also assessed and results suggested low phototoxic and oxidative enzyme activities (catalase, CAT; superoxide dismutase, SOD; hydrogen peroxide, H2O2; malondialdehyde, MDA) in TFCWs. In summary, biochar addition and tidal flow operation played a significant role in oxidative- and microbial-mediated removals of TC in wastewater. This study provides an alternative strategy for the efficient removals of TC in constructed wetland systems and new insights into the toxic impact of pharmaceuticals on wetland plants.
Collapse
Affiliation(s)
- Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun-248001, Uttarakhand, India.
| | - Naveen Chand
- Environmental Engineering Research Group, National Institute of Technology Delhi, New Delhi-110040, India
| | - Vineet Singh
- School of Environment & Natural Resources, Doon University, Dehradun-248001, Uttarakhand, India
| |
Collapse
|
11
|
Zhang H, Wang XC, Zheng Y, Dzakpasu M. Removal of pharmaceutical active compounds in wastewater by constructed wetlands: Performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116478. [PMID: 36272291 DOI: 10.1016/j.jenvman.2022.116478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of pharmaceutical active compounds (PhACs) in aquatic environments is a cause for concern due to potential adverse effects on human and ecosystem health. Constructed wetlands (CWs) are cost-efficient and sustainable wastewater treatment systems for the removal of these PhACs. The removal processes and mechanisms comprise a complex interplay of photodegradation, biodegradation, phytoremediation, and sorption. This review synthesized the current knowledge on CWs for the removal of 20 widely detected PhACs in wastewater. In addition, the major removal mechanisms and influencing factors are discussed, enabling comprehensive and critical understanding for optimizing the removal of PhACs in CWs. Consequently, potential strategies for intensifying CWs system performance for PhACs removal are discussed. Overall, the results of this review showed that CWs performance in the elimination of some pharmaceuticals was on a par with conventional wastewater treatment plants (WWTPs) and, for others, it was above par. Furthermore, the findings indicated that system design, operational, and environmental factors played important but highly variable roles in the removal of pharmaceuticals. Nonetheless, although CWs were proven to be a more cost-efficient and sustainable technology for pharmaceuticals removal than other engineered treatment systems, there were still several research gaps to be addressed, mainly including the fate of a broad range of emerging contaminants in CWs, identification of specific functional microorganisms, transformation pathways of specific pharmaceuticals, assessment of transformation products and the ecotoxicity evaluation of CWs effluents.
Collapse
Affiliation(s)
- Hengfeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| |
Collapse
|
12
|
Kumar S, Pratap B, Dubey D, Kumar A, Shukla S, Dutta V. Constructed wetlands for the removal of pharmaceuticals and personal care products (PPCPs) from wastewater: origin, impacts, treatment methods, and SWOT analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:885. [PMID: 36239860 DOI: 10.1007/s10661-022-10540-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/02/2022] [Indexed: 06/16/2023]
Abstract
The continuous exposure to pharmaceuticals and personal care products can lead to a series of individual antagonistic and synergistic effects and long-lasting toxicity to humans and aquatic lives. This may also lead to developing antibiotic resistance, teratogenic, carcinogenic, and endocrine-disrupting effects. However, several PPCPs are also considered biologically active for non-target aquatic organisms, such as mosquito fish, goldfish, and the algae Pseudokirchneriella subcapitata. Various physicochemical methods such as ozonation, photolysis, and membrane separation are recognized for the effective removal of PPCPs. However, the high operation and maintenance costs and associated ecological impacts have limited their further use. Constructed wetlands are considered eco-friendly and sustainable for the removal of pharmaceuticals and personal care products together with antibiotic resistance genes. Several mechanisms such as sorption, biodegradation, oxidation, photodegradation, volatilization, and hydrolysis are occurring during the phytoremediation of PPCPs. During these processes, more than 50% of PPCPs can be eliminated through constructed wetlands. They also offer several additional benefits as obtained macrophytic biomass may be used as raw material in pulp and paper industries and a source for second-generation biofuel production. In this study, we have discussed the origin and impacts of PPCPs together with their treatment methods. We have also investigated the strengths, weaknesses, opportunities, and threats associated with constructed wetlands during the treatment of wastewater laden with pharmaceutical and personal care products.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605.
- District Environment Committee, Ministry of Environment, Forest and Climate Change, Lakhimpur Kheri, UP, India, 262701.
| | - Bhanu Pratap
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605
| | - Divya Dubey
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605
| | - Adarsh Kumar
- Department of Environmental Microbiology, School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 226025
- District Environment Committee, Ministry of Environment, Forest and Climate Change, Pilibhit, UP, India, 262001
| | - Saurabh Shukla
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, India, 225003
| | - Venkatesh Dutta
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605
| |
Collapse
|
13
|
Mumtaz N, Javaid A, Imran M, Latif S, Hussain N, Nawaz S, Bilal M. Nanoengineered metal-organic framework for adsorptive and photocatalytic mitigation of pharmaceuticals and pesticide from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119690. [PMID: 35772620 DOI: 10.1016/j.envpol.2022.119690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Rapidly expanding water pollution has transformed into significant dangers around the world. In recent years, the pharmaceutical and agriculture field attained enormous progress to meet the necessities of health and life; however, discharge of trace amounts of pharmaceuticals and pesticides into water significantly have a negative influence on human health and the environment. Contamination with these pollutants also constitutes a great threat to the aquatic ecosystem. To deal with the harmful impacts of such pollutants, their expulsion has attracted researchers' interest a lot, and it became essential to figure out techniques suitable for the removal of these pollutants. Thus, many researchers have devoted their efforts to improving the existing technology or providing an alternative strategy to solve this environmental problem. One of the attractive materials for this purpose is metal-organic frameworks (MOFs) due to their superior high surface area, high porosity, and the tunable features of their structures and function. Among various techniques of wastewater treatment, such as biological treatment, advanced oxidation process and membrane technologies, etc., metal-organic frameworks (MOFs) materials are tailorable porous architectures and are viably used as adsorbents or photocatalysts for wastewater treatment due to their porosity, tunable internal structure, and large surface area. MOFs are synthesized by various methods such as solvo/hydrothermal, sonochemical, microwave and mechanochemical methods. Most common method used for the synthesis of MOFs is solvothermal/hydrothermal methods. Herein, this review aims at providing a comprehensive overview of the latest advances in MOFs and their derivatives, focusing on the following aspects: synthesis and applications. This review comprehensively highlights the application of MOFs and nano-MOFs to remove pharmaceuticals and pesticides from wastewater. For the past years, transition metal-based MOFs have been concentrated as photocatalyst/adsorbents in treating contaminated water. However, work on main group metal-based MOFs is not so abundant. Hence, the foremost objective of this review is to present the latest material and references concerning main group element-based MOFs and nanoscale materials derived from them towards wastewater treatment. It summarizes the possible research challenges and directions for MOFs and their derivatives as catalysts applied to wastewater treatment in the future. With the context of recent pioneering studies on main group elements-based MOFs and their derivatives; we hope to stimulate some possibilities for further development, challenges and future perspectives in this field have been highlighted.
Collapse
Affiliation(s)
- Nazish Mumtaz
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
14
|
Chen J, Gao M, Zhao Y, Guo L, Jin C, Ji J, She Z. Nitrogen and sulfamethoxazole removal in a partially saturated vertical flow constructed wetland treating synthetic mariculture wastewater. BIORESOURCE TECHNOLOGY 2022; 358:127401. [PMID: 35660456 DOI: 10.1016/j.biortech.2022.127401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the removal of nitrogen and sulfamethoxazole (SMX), and the microbial communities in a partially saturated vertical flow constructed wetland (PS-VFCW) fed with synthetic mariculture wastewater operated at different saturated zone depths (SZDs), i.e. 51, 70, and 60 cm. Removal efficiencies were 99.8%-100.0% for COD, 34.1%-100.0% for NH4+-N, 67.8%-97.3% for total inorganic nitrogen (TIN), and 29.8%-57.2% for SMX. Excellent nitrification performance was achieved at the SZDs of 51 and 60 cm. Denitrification performed well at 70 and 60 cm SZDs. The highest TIN removal efficiency (97.3%) was achieved as the SZD was 60 cm. SMX removal was significantly influenced by SZD and was promoted by higher SZD. The removal of organics, nitrogen, and SMX mainly occurred in the unsaturated zone. Ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, and SMX-degrading bacteria were detected in the unsaturated and saturated zones, and showed an increasing trend in abundance along the depth.
Collapse
Affiliation(s)
- Jinjin Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China.
| |
Collapse
|
15
|
Liu X, Chen J, Liu Y, Wan Z, Guo X, Lu S, Qiu D. Sulfamethoxazole degradation by Pseudomonas silesiensis F6a isolated from bioelectrochemical technology-integrated constructed wetlands. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113698. [PMID: 35636241 DOI: 10.1016/j.ecoenv.2022.113698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The antibiotic-degrading ability and mechanism of the bacteria in the novel and ecological bioelectrochemical technology-integrated constructed wetlands (BICW) remain unknown. In this study, the sulfamethoxazole (SMX) degrading strain Pseudomonas silesiensis F6a (F6a), which had high degradation efficiency, was firstly isolated from a substrate sample in BICW. The SMX degradation process of F6a follows pseudo first order kinetics. Four metabolic pathways and twelve degradation products were identified. Based on genomics and proteomics analysis, six key SMX-degrading genes, Gene4641 deoC, Gene0552 narI, Gene0546 luxS, Gene1753 nuoH, Gene0655 and Gene4650, were identified, which were mainly participated in C-S cleavage, S-N hydrolysis and isoxazole ring cleavage. Interestingly, we found the corresponding sulfonamides resistance genes were not detected in F6a, which may provide an evidence for low abundance of the sulfonamides resistance genes in BICW system. These findings would contribute to a better understanding of biotransformation of antibiotic in the BICW.
Collapse
Affiliation(s)
- Xiaohui Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing Chen
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430070, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ying Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhengfen Wan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaochun Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
16
|
Mohammed AA, Mutar ZH, Al-Baldawi IA. Alternanthera spp. based-phytoremediation for the removal of acetaminophen and methylparaben at mesocosm-scale constructed wetlands. Heliyon 2021; 7:e08403. [PMID: 34869927 PMCID: PMC8626703 DOI: 10.1016/j.heliyon.2021.e08403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, the spread of pharmaceuticals and personal care products (PPCPs) in the aquatic environment has steadily increased. In this study, phytoremediation technology, using an ornamental plant (Alternanthera spp.), was investigated to improve the removal of acetaminophen (AC) and methylparaben (MP) from a synthetically prepared wastewater. Three exposure lines (AC-line, MP-line and control-line) were performed with a total of 26 subsurface-horizontal constructed wetlands (SSH-CWs) that operated in batch feeding mode. The influence of plants in addition to the initial spiking concentration (20, 60 and 100 mg/L) of AC and MP on the removal efficiency was evaluated throughout the 35-days experiments. The highest removal efficiencies for AC and MP were 88.6% and 66.4%, respectively, achieved in the planted CWs; whereas only 29.7% and 21.9% were achieved in the control CWs for AC and MP, respectively. The results confirmed the role of Alternanthera spp. for accelerating the removal of AC and MP from synthetically contaminated wastewater in CWs.
Collapse
Affiliation(s)
- Ahmed A. Mohammed
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Zahraa Hasan Mutar
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
- Department of Architecture Engineering, College of Engineering, Wasit University, Wasit, Iraq
| | - Israa Abdulwahab Al-Baldawi
- Department of Biochemical Engineering, Al-khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
- Corresponding author.
| |
Collapse
|
17
|
Ohore OE, Qin Z, Sanganyado E, Wang Y, Jiao X, Liu W, Wang Z. Ecological impact of antibiotics on bioremediation performance of constructed wetlands: Microbial and plant dynamics, and potential antibiotic resistance genes hotspots. JOURNAL OF HAZARDOUS MATERIALS 2021; 424:127495. [PMID: 34673400 DOI: 10.1016/j.jhazmat.2021.127495] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/05/2023]
Abstract
Constructed wetlands (CWs) are nature-based solutions for treating domestic and livestock wastewater which may contain residual antibiotics concentration. Antibiotics may exert selection pressure on wetland's microbes, thereby increasing the global antibiotics resistance problems. This review critically examined the chemodynamics of antibiotics and antibiotics resistance genes (ARGs) in CWs. Antibiotics affected the biogeochemical cycling function of microbial communities in CWs and directly disrupted the removal efficiency of total nitrogen, total phosphorus, and chemical oxygen demand by 22%, 9.3%, and 24%, respectively. Since changes in microbial function and structure are linked to the emergence and propagation of antibiotic resistance, antibiotics could adversely affect microbial diversity in CWs. The cyanobacteria community seemed to be particularly vulnerable, while Proteobacteria could resist and persist in antibiotics contaminated wetlands. Antibiotics triggered excitation responses in plants and increased the root activities and exudates. Microbes, plants, and substrates play crucial roles in antibiotic removal. High removal efficiency was exhibited for triclosan (100%) > enrofloxacin (99.8%) > metronidazole (99%) > tetracycline (98.8%) > chlortetracycline (98.4%) > levofloxacin (96.69%) > sulfamethoxazole (91.9%) by the CWs. This review showed that CWs exhibited high antibiotics removal capacity, but the absolute abundance of ARGs increased, suggesting CWs are potential hotspots for ARGs. Future research should focus on specific bacterial response and impact on microbial interactions.
Collapse
Affiliation(s)
- Okugbe Ebiotubo Ohore
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Edmond Sanganyado
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Organization of African Academic Doctors, Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | - Yuwen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Wenhua Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Zhen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
18
|
Hu X, Xie H, Zhuang L, Zhang J, Hu Z, Liang S, Feng K. A review on the role of plant in pharmaceuticals and personal care products (PPCPs) removal in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146637. [PMID: 33774296 DOI: 10.1016/j.scitotenv.2021.146637] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 05/20/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) cause ongoing water pollution and consequently have attracted wide attention. Constructed wetlands (CWs) show good PPCP removal performance through combined processes of substrates, plants, and microorganisms; however, most published research focuses on the role of substrates and microorganisms. This review summarizes the direct and indirect roles of wetland plants in PPCP removal, respectively. These direct effects include PPCP precipitation on root surface iron plaque, and direct absorption and degradation by plants. Indirect effects, which appear more significant than direct effects, include enhancement of PPCP removal through improved rhizosphere microbial activities (more than twice as much as bulk soil) stimulated by radial oxygen loss and exudate secretions, and the formation of supramolecular ensembles from PPCPs and humic acids from decaying plant materials which improving PPCPs removal efficiency by up to four times. To clarify the internal mechanisms of PPCP removal by plants in CWs, factors affecting wetland plant performance were reviewed. Based on this review, future research needs have been identified.
Collapse
Affiliation(s)
- Xiaojin Hu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Kuishuang Feng
- Institute of Blue and Green Development, Weihai Institute of Interdisciplinary Research, Shandong University, Weihai 264209, China
| |
Collapse
|
19
|
Ilyas H, Masih I, van Hullebusch ED. The anaerobic biodegradation of emerging organic contaminants by horizontal subsurface flow constructed wetlands. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2809-2828. [PMID: 34115633 DOI: 10.2166/wst.2021.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The horizontal subsurface flow constructed wetland (HFCW) is widely studied for the treatment of wastewater containing emerging organic contaminants (EOCs): pharmaceuticals, personal care products, and steroidal hormones. This study evaluates the performance of HFCW for the removal of these types of EOCs based on the data collected from peer-reviewed journal publications. In HFCW, anaerobic biodegradation is an important removal mechanism of EOCs besides their removal by the filter media (through sedimentation, adsorption, and precipitation) and plant uptake. The average removal efficiency of 18 selected EOCs ranged from 39% to 98%. The moderate to higher removal efficiency of 12 out of 18 selected EOCs in HFCW indicates the suitability of this type of constructed wetland (CW) for the treatment of wastewater containing these EOCs. The reasonably good removal (>50% in most of the cases) of these EOCs in HFCW might be due to the occurrence of anaerobic biodegradation as one of their major removal mechanisms in CWs. Although the effluent concentration of EOCs was substantially decreased after the treatment, the environmental risk posed by them was not fully reduced in most of the cases. For instance, estimated risk quotient of 11 out of 18 examined EOCs was extremely high for the effluent of HFCW.
Collapse
Affiliation(s)
- H Ilyas
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France E-mail: ; Water Treatment and Management Consultancy, B.V., 2289 ED Rijswijk, The Netherlands
| | - I Masih
- Water Treatment and Management Consultancy, B.V., 2289 ED Rijswijk, The Netherlands; IHE Delft, Institute for Water Education, 2611 AX Delft, The Netherlands
| | - E D van Hullebusch
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France E-mail:
| |
Collapse
|
20
|
Song P, Huang G, An C, Xin X, Zhang P, Chen X, Ren S, Xu Z, Yang X. Exploring the decentralized treatment of sulfamethoxazole-contained poultry wastewater through vertical-flow multi-soil-layering systems in rural communities. WATER RESEARCH 2021; 188:116480. [PMID: 33065414 DOI: 10.1016/j.watres.2020.116480] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/02/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Sulfamethoxazole (SMX) is the most widely distributed sulfonamide antibiotics detected in decentralized poultry wastewater in rural communities. As an economically-feasible and eco-friendly technology for decentralized wastewater treatment in rural areas, vertical-flow multi-soil-layering (MSL) system was promising to mitigate the ecological and human health risks from SMX in such areas. The treatment of SMX-contained poultry wastewater by using MSL systems was investigated for the first time, and the main and interactive effects of related multiple variables on system performance were explored through factorial analysis, including material of permeable layer, concentration of SMX, and pH of influent. Results indicated that SMX concentration and pH of influent showed significantly negative effects on SMX removal. Medical stone used in MSL systems with larger surface area could intensify the SMX removal compared to anthracite. MSL systems showed stable performances on SMX removal with the best SMX removal efficiency more than 91%. A novel stepwise-cluster inference (SCI) model was developed for the first time to map the multivariate numeric relationships between state variables and SMX removal under discrete and nonlinear complexities. It was demonstrated that the effect of SMX in wastewater with high concentration was significant on the differentiation of soil bacteria composition in MSL systems based on microbial diversity analysis. These results can help better understand the mechanism of SMX removal in MSL systems from perspectives of factorial analysis, numeric modeling, and microbiological change.
Collapse
Affiliation(s)
- Pei Song
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- Center for Energy, Environment and Ecology Research, UR-BNU, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Xiaying Xin
- Department of Civil Engineering, Memorial University of Newfoundland, St. John's, A1C 5S7, Canada
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Shan Ren
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Ziqing Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, CEEER-URBNU, College of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xiaohan Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, CEEER-URBNU, College of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
21
|
Rahman ME, Bin Halmi MIE, Bin Abd Samad MY, Uddin MK, Mahmud K, Abd Shukor MY, Sheikh Abdullah SR, Shamsuzzaman SM. Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8339. [PMID: 33187288 PMCID: PMC7698012 DOI: 10.3390/ijerph17228339] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 01/30/2023]
Abstract
Constructed wetlands (CWs) are affordable and reliable green technologies for the treatment of various types of wastewater. Compared to conventional treatment systems, CWs offer an environmentally friendly approach, are low cost, have fewer operational and maintenance requirements, and have a high potential for being applied in developing countries, particularly in small rural communities. However, the sustainable management and successful application of these systems remain a challenge. Therefore, after briefly providing basic information on wetlands and summarizing the classification and use of current CWs, this study aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development of their sustainable design, operation, and optimization for wastewater treatment. To accomplish this objective, thee design and management parameters of CWs, including macrophyte species, media types, water level, hydraulic retention time (HRT), and hydraulic loading rate (HLR), are discussed. Besides these, future research on improving the stability and sustainability of CWs are highlighted. This article provides a tool for researchers and decision-makers for using CWs to treat wastewater in a particular area. This paper presents an aid for informed analysis, decision-making, and communication. The review indicates that major advances in the design, operation, and optimization of CWs have greatly increased contaminant removal efficiencies, and the sustainable application of this treatment system has also been improved.
Collapse
Affiliation(s)
- Md Ekhlasur Rahman
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka-1215, Bangladesh;
| | - Mohd Izuan Effendi Bin Halmi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Mohd Yusoff Bin Abd Samad
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Md Kamal Uddin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Khairil Mahmud
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia;
| | - S M Shamsuzzaman
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka-1215, Bangladesh;
| |
Collapse
|
22
|
Martinez-Guerra E, Ghimire U, Nandimandalam H, Norris A, Gude VG. Wetlands for environmental protection. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1677-1694. [PMID: 32744347 DOI: 10.1002/wer.1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
This article presents an update on the research and practical demonstration of wetland-based treatment technologies for protecting water resources and environment covering papers published in 2019. Wetland applications in wastewater treatment, stormwater management, and removal of nutrients, metals, and emerging pollutants including pathogens are highlighted. A summary of studies focusing on the effects of vegetation, wetland design and operation strategies, and process configurations and modeling, for efficient treatment of various municipal and industrial wastewaters, is included. In addition, hybrid and innovative processes with wetlands as a platform treatment technology are presented.
Collapse
Affiliation(s)
- Edith Martinez-Guerra
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Umesh Ghimire
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Hariteja Nandimandalam
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Anna Norris
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Veera Gnaneswar Gude
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
23
|
Ruppelt JP, Tondera K, Wallace SJ, Button M, Pinnekamp J, Weber KP. Assessing the role of microbial communities in the performance of constructed wetlands used to treat combined sewer overflows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139519. [PMID: 32473459 DOI: 10.1016/j.scitotenv.2020.139519] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/30/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Combined sewer overflows are contaminated with various micropollutants which pose risk to both environmental and human health. Some micropollutants, such as carbamazepine and sulfamethoxazole, are very persistent and difficult to remove from wastewater. Event loaded vertical-flow constructed wetlands (retention soil filters; RSFs) have proven to be effective in the treatment of combined sewer overflows for a wide range of pollutants. However, little is known about how microbial communities contribute to the treatment efficiency, specifically to the reduction of micropollutants. To the best of our knowledge, this is the first study attempting to close this gap. Microbial communities in pilot-scale RSFs were investigated, which showed explicit grouping of metabolic activity at different filter depths with some differential abundance of identified genera. The highest microbial activity was found in the top layer of 0.75 m deep filters, whereas homogeneous activity dominated in a 0.50 m deep filter, indicating oxygen availability to be a limiting factor of the metabolic activity in RSFs. The removal efficiencies of all investigated organic trace substances were correlated to the utilization of specific carbon sources. Most notable is the correlation between the carbon source glucose-1-phosphate and the removal of metoprolol. The strongest correlations for other substances were the removal of diclofenac to the utilization of the carbohydrate i-erythritole; bisphenol A to carbohydrate α-d-lactose, and 1-H-benzotriazole to carbonic acid D-galacturonic acid. Those results are supported by positive correlations of specific microbial genera with both the utilization of the above mentioned carbon sources and the removal efficiency for the respective micropollutants. Most notable is correlation of Tetrasphaera and the removal of benzotriazole and diclofenac.
Collapse
Affiliation(s)
- Jan P Ruppelt
- Institute of Environmental Engineering (ISA), RWTH Aachen University, 52056 Aachen, Germany.
| | - Katharina Tondera
- IMT Atlantique Bretagne-Pays de Loire, Department of Energy Systems and Environment, 44307 Nantes, France
| | - Sarah J Wallace
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Canada
| | - Mark Button
- Fipke Laboratory for Trace Element Research, University of British Columbia, Okanagan, Canada
| | - Johannes Pinnekamp
- Institute of Environmental Engineering (ISA), RWTH Aachen University, 52056 Aachen, Germany
| | - Kela P Weber
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Canada
| |
Collapse
|
24
|
Ilyas H, Masih I, van Hullebusch ED. Pharmaceuticals' removal by constructed wetlands: a critical evaluation and meta-analysis on performance, risk reduction, and role of physicochemical properties on removal mechanisms. JOURNAL OF WATER AND HEALTH 2020; 18:253-291. [PMID: 32589615 DOI: 10.2166/wh.2020.213] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper presents a comprehensive and critical analysis of the removal of pharmaceuticals (PhCs), the governing physicochemical properties, and removal mechanisms in constructed wetlands (CWs). The average removal efficiency of the most widely studied 34 PhCs ranges from 21% to 93%, with the exception of one PhC that exhibited negative removal. Moreover, CWs are effective in significantly reducing the environmental risk caused by many PhCs. Based on risk assessment, 12 PhCs were classified under high risk category (oxytetracycline > ofloxacin > sulfamethoxazole > erythromycin > sulfadiazine > gemfibrozil > ibuprofen > acetaminophen > salicylic acid > sulfamethazine > naproxen > clarithromycin), which could be considered for regular monitoring, water quality standard formulation and control purposes. Biodegradation (aerobic and anaerobic) is responsible for the removal of the majority of PhCs, often in conjunction with other mechanisms (e.g., adsorption/sorption, plant uptake, and photodegradation). The physicochemical properties of molecules play a pivotal role in the elimination processes, and could serve as important predictors of removal. The correlation and multiple linear regression analysis suggest that organic carbon sorption coefficient (Log Koc), octanol-water distribution coefficient (Log Dow), and molecular weight form a good predictive linear regression model for the removal efficiency of PhCs (R2 = 0.65, P-value <0.05).
Collapse
Affiliation(s)
- Huma Ilyas
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France E-mail: ; Water Treatment and Management Consultancy, B.V., 2289 ED Rijswijk, The Netherlands
| | - Ilyas Masih
- IHE Delft, Institute for Water Education, 2611 AX Delft, The Netherlands; Water Treatment and Management Consultancy, B.V., 2289 ED Rijswijk, The Netherlands
| | - Eric D van Hullebusch
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France E-mail:
| |
Collapse
|
25
|
The Influence of Design and Operational Factors on the Removal of Personal Care Products by Constructed Wetlands. WATER 2020. [DOI: 10.3390/w12051367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This research presents the correlation analysis of selected design and operational factors (depth, area, hydraulic and organic loading rate, and hydraulic retention time), and physicochemical parameters (pH, temperature, and dissolved oxygen) of constructed wetlands (CWs) with the removal efficiency of personal care products (PCPs). The results demonstrated that the removal efficiencies of the studied PCPs exhibit a significant correlation with two or more of these factors. The role of plants in the removal of PCPs is demonstrated by the higher performance of planted compared with unplanted CWs due to direct uptake of PCPs and their aerobic biodegradation. The enhanced removal of PCPs was achieved with the use of substrate material of high adsorption capacity and with high surface area in CWs. The removal efficiency of almost all of the studied PCPs revealed seasonal differences, but significant difference was established in the case of galaxolide and methyl dihydrojasmonate. Most of the examined PCPs demonstrated adsorption and/or sorption as their most dominant removal mechanism followed by biodegradation and plant uptake. Therefore, the efficient removal of PCPs demands the integrated design ensuring suitable environment for the occurrence of these processes along with the optimal values of design and operational factors, and physicochemical parameters.
Collapse
|
26
|
Ilyas H, van Hullebusch ED. Performance comparison of different types of constructed wetlands for the removal of pharmaceuticals and their transformation products: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14342-14364. [PMID: 32157544 DOI: 10.1007/s11356-020-08165-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
This paper presents a comprehensive and critical comparison of four types of constructed wetlands (CWs): free water surface CW (FWSCW), vertical flow CW (VFCW), horizontal flow CW (HFCW), and hybrid CW (HCW) for the removal of 29 pharmaceuticals (PhCs) and 19 transformation products (TPs) using a global data compiled for 247 CWs reported in 63 peer-reviewed journal papers. Biodegradation (aerobic being more efficient than anaerobic) is the major removal mechanism for 16 out of 29 PhCs besides the influence of other processes (e.g., adsorption/sorption, plant uptake, and photodegradation). The HCW performed better followed by VFCW, HFCW, and FWSCW. The comparatively better removal in HCW might be due to the coexistence of aerobic and anaerobic conditions and longer hydraulic retention time considering more than one compartment enhances the removal of PhCs (e.g., diclofenac, acetaminophen, sulfamethoxazole, sulfapyridine, trimethoprim, and atenolol), which are removed under both conditions and adsorption/sorption processes. The augmentation in dissolved oxygen by the application of artificial aeration improved the removal of PhCs, which are degraded under aerobic conditions. Furthermore, the better performance of aerated CWs could be due to the establishment of various microenvironments with different physicochemical conditions (aerobic and anaerobic), which facilitated the contribution of both aerobic and anaerobic metabolic pathways in the removal of PhCs. The removal of some of the PhCs takes place by the formation of their TPs and the nature of these TPs (persistent or non-biodegradable/biodegradable) plays a major role in their removal process.
Collapse
Affiliation(s)
- Huma Ilyas
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France.
- Water Treatment and Management Consultancy, B.V, 2289 ED, Rijswijk, The Netherlands.
| | - Eric D van Hullebusch
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
27
|
Ilyas H, van Hullebusch ED. Performance Comparison of Different Constructed Wetlands Designs for the Removal of Personal Care Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093091. [PMID: 32365511 PMCID: PMC7246432 DOI: 10.3390/ijerph17093091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022]
Abstract
This research investigates the performance of four types of constructed wetlands (CWs): free water surface CW (FWSCW), horizontal flow CW (HFCW), vertical flow CW (VFCW), and hybrid CW (HCW) for the removal of 20 personal care products (PCPs), based on secondary data compiled for 137 CWs reported in 39 peer reviewed journal papers. In spite of considerable variation in the re-moval efficiency of PCPs, CWs prove to be a promising treatment technology. The average removal efficiency of 15 widely studied PCPs ranged from 9.0% to 84%. Although CWs effectively reduced the environmental risks caused by many PCPs, triclosan was still classified under high risk category based on effluent concentration. Five other PCPs were classified under medium risk category (triclocarban > methylparaben > galaxolide > oxybenzone > methyl dihydrojasmonate). In most of the examined PCPs, adsorption and/or sorption is the most common removal mechanism followed by biodegradation and plant uptake. The comparatively better performance of HCW followed by VFCW, HFCW, and FWSCW might be due to the co-existence of aerobic and anaerobic conditions, and longer hydraulic retention time enhancing the removal of PCPs (e.g., triclosan, methyl dihydro-jasmonate, galaxolide, tonalide, and oxybenzone), which are removed under both conditions and by adsorption/sorption processes.
Collapse
Affiliation(s)
- Huma Ilyas
- Institut de physique du globe de Paris, Université de Paris, CNRS, F-75005 Paris, France;
- Water Treatment and Management Consultancy, B.V., 2289 ED Rijswijk, The Netherlands
- Correspondence:
| | - Eric D. van Hullebusch
- Institut de physique du globe de Paris, Université de Paris, CNRS, F-75005 Paris, France;
| |
Collapse
|
28
|
García-Espinoza JD, Nacheva PM. Degradation of pharmaceutical compounds in water by oxygenated electrochemical oxidation: Parametric optimization, kinetic studies and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:417-429. [PMID: 31323587 DOI: 10.1016/j.scitotenv.2019.07.118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/17/2019] [Accepted: 07/08/2019] [Indexed: 05/20/2023]
Abstract
The pharmaceutical compounds sulfamethoxazole (SMX), propranolol (PRO) and carbamazepine (CBZ) are biorecalcitrant and frequently detected in waters causing negative impacts on human health and aquatic organisms. Electrochemical oxidation appears as an effective option for the removal of recalcitrant compounds and its enhancement is an important issue for the removal of emerging compounds in water. The contribution of this research lies in the comprehensive analysis of the oxygenated electro chemical oxidation of CBZ, SMX and PRO using Nb/BDD mesh anode. The effect of treatment time, current, pH and oxygen injection on the SMX, PRO and CBZ degradation was assessed using Na2SO4 as electrolyte, process optimization was performed, by-products were identified, kinetic and toxicity tests were carried out using different electrolytes. Finally, the process effectiveness was tested using real secondary effluent spiked with the mixture of the pharmaceutical compounds and the acute toxicity was determined. The obtained results indicated that the oxygenated electrochemical oxidation allows effective simultaneous SMX, PRO and CBZ degradation, which showed a significant dependence of treatment time, current and oxygen injection in Na2SO4 electrolyte. At 90 min of electrolysis the parent compounds were detected as well as eight by-products. At 150 min of treatment, further to the already determined by-products and the parent compounds, appeared phenol and p-benzoquinone. Based on the identified compounds, degradation pathways were explained as a result of two main mechanisms: transformation (hydroxylation, deamination, desulfunation) and bond rupture. The kinetic study indicated an increase of the first-order kinetic constant in the oxygenated electrochemical oxidation process using Na2SO4 and NaBr as electrolyte, nevertheless the constant decreased in the presence of NaCl. In the assays with secondary effluent spiked with SMX, PRO and CBZ, the oxygenation did not enhance the performance of the process, however; pharmaceuticals were degraded with a higher removal rates compared with the ones determined in the Na2SO4 synthetic solutions assays; the oxygenation enhanced the TOC and COD removal. The acute toxicity of spiked secondary effluent was reduced from the first few minutes of the electrochemical oxidation process.
Collapse
Affiliation(s)
- Josué Daniel García-Espinoza
- National Autonomous University of Mexico (UNAM, Campus IMTA), Paseo Cuauhnahuac 8532, Progreso, Jiutepec, Morelos 62550, Mexico
| | - Petia Mijaylova Nacheva
- Mexican Institute of Water Technology (IMTA), Paseo Cuauhnahuac 8532, Progreso, Jiutepec, Morelos 62550, Mexico.
| |
Collapse
|
29
|
Role of Design and Operational Factors in the Removal of Pharmaceuticals by Constructed Wetlands. WATER 2019. [DOI: 10.3390/w11112356] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study evaluates the role of design, operational, and physicochemical parameters of constructed wetlands (CWs) in the removal of pharmaceuticals (PhCs). The correlation analysis demonstrates that the performance of CWs is governed by several design and operational factors (area, depth, hydraulic loading rate, organic loading rate, and hydraulic retention time), and physicochemical parameters (dissolved oxygen, temperature, and pH); the removal efficiency of about 50% of the examined PhCs showed a significant correlation with two or more factors. Plants contributed significantly in the removal of some of the PhCs by direct uptake and by enhancing the process of aerobic biodegradation. The use of substrate material of high adsorption capacity, rich in organic matter, and with high surface area enhanced the removal of PhCs by adsorption/sorption processes, which are the major removal mechanisms of some PhCs (codeine, clarithromycin, erythromycin, ofloxacin, oxytetracycline, carbamazepine, and atenolol) in CWs. Although the removal of almost all of the studied PhCs showed seasonal differences, statistical significance was established in the removal of naproxen, salicylic acid, caffeine, and sulfadiazine. The effective PhCs removal requires the integrated design of CWs ensuring the occurrence of biodegradation along with other processes, as well as enabling optimal values of design and operational factors, and physicochemical parameters.
Collapse
|
30
|
Liu X, Guo X, Liu Y, Lu S, Xi B, Zhang J, Wang Z, Bi B. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: Performance and microbial response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112996. [PMID: 31400665 DOI: 10.1016/j.envpol.2019.112996] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 05/27/2023]
Abstract
Pollution caused by antibiotics has been highlighted in recent decades as a worldwide environmental and health concern. Compared to traditional physical, chemical and biological treatments, constructed wetlands (CWs) have been suggested to be a cost-efficient and ecological technology for the remediation of various kinds of contaminated waters. In this review, 39 antibiotics removal-related studies conducted on 106 treatment systems from China, Spain, Canada, Portugal, etc. were summarized. Overall, the removal efficiency of CWs for antibiotics showed good performance (average value = over 50%), especially vertical flow constructed wetlands (VFCWs) (average value = 80.44%). The removal efficiencies of sulfonamide and macrolide antibiotics were lower than those of tetracycline and quinolone antibiotics. In addition, the relationship between the removal efficiency of antibiotics and chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and ammonia nitrogen (NH3-N) concentrations showed an inverted U-shaped curve with turning points of 300 mg L-1, 57.4 mg L-1, 40 mg L-1, 3.2 mg L-1 and 48 mg L-1, respectively. The coexistence of antibiotics with nitrogen and phosphorus slightly reduced the removal efficiency of nitrogen and phosphorus in CWs. The removal effect of horizontal subsurface flow constructed wetlands for antibiotic resistance genes (ARGs) had better performance (over 50%) than that of vertical wetlands, especially for sulfonamide resistance genes. Microorganisms are highly sensitive to antibiotics. In fact, microorganisms are one of the main responsible for antibiotic removal. Moreover, due to the selective pressure induced by antibiotics and drug-resistant gene transfer from resistant bacteria to other sensitive strains through their own genetic transfer elements, decreased microbial diversity and increased resistance in sewage have been consistently reported. This review promotes further research on the removal mechanism of antibiotics and ARGs in CWs.
Collapse
Affiliation(s)
- Xiaohui Liu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China; School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaochun Guo
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Ying Liu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China.
| | - Beidou Xi
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Jian Zhang
- School of Environmental Science & Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation, Hubei, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, 430077, People's Republic of China
| | - Bin Bi
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| |
Collapse
|