1
|
Ge H, Liu G, Liu F. Review on the application of biomass-based aerogels in the field of thermal insulation. Int J Biol Macromol 2025; 299:140230. [PMID: 39855507 DOI: 10.1016/j.ijbiomac.2025.140230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
The continuous progression of industrialisation and the burgeoning global population have precipitated the non-renewable energy crisis and exacerbated environmental problems, thereby stimulating a huge demand for production of environmentally friendly materials. Typically, biomass-based aerogels (BAs) derived from cellulose, chitosan (CS), lignin, and alginate have been gradually captivating the attention of researchers owing to their high specific surface area, substantial porosity, low density, porous architecture, and biodegradability. In this review, we demonstrate the sustainability of BAs by contrasting the overall advantages or disadvantages of BAs with those of synthetic alternatives in terms of cost, insulation performance, and planetary boundaries. In addition, the aerogels based on biomass in recent years are summarized, including thermal insulation mechanisms, the raw materials, test methods, preparation approaches (focusing on the use of crosslinking and drying methods in the preparation process), as well as the wide-ranging applications. Furthermore, we offer the incisive insights into the challenges and prospective opportunities for BAs. The up-to-date summary and discussion will be beneficial to the development of functional BAs, which can improve resource utilization efficiency, thereby catalyzing the advancement of green technology.
Collapse
Affiliation(s)
- Haipei Ge
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Guoliang Liu
- School of Textile Garment and Design, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Fujuan Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China.
| |
Collapse
|
2
|
Kryg P, Mazela B, Perdoch W, Jancelewicz M, Broda M. Nanocellulose-Based Films for Surface Protection of Wooden Artefacts. Int J Mol Sci 2024; 25:13333. [PMID: 39769103 PMCID: PMC11728128 DOI: 10.3390/ijms252413333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
This research investigated the selected properties of nanocellulose films intended to serve as protective patches on fissured surfaces of wooden artefacts. The effects of their plasticisation with glycerol and functionalisation with selected silanes ((3-Glycidyloxypropyl)trimethoxysilane, and Methyltrimethoxysilane) were also determined. The obtained pure cellulose nanopapers (CNPs) had a homogeneous and compact structure but were very brittle, stiff, and wavy. Functionalisation with silanes made their structure more packed and reduced their equilibrium moisture content by 87-96%, depending on the type and concentration of the silane. Silane functionalisation also slightly improved nanopapers' resistance to moulds. Plasticisation with glycerol provided CNPs with higher flexibility and resistance to fracture and made them flatter and smoother, reducing the wettability of their surfaces but increasing their hygroscopicity (EMC values increased 1.7-3.5 times for pure CNPs and 5-33 times for functionalised CNPs) and vulnerability to mould infestation. All prepared nanopapers can be easily glued to the wood surface and colour-matched using a nitro wood stain, oil paint or waterborne acrylic paint. The research showed that cellulose nanopapers modified with silanes and plasticised with glycerol seem to be a promising solution for protecting the cracked surface of wooden artefacts against further degradation due to external conditions.
Collapse
Affiliation(s)
- Paulina Kryg
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 38/42, 60-637 Poznan, Poland;
| | - Bartłomiej Mazela
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland; (B.M.); (W.P.)
| | - Waldemar Perdoch
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland; (B.M.); (W.P.)
| | - Mariusz Jancelewicz
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland;
| | - Magdalena Broda
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 38/42, 60-637 Poznan, Poland;
| |
Collapse
|
3
|
Chinnappa K, Bai CDG, Srinivasan PP. Nanocellulose-stabilized nanocomposites for effective Hg(II) removal and detection: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30288-30322. [PMID: 38619767 DOI: 10.1007/s11356-024-33105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Mercury pollution, with India ranked as the world's second-largest emitter, poses a critical environmental and public health challenge and underscores the need for rigorous research and effective mitigation strategies. Nanocellulose is derived from cellulose, the most abundant natural polymer on earth, and stands out as an excellent choice for mercury ion remediation due to its remarkable adsorption capacity, which is attributed to its high specific surface area and abundant functional groups, enabling efficient Hg(II) ion removal from contaminated water sources. This review paper investigates the compelling potential of nanocellulose as a scavenging tool for Hg(II) ion contamination. The comprehensive examination encompasses the fundamental attributes of nanocellulose, its diverse fabrication techniques, and the innovative development methods of nanocellulose-based nanocomposites. The paper further delves into the mechanisms that underlie Hg removal using nanocellulose, as well as the integration of nanocellulose in Hg detection methodologies, and also acknowledges the substantial challenges that lie ahead. This review aims to pave the way for sustainable solutions in mitigating Hg contamination using nanocellulose-based nanocomposites to address the global context of this environmental concern.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, 600119, Tamil Nadu, India
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117, Tamil Nadu, India
| |
Collapse
|
4
|
Yang J, Han X, Yang W, Hu J, Zhang C, Liu K, Jiang S. Nanocellulose-based composite aerogels toward the environmental protection: Preparation, modification and applications. ENVIRONMENTAL RESEARCH 2023; 236:116736. [PMID: 37495064 DOI: 10.1016/j.envres.2023.116736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Nanocellulose aerogel has the advantages of porosity, low density and high specific surface area, which can effectively realize the adsorption and treatment of wastewater waste gas. The methods of preparing nanocellulose mainly include mechanical, chemical and biological methods. Nanocellulose is formed into nanocellulose aerogel after gelation, solvent replacement and drying processes. Based on the advantages of easy modification of nanocellulose aerogels, nanocellulose aerogels can be functionalized with conductive fillers, reinforcing fillers and other materials to give nanocellulose aerogels in electrical, mechanical and other properties. Through functionalization, the properties of nanocellulose composite aerogel such as hydrophobicity and adsorption are improved, and the aerogel is endowed with the ability of electrical conductivity and electromagnetic shielding. Through functionalization, the applicability and general applicability of nanocellulose composite aerogel in the field of environmental protection are improved. In this paper, the preparation and functional modification methods of nanocellulose aerogels are reviewed, and the application prospects of nanocellulose composite aerogels in common environmental protection fields such as dye adsorption, heavy metal ion adsorption, gas adsorption, electromagnetic shielding, and oil-water separation are specifically reviewed, and new solutions are proposed.
Collapse
Affiliation(s)
- Jingjiang Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International In-novation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International In-novation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Weisen Yang
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| | - Jiapeng Hu
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International In-novation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China; Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| |
Collapse
|
5
|
Nitodas S(S, Skehan M, Liu H, Shah R. Current and Potential Applications of Green Membranes with Nanocellulose. MEMBRANES 2023; 13:694. [PMID: 37623755 PMCID: PMC10456796 DOI: 10.3390/membranes13080694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Large-scale applications of nanotechnology have been extensively studied within the last decade. By exploiting certain advantageous properties of nanomaterials, multifunctional products can be manufactured that can contribute to the improvement of everyday life. In recent years, one such material has been nanocellulose. Nanocellulose (NC) is a naturally occurring nanomaterial and a high-performance additive extracted from plant fibers. This sustainable material is characterized by a unique combination of exceptional properties, including high tensile strength, biocompatibility, and electrical conductivity. In recent studies, these unique properties of nanocellulose have been analyzed and applied to processes related to membrane technology. This article provides a review of recent synthesis methods and characterization of nanocellulose-based membranes, followed by a study of their applications on a larger scale. The article reviews successful case studies of the incorporation of nanocellulose in different types of membrane materials, as well as their utilization in water purification, desalination, gas separations/gas barriers, and antimicrobial applications, in an effort to provide an enhanced comprehension of their capabilities in commercial products.
Collapse
Affiliation(s)
- Stefanos (Steve) Nitodas
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
| | - Meredith Skehan
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
- Koehler Instrument Company Inc., Bohemia, NY 11794, USA;
| | - Henry Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (M.S.); (H.L.)
| | - Raj Shah
- Koehler Instrument Company Inc., Bohemia, NY 11794, USA;
| |
Collapse
|
6
|
Li J, Alamdari NE, Aksoy B, Parit M, Jiang Z. Integrated enzyme hydrolysis assisted cellulose nanofibril (CNF) fabrication: A sustainable approach to paper mill sludge (PMS) management. CHEMOSPHERE 2023:138966. [PMID: 37220796 DOI: 10.1016/j.chemosphere.2023.138966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
The landfilling of paper mill sludge (PMS) has been restricted or even banned in many countries due to the raised concern about greenhouse gas (GHG) emissions and contamination of the soil and water, calling for a sustainable PMS management approach. The potential valorization of PMS to nanomaterials combined with traditional biorefinery was examined in this work. Three types of PMS-derived cellulose nanofibrils (CNFs) were prepared and evaluated: enzymatically assisted CNF (AU: with in-house produced enzyme and CT: with commercial enzyme), mechanically pretreated CNF (BT), and chemically pretreated CNF by TEMPO oxidation (TEMPO). It was found that enzyme-assisted mechanical fibrillation-derived CNFs had a comparable average diameter (27.9 nm for AU and 22.7 nm for CT) with that produced from mechanical pretreatment (26.5 nm for BT) and TEMPO oxidation pretreatment (20.0 nm for TEMPO), and they showed the best drainage properties among the three types of CNF. The CNFs resulting from enzymatic pretreatment reduced 15% of energy consumption compared to the mechanical method and had better thermostability than TEMPO oxidation method. In addition, the on-site produced enzyme showed similar performance to the commercial enzymes towards the CNF properties. These findings provide new insights into a promising integrated strategy in engineering CNF from PMS with on-site enzyme production as a novel and sustainable approach for PMS management and valorization.
Collapse
Affiliation(s)
- Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States
| | - Navid E Alamdari
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States
| | - Burak Aksoy
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States
| | - Mahesh Parit
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States
| | - Zhihua Jiang
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States.
| |
Collapse
|
7
|
Zhao J, Yuan X, Wu X, Liu L, Guo H, Xu K, Zhang L, Du G. Preparation of Nanocellulose-Based Aerogel and Its Research Progress in Wastewater Treatment. Molecules 2023; 28:3541. [PMID: 37110772 PMCID: PMC10144172 DOI: 10.3390/molecules28083541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Nowadays, the fast expansion of the economy and industry results in a considerable volume of wastewater being released, severely affecting water quality and the environment. It has a significant influence on the biological environment, both terrestrial and aquatic plant and animal life, and human health. Therefore, wastewater treatment is a global issue of great concern. Nanocellulose's hydrophilicity, easy surface modification, rich functional groups, and biocompatibility make it a candidate material for the preparation of aerogels. The third generation of aerogel is a nanocellulose-based aerogel. It has unique advantages such as a high specific surface area, a three-dimensional structure, is biodegradable, has a low density, has high porosity, and is renewable. It has the opportunity to replace traditional adsorbents (activated carbon, activated zeolite, etc.). This paper reviews the fabrication of nanocellulose-based aerogels. The preparation process is divided into four main steps: the preparation of nanocellulose, gelation of nanocellulose, solvent replacement of nanocellulose wet gel, and drying of nanocellulose wet aerogel. Furthermore, the research progress of the application of nanocellulose-based aerogels in the adsorption of dyes, heavy metal ions, antibiotics, organic solvents, and oil-water separation is reviewed. Finally, the development prospects and future challenges of nanocellulose-based aerogels are discussed.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xushuo Yuan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xiaoxiao Wu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Haiyang Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
8
|
Sources, Chemical Functionalization, and Commercial Applications of Nanocellulose and Nanocellulose-Based Composites: A Review. Polymers (Basel) 2022; 14:polym14214468. [PMID: 36365462 PMCID: PMC9658553 DOI: 10.3390/polym14214468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Nanocellulose is the most abundant material extracted from plants, animals, and bacteria. Nanocellulose is a cellulosic material with nano-scale dimensions and exists in the form of cellulose nanocrystals (CNC), bacterial nanocellulose (BNC), and nano-fibrillated cellulose (NFC). Owing to its high surface area, non-toxic nature, good mechanical properties, low thermal expansion, and high biodegradability, it is obtaining high attraction in the fields of electronics, paper making, packaging, and filtration, as well as the biomedical industry. To obtain the full potential of nanocellulose, it is chemically modified to alter the surface, resulting in improved properties. This review covers the nanocellulose background, their extraction methods, and possible chemical treatments that can enhance the properties of nanocellulose and its composites, as well as their applications in various fields.
Collapse
|
9
|
He X, Sun C, Khalesi H, Yang Y, Zhao J, Zhang Y, Wen Y, Fang Y. Comparison of cellulose derivatives for Ca 2+ and Zn 2+ adsorption: Binding behavior and in vivo bioavailability. Carbohydr Polym 2022; 294:119837. [PMID: 35868780 DOI: 10.1016/j.carbpol.2022.119837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Cellulose with distinct colloidal states exhibited different adsorption capability for ions and whether the intake of cellulose would bring positive or negative influence on the mineral bioavailability is inconclusive. This work investigated the binding behavior of carboxymethyl cellulose (CMC), TEMPO-oxidized nanofibrillated/nanocrystalline cellulose (TOCNF/TOCNC), and microcrystalline cellulose (MCC) with Ca2+and Zn2+ and compared their effects on mineral bioavailability in vitro and in vivo. The results suggested that CMC displayed a higher adsorption capability (36.6 mg g-1 for Ca2+ and 66.2 mg g-1 for Zn2+) than the other types of cellulose because of the strong interaction between carboxyl groups of cellulose and the ions. Although the cellulose derivatives had adverse effects on ion adsorption in vitro, the fermentability endowed by TOCNF/TOCNC counterbalanced the negative impacts in vivo. The findings suggested that the colloidal states of cellulose affected the bioavailability of minerals and could provide useful guidance for applications of specific cellulose.
Collapse
Affiliation(s)
- Xiangxiang He
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hoda Khalesi
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuyan Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingwen Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
Datta B, Spero EF, Martin-Martinez FJ, Ortiz C. Socially-Directed Development of Materials for Structural Color. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2100939. [PMID: 35373398 DOI: 10.1002/adma.202100939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Advancing a socially-directed approach to materials research and development is an imperative to address contemporary challenges and mitigate future detrimental environmental and social impacts. This paper reviews, synergizes, and identifies cross-disciplinary opportunities at the intersection of materials science and engineering with humanistic social sciences fields. Such integrated knowledge and methodologies foster a contextual understanding of materials technologies embedded within, and impacting broader societal systems, thus informing decision making upstream and throughout the entire research and development process toward more socially responsible outcomes. Technological advances in the development of structural color, which arises due to the incoherent and coherent scattering of micro-and nanoscale features and possesses a vast design space, are considered in this context. Specific areas of discussion include material culture, narratives, and visual perception, material waste and use, environmental and social life cycle assessment, and stakeholder and community engagement. A case study of the technical and social implications of bio-based cellulose (as a source for structurally colored products) is provided. Socially-directed research and development of materials for structural color hold significant capacity for improved planetary and societal impact across industries such as aerospace, consumer products, displays and sensors, paints and dyes, and food and agriculture.
Collapse
Affiliation(s)
- Bianca Datta
- MIT Media Lab, Massachusetts Institute of Technology, 20 Ames Street, Cambridge, MA, 02139, USA
| | - Ellan F Spero
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Station1, 280 Merrimack Street, Lawrence, MA, 01843, USA
| | - Francisco J Martin-Martinez
- Station1, 280 Merrimack Street, Lawrence, MA, 01843, USA
- Department of Chemistry, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Christine Ortiz
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Station1, 280 Merrimack Street, Lawrence, MA, 01843, USA
| |
Collapse
|
11
|
He Q, Yang Y, Liu Z, Shao D, Jiang D, Xing L, Pan Q, Shan H. Preparation and characterization of cellulose nanocrystals from spent edible fungus substrate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2761-2772. [PMID: 34719041 DOI: 10.1002/jsfa.11617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Spent edible fungus substrates were identified as potential sources to produce cellulose derivatives, namely purified cellulose and dicarboxyl cellulose nanocrystal (DCNC). Purified celluloses were obtained via chemical treatments and then oxidized by sequential periodate-chlorite without mechanical process. The structural properties of the DCNCs were characterized by transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). RESULTS XRD results showed that the cellulose I structure was maintained, however, the crystallinity index decreased after oxidation process. The initial pyrolysis temperature of DCNCs ranged from 242 to 344 °C. TEM results revealed that DCNC was rod-shaped with an average length and width of 130.88 nm and 7.3 nm, respectively. The average specific surface area (SSA) was 366.67 m2 g-1 . The carboxyl content was around 3.485 mmol g-1 . Finally, the adsorption capacity for contaminations was 76.98, 126.22, 64.44 and 9.63 mg g-1 for copper ion (Cu2+ ), lead ion (Pb2+ ), chromium (Cr3+ ) and amoxicillin (AMX), respectively. CONCLUSION This work showed a sequentially chemical oxidation for preparing nanocellulose from secondary agricultural waste with many functional applications. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang He
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Yu Yang
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Zeng Liu
- College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, China
- National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Dongwei Shao
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Donghua Jiang
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Lei Xing
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Qie Pan
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Huizi Shan
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| |
Collapse
|
12
|
Aimonen K, Imani M, Hartikainen M, Suhonen S, Vanhala E, Moreno C, Rojas OJ, Norppa H, Catalán J. Surface functionalization and size modulate the formation of reactive oxygen species and genotoxic effects of cellulose nanofibrils. Part Fibre Toxicol 2022; 19:19. [PMID: 35296350 PMCID: PMC8925132 DOI: 10.1186/s12989-022-00460-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cellulose nanofibrils (CNFs) have emerged as a sustainable and environmentally friendly option for a broad range of applications. The fibrous nature and high biopersistence of CNFs call for a thorough toxicity assessment, but it is presently unclear which physico-chemical properties could play a role in determining the potential toxic response to CNF. Here, we assessed whether surface composition and size could modulate the genotoxicity of CNFs in human bronchial epithelial BEAS-2B cells. We examined three size fractions (fine, medium and coarse) of four CNFs with different surface chemistry: unmodified (U-CNF) and functionalized with 2,2,6,6-tetramethyl-piperidin-1-oxyl (TEMPO) (T-CNF), carboxymethyl (C-CNF) and epoxypropyltrimethylammonium chloride (EPTMAC) (E-CNF). In addition, the source fibre was also evaluated as a non-nanosized material. RESULTS The presence of the surface charged groups in the functionalized CNF samples resulted in higher amounts of individual nanofibrils and less aggregation compared with the U-CNF. T-CNF was the most homogenous, in agreement with its high surface group density. However, the colloidal stability of all the CNF samples dropped when dispersed in cell culture medium, especially in the case of T-CNF. CNF was internalized by a minority of BEAS-2B cells. No remarkable cytotoxic effects were induced by any of the cellulosic materials. All cellulosic materials, except the medium fraction of U-CNF, induced a dose-dependent intracellular formation of reactive oxygen species (ROS). The fine fraction of E-CNF, which induced DNA damage (measured by the comet assay) and chromosome damage (measured by the micronucleus assay), and the coarse fraction of C-CNF, which produced chromosome damage, also showed the most effective induction of ROS in their respective size fractions. CONCLUSIONS Surface chemistry and size modulate the in vitro intracellular ROS formation and the induction of genotoxic effects by fibrillated celluloses. One cationic (fine E-CNF) and one anionic (coarse C-CNF) CNF showed primary genotoxic effects, possibly partly through ROS generation. However, the conclusions cannot be generalized to all types of CNFs, as the synthesis process and the dispersion method used for testing affect their physico-chemical properties and, hence, their toxic effects.
Collapse
Affiliation(s)
- Kukka Aimonen
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Monireh Imani
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Mira Hartikainen
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Satu Suhonen
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Esa Vanhala
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Carlos Moreno
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
- Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, The University of British Columbia, Vancouver, BC, Canada
| | - Hannu Norppa
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Julia Catalán
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland.
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
13
|
Effect of nanocellulose polymorphism on electrochemical analytical performance in hybrid nanocomposites with non-oxidized single-walled carbon nanotubes. Mikrochim Acta 2022; 189:62. [PMID: 35031873 PMCID: PMC8816370 DOI: 10.1007/s00604-021-05161-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/28/2021] [Indexed: 11/03/2022]
Abstract
Two cellulose nanocrystals/single-walled carbon nanotube (CNC/SW) hybrids, using two cellulose polymorphs, were evaluated as electrochemical transducers: CNC type I (CNC-I/SW) and CNC type II (CNC-II/SW). They were synthesized and fully characterized, and their analytical performance as electrochemical sensors was carefully studied. In comparison with SWCNT-based and screen-printed carbon electrodes, CNC/SW sensors showed superior electroanalytical performance in terms of sensitivity and selectivity, not only in the detection of small metabolites (uric acid, dopamine, and tyrosine) but also in the detection of complex glycoproteins (alpha-1-acid glycoprotein (AGP)). More importantly, CNC-II/SW exhibited 20 times higher sensitivity than CNC-I/SW for AGP determination, yielding a LOD of 7 mg L-1.These results demonstrate the critical role played by nanocellulose polymorphism in the electrochemical performance of CNC/SW hybrid materials, opening new directions in the electrochemical sensing of these complex molecules. In general, these high-active-surface hybrids smartly exploited the preserved non-oxidized SW conductivity with the high aqueous dispersibility of the CNC, avoiding the use of organic solvents or the incorporation of toxic surfactants during their processing, making the CNC/SW hybrids promising nanomaterials for electrochemical detection following greener approaches.
Collapse
|
14
|
Foo ML, Ooi CW, Tan KW, Chew IML. Preparation of black cumin seed oil Pickering nanoemulsion with enhanced stability and antioxidant potential using nanocrystalline cellulose from oil palm empty fruit bunch. CHEMOSPHERE 2022; 287:132108. [PMID: 34509022 DOI: 10.1016/j.chemosphere.2021.132108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The groundbreaking innovation and industrialization are ushering in a new era where technology development is integrated with the sustainability of materials. Over the decade, nanocrystalline cellulose (NCC) obtained from lignocellulosic biomass had created a great value in various aspects. The abundantly available empty fruit bunch (EFB) in the palm oil industry has motivated us to utilize it as a sustainable alternative for the isolation of NCC, which is a worthwhile opportunity to the waste management of EFB. Taking advantage of the shape anisotropy and amphiphilic character, NCC has been demonstrated as a natural stabilizer for oil-in-water emulsion. In this work, preparation of highly stable Pickering nanoemulsion using black cumin seed oil and NCC was attempted. Black cumin seed oil is a class of plant oil with various nutritional and pharmaceutical benefits. However, its poor solubility could substantially lower the therapeutic effect, and thus, requires a delivery system to overcome this limitation. The role of NCC in the formation of stable Pickering nanoemulsion was investigated. The emulsification process was found crucial to the resulting droplet size, whereas NCC contributed critically to its stabilization. The droplet size obtained from ultrasonication and microfluidization was approximately 400 nm, as examined using transmission electron microscopy. The droplet (oil-to-water = 2:8) has long-term stability against creaming and coalescence for more than six months. The nanoemulsion stabilized by NCC could allow a better absorption by the human body, thereby maximizing the potential of black cumin seed oil in the personal care and food industries.
Collapse
Affiliation(s)
- Mei Ling Foo
- School of Engineering, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | - Chien Wei Ooi
- School of Engineering, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Khang Wei Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Irene M L Chew
- School of Engineering, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
15
|
Garg M, Zozoulenko I. Ion Diffusion through Nanocellulose Membranes: Molecular Dynamics Study. ACS APPLIED BIO MATERIALS 2021; 4:8301-8308. [PMID: 35005924 DOI: 10.1021/acsabm.1c00829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most promising applications of nanocellulose is for membranes for energy storage devices including supercapacitors, batteries, and fuel cells. Several recent studies reported the fabrication of cellulose-based membranes where ionic conductivity was confined to channels. So far, theoretical understanding of the effect of the nanoconfinement and surface charged groups on the diffusion coefficient of ions in cellulose nanochannels is missing. In the present study, we perform atomistic molecular dynamics simulations to provide this theoretical understanding and unravel mechanisms affecting the ionic diffusion in nanochannels. We demonstrate that the diffusion coefficient of ions in cellulose nanochannels is reduced in comparison to its bulk value. The change of the diffusion coefficient depends on the density of charged surface groups in nanochannels and the channel height, and it is primarily caused by the Coulomb interaction between the ions and the surface. We believe that our results reveal an important structure/property relationship in cellulose nanochannels, and they show that accounting for the dependence of the diffusion coefficient on the charge of the surface groups and channel height can be important for the Nernst-Plank-Poisson modeling of the ion conductivity in nanomembranes as well as for accurate fitting the experimental data to extract the material parameters.
Collapse
Affiliation(s)
- Mohit Garg
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, SE-60174 Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, SE-60174 Norrköping, Sweden.,Wallenberg Wood Science Center, Linköping University, SE-60174 Norrköping, Sweden
| |
Collapse
|
16
|
Influence of Interfacial Enantiomeric Grafting on Melt Rheology and Crystallization of Polylactide/Cellulose Nanocrystals Composites. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2635-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Wang T, Song X, Xu H, Chen M, Zhang J, Ji M. Recyclable and Magnetically Functionalized Metal-Organic Framework Catalyst: IL/Fe 3O 4@HKUST-1 for the Cycloaddition Reaction of CO 2 with Epoxides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22836-22844. [PMID: 33966372 DOI: 10.1021/acsami.1c03345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A recyclable and magnetic nanocomposite catalyst (IL/Fe3O4@HKUST-1) was synthesized via grafting ionic liquid (IL) [AEMIm]BF4 into magnetically functionalized metal-organic framework Fe3O4@HKUST-1 in a water-ethanol media. The properties of IL/Fe3O4@HKUST-1 were fully characterized by powder X-ray diffraction, electron microscopy, Fourier-transform infrared spectroscopy, nitrogen adsorption-desorption, density-functional theory, and a magnetic property measurement system. IL/Fe3O4@HKUST-1 showed high activity in the solvent-free cycloaddition of CO2 with epoxides under mild conditions. Furthermore, the catalyst can be easily separated from the reaction mixture, and the recycled catalyst maintained high performance for several cycles. The synergistic effect of the Lewis acid and base sites in IL/Fe3O4@HKUST-1 contributes to its greater reactivity than individual IL or HKUST-1.
Collapse
Affiliation(s)
- Tongtong Wang
- School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023, P.R. China
| | - Xuedan Song
- School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023, P.R. China
| | - Hailong Xu
- School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023, P.R. China
| | - Miaomiao Chen
- School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023, P.R. China
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Min Ji
- School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023, P.R. China
| |
Collapse
|
18
|
Yu H, Zhu Y, Hui A, Yang F, Wang A. Removal of antibiotics from aqueous solution by using porous adsorbent templated from eco-friendly Pickering aqueous foams. J Environ Sci (China) 2021; 102:352-362. [PMID: 33637260 DOI: 10.1016/j.jes.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
The aqueous foam template without any solvent and only using the particles stabilizer has attracted much attention for preparation of the porous adsorbents. Herein, a novel porous adsorbent was fabricated via thermal-initiated polymerization of Pickering aqueous foams, which was stabilized by the natural sepiolite (Sep) and pine pollen, and utilized for the removal of antibiotic from aqueous solution. The stabilizing mechanism of Pickering aqueous foam of that the Sep was modified with the leaching substance from pine pollen and arranged orderly around the bubble to form a dense "shell" structure was revealed. The adsorbents possessed the hierarchical porous structure and excellent adsorption performance for antibiotic of chlorotetracycline hydrochloride (CTC) and tetracycline hydrochloride (TC). The equilibrium adsorption capacities of CTC and TC were achieved with 465.59 and 330.59 mg/g within 60 min at 25°C, respectively. The adsorption process obeyed Langmuir model and pseudo-second-order adsorption kinetic model. This work provided eco-friendly approach for fabricate porous adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Hui Yu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Aiping Hui
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fangfang Yang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
19
|
Lee KK, Low DYS, Foo ML, Yu LJ, Choong TSY, Tang SY, Tan KW. Molecular Dynamics Simulation of Nanocellulose-Stabilized Pickering Emulsions. Polymers (Basel) 2021; 13:polym13040668. [PMID: 33672331 PMCID: PMC7926420 DOI: 10.3390/polym13040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
While the economy is rapidly expanding in most emerging countries, issues coupled with a higher population has created foreseeable tension among food, water, and energy. It is crucial for more sustainable valorization of resources, for instance, nanocellulose, to address the core challenges in environmental sustainability. As the complexity of the system evolved, the timescale of project development has increased exponentially. However, research on the design and operation of integrated nanomaterials, along with energy supply, monitoring, and control infrastructure, has seriously lagged. The development cost of new materials can be significantly reduced by utilizing molecular simulation technology in the design of nanostructured materials. To realize its potential, nanocellulose, an amphiphilic biopolymer with the presence of rich -OH and -CH structural groups, was investigated via molecular dynamics simulation to reveal its full potential as Pickering emulsion stabilizer at the molecular level. This work has successfully quantified the Pickering stabilization mechanism profiles by nanocellulose, and the phenomenon could be visualized in three stages, namely the initial homogenous phase, rapid formation of micelles and coalescence, and lastly the thermodynamic equilibrium of the system. It was also observed that the high bead order was always coupled with a high volume of phase separation activities, through a coarse-grained model within 20,000 time steps. The outcome of this work would be helpful to provide an important perspective for the future design and development of nanocellulose-based emulsion products, which cater for food, cosmeceutical, and pharmaceutical industries.
Collapse
Affiliation(s)
- Ka Kit Lee
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor Darul Ehsan, Malaysia; (K.K.L.); (M.L.F.)
| | - Darren Yi Sern Low
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| | - Mei Ling Foo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor Darul Ehsan, Malaysia; (K.K.L.); (M.L.F.)
| | - Lih Jiun Yu
- Faculty of Engineering, Technology and Built Environment, Kuala Lumpur Campus (North Wing), UCSI University, Lot 12734, Jalan Choo Lip Kung, Taman Tayton View, Cheras 56000, Kuala Lumpur, Malaysia;
| | - Thomas Shean Yaw Choong
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Seri Kembangan, Serdang 43400, Selangor, Malaysia;
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
- Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Correspondence: (S.Y.T.); (K.W.T.); Tel.: +603-5514-4435 (S.Y.T.); +603-7610-2068 (K.W.T.)
| | - Khang Wei Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor Darul Ehsan, Malaysia; (K.K.L.); (M.L.F.)
- Correspondence: (S.Y.T.); (K.W.T.); Tel.: +603-5514-4435 (S.Y.T.); +603-7610-2068 (K.W.T.)
| |
Collapse
|
20
|
Yin J, Huang G, An C, Zhang P, Xin X, Feng R. Exploration of nanocellulose washing agent for the green remediation of phenanthrene-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123861. [PMID: 33264936 DOI: 10.1016/j.jhazmat.2020.123861] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/11/2020] [Accepted: 08/21/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons are hazardous contaminants existing ubiquitously in polluted soil. In this study, using nanocellulose (CNC) fluid as an eco-friendly agent was proposed for the first time in the remediation of phenanthrene (PHE) contaminated soil. The effects of environmental factors on the mobilization of PHE in soil by CNC nanofluid was investigated using factorial analysis. The results showed that temperature and ionic strength had a significant influence on PHE removal, which were associated with the viscosity and zeta potential change in the nanofluid. The analysis based on two-dimensional correlation spectroscopy integrated with FTIR and synchrotron-based XRF imaging revealed that metals and minerals in soil played important roles in PHE detachment. The hydroxyl groups on CNC bonded with Fe-O, Si-O, and Mn-O in soil as time went on, and eventually achieved PHE mobilization through the interruption of PHE/SOM-metal/mineral linkages. The complexation and transport of PHE/SOM-metals/minerals from soil particles to the aqueous phase could be the primary PHE removal mechanism. Besides, the biotoxicity study displayed a detoxification effect of CNC nanofluid on PHE contaminants in soil. This study offers new insight into a cost-effective and biodegradable nanocellulose washing agent, which can be a good alternative to the available site remediation options.
Collapse
Affiliation(s)
- Jianan Yin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Guohe Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Xiaying Xin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Renfei Feng
- Canadian Light Source, Saskatoon, Saskatchewan, S7N 2V3, Canada
| |
Collapse
|
21
|
Aimonen K, Suhonen S, Hartikainen M, Lopes VR, Norppa H, Ferraz N, Catalán J. Role of Surface Chemistry in the In Vitro Lung Response to Nanofibrillated Cellulose. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:389. [PMID: 33546402 PMCID: PMC7913598 DOI: 10.3390/nano11020389] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022]
Abstract
Wood-derived nanofibrillated cellulose (NFC) has emerged as a sustainable material with a wide range of applications and increasing presence in the market. Surface charges are introduced during the preparation of NFC to facilitate the defibrillation process, which may also alter the toxicological properties of NFC. In the present study, we examined the in vitro toxicity of NFCs with five surface chemistries: nonfunctionalized, carboxymethylated, phosphorylated, sulfoethylated, and hydroxypropyltrimethylammonium-substituted. The NFC samples were characterized for surface functional group density, surface charge, and fiber morphology. Fibril aggregates predominated in the nonfunctionalized NFC, while individual nanofibrils were observed in the functionalized NFCs. Differences in surface group density among the functionalized NFCs were reflected in the fiber thickness of these samples. In human bronchial epithelial (BEAS-2B) cells, all NFCs showed low cytotoxicity (CellTiter-GloVR luminescent cell viability assay) which never exceeded 10% at any exposure time. None of the NFCs induced genotoxic effects, as evaluated by the alkaline comet assay and the cytokinesis-block micronucleus assay. The nonfunctionalized and carboxymethylated NFCs were able to increase intracellular reactive oxygen species (ROS) formation (chloromethyl derivative of 2',7'-dichlorodihydrofluorescein diacetate assay). However, ROS induction did not result in increased DNA or chromosome damage.
Collapse
Affiliation(s)
- Kukka Aimonen
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland; (K.A.); (S.S.); (M.H.); (H.N.)
| | - Satu Suhonen
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland; (K.A.); (S.S.); (M.H.); (H.N.)
| | - Mira Hartikainen
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland; (K.A.); (S.S.); (M.H.); (H.N.)
| | - Viviana R. Lopes
- Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Box 35, 751 03 Uppsala, Sweden; (V.R.L.); (N.F.)
| | - Hannu Norppa
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland; (K.A.); (S.S.); (M.H.); (H.N.)
| | - Natalia Ferraz
- Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Box 35, 751 03 Uppsala, Sweden; (V.R.L.); (N.F.)
| | - Julia Catalán
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland; (K.A.); (S.S.); (M.H.); (H.N.)
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
22
|
Chen X, Wang K, Wang Z, Zeng H, Yang T, Zhang X. Highly stretchable composites based on cellulose. Int J Biol Macromol 2020; 170:71-87. [PMID: 33358953 DOI: 10.1016/j.ijbiomac.2020.12.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022]
Abstract
Cellulose is a kind of natural polymer with good biocompatibility, biodegradability, non-toxicity, low cost and other advantages, which has been widely used in many fields, such as energy, biological scaffolds, medicine, paper making, cosmetics, and template materials. Based on this, how to use cellulose to construct stretchable composites to meet the needs of different fields has attracted widespread attention. In this review, we have described the applications of cellulose-based stretchable composites, including sensor applications, energy applications, bionic and medical materials applications, fabric applications, and packaging applications. Finally, the future development of stretchable composites based on cellulose is discussed.
Collapse
Affiliation(s)
- Xianrong Chen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519082, China
| | - Kuiyu Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519082, China
| | - Zhenhao Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519082, China
| | - Hui Zeng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519082, China
| | - Tao Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519082, China.
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
23
|
Barhoum A, Jeevanandam J, Rastogi A, Samyn P, Boluk Y, Dufresne A, Danquah MK, Bechelany M. Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. NANOSCALE 2020; 12:22845-22890. [PMID: 33185217 DOI: 10.1039/d0nr04795c] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A huge variety of plants are harvested worldwide and their different constituents can be converted into a broad range of bionanomaterials. In parallel, much research effort in materials science and engineering is focused on the formation of nanoparticles and nanostructured materials originating from agricultural residues. Cellulose (40-50%), hemicellulose (20-40%), and lignin (20-30%) represent major plant ingredients and many techniques have been described that separate the main plant components for the synthesis of nanocelluloses, nano-hemicelluloses, and nanolignins with divergent and controllable properties. The minor components, such as essential oils, could also be used to produce non-toxic metal and metal oxide nanoparticles with high bioavailability, biocompatibility, and/or bioactivity. This review describes the chemical structure, the physical and chemical properties of plant cell constituents, different techniques for the synthesis of nanocelluloses, nanohemicelluloses, and nanolignins from various lignocellulose sources and agricultural residues, and the extraction of volatile oils from plants as well as their use in metal and metal oxide nanoparticle production and emulsion preparation. Furthermore, details about the formation of activated carbon nanomaterials by thermal treatment of lignocellulose materials, a few examples of mineral extraction from agriculture waste for nanoparticle fabrication, and the emerging applications of plant-based nanomaterials in different fields, such as biotechnology and medicine, environment protection, environmental remediation, or energy production and storage, are also included. This review also briefly discusses the recent developments and challenges of obtaining nanomaterials from plant residues, and the issues surrounding toxicity and regulation.
Collapse
Affiliation(s)
- Ahmed Barhoum
- Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mapping the surface potential, charge density and adhesion of cellulose nanocrystals using advanced scanning probe microscopy. Carbohydr Polym 2020; 246:116393. [PMID: 32747225 DOI: 10.1016/j.carbpol.2020.116393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Abstract
Cellulose nanocrystals (CNC) are the focus of significant attention in the broad area of sustainable technologies for possessing many desirable properties such as a large surface area, high strength and stiffness, outstanding colloidal stability, excellent biocompatibility and biodegradability, low weight and abundance in nature. Yet, a fundamental understanding of the micro- and nanoscale electrical charge distribution on nanocellulose still remains elusive. Here we present direct quantification and mapping of surface charges on CNCs at ambient condition using advanced surface probe microscopy techniques such as Kelvin probe force microscopy (KPFM), electrostatic force microscopy (EFM) and force-distance (F-D) curve measurements. We show by EFM measurements that the surface charge in the solid-state (as contrasted with liquid dispersions) present at ambient condition on CNCs provided by Innotech Alberta is intrinsically negative and the charge density is estimated to be 13 μC/cm2. These charges also result in CNCs having two times the adhesive force exhibited by SiO2 substrates in adhesion mapping studies. The origin of negative surface charge is likely due to the formation of CNCs through sulfuric acid hydrolysis where sulfate half esters groups remained on the surface (Johnston et al., 2018).
Collapse
|
25
|
Zhu W, Yao Y, Zhang Y, Jiang H, Wang Z, Chen W, Xue Y. Preparation of an Amine-Modified Cellulose Nanocrystal Aerogel by Chemical Vapor Deposition and Its Application in CO2 Capture. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02687] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenkai Zhu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuan Yao
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Hua Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanyuan Xue
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
26
|
Trache D, Thakur VK, Boukherroub R. Cellulose Nanocrystals/Graphene Hybrids-A Promising New Class of Materials for Advanced Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1523. [PMID: 32759691 PMCID: PMC7466521 DOI: 10.3390/nano10081523] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
With the growth of global fossil-based resource consumption and the environmental concern, there is an urgent need to develop sustainable and environmentally friendly materials, which exhibit promising properties and could maintain an acceptable level of performance to substitute the petroleum-based ones. As elite nanomaterials, cellulose nanocrystals (CNC) derived from natural renewable resources, exhibit excellent physicochemical properties, biodegradability and biocompatibility and have attracted tremendous interest nowadays. Their combination with other nanomaterials such as graphene-based materials (GNM) has been revealed to be useful and generated new hybrid materials with fascinating physicochemical characteristics and performances. In this context, the review presented herein describes the quickly growing field of a new emerging generation of CNC/GNM hybrids, with a focus on strategies for their preparation and most relevant achievements. These hybrids showed great promise in a wide range of applications such as separation, energy storage, electronic, optic, biomedical, catalysis and food packaging. Some basic concepts and general background on the preparation of CNC and GNM as well as their key features are provided ahead.
Collapse
Affiliation(s)
- Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| | - Rabah Boukherroub
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN-UMR CNRS 8520), University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520—IEMN, F-59000 Lille, France;
| |
Collapse
|
27
|
Dai H, Wu J, Zhang H, Chen Y, Ma L, Huang H, Huang Y, Zhang Y. Recent advances on cellulose nanocrystals for Pickering emulsions: Development and challenge. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
In Vitro Biological Impact of Nanocellulose Fibers on Human Gut Bacteria and Gastrointestinal Cells. NANOMATERIALS 2020; 10:nano10061159. [PMID: 32545575 PMCID: PMC7353236 DOI: 10.3390/nano10061159] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Wood-derived nanofibrillated cellulose (NFC) has long been recognized as a valuable nanomaterial for food-related applications. However, the safety of NFC cannot be predicted just from the chemical nature of cellulose, and there is a need to establish the effect of the nanofibers on the gastrointestinal tract, to reassure the safe use of NFC in food-related products. The present work selected the intestinal cells Caco-2 and the gut bacteria Escherichia coli and Lactobacillus reuteri to evaluate the in vitro biological response to NFC. NFC materials with different surface modifications (carboxymethylation, hydroxypropyltrimethylammonium substitution, phosphorylation and sulfoethylation) and unmodified NFC were investigated. The materials were characterized in terms of surface functional group content, fiber morphology, zeta potential and degree of crystallinity. The Caco-2 cell response to the materials was evaluated by assessing metabolic activity and cell membrane integrity. The effects of the NFC materials on the model bacteria were evaluated by measuring bacterial growth (optical density at 600 nm) and by determining colony forming units counts after NFC exposure. Results showed no sign of cytotoxicity in Caco-2 cells exposed to the NFC materials, and NFC surface functionalization did not impact the cell response. Interestingly, a bacteriostatic effect on E. coli was observed while the materials did not affect the growth of L. reuteri. The present findings are foreseen to contribute to increase the knowledge about the potential oral toxicity of NFC and, in turn, add to the development of safe NFC-based food products.
Collapse
|
29
|
Johnson A, He JL, Kong F, Huang YC, Thomas S, Lin HTV, Kong ZL. Surfactin-Loaded ĸ-Carrageenan Oligosaccharides Entangled Cellulose Nanofibers as a Versatile Vehicle Against Periodontal Pathogens. Int J Nanomedicine 2020; 15:4021-4047. [PMID: 32606662 PMCID: PMC7293418 DOI: 10.2147/ijn.s238476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Periodontitis is a chronic inflammatory disease associated with microbial accumulation. The purpose of this study was to reuse the agricultural waste to produce cellulose nanofibers (CNF) and further modification of the CNF with κ-carrageenan oligosaccharides (CO) for drug delivery. In addition, this study is focused on the antimicrobial activity of surfactin-loaded CO-CNF towards periodontal pathogens. MATERIALS AND METHODS A chemo-mechanical method was used to extract the CNF and the modification was done by using CO. The studies were further proceeded by adding different quantities of surfactin [50 mg (50 SNPs), 100 mg (100 SNPs), 200 mg (200 SNPs)] into the carrier (CO-CNF). The obtained materials were characterized, and the antimicrobial activity of surfactin-loaded CO-CNF was evaluated. RESULTS The obtained average size of CNF and CO-CNF after ultrasonication was 263 nm and 330 nm, respectively. Microscopic studies suggested that the CNF has a short diameter with long length and CO became cross-linked to form as beads within the CNF network. The addition of CO improved the degradation temperature, crystallinity, and swelling property of CNF. The material has a controlled drug release, and the entrapment efficiency and loading capacity of the drug were 53.15 ± 2.36% and 36.72 ± 1.24%, respectively. It has antioxidant activity and inhibited the growth of periodontal pathogens such as Streptococcus mutans and Porphyromonas gingivalis by preventing the biofilm formation, reducing the metabolic activity, and promoting the oxidative stress. CONCLUSION The study showed the successful extraction of CNF and modification with CO improved the physical parameters of the CNF. In addition, surfactin-loaded CO-CNF has potential antimicrobial activity against periodontal pathogens. The obtained biomaterial is economically valuable and has great potential for biomedical applications.
Collapse
Affiliation(s)
- Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Jia-Ling He
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, GA30602, U.S.A
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala686560, India
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| |
Collapse
|
30
|
da Silva MA, Calabrese V, Schmitt J, Hossain KMZ, Bryant SJ, Mahmoudi N, Scott JL, Edler KJ. Impact of wormlike micelles on nano and macroscopic structure of TEMPO-oxidized cellulose nanofibril hydrogels. SOFT MATTER 2020; 16:4887-4896. [PMID: 32424387 DOI: 10.1039/d0sm00135j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we investigated the effect of adding surfactant mixtures on the rheological properties of TEMPO-oxidized cellulose nanofibril (OCNF) saline dispersions. Three surfactant mixtures were studied: cocamidopropyl betaine (CAPB)/sodium dodecyl sulfate (SDS), which forms wormlike micelles (WLMs); cocamidopropylamine oxide (CAPOx)/SDS, which forms long rods; and CAPB/sodium lauroyl sarcosinate (SLS), which forms spherical micelles. The presence of micelles in these surfactant mixtures, independent of their morphology, leads to an increase of tan δ, making the gels less solid-like, therefore acting as a plasticizer. WLMs were able to suppress strain stiffening normally observed in OCNF gels at large strains. OCNF/WLM gels have lower G' values than OCNF gels while the other micellar morphologies have a reduced impact on G'. The presence of unconnected micelles leads to increased dissipative deformation in OCNF gels without affecting the connectivity of the fibrils, while the presence of entangled micelles interferes with the OCNF network.
Collapse
Affiliation(s)
- Marcelo A da Silva
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Rincón-Iglesias M, Delgado A, Peřinka N, Lizundia E, Lanceros-Méndez S. Water-based 2D printing of magnetically active cellulose derivative nanocomposites. Carbohydr Polym 2020; 233:115855. [PMID: 32059906 DOI: 10.1016/j.carbpol.2020.115855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/23/2022]
Abstract
The fabrication of magnetic materials typically involves expensive, non-scalable, time-consuming or toxic processes. Here we report a scalable, quick and environmentally-benign fabrication of magnetically active materials through screen printing using mechanically flexible paper having micron-sized pores as substrates. In comparison with traditional multicomponent inks, simple aqueous dispersions comprising solely water-soluble cellulose derivatives and cobalt ferrite nanoparticles are used. Depending on the cellulosic matrix used, inks with viscosities in the 500-2.500 mPa s range were obtained for shear rates of 20-100 s-1. Patterns with line widths from 183 to 642 μm with a maximum deviation of 9 % were fabricated. The largest magnetization saturation obtained of 0.024 emu (or 0.021 emu cm-2) for the hydroxypropyl cellulose-based ink demonstrates enough magnetization for applications in areas such as actuators and sensors. This work provides novel insights towards the processing of renewable, magnetically active and mechanically flexible materials with tailored geometries which use water as the sole solvent.
Collapse
Affiliation(s)
- Mikel Rincón-Iglesias
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Aitor Delgado
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Nikola Peřinka
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Erlantz Lizundia
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain.
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
33
|
Padzil FNM, Lee SH, Ainun ZMA, Lee CH, Abdullah LC. Potential of Oil Palm Empty Fruit Bunch Resources in Nanocellulose Hydrogel Production for Versatile Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1245. [PMID: 32164150 PMCID: PMC7085086 DOI: 10.3390/ma13051245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
Oil palm empty fruit bunch (OPEFB) is considered the cheapest natural fiber with good properties and exists abundantly in Malaysia. It has great potential as an alternative main raw material to substitute woody plants. On the other hand, the well-known polymeric hydrogel has gathered a lot of interest due to its three-dimensional (3D) cross-linked network with high porosity. However, some issues regarding its performance like poor interfacial connectivity and mechanical strength have been raised, hence nanocellulose has been introduced. In this review, the plantation of oil palm in Malaysia is discussed to show the potential of OPEFB as a nanocellulose material in hydrogel production. Nanocellulose can be categorized into three nano-structured celluloses, which differ in the processing method. The most popular nanocellulose hydrogel processing methods are included in this review. The 3D printing method is taking the lead in current hydrogel production due to its high complexity and the need for hygiene products. Some of the latest advanced applications are discussed to show the high commercialization potential of nanocellulose hydrogel products. The authors also considered the challenges and future direction of nanocellulose hydrogel. OPEFB has met the requirements of the marketplace and product value chains as nanocellulose raw materials in hydrogel applications.
Collapse
Affiliation(s)
- Farah Nadia Mohammad Padzil
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Seng Hua Lee
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zuriyati Mohamed Asa’ari Ainun
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ching Hao Lee
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Luqman Chuah Abdullah
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
34
|
Amoroso L, Muratore G, Ortenzi MA, Gazzotti S, Limbo S, Piergiovanni L. Fast Production of Cellulose Nanocrystals by Hydrolytic-Oxidative Microwave-Assisted Treatment. Polymers (Basel) 2020; 12:polym12010068. [PMID: 31906478 PMCID: PMC7023600 DOI: 10.3390/polym12010068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/05/2022] Open
Abstract
In contrast to conventional approaches, which are considered to be energy- and time-intensive, expensive, and not green, herein, we report an alternative microwave-assisted ammonium persulfate (APS) method for cellulose nanocrystals (CNCs) production, under pressurized conditions in a closed reaction system. The aim was to optimize the hydrolytic-oxidative patented procedure (US 8,900,706), replacing the conventional heating with a faster process that would allow the industrial scale production of the nanomaterial and make it more appealing to a green economy. A microwave-assisted process was performed according to different time–temperature programs, varying the ramp (from 5 to 40 min) and the hold heating time (from 60 to 90 min), at a fixed reagent concentration and weight ratio of the raw material/APS solution. Differences in composition, structure, and morphology of the nanocrystals, arising from traditional and microwave methods, were studied by several techniques (TEM, Fourier transform infrared spectroscopy (FTIR)-attenuated total reflectance (ATR), dynamic light scattering (DLS), electrophoretic light scattering (ELS), thermogravimetric analysis (TGA), X-ray diffraction (XRD)), and the extraction yields were calculated. Fine tuning the microwave treatment variables, it was possible to realize a simple, cost-effective way for faster materials’ preparation, which allowed achieving high-quality CNCs, with a defined hydrodynamic diameter (150 nm) and zeta potential (−0.040 V), comparable to those obtained using conventional heating, in only 90 min instead of 16 h.
Collapse
Affiliation(s)
- Luana Amoroso
- Department of Agricultural, Food and Environment (Di3A), Università degli Studi di Catania, Via Santa Sofia 100, 95123 Catania, Italy; (L.A.); (G.M.)
| | - Giuseppe Muratore
- Department of Agricultural, Food and Environment (Di3A), Università degli Studi di Catania, Via Santa Sofia 100, 95123 Catania, Italy; (L.A.); (G.M.)
| | - Marco Aldo Ortenzi
- CRC Laboratorio di Materiali e Polimeri (LaMPo), Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (M.A.O.); (S.G.)
| | - Stefano Gazzotti
- CRC Laboratorio di Materiali e Polimeri (LaMPo), Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (M.A.O.); (S.G.)
| | - Sara Limbo
- DeFENS, Department of Food, Environmental and Nutritional Sciences—PackLAB Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy;
| | - Luciano Piergiovanni
- DeFENS, Department of Food, Environmental and Nutritional Sciences—PackLAB Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-02-50316638
| |
Collapse
|
35
|
Younis SA, Maitlo HA, Lee J, Kim KH. Nanotechnology-based sorption and membrane technologies for the treatment of petroleum-based pollutants in natural ecosystems and wastewater streams. Adv Colloid Interface Sci 2020; 275:102071. [PMID: 31806151 DOI: 10.1016/j.cis.2019.102071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Abstract
Petroleum processing wastewater (PPW) is a complex mixture of free, soluble, and emulsive hydrocarbons that often contain heavy metals and/or solid particles. As these hazardous constituents can accumulate in human beings and the environment, exposure to the PPW can have harmful effects in various respects. The use of environmental nanotechnologies (E-Nano) is considered an attractive option to resolve the problems associated with PPW. Among different treatment technologies, E-Nano-based sorption (adsorption/absorption) and membrane filtration approaches have been proven to have outstanding efficacy in remediation of PPW pollutants. It is, however, crucial to determine the appropriate technological option (e.g., low-cost operational conditions) for the practical application of such technologies. In this review, the potential of E-Nano-based sorption and membrane technologies in the treatment of various PPW pollutants is discussed based on their performances in comparison to traditional technologies. Their suitability is evaluated further in relation to their merits/disadvantages and economic feasibility with the goal of constructing a perspective map to efficiently implement the E-Nano technologies.
Collapse
|
36
|
Jung J, Deng Z, Zhao Y. A review of cellulose nanomaterials incorporated fruit coatings with improved barrier property and stability: Principles and applications. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jooyeoun Jung
- Department of Food Science & TechnologyOregon State University Corvallis Oregon
- Department of Food Science & TechnologyUniversity of Nebraska‐Lincoln Lincoln Nebraska
| | - Zilong Deng
- Department of Food Science & TechnologyOregon State University Corvallis Oregon
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and Engineering, Tongji University Shanghai China
| | - Yanyun Zhao
- Department of Food Science & TechnologyOregon State University Corvallis Oregon
| |
Collapse
|
37
|
Valencia L, Monti S, Kumar S, Zhu C, Liu P, Yu S, Mathew AP. Nanocellulose/graphene oxide layered membranes: elucidating their behaviour during filtration of water and metal ions in real time. NANOSCALE 2019; 11:22413-22422. [PMID: 31738353 DOI: 10.1039/c9nr07116d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The deposition of a thin layer of graphene oxide onto cellulose nanofibril membranes, to form CNF-GO layered-composite membranes, dramatically enhances their wet-mechanical stability, water flux and capacity to adsorb water pollutants (P. Liu, C. Zhu and A. P. Mathew, J. Hazard. Mater., 2019, 371, 484-493). In this work, we studied in real time the behavior of these layered membranes during filtration of water and metal ion solutions by means of in situ SAXS and reactive molecular dynamics (ReaxFF) computational simulations. SAXS confirms that the GO layers limit the swelling and structural deformations of CNFs during filtration of aqueous solutions. Moreover, during filtration of metal ion solutions, the connection of the CNF-GO network becomes highly complex mass-fractal like, with an increment in the correlation length. In addition, after ion adsorption, the SAXS data revealed apparent formation of nanoparticles during the drying stage and particle size increase as a function of time during drying. The molecular dynamics simulations, on the other hand, provide a deep insight into the assembly of both components, as well as elucidating the motion of the metal ions that potentially lead to the formation of metal clusters during adsorption, confirming the synergistic behavior of GO and CNFs for water purification applications.
Collapse
Affiliation(s)
- Luis Valencia
- Division of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.
| | | | | | | | | | | | | |
Collapse
|
38
|
Foo ML, Tan CR, Lim PD, Ooi CW, Tan KW, Chew IML. Surface-modified nanocrystalline cellulose from oil palm empty fruit bunch for effective binding of curcumin. Int J Biol Macromol 2019; 138:1064-1071. [DOI: 10.1016/j.ijbiomac.2019.07.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/10/2019] [Accepted: 07/04/2019] [Indexed: 11/24/2022]
|
39
|
Jose J, Thomas V, Raj A, John J, Mathew RM, Vinod V, Rejeena I, Mathew S, Abraham R, Mujeeb A. Eco‐friendly thermal insulation material from cellulose nanofibre. J Appl Polym Sci 2019. [DOI: 10.1002/app.48272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jasmine Jose
- Centre for Functional Materials, Department of PhysicsChristian College Chengannur 689122 India
| | - Vinoy Thomas
- Centre for Functional Materials, Department of PhysicsChristian College Chengannur 689122 India
| | - Archana Raj
- Centre for Functional Materials, Department of PhysicsChristian College Chengannur 689122 India
| | - Jancy John
- Centre for Functional Materials, Department of PhysicsChristian College Chengannur 689122 India
| | - Raji Mary Mathew
- Centre for Functional Materials, Department of PhysicsChristian College Chengannur 689122 India
| | - Vrinda Vinod
- Centre for Functional Materials, Department of PhysicsChristian College Chengannur 689122 India
| | | | - Sebastian Mathew
- International School of PhotonicsCochin University of Science and Technology Cochin 22 India
| | - Rani Abraham
- Department of ChemistryChristian College Chengannur 689122 India
| | - Abdulhassan Mujeeb
- International School of PhotonicsCochin University of Science and Technology Cochin 22 India
| |
Collapse
|
40
|
Chang C, Brooke C, Piao H, Mack J, Babnigg G, Joachimiak A, Hess M. A 2.08 Å resolution structure of HLB5, a novel cellulase from the anaerobic gut bacterium Parabacteroides johnsonii DSM 18315. Protein Sci 2019; 28:794-799. [PMID: 30687968 DOI: 10.1002/pro.3582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 11/05/2022]
Abstract
Cellulases play a significant role in the degradation of complex carbohydrates. In the human gut, anaerobic bacteria are essential to the well-being of the host by producing these essential enzymes that convert plant polymers into simple sugars that can then be further metabolized by the host. Here, we report the 2.08 Å resolution structure of HLB5, a chemically verified cellulase that was identified previously from an anaerobic gut bacterium and that has no structural cellulase homologues in PDB nor possesses any conserved region typical for glycosidases. We anticipate that the information presented here will facilitate the identification of additional cellulases for which no homologues have been identified to date and enhance our understanding how these novel cellulases bind and hydrolyze their substrates.
Collapse
Affiliation(s)
- Changsoo Chang
- Midwest Center for Structural Genomics Argonne National Laboratory, Argonne, Illinois 60439.,Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
| | | | - Hailan Piao
- Washington State University, Richland, WA, USA
| | - Jamey Mack
- Midwest Center for Structural Genomics Argonne National Laboratory, Argonne, Illinois 60439
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics Argonne National Laboratory, Argonne, Illinois 60439
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics Argonne National Laboratory, Argonne, Illinois 60439.,Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
| | | |
Collapse
|
41
|
Islam MS, Tan JPK, Kwok CY, Tam KC. Drug release kinetics of pH-responsive microgels of different glass-transition temperatures. J Appl Polym Sci 2018. [DOI: 10.1002/app.47284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M. S. Islam
- Department of Chemical Engineering; Waterloo Institute for Nanotechnology, University of Waterloo; 200 University Avenue West, Waterloo Ontario N2L 3G1 Canada
| | - J. P. K. Tan
- Institute of Bioengineering and Nanotechnology; Agency for Science and Technology Research; 31 Biopolis Way, The Nanos 138669 Singapore
| | - C. Y. Kwok
- Department of Chemical Engineering; Waterloo Institute for Nanotechnology, University of Waterloo; 200 University Avenue West, Waterloo Ontario N2L 3G1 Canada
| | - K. C. Tam
- Department of Chemical Engineering; Waterloo Institute for Nanotechnology, University of Waterloo; 200 University Avenue West, Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|