1
|
Potì S, Merico E, Conte M, Unga F, Cesari D, Dinoi A, De Bartolomeo AR, Pennetta A, Bloise E, Deluca G, De Benedetto GE, Ferrera R, Bompadre E, Guascito MR, Contini D. Spatial and seasonal variability of the contribution of sources to PM 2.5, PM 10 and their oxidative potential in different sites in a central Mediterranean area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179283. [PMID: 40188722 DOI: 10.1016/j.scitotenv.2025.179283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
Oxidative potential (OP) is a potential indicator of negative health effects of particulate matter (PM). To address mitigation strategies, there is need of understanding how natural and anthropogenic sources influence OP at different sites. This work investigates spatial and seasonal variabilities of PM2.5 and PM10 concentrations, composition, and oxidative potential (OPDTTV, obtained with DTT assay), simultaneously at 22 sites in a central Mediterranean area in south Italy. Source apportionment using PMF5 allowed to evaluate the contributions of eight sources: traffic, biomass burning (BB), nitrate, sulphate-rich, marine, crustal, carbonates/construction, and industrial (only for PM2.5). Nitrate, traffic, and BB had larger contributions during the cold season and presented spatial variability with exclusion of nitrate. Industrial contributions did not have relevant seasonal or spatial variability. The other sources had an opposite trend with larger values during the warm season but only sulphate-rich had non-negligible spatial variability. OPDTTV had relevant spatial variability only during the cold season. Four sources had statistically significant contributions to OPDTTV: traffic, BB, sulphate-rich, and crustal (in descending order). The use of soluble and insoluble fractions of OC and Ca in PMF5 allowed a better separation between traffic and BB sources and allowed to determine the role of local construction works. The results may have implications in future policies for mitigation strategies of OP targeting specific sources categories.
Collapse
Affiliation(s)
- Serena Potì
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy; Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Eva Merico
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Marianna Conte
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Roma, Italy
| | - Florin Unga
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Daniela Cesari
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Adelaide Dinoi
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Anna Rita De Bartolomeo
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali DiSTeBA, Università del Salento, Lecce, Italy
| | - Antonio Pennetta
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Ermelinda Bloise
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Giuseppe Deluca
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | | | | | | | - Maria Rachele Guascito
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali DiSTeBA, Università del Salento, Lecce, Italy.
| | - Daniele Contini
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy.
| |
Collapse
|
2
|
Wu PC, Wen HJ, Huang KF, Huang SK, Liang MC. Transition metals and chemical compositions determine the oxidation capacity of atmospheric particulate matters. ENVIRONMENTAL RESEARCH 2025; 278:121661. [PMID: 40268221 DOI: 10.1016/j.envres.2025.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/07/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
The knowledge of the causal relationship between exposure to airborne particulate matter (PM) and respiratory-related health issues remains unsatisfactory, owing to the complexities of physical and chemical characteristics in PM. One measure that greatly lifts the complexity is oxidative potential (OP), the overall production capacity of reactive oxygen species. We analyzed PM at different size fractions from three localities, exhibiting different source emission properties and photochemical aging states. We also investigated possible causes for their OPs, which were assessed using cellular and acellular assays. We found that higher PM mass did not always yield higher OP. Instead, chemical composition, modified by photochemical alteration (particle oxidation), played a critical role in the PM's reactivity. From a pollution hot spot to a downwind country town, the PM2.5 levels (mean ± SD) were 9.3 ± 4.5, 9.7 ± 4.9, and 6.6 ± 4.7 μg/m3, respectively. In contrast, the PM mass-normalized OP values in the downwind region were approximately 20 % higher than those in the upwind region based on the cellular assay and about three times higher from the acellular assay. Enhanced PM OP is associated with atmospheric oxidation, approximated by sulfur and nitrogen oxidation ratios. We further identified transition metals, particularly copper, a single most important species group, the primary determinant to the values of OP measured, contributing directly to OP and indirectly through metal-oxides enhanced photochemical alterations to PM.
Collapse
Affiliation(s)
- Po-Chao Wu
- Environmental Governance Research Center, National Environmental Research Academy, Taoyuan, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuo-Fang Huang
- Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Mao-Chang Liang
- Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Lei T, Xiang W, Zhao B, Hou C, Ge M, Wang W. Advances in analysis of atmospheric ultrafine particles and application in air quality, climate, and health research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175045. [PMID: 39067589 DOI: 10.1016/j.scitotenv.2024.175045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
There is growing interest in the contribution of ultrafine particles to air quality, climate, and human health. Ultrafine particles are of central significance for the influence of radiative forcing of climate change by involving in the formation of clouds and precipitation. Moreover, exposure to ultrafine particles can enhance the disease burden. The determination of those effects of ultrafine particles strongly depends on their chemical composition and physicochemical properties. This review focuses on the advanced techniques for the characterization of chemical composition and physicochemical properties of ultrafine particles in the past five years. The current analytical methodologies are broadly classified into electron and X-ray microscopy, optical spectroscopy and microscopy, electrical mobility, and mass spectrometry, and then described and discussed its operation principle, advantages, and limitations. Besides measurements, application of the state-of-the-art techniques is briefly reviewed to help us to promote a better understanding of atmospheric ultrafine particles relevant to air quality, climate, and health.
Collapse
Affiliation(s)
- Ting Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Xiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunyan Hou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Mazzi G, Feltracco M, Barbaro E, Alterio A, Favaro E, Azri C, Gambaro A. Glyphosate and other plant protection products in size-segregated urban aerosol: Occurrence and dimensional trend. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124596. [PMID: 39053796 DOI: 10.1016/j.envpol.2024.124596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Plant protection products (PPPs) play a fundamental role in the maintenance of agricultural fields and private/public green areas, however they can contaminate zones nearby the application point due to wind drift, resuspension, and evaporation. Several studied have deepened the relationship between PPPs and living beings' health, suggesting that these products might have a negative influence. Some PPPs belong to the class of Emergent Contaminants, which are compounds whose knowledge on the environmental distribution and influence is limited. These issues are even more stressed in urban aerosol, due to the high residential density that characterizes this area. Therefore, this study assessed the contamination caused by polar PPPs, such as herbicides (i.e., Glyphosate), fungicides (i.e., Fosetyl Aluminium), and growth regulators (i.e. Maleic Hydrazide), in size-segregated urban aerosol and evaluated their concentration variability with respect to atmospheric parameters (humidity, temperature, rain). Moreover, hypotheses on possible sources were formulated, exploiting also back-trajectories of air masses. A total of six PPPs were found in the samples: glyphosate was more present in the coarse fraction (2.5-10 μm), Fosetyl Aluminium, chlorate and perchlorate were more present in the coarse/fine fractions (10-1 μm), while cyanuric acid and phosphonic acid were mostly concentrated in the fine/ultrafine fractions (<1 μm). While for the first four we suspect of local sources, such as private gardening, the two latter might derive from the entire Po Valley, a highly polluted area in the North of Italy, and from degradation of other substances.
Collapse
Affiliation(s)
- Giovanna Mazzi
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia Mestre, Italy.
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia Mestre, Italy.
| | - Elena Barbaro
- Institute of Polar Sciences, National Research Council, Via Torino 155, 30172, Venezia Mestre, Italy.
| | - Agata Alterio
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia Mestre, Italy.
| | - Eleonora Favaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia Mestre, Italy.
| | - Chafai Azri
- Research Laboratory of Environmental Sciences and Sustainable Development "LASED", LR18ES32, University of Sfax, Sfax, Tunisia.
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia Mestre, Italy.
| |
Collapse
|
5
|
Horník Š, Pokorná P, Vodička P, Lhotka R, Sýkora J, Arora S, Poulain L, Herrmann H, Schwarz J, Ždímal V. Positive matrix factorization of seasonally resolved organic aerosol at three different central European background sites based on nuclear magnetic resonance Aerosolomics data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170303. [PMID: 38272092 DOI: 10.1016/j.scitotenv.2024.170303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Concentration data derived from 1H NMR analysis of the water-soluble organic compounds from fine aerosol (PM2.5) at three Central European background stations, Košetice, Frýdlant (both in the Czech Republic), and Melpitz (Germany), were used for detailed source apportionment analysis. Two winter and two summer episodes (year 2021) with higher organic concentrations and similar wind directions were selected for NMR analyses. The concentration profiles of 61 water-soluble organic compounds were determined by NMR Aerosolomics and a principal component analysis (PCA) was performed on this dataset. Based on the PCA results, 23 compounds were selected for positive matrix factorization (PMF) analysis in order to identify dominant aerosol sources at rural background sites in Central Europe. Both the PCA and the subsequent PMF analyses clearly distinguished the characteristics of winter and summer aerosol particles. In summer, four factors were identified from PMF and were associated with biogenic aerosol (61-78 %), background aerosol (9-15 %), industrial biomass combustion (7-13 %), and residential heating (5-13 %). In winter, only 3 factors were identified - industrial biomass combustion (33-49 %), residential heating (37-45 %) and a background aerosol (8-30 %). The main difference was observed in the winter season with a stronger contribution of emissions from industrial biomass burning at the Czech stations Košetice and Frýdlant (47-49 %) compared to the Melpitz station (33 %). However, in general, there were negligible differences in identified sources between stations in the given seasons, indicating a certain homogeneity in PM2.5 composition within Central Europe at least during the sampling periods.
Collapse
Affiliation(s)
- Štěpán Horník
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 1/135, 165 00 Prague 6, Czech Republic.
| | - Petra Pokorná
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 1/135, 165 00 Prague 6, Czech Republic
| | - Petr Vodička
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 1/135, 165 00 Prague 6, Czech Republic
| | - Radek Lhotka
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 1/135, 165 00 Prague 6, Czech Republic
| | - Jan Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Shubhi Arora
- Atmospheric Chemistry Department (ACD), Leibniz-Institut für Troposphärenforschung e.V. (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| | - Laurent Poulain
- Atmospheric Chemistry Department (ACD), Leibniz-Institut für Troposphärenforschung e.V. (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz-Institut für Troposphärenforschung e.V. (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| | - Jaroslav Schwarz
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 1/135, 165 00 Prague 6, Czech Republic
| | - Vladimír Ždímal
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 1/135, 165 00 Prague 6, Czech Republic
| |
Collapse
|
6
|
Li Y, Li X, Wu L, Shi L, Wang S, Fu P, Zhang Y, Lai S. Analysis of amino acid enantiomers in ambient aerosols: Effects and removal of coexistent aerosol matrix. J Environ Sci (China) 2024; 137:732-740. [PMID: 37980055 DOI: 10.1016/j.jes.2023.02.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 11/20/2023]
Abstract
Amino acids (AAs) including D- and L- enantiomers are a group of organic nitrogen species in ambient aerosol. Due to the low abundances of AAs (level of ng/m3) and the matrix effects by coexistent components, it is challenging to quantify AA enantiomers in ambient aerosols especially under pollution conditions. In this study, we present an optimized method for analyzing AA enantiomers in atmospheric aerosol samples including a pretreatment process and the detection by high performance liquid chromatography coupled to a fluorescence detector (HPLC-FLD). Matrix effects caused by coexistent chemicals on AA enantiomers analysis in ambient aerosol samples were investigated especially for those collected in pollution episodes. The results revealed that the determination of AA enantiomers is significantly affected by the coexistent organic carbon (as a proxy of organic matter) and water-soluble ion of NH4+. To remove the matrix effects, we applied a pretreatment using the solid phase extraction column coupled with alkaline adjustment to sample extract. After pretreatment, 18 AAs including 6 pairs of D- and L-enantiomers (i.e., leucine, isoleucine, valine, alanine, serine, and aspartic acid) can be successfully separated and quantified in aerosol samples by HPLC-FLD. The recoveries are in the range of 67%-106%. This method was successfully applied to the urban aerosol samples from pollution and non-pollution periods for AA enantiomers determination. We suggest that the concentrations of D-AAs and the ratio of D-AA/L-AA are indicative of the contribution of bacterial sources and the influence of biomass burning.
Collapse
Affiliation(s)
- Ying Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaoying Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Libin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Luhan Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shan Wang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; now at Hong Kong University of Science and Technology, Hong Kong 00852, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Cheng J, Su H, Song J, Wang X. Short-term effect of air pollution on childhood epilepsy in eastern China: A space-time-stratified case-crossover and pooled analysis. ENVIRONMENT INTERNATIONAL 2022; 170:107591. [PMID: 36279736 DOI: 10.1016/j.envint.2022.107591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/24/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Growing studies suggest that air pollution exposure is an emerging driver for neurological diseases, but existing evidence on the association between air pollution and epilepsy is scarce. Here, we aimed to quantitatively estimated the short-term effects of various air pollutants on childhood epilepsy hospitalizations in China. METHODS We obtained daily electronic health records on childhood epilepsy hospitalizations and air pollutants (PM2.5, PM10-2.5, PM10, SO2, NO2, O3) from 2016 through 2018 in 10 cities of Anhui Province in China. In the first stage, a space-time-stratified case-crossover analysis was employed to evaluate the short-term association of childhood epilepsy hospitalizations with each air pollutant in Anhui Province. In the second stage, short-term effect of air pollution on childhood epilepsy morbidity reported in Anhui Province and in previous studies was pooled with a random-effect meta-analysis model to get the overall effect of different air pollutants in eastern China. RESULTS This study included 8,181 childhood epilepsy patients from 10 cities in Anhui province of China. The first stage case-crossover analysis in Anhui province found significant associations between higher concentrations of all air pollutants (except O3) and increased risk of childhood epilepsy hospitalizations. Each 10 μg/m3 increase in PM2.5, PM10-2.5, PM10, SO2, and NO2 concentrations was associated with an increase of 1.1 % [95 % confidence interval (CI): 0.1 %-2.1 %], 1.7 % (95 %CI: 0.5 %-2.9 %), 0.8 % (95 %CI: 0.1 %-1.4 %), 8.5 % (95 %CI: 1.5 %-16.0 %), and 4.3 % (95 %CI: 2.3 %-6.3 %) in epilepsy hospitalizations, respectively. We also observed greater effects of particulate matter in cold season. The second stage meta-analysis that additionally included two prior studies with 43,002 patients from other 11 cities found a marginally significant increase in childhood epilepsy attacks associated with PM2.5, PM10, and NO2 in eastern China. CONCLUSIONS Short-term exposure to both particulate matter and gaseous air pollution was associated with an increased risk of childhood epilepsy exacerbation in eastern China. Our findings suggest that air pollution exposure especially in cold season needs to be considered by children's parents or guardians to prevent epilepsy attacks.
Collapse
Affiliation(s)
- Jian Cheng
- School of Public Health, Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Hong Su
- School of Public Health, Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Jian Song
- School of Public Health, Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Xu Wang
- Department of Science and Education, Children's Hospital of Anhui Medical University (Anhui Provincial Children's Hospital), Hefei, Anhui, China.
| |
Collapse
|
8
|
Wu L, Wang Z, Chang T, Song B, Zhao T, Wang H, Ma M. Morphological characteristics of amino acids in wet deposition of Danjiangkou Reservoir in China's South-to-North Water Diversion Project. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73100-73114. [PMID: 35622276 DOI: 10.1007/s11356-022-20802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Amino acids are an important constituent in organic nitrogen deposition, and changes in the content of their components have a direct impact on the nitrogen input to the ecosystem. From December 2018 to November 2019, 176 precipitation samples were collected at Danjiangkou Reservoir, the source of the middle line of the South-to-North Water Diversion Project, and the variation characteristics of dissolved free amino acids (DFAA) and dissolved combined amino acids (DCAA) were analyzed. The volume-weighted value concentration ranges of DFAA and DCAA were 0.159-1.136 μmol/L and 1.603-7.044 μmol/L, respectively, and amino acids were dominated by DCAA in wet deposition. Our results showed that glutamic acid (Glu), glycine (Gly), and aspartic acid (Asp) were the dominant amino acids in both DFAA and DCAA. The concentration of DFAA was highest in winter, while the concentration of DCAA was in autumn. Dissolved total amino acids (DTAA) were insignificantly correlated with DFAA, whereas they were linearly correlated with DCAA, indicating a significant influence of agricultural activities on DTAA. The analysis of the backward trajectory of air masses showed that amino acids were mainly influenced by proximity inputs around the reservoir. The bioavailability of organic matter was higher in the southeastern of the reservoir than in the northwestern. The wet deposition flux of TDN was 14.096 kg N/ha/year, and the potential ecological impact on water bodies cannot be ignored. This study was conducted to clarify the variation characteristics of amino acids fractions in wet deposition and to provide parameters for regional assessment of amino acids wet deposition. The ecological impact of nitrogen wet deposition on water bodies will be explored to provide a basis for nitrogen pollution control and water quality protection in the middle line of the South-to-North Water Diversion Project.
Collapse
Affiliation(s)
- Li Wu
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zuheng Wang
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Tianjun Chang
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Baihui Song
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Tongqian Zhao
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Haipo Wang
- Sanmenxia Aoke Chemical Co., Ltd, Sanmenxia, 472000, China
| | - Ming Ma
- Ningbo Customs Technical Center, Ningbo, 315000, China
| |
Collapse
|
9
|
Feltracco M, Barbaro E, Maule F, Bortolini M, Gabrieli J, De Blasi F, Cairns WR, Dallo F, Zangrando R, Barbante C, Gambaro A. Airborne polar pesticides in rural and mountain sites of North-Eastern Italy: An emerging air quality issue. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119657. [PMID: 35750305 DOI: 10.1016/j.envpol.2022.119657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
North-Eastern Italy and in particular Veneto Region, stands out as a major centre of agriculture and viticulture which has rapidly expanded in the last decade with high productivity indexes. In this context, assessing atmospheric pollution caused by crop spraying with pesticides in rural areas and their transport to high-altitude remote sites is crucial to provide a basis for understanding possible impacts on the environment and population health. We aim to improve existing methods with a highly sensitive technique by using high pressure anion exchange chromatography coupled to a triple quadrupole mass spectrometer. Thus, a total of fourteen polar pesticides were determined in aerosol samples collected from August to December 2021 at Roncade (Venetian plain) and Col Margherita Observatory (Dolomites). The observatory was chosen as the background site as it is representative of the surrounding alpine region. Some samples revealed a substantial amount of cyanuric acid mainly at Roncade (mean concentration of 10 ± 10 ng m-3), glyphosate and fosetyl-aluminium (0.1 ± 0.2 and 0.1 ± 0.1 ng m-3, respectively). Surprisingly, some pesticides have been also found at Col Margherita, a high mountain background site, with concentrations an order of magnitude lower than at Roncade. This is the first time that fourteen polar pesticides have been assessed in the aerosol phase of the Po' Valley and detected at a high-altitude remote site, and consequently this study provides the first data on their occurrences in Italian aerosols. It represents a basis for the assessment of risks for humans.
Collapse
Affiliation(s)
- Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155-30172 Venice Mestre (VE), Italy.
| | - Elena Barbaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155-30172 Venice Mestre (VE), Italy; Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155-30172 Venice Mestre (VE), Italy
| | - Francesca Maule
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155-30172 Venice Mestre (VE), Italy
| | - Mara Bortolini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155-30172 Venice Mestre (VE), Italy
| | - Jacopo Gabrieli
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155-30172 Venice Mestre (VE), Italy; Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155-30172 Venice Mestre (VE), Italy
| | - Fabrizio De Blasi
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155-30172 Venice Mestre (VE), Italy; Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155-30172 Venice Mestre (VE), Italy
| | - Warren Rl Cairns
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155-30172 Venice Mestre (VE), Italy; Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155-30172 Venice Mestre (VE), Italy
| | - Federico Dallo
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155-30172 Venice Mestre (VE), Italy; Center for the Built Environment, University of California, (UC Berkeley-CBE), 390 Wurster Hall, CA-94720, Berkeley, United States
| | - Roberta Zangrando
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155-30172 Venice Mestre (VE), Italy; Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155-30172 Venice Mestre (VE), Italy
| | - Carlo Barbante
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155-30172 Venice Mestre (VE), Italy; Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155-30172 Venice Mestre (VE), Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155-30172 Venice Mestre (VE), Italy; Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155-30172 Venice Mestre (VE), Italy
| |
Collapse
|
10
|
Navarro-Selma B, Clemente A, Nicolás JF, Crespo J, Carratalá A, Lucarelli F, Giardi F, Galindo N, Yubero E. Size segregated ionic species collected in a harbour area. CHEMOSPHERE 2022; 294:133693. [PMID: 35063561 DOI: 10.1016/j.chemosphere.2022.133693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Water-soluble ions were analysed in size segregated aerosol samples collected in the port of Alicante (Southeastern Spain) during summer and winter using a multistage cascade impactor. Seasonal variations in the size distributions of the analysed components and the influence of bulk materials handling (loading/unloading and stockpiling) at the docks were investigated. The size distributions of SO42-, NH4+ and K+ were characterized by prominent peaks in the condensation and droplet modes, both in summer and winter, while those of Ca2+, Na+, Mg2+ and Cl- had a main peak centred at ∼4 μm. Although oxalate size distributions were similar during both seasons, the fraction of coarse-mode oxalate increased in summer most likely as a result of volatilization and repartition processes or reactions of oxalic acid with coarse alkaline particles. Nitrate size distributions were dominated by a coarse mode; however, during winter, modal peaks in the submicron size range were also observed due to favourable conditions for the formation of fine-mode NH4NO3. Harbour activities had a significant impact only on the concentrations of calcium, particularly in the coarse fraction, during both summer and winter.
Collapse
Affiliation(s)
- B Navarro-Selma
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - A Clemente
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - J F Nicolás
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - J Crespo
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - A Carratalá
- Department of Chemical Engineering, University of Alicante, P. O. Box 99, 03080, Alicante, Spain
| | - F Lucarelli
- Department of Physics and Astronomy, University of Florence and INFN, 50019, Florence, Italy
| | - F Giardi
- Department of Physics and Astronomy, University of Florence and INFN, 50019, Florence, Italy
| | - N Galindo
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - E Yubero
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain.
| |
Collapse
|
11
|
Li X, Zhang Y, Shi L, Kawamura K, Kunwar B, Takami A, Arakaki T, Lai S. Aerosol Proteinaceous Matter in Coastal Okinawa, Japan: Influence of Long-Range Transport and Photochemical Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5256-5265. [PMID: 35358385 DOI: 10.1021/acs.est.1c08658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The characteristics, sources, and atmospheric oxidation processes of marine aerosol proteinaceous matter (APM), including total proteins and free amino acids (FAAs), were investigated using a set of 1 year total suspended particulate (TSP) samples collected in the coastal area of Okinawa Island in the western North Pacific rim. The concentrations of APM at this site (total proteins: 0.16 ± 0.10 μg m-3 and total FAAs: 9.7 ± 5.6 ng m-3, annual average) are comparable to those of marine APM. The major FAA species of APM are also similar to previously reported marine APM with glycine as the dominant species (31%). Based on the different seasonal trends and weak correlations of total proteins and FAAs, we found that they were contributed by different sources, especially with the influence of long-range transport from the Asian continent of northern China and Mongolia and the oceanic area of the Bohai Sea, Yellow Sea, and East China Sea. The photochemical oxidation processes of high-molecular-weight proteins releasing FAAs (especially glycine) were also considered as an important factor influencing the characteristics of APM at this site. In addition, we propose a degradation process based on the correlation with ozone and ultraviolet radiation, emphasizing their roles in the degradation of proteins. Our findings help to deepen the understanding of atmospheric photochemical reaction processes of organic aerosols.
Collapse
Affiliation(s)
- Xiaoying Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Luhan Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Bhagawati Kunwar
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Akinori Takami
- Center for Regional Environmental Research, National Institute of Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Takemitsu Arakaki
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Vincenti B, Paris E, Carnevale M, Palma A, Guerriero E, Borello D, Paolini V, Gallucci F. Saccharides as Particulate Matter Tracers of Biomass Burning: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4387. [PMID: 35410070 PMCID: PMC8998709 DOI: 10.3390/ijerph19074387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/22/2022]
Abstract
The adverse effects of atmospheric particulate matter (PM) on health and ecosystems, as well as on meteorology and climate change, are well known to the scientific community. It is therefore undeniable that a good understanding of the sources of PM is crucial for effective control of emissions and to protect public health. One of the major contributions to atmospheric PM is biomass burning, a practice used both in agriculture and home heating, which can be traced and identified by analyzing sugars emitted from the combustion of cellulose and hemicellulose that make up biomass. In this review comparing almost 200 selected articles, we highlight the most recent studies that broaden such category of tracers, covering research publications on residential wood combustions, open-fire or combustion chamber burnings and ambient PM in different regions of Asia, America and Europe. The purpose of the present work is to collect data in the literature that indicate a direct correspondence between biomass burning and saccharides emitted into the atmosphere with regard to distinguishing common sugars attributed to biomass burning from those that have co-causes of issue. In this paper, we provide a list of 24 compounds, including those most commonly recognized as biomass burning tracers (i.e., levoglucosan, mannosan and galactosan), from which it emerges that monosaccharide anhydrides, sugar alcohols and primary sugars have been widely reported as organic tracers for biomass combustion, although it has also been shown that emissions of these compounds depend not only on combustion characteristics and equipment but also on fuel type, combustion quality and weather conditions. Although it appears that it is currently not possible to define a single compound as a universal indicator of biomass combustion, this review provides a valuable tool for the collection of information in the literature and identifies analytes that can lead to the determination of patterns for the distribution between PM generated by biomass combustion.
Collapse
Affiliation(s)
- Beatrice Vincenti
- Council for Agricultural Research and Economics (CREA), Center of Engineering and Agro-Food Processing, Via della Pascolare 16, 00015 Monterotondo, Italy; (B.V.); (E.P.); (M.C.); (F.G.)
| | - Enrico Paris
- Council for Agricultural Research and Economics (CREA), Center of Engineering and Agro-Food Processing, Via della Pascolare 16, 00015 Monterotondo, Italy; (B.V.); (E.P.); (M.C.); (F.G.)
| | - Monica Carnevale
- Council for Agricultural Research and Economics (CREA), Center of Engineering and Agro-Food Processing, Via della Pascolare 16, 00015 Monterotondo, Italy; (B.V.); (E.P.); (M.C.); (F.G.)
| | - Adriano Palma
- Council for Agricultural Research and Economics (CREA), Center of Engineering and Agro-Food Processing, Via della Pascolare 16, 00015 Monterotondo, Italy; (B.V.); (E.P.); (M.C.); (F.G.)
| | - Ettore Guerriero
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29,300, 00015 Monterotondo, Italy; (E.G.); (V.P.)
| | - Domenico Borello
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy;
| | - Valerio Paolini
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29,300, 00015 Monterotondo, Italy; (E.G.); (V.P.)
| | - Francesco Gallucci
- Council for Agricultural Research and Economics (CREA), Center of Engineering and Agro-Food Processing, Via della Pascolare 16, 00015 Monterotondo, Italy; (B.V.); (E.P.); (M.C.); (F.G.)
| |
Collapse
|
13
|
Cao Z, Wu X, Wang T, Zhao Y, Zhao Y, Wang D, Chang Y, Wei Y, Yan G, Fan Y, Yue C, Duan J, Xi B. Characteristics of airborne particles retained on conifer needles across China in winter and preliminary evaluation of the capacity of trees in haze mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150704. [PMID: 34600981 DOI: 10.1016/j.scitotenv.2021.150704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
To fully understand the characteristics of particulate matter (PM) retained on plant leaves (PMR) and the effect of vegetation on haze on a large spatial scale, we investigated needle samples collected from 78 parks and campuses in 31 cities (30 provincial cities) of China and developed a comprehensive method to characterise PMR. Both the PMR load (including water-insoluble particulate matter (WIPM), water-soluble inorganic ions (WSIS) and water-soluble organic matter (WSOM)), with a mean value of 554 ± 345 mg m-2 leaf area, and component profiles of PMR showed obvious spatial variation across the cities. Though haze pollution levels vary greatly among the 31 cities, the PM retention capacity of needles does not depend on haze level because PMR generally reaches saturation before precipitation in winter. The water-soluble component (WSC, the sum of WSIS and WSOM) accounted for 52.3% of PMR on average, among which WSIS and WSOM contributed 21.4% and 30.9% to PMR, respectively. The dominant ions of WSIS in PMR in the cities were Ca2+, K+ and NO3-, indicating that raised dust, biomass combustion and traffic exhaust are significant sources of PM in China. Compared with previous reports, the particle size distributions of PMR and PM across China were consistent, with fine PM (PM2.5) constituting a substantial proportion (43.8 ± 17.0%) of PMR. These results prove that trees can effectively remove fine particles from the air, thereby reducing human exposure to inhalable PM. We proposed a method to estimate the annual amount of PMR on Cedrus deodara, with an average value of 11.9 ± 9.6 t km-2 canopy yr-1 in China. Compared with the load of dust fall (atmospheric particles naturally falling on the ground, average of 138 ± 164 t km-2 land area yr-1 in China), we conclude that trees play a significant role in mitigating haze pollution.
Collapse
Affiliation(s)
- Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Xinyuan Wu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Tianyi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yahui Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Youhua Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Danyang Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yu Chang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Ya Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guangxuan Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Chen Yue
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Jie Duan
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China.
| |
Collapse
|
14
|
Feltracco M, Barbaro E, Spolaor A, Vecchiato M, Callegaro A, Burgay F, Vardè M, Maffezzoli N, Dallo F, Scoto F, Zangrando R, Barbante C, Gambaro A. Year-round measurements of size-segregated low molecular weight organic acids in Arctic aerosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142954. [PMID: 33498125 DOI: 10.1016/j.scitotenv.2020.142954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Organic acids in aerosols Earth's atmosphere are ubiquitous and they have been extensively studied across urban, rural and polar environments. However, little is known about their properties, transport, source and seasonal variations in the Svalbard Archipelago. Here, we present the annual trend of organic acids in the aerosol collected at Ny-Ålesund and consider their size-distributions to infer their possible sources and relative contributions. A series of carboxylic acids were detected with a predominance of C2-oxalic acid. Pinic acid and cis-pinonic acid were studied in order to better understand the oxidative and gas-to-particle processes occurred in the Arctic atmosphere. Since the water-soluble organic fraction is mainly composed by organic acids and ions, we investigated how the seasonal variation leads to different atmospheric transport mechanisms, focusing on the chemical variations between the polar night and boreal summer. Using major ions, levoglucosan and MSA, the Positive Matrix Factorization (PMF) identified five different possible sources: a) sea spray; b) marine primary production; c) biomass burning; d) sea ice related process and e) secondary products.
Collapse
Affiliation(s)
- Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy.
| | - Elena Barbaro
- Institute of Polar Sciences - National Research Council of Italy (ISP-CNR), Via Torino 155, 30172 Venice, Italy; Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences - National Research Council of Italy (ISP-CNR), Via Torino 155, 30172 Venice, Italy; Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Marco Vecchiato
- Institute of Polar Sciences - National Research Council of Italy (ISP-CNR), Via Torino 155, 30172 Venice, Italy
| | - Alice Callegaro
- Institute of Polar Sciences - National Research Council of Italy (ISP-CNR), Via Torino 155, 30172 Venice, Italy
| | - François Burgay
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Massimiliano Vardè
- Institute of Polar Sciences - National Research Council of Italy (ISP-CNR), Via Torino 155, 30172 Venice, Italy; Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Niccolò Maffezzoli
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Federico Dallo
- Institute of Polar Sciences - National Research Council of Italy (ISP-CNR), Via Torino 155, 30172 Venice, Italy
| | - Federico Scoto
- Institute of Atmospheric Sciences and Climate, National Research Council of Italy (ISAC-CNR), SP Lecce-Monteroni Km 1.2, 73100 Lecce, Italy
| | - Roberta Zangrando
- Institute of Polar Sciences - National Research Council of Italy (ISP-CNR), Via Torino 155, 30172 Venice, Italy
| | - Carlo Barbante
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; Institute of Polar Sciences - National Research Council of Italy (ISP-CNR), Via Torino 155, 30172 Venice, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; Institute of Polar Sciences - National Research Council of Italy (ISP-CNR), Via Torino 155, 30172 Venice, Italy
| |
Collapse
|
15
|
Quantification of Element Mass Concentrations in Ambient Aerosols by Combination of Cascade Impactor Sampling and Mobile Total Reflection X-ray Fluorescence Spectroscopy. ATMOSPHERE 2021. [DOI: 10.3390/atmos12030309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments, as well as for enforcing EU air quality regulations. Typically, airborne particles are sampled over long time periods on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). During the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling is combined for the first time with on-site total reflection X-ray fluorescence (TXRF) spectroscopy to develop a tool for quantifying particle element compositions within short time intervals and even on-site. This makes variations of aerosol chemistry observable with time resolution only a few hours and with good size resolution in the PM10 range. The study investigates the proof of principles of this methodological approach. Acrylic discs and silicon wafers are shown to be suitable impactor carriers with sufficiently smooth and clean surfaces, and a non-destructive elemental mass concentration measurement with a lower limit of detection around 10 pg/m3 could be achieved. We demonstrate the traceability of field TXRF measurements to a radiometrically calibrated TXRF reference, and the results from both analytical methods correspond satisfactorily.
Collapse
|
16
|
Molecular Speciation of Size Fractionated Particulate Water-Soluble Organic Carbon by Two-Dimensional Nuclear Magnetic Resonance (NMR) Spectroscopy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031334. [PMID: 33540704 PMCID: PMC7908621 DOI: 10.3390/ijerph18031334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Particulate matter is associated with increased morbidity and mortality; its effects depend on particle size and chemical content. It is important to understand the composition and resultant toxicological profile of particulate organic compounds, the largest and most complex fraction of particulate matter. The objective of the study was to delineate the nuclear magnetic resonance (NMR) spectral fingerprint of the biologically relevant water-soluble organic carbon (WSOC) fraction of size fractionated urban aerosol. A combination of one and two-dimensional NMR spectroscopy methods was used. The size distribution of particle mass, water-soluble extract, non-exchangeable organic hydrogen functional types and specific biomarkers such as levoglucosan, methane sulfonate, ammonium and saccharides indicated the contribution of fresh and aged wood burning emissions, anthropogenic and biogenic secondary aerosol for fine particles as well as primary traffic exhausts and pollen for large particles. Humic-like macromolecules in the fine particle size range included branched carbon structures containing aromatic, olefinic, keto and nitrile groups and terminal carboxylic and hydroxyl groups such as terpenoid-like polycarboxylic acids and polyols. Our study show that 2D-NMR spectroscopy can be applied to study the chemical composition of size fractionated aerosols.
Collapse
|
17
|
Ari PE, Ari A, Dumanoğlu Y, Odabasi M, Gaga EO. Organic chemical characterization of size segregated particulate matter samples collected from a thermal power plant area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114360. [PMID: 32443206 DOI: 10.1016/j.envpol.2020.114360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Kütahya city, a thermal power plant (TPPs) affected region of Turkey, has serious air quality problems like similar industrial regions of the world due to the emissions from three closely-located coal-fired TPPs, residential coal combustion along with the contribution of several industrial stacks. The organic chemical speciation of ambient size-segregated particulate matter (PM) was investigated during two seasons at two sites with different pollution characteristics (urban and rural). The ambient PM was collected using a high volume cascade impactor, with 6 stages: PM>10.2, PM10.2-4.2, PM4.2-2.1, PM2.1-1.3, PM1.3-0.69 and PM<0.69. Collected PM samples were extracted with organic solvents and the organic composition (Polycyclic aromatic hydrocarbons (PAHs), n-alkanes and carboxylic acids) was determined by GC-MS. Sources of the organic species were assessed using molecular PAH diagnostic ratios, carbon preference index and wax percentages. More than 70% of the PM-bound PAHs were quantified in submicron particles. Similarly, 34-42% of n-alkanes and approximately 30% of the carboxylic acids were found on the smallest particles. The main sources of the PM-bound organic species were considered as the anthropogenic emissions such as coal and biomass combustion and also vehicular emissions rather than the biogenic sources. Considerably high cancer risk levels were obtained through inhalation of PAHs. Seasonal variations and size distributions of the carboxylic acids and levoglucosan were also evaluated. Polar organic compound concentrations were higher in the summer period at both locations probably due to the higher sunlight intensity and temperature favoring their photochemical formation.
Collapse
Affiliation(s)
- Pelin Ertürk Ari
- Engineering Faculty, Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey; Engineering Faculty, Department of Environmental Engineering, Eskişehir Technical University, Eskişehir, Turkey
| | - Akif Ari
- Engineering Faculty, Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey; Engineering Faculty, Department of Environmental Engineering, Eskişehir Technical University, Eskişehir, Turkey
| | - Yetkin Dumanoğlu
- Engineering Faculty, Department of Environmental Engineering, Dokuz Eylül University, İzmir, Turkey
| | - Mustafa Odabasi
- Engineering Faculty, Department of Environmental Engineering, Dokuz Eylül University, İzmir, Turkey
| | - Eftade O Gaga
- Engineering Faculty, Department of Environmental Engineering, Eskişehir Technical University, Eskişehir, Turkey.
| |
Collapse
|
18
|
Xu Y, Xiao H, Wu D, Long C. Abiotic and Biological Degradation of Atmospheric Proteinaceous Matter Can Contribute Significantly to Dissolved Amino Acids in Wet Deposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6551-6561. [PMID: 32391688 DOI: 10.1021/acs.est.0c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atmospheric proteinaceous matter is characterized by ubiquity and potential bioavailability. However, little is known about the origins, secondary production processes, and biogeochemical role of proteinaceous matter in wet deposition. Precipitation samples were collected in suburban Guiyang (southwestern China) over a 1 year period to investigate their chemical components, mainly including dissolved combined amino acids (DCAAs), dissolved free AAs (DFAAs), and nonleachable particulate AAs (PAAs). Glycine was most abundant in the DFAAs, while the dominant species in DCAAs and PAAs was glutamic acid (including deaminated glutamine). The total DCAA, DFAA, and PAA concentrations peaked on average in spring (min. in summer). On average, the contribution of DCAA-nitrogen (median of 3.44%) to dissolved organic nitrogen was 5-fold higher than that of DFAA-nitrogen (median of 0.60%). Correlation analyses of AAs with ozone, nitrogen dioxide, and the quantitative degradation index suggest that DC(/F)AAs are linked with both abiotic and biological degradation of proteinaceous matter. Moreover, the high FAA scavenging ratios indicate the presence of postdepositional degradation of atmospheric proteinaceous matter. Further, the positive matrix factorization results suggest that the degradation of atmospheric proteinaceous matter markedly contributes to DCAAs and DFAAs in precipitation. Overall, the results suggest that the secondary processes involved in the degradation of atmospheric proteinaceous matter significantly promote direct bioavailability of AA-nitrogen.
Collapse
Affiliation(s)
- Yu Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Huayun Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Chaojun Long
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, Linchengxi Road, Guiyang 550081, China
| |
Collapse
|
19
|
Stahl C, Cruz MT, Bañaga PA, Betito G, Braun RA, Aghdam MA, Cambaliza MO, Lorenzo GR, MacDonald AB, Pabroa PC, Yee JR, Simpas JB, Sorooshian A. An annual time series of weekly size-resolved aerosol properties in the megacity of Metro Manila, Philippines. Sci Data 2020; 7:128. [PMID: 32350280 PMCID: PMC7190854 DOI: 10.1038/s41597-020-0466-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/30/2020] [Indexed: 11/09/2022] Open
Abstract
Size-resolved aerosol samples were collected in Metro Manila between July 2018 and October 2019. Two Micro-Orifice Uniform Deposit Impactors (MOUDI) were deployed at Manila Observatory in Quezon City, Metro Manila with samples collected on a weekly basis for water-soluble speciation and mass quantification. Additional sets were collected for gravimetric and black carbon analysis, including during special events such as holidays. The unique aspect of the presented data is a year-long record with weekly frequency of size-resolved aerosol composition in a highly populated megacity where there is a lack of measurements. The data are suitable for research to understand the sources, evolution, and fate of atmospheric aerosols, as well as studies focusing on phenomena such as aerosol-cloud-precipitation-meteorology interactions, regional climate, boundary layer processes, and health effects. The dataset can be used to initialize, validate, and/or improve models and remote sensing algorithms.
Collapse
Affiliation(s)
- Connor Stahl
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Melliza Templonuevo Cruz
- Manila Observatory, Quezon City, 1108, Philippines
- Institute of Environmental Science and Meteorology, University of the Philippines, Diliman, Quezon City, 1101, Philippines
| | - Paola Angela Bañaga
- Manila Observatory, Quezon City, 1108, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, 1108, Philippines
| | - Grace Betito
- Manila Observatory, Quezon City, 1108, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, 1108, Philippines
| | - Rachel A Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Mojtaba Azadi Aghdam
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Maria Obiminda Cambaliza
- Manila Observatory, Quezon City, 1108, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, 1108, Philippines
| | - Genevieve Rose Lorenzo
- Manila Observatory, Quezon City, 1108, Philippines
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA
| | - Alexander B MacDonald
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Preciosa Corazon Pabroa
- Department of Science and Technology, Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
| | - John Robin Yee
- Department of Science and Technology, Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
| | - James Bernard Simpas
- Manila Observatory, Quezon City, 1108, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, 1108, Philippines
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA.
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
20
|
Canepari S, Astolfi ML, Catrambone M, Frasca D, Marcoccia M, Marcovecchio F, Massimi L, Rantica E, Perrino C. A combined chemical/size fractionation approach to study winter/summer variations, ageing and source strength of atmospheric particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:19-28. [PMID: 31302399 DOI: 10.1016/j.envpol.2019.06.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 06/19/2023]
Abstract
We studied the size distribution of ions (Cl-, NO3-, SO4=, Na+, NH4+, K+, Mg++, Ca++) and elements (As, Ba, Cd, Co, Cs, Cu, Fe, Li, Mn, Ni, Pb, Rb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn) during the winter and summer seasons of seven consecutive years (2008-2014) in an area of the Po Valley (Northern Italy) characterised by industrial, agricultural and urban settings. The study included the collection and analysis of 41 series of size-segregated samples (MOUDI sampler, 10 stages, cut sizes from 0.18 to 18 μm). Ions were analysed by ion chromatography; elemental analysis was carried out by ICP-MS, by applying a chemical fractionation method able to increase the selectivity of PM source tracers. Our results indicate that important winter/summer variations occurred in both the concentration and size distribution of most PM components. These variations were explained in terms of variations in the strength of the prevailing sources of each component. The contribution of biomass burning for domestic heating was highlighted by the well-known tracer K+ but also by the soluble fraction of Rb, Cs and Li. Biomass burning contribution to atmospheric PM was mostly contained in the fine fraction, with a broad size-distribution from 0.18 to 1.8 μm. This source also appreciably increased the concentration of other elements in fine PM (As, Cd, Co, Mn, Pb, Sb, Sn). A few PM components (tracers of sea-spray, brake lining and some industries) did not show marked seasonal variations in concentration and size distribution. However, during winter, for brake lining and industry tracers we observed an upward shift in the dimension of fine particles and a downward shift in the dimension of coarse particles, due to the ageing of the air masses.
Collapse
Affiliation(s)
- S Canepari
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro, 5, Rome, 00185, Italy.
| | - M L Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro, 5, Rome, 00185, Italy
| | - M Catrambone
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St. (Rome), 00015, Italy
| | - D Frasca
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro, 5, Rome, 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St. (Rome), 00015, Italy
| | - M Marcoccia
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro, 5, Rome, 00185, Italy
| | - F Marcovecchio
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St. (Rome), 00015, Italy
| | - L Massimi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro, 5, Rome, 00185, Italy
| | - E Rantica
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St. (Rome), 00015, Italy
| | - C Perrino
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St. (Rome), 00015, Italy
| |
Collapse
|
21
|
Sources and Geographical Origins of PM10 in Metz (France) Using Oxalate as a Marker of Secondary Organic Aerosols by Positive Matrix Factorization Analysis. ATMOSPHERE 2019. [DOI: 10.3390/atmos10070370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An original source apportionment study was conducted on atmospheric particles (PM10) collected in Metz, one of the largest cities of Eastern France. A Positive matrix factorization (PMF) analysis was applied to a sampling filter-based chemical dataset obtained for the April 2015 to January 2017 period. Nine factors were clearly identified, showing mainly contributions from anthropogenic sources of primary PM (19.2% and 16.1% for traffic and biomass burning, respectively) as well as secondary aerosols (12.3%, 14.5%, 21.8% for sulfate-, nitrate-, and oxalate-rich factors, respectively). Wood-burning aerosols exhibited strong temporal variations and contributed up to 30% of the PM mass fraction during winter, while primary traffic concentrations remained relatively constant throughout the year. These two sources are also the main contributors during observed PM10 pollution episodes. Furthermore, the dominance of the oxalate-rich factor among other secondary aerosol factors underlines the role of atmospheric processing to secondary organic aerosol loadings which are still poorly characterized in this region. Finally, Concentration-Weighted Trajectory (CWT) analysis were performed to investigate the geographical origins of the apportioned sources, notably illustrating a significant transport of both nitrate-rich and sulfate-rich factors from Northeastern Europe but also from the Balkan region.
Collapse
|