1
|
Wei D, Tan S, Pang S, Liu B, Zhang Q, Zhu S, Fu G, Sun D, Wei W. Protective effects of anthocyanins on the nervous system injury caused by fluoride-induced endoplasmic reticulum stress in rats. Food Chem Toxicol 2025; 200:115386. [PMID: 40073964 DOI: 10.1016/j.fct.2025.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/14/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Long-term fluoride exposure can produce neurotoxicity. Anthocyanins, as antioxidants, have a certain protective effect in nerve damage. This study aimed to investigate the protective role of anthocyanins in fluoride-induced neurological damage due to endoplasmic reticulum stress (ERS). Using a fluoride-exposed Wistar rat model, we assessed learning memory capacity and pathologic and ultrastructural injury. The level of oxidative stress (OS) in vivo was detected by colorimetric method, the level of ERS was analyzed by immunohistochemistry, and the apoptosis of neuronal cells was observed by TUNEL staining. The results showed that fluoride exposure could decrease the learning and memory ability in rats, and led to histopathological and ultrastructural damage in the hippocampal CA1, CA3 and cortical regions. Fluoride exposure-induced OS in vivo, which further activates ERS, which was manifested by increased levels of ERS-related proteins GRP78, Caspase 12, and Caspase 3 in hippocampal CA1, CA3, and cortical regions, and eventually led to a significant increase in neuronal apoptosis rate. Notably, after anthocyanins treatment, pathological and ultrastructural damage was restored, the level of OS and ERS were significantly restored, and the apoptosis rate of neuronal cells was significantly reduced. In summary, as nutritional interventions, anthocyanins exert a protective role in fluoride-induced neurological injury.
Collapse
Affiliation(s)
- Dan Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shiwen Tan
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Shujuan Pang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong Province, 266033, China
| | - Bingshu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qiong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Siqi Zhu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, China
| | - Guiyu Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Jining Center For Disease Control and Prevention, Jining, Shandong Province, 272000, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, China.
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Altındağ F, Özdek U. Ameliorative effects of chitosan on fluoride-induced kidney injury in rats: a stereological and immunohistochemical study. J Mol Histol 2025; 56:149. [PMID: 40304850 DOI: 10.1007/s10735-025-10428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
The present study aimed to investigate the possible protective effects of chitosan (CS) on fluoride-induced nephrotoxicity. 28 rats were divided into four groups (n = 7). The Control group received drinking water. Sodium fluoride (NaF) group received 100 mg/L NaF in drinking water. NaF + CS group received 100 mg/L NaF and 250 mg/kg/day CS by gastric gavage. CS group was given 250 mg/kg/day CS by gavage. The study period lasted 12 weeks. Total kidney volume, Bowman's capsule volume, Bowman's space volume, Tubular volume and Glomerulus volume were measured by stereological methods. Immunohistochemically, caspase-3 and TNF-alpha expressions were evaluated. Biochemically, levels of urea and creatinine were measured. In addition, a histopathological evaluation of the kidney was performed. According to the control group, an increase was observed in all stereological parameters except glomerulus volume in the NaF group. CS treatment inhibited the increase in stereological parameters. Fluoride increased expressions of caspase-3 and TNF-α in the kidney, and serum urea and creatine levels, but CS decreased these parameters. In addition, pathological changes in the kidney caused by fluoride such as tubular dilatation, enlargement of the Bowman's space, and deterioration in tubular epithelial cells were restored with CS treatment. The conclusions of the current study reveal that fluoride can cause nephrotoxicity and CS treatment can prevent fluoride-induced nephrotoxicity.
Collapse
Affiliation(s)
- Fikret Altındağ
- Department of Histology and Embryology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey.
| | - Uğur Özdek
- Vocational School of Health Services, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
3
|
Singh S, Singh N, Chauhan A, Koshta K, Baby S, Tiwari R, Jagdale PR, Kumar M, Sharma V, Singh D, Srivastava V. Prenatal arsenic exposure alters EZH2/H3K27me3 to induce RKIP/NF-kB/ERK1/2-mediated early-onset kidney disease in mouse offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8498-8517. [PMID: 40085388 DOI: 10.1007/s11356-025-36229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
The rising incidences of chronic kidney disease (CKD) and renal failure are a major public health concern. Arsenic, a widespread water contaminant and environmental toxicant, is well-known to contribute to kidney disease in adults. However, its long-term effects on kidney health following early-life exposure remain poorly understood. Therefore, we investigated the impact of prenatal arsenic exposure on kidney health in offspring using a BALB/c mouse model. 0.4 ppm arsenic, an environmentally relevant dose, was orally administered to female mice from 15 days before mating until delivery. Structural and ultrastructural changes in the kidney were assessed using histopathology and transmission electron microscopy, while markers of inflammation, kidney injury, and function were evaluated through Luminex assays, FITC-sinistrin-based glomerular filtration rate (GFR), real-time PCR, immunohistochemistry, and immunoblotting. Notably, arsenic-exposed offspring showed reduced body weight, crown-to-rump length, inflammation, and early signs of kidney injury on postnatal day 2 (PND-2). By 6 weeks, examination showed tubular dilation, mitochondrial damage, vacuolated cytoplasm, and basement membrane disruption were more evident in the kidneys. Furthermore, elevated levels of kidney injury markers, including kidney injury molecule-1, beta-2 microglobulin, cystatin C, and tissue inhibitor of metalloproteinase 1, were detected in urine. These changes were accompanied by increased serum creatinine and a decline in kidney function, as evidenced by reduced GFR levels. Proinflammatory cytokines (TNF-α, IL-6) and NF-κB were significantly elevated along with an increased immune cell infiltration in the kidneys of arsenic-exposed offspring. Further analysis showed increased mesenchymal markers fibronectin and alpha-smooth muscle actin and reduced epithelial marker E-cadherin in the kidneys, indicating fibrosis and epithelial-to-mesenchymal transition. Mechanistic studies revealed that arsenic exposure leads to increased levels of epigenetic regulators enhancer of zeste homolog 2 (EZH2) and histone H3 lysine 27 trimethylation (H3K27me3), which were associated with the activation of inflammatory pathways, fibrosis, and impaired kidney function. Overall, our findings demonstrate that only developmental exposure to arsenic can cause dysregulation of EZH2 and H3K27me3, driving inflammation and renal fibrosis. These changes ultimately lead to chronic kidney disease in offspring, highlighting a critical window of vulnerability for arsenic toxicity with significant implications for long-term kidney health.
Collapse
Affiliation(s)
- Sukhveer Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Neha Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Anchal Chauhan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Kavita Koshta
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Samiya Baby
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies (MRIIRS), Faridabad, 121004, Haryana, India
| | - Ratnakar Tiwari
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Division of Nephrology and Feinberg Cardiovascular & Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Pankaj Ramji Jagdale
- Pathology Laboratory, Regulatory Toxicology Group, ASSIST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mahadeo Kumar
- Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vineeta Sharma
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies (MRIIRS), Faridabad, 121004, Haryana, India
| | - Dhirendra Singh
- Animal Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vikas Srivastava
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Wei W, Gu T, Cao Y, Sun S, Wei D, Li M, Fly AD, Gu W, Yao L, Sun D. Evaluation of the potential value of artificial intelligence (AI) in public health using fluoride intake as the example. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117805. [PMID: 39908867 DOI: 10.1016/j.ecoenv.2025.117805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
AIM We aimed to test whether and how ChatGPT understood the epidemiological problems related to fluoride intake and whether ChatGPT could produce novel and feasible hypotheses to tackle the challenges in the research for the disorders caused by a deficient or excessive fluoride intake. MATERIAL AND METHODS We designed a set of questions to evaluate the knowledge of ChatGPT version 4o on the epidemiological problems related to fluoride intake. Three evaluators then reviewed these answers. We then requested ChatGPT4o to produce hypotheses for the eight disorders related to insufficient or excessive fluoride intake. These hypotheses were then evaluated independently by three evaluators. Finally, summaries were made through group discussions among all the authors. RESULTS For the three questions on basic knowledge about the effect of fluoride on public health, the answers from ChatGPT were rated as excellent or good. For the 12 answers from ChatGPT to the epidemiological questions, 8 out of 12 answers were graded A, as excellent. Four answers were rated as B for good. The descriptions provided by ChatGPT on the effects of fluoride intake were comprehensive and well-structured. Six out of 8 answers were graded as excellent and the other 2 as good. ChatGPT proposed a hypothesis for each of the 8 disorders that are caused by either a deficiency or excess level of fluoride. Four hypotheses were rated as novel and feasible. Three hypotheses were considered relatively new and feasible. Only one hypothesis was regarded as an established hypothesis. CONCLUSION As AI technology develops, it can assist health professionals in understanding the disorders and researchers in their work on the mechanisms behind the disorders caused by insufficient or excessive fluoride intake.
Collapse
Affiliation(s)
- Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Tianshu Gu
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Yanhong Cao
- Key Laboratory of Etiologic Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health 23618104, 157 Baojian Road, Harbin, Heilongjiang 150081, China; Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Education Bureau of Heilongjiang Province &∼ Ministry of Health 23618104, 157 Baojian Road, Harbin, Heilongjiang 150081, China.
| | - Shuqiu Sun
- Key Laboratory of Etiologic Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health 23618104, 157 Baojian Road, Harbin, Heilongjiang 150081, China; Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Education Bureau of Heilongjiang Province &∼ Ministry of Health 23618104, 157 Baojian Road, Harbin, Heilongjiang 150081, China.
| | - Dan Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Minghui Li
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Alyce D Fly
- Department of Nutrition and Health Science, College of Health, Ball State University, Muncie, IN 47306, USA.
| | - Weikuan Gu
- Department of Orthopaedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, USA; Lt. Col. Luke Weathers, Jr. VA Medical Center, 116 N Pauline St, Memphis, TN 38105, USA; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Lan Yao
- College of Health Management, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang 150081, China.
| | - Dianjun Sun
- Key Laboratory of Etiologic Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health 23618104, 157 Baojian Road, Harbin, Heilongjiang 150081, China; Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Education Bureau of Heilongjiang Province &∼ Ministry of Health 23618104, 157 Baojian Road, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
5
|
Bian Y, Dong J, Zhou Z, Zhou H, Xu Y, Zhang Q, Chen C, Pi J. The spatiotemporal and paradoxical roles of NRF2 in renal toxicity and kidney diseases. Redox Biol 2025; 79:103476. [PMID: 39724848 PMCID: PMC11732127 DOI: 10.1016/j.redox.2024.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Over 10% of the global population is at risk to kidney disorders. Nuclear factor erythroid-derived 2-related factor 2 (NRF2), a pivotal regulator of redox homeostasis, orchestrates antioxidant response that effectively counters oxidative stress and inflammatory response in a variety of acute pathophysiological conditions, including acute kidney injury (AKI) and early stage of renal toxicity. However, if persistently activated, NRF2-induced transcriptional cascade may disrupt normal cell signaling and contribute to numerous chronic pathogenic processes such as fibrosis. In this concise review, we assembled experimental evidence to reveal the cell- and pathophysiological condition-specific roles of NRF2 in renal chemical toxicity, AKI, and chronic kidney disease (CKD), all of which are closely associated with oxidative stress and inflammation. By incorporating pertinent research findings on NRF2 activators, we dissected the spatiotemporal roles of NRF2 in distinct nephrotoxic settings and kidney diseases. Herein, NRF2 exhibits diverse expression patterns and downstream gene profiles across distinct kidney regions and cell types, and during specific phases of nephropathic progression. These changes are directly or indirectly connected to altered antioxidant defense, damage repair, inflammatory response, regulated cell death and fibrogenesis, culminating ultimately in either protective or deleterious outcomes. The spatiotemporal and paradoxical characteristics of NRF2 in mitigating nephrotoxicity suggest that translational application of NRF2 activation strategy for prevention and interventions of kidney injury are unlikely to be straightforward - right timing and spatial precision must be taken into consideration.
Collapse
Affiliation(s)
- Yiying Bian
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jize Dong
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhengsheng Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
6
|
Ma Y, Xu P, Xing H, Zhang Y, Li T, Ding X, Liu L, Niu Q. Rutin mitigates fluoride-induced nephrotoxicity by inhibiting ROS-mediated lysosomal membrane permeabilization and the GSDME-HMGB1 axis involved in pyroptosis and inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116195. [PMID: 38479315 DOI: 10.1016/j.ecoenv.2024.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
Fluoride is known to induce nephrotoxicity; however, the underlying mechanisms remain incompletely understood. Therefore, this study aims to explore the roles and mechanisms of lysosomal membrane permeabilization (LMP) and the GSDME/HMGB1 axis in fluoride-induced nephrotoxicity and the protective effects of rutin. Rutin, a naturally occurring flavonoid compound known for its antioxidative and anti-inflammatory properties, is primarily mediated by inhibiting oxidative stress and reducing proinflammatory markers. To that end, we established in vivo and in vitro models. In the in vivo study, rats were exposed to sodium fluoride (NaF) throughout pregnancy and up until 2 months after birth. In parallel, we employed in vitro models using HK-2 cells treated with NaF, n-acetyl-L-cysteine (NAC), or rutin. We assessed lysosomal permeability through immunofluorescence and analyzed relevant protein expression via western blotting. Our findings showed that NaF exposure increased ROS levels, resulting in enhanced LMP and increased cathepsin B (CTSB) and D (CTSD) expression. Furthermore, the exposure to NaF resulted in the upregulation of cleaved PARP1, cleaved caspase-3, GSDME-N, and HMGB1 expressions, indicating cell death and inflammation-induced renal damage. Rutin mitigates fluoride-induced nephrotoxicity by suppressing ROS-mediated LMP and the GSDME/HMGB1 axis, ultimately preventing fluoride-induced renal toxicity occurrence and development. In conclusion, our findings suggest that NaF induces renal damage through ROS-mediated activation of LMP and the GSDME/HMGB1 axis, leading to pyroptosis and inflammation. Rutin, a natural antioxidative and anti-inflammatory dietary supplement, offers a novel approach to prevent and treat fluoride-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yue Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Tingting Li
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Xueman Ding
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Li Liu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
7
|
Li M, Wang Y, Liu R, Shi M, Zhao Y, Zeng K, Fu R, Liu P. Fluoride exposure confers NRF2 activation in hepatocyte through both canonical and non-canonical signaling pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:252-263. [PMID: 37694959 DOI: 10.1002/tox.23954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Due to the high abundance in the Earth's crust and industrial application, fluoride is widely present in our living environment. However, excessive fluoride exposure causes toxicity in different organs. As the most important detoxification and excretion organ, liver is more easily involved in fluoride toxicity than other organs, and oxidative stress is considered as the key mechanism related with fluoride hepatotoxicity. In this study, we mainly investigated the role of nuclear factor erythroid-derived 2-like 2 (NRF2, a core transcription factor in oxidative stress) in fluoride exposure-induced hepatotoxicity as well as the related mechanism. Herein, liver cells (BNL CL.2) were treated with fluoride in different concentrations. The hepatotoxicity and NRF2 signaling pathway were analyzed respectively. Our results indicated that excessive fluoride (over 1 mM) resulted in obvious toxicity in hepatocyte and activated NRF2 and NRF2 target genes. The increased ROS generation after fluoride exposure suppressed KEAP1-induced NRF2 ubiquitylation and degradation. Meanwhile, fluoride exposure also led to blockage of autophagic flux and upregulation of p62, which contributed to activation of NRF2 via competitive binding with KEAP1. Both pharmaceutical activation and genetic activation of NRF2 accelerated fluoride exposure-induced hepatotoxicity. Thus, the upregulation of NRF2 in hepatocyte after fluoride exposure can be regarded as a cellular self-defense, and NRF2-KEAP1 system could be a novel molecular target against fluoride exposure-induced hepatotoxicity.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Rongrong Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengjiao Shi
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yishu Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kaixuan Zeng
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| |
Collapse
|
8
|
Su Q, Li M, Yang L, Fan L, Liu P, Ying X, Zhao Y, Tian X, Tian F, Zhao Q, Li B, Gao Y, Qiu Y, Song G, Yan X. ASC/Caspase-1-activated endothelial cells pyroptosis is involved in vascular injury induced by arsenic combined with high-fat diet. Toxicology 2023; 500:153691. [PMID: 38042275 DOI: 10.1016/j.tox.2023.153691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Environmental arsenic (As) or high-fat diet (HFD) exposure alone are risk factors for the development of cardiovascular disease (CVDs). However, the effects and mechanisms of co-exposure to As and HFD on the cardiovascular system remain unclear. The current study aimed to investigate the combined effects of As and HFD on vascular injury and shed some light on the underlying mechanisms. The results showed that co-exposure to As and HFD resulted in a significant increase in serum lipid levels and significant lipid accumulation in the aorta of rats compared with exposure to As or HFD alone. Meanwhile, the combined exposure altered blood pressure and disrupted the morphological structure of the abdominal aorta in rats. Furthermore, As combined with HFD exposure upregulated the expression of vascular endothelial cells pyroptosis-related proteins (ASC, Pro-caspase-1, Caspase-1, IL-18, IL-1β), as well as the expression of vascular endothelial adhesion factors (VCAM-1 and ICAM-1). More importantly, we found that with increasing exposure time, vascular injury-related indicators were significantly higher in the combined exposure group compared with exposure to As or HFD alone, and the vascular injury was more severe in female rats compared with male rats. Taken together, these results suggested that the combination of As and HFD induced vascular endothelial cells pyroptosis through activation of the ASC/Caspase-1 pathway. Therefore, vascular endothelial cells pyroptosis may be a potential molecular mechanism for vascular injury induced by As combined with HFD exposure.
Collapse
Affiliation(s)
- Qiang Su
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Changzhi Maternal and Child Health Hospital, Changzhi, Shanxi 046000, China
| | - Lingling Yang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Linhua Fan
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
9
|
Tian X, Yan X, Chen X, Liu P, Sun Z, Niu R. Identifying Serum Metabolites and Gut Bacterial Species Associated with Nephrotoxicity Caused by Arsenic and Fluoride Exposure. Biol Trace Elem Res 2023; 201:4870-4881. [PMID: 36692655 DOI: 10.1007/s12011-023-03568-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Co-contamination of arsenic (As) and fluoride (F) is widely distributed in groundwater, which are known risk factors for the nephrotoxicity. Emerging evidence has linked environmentally associated nephrotoxicity with the disturbance of gut microbiota and blood metabolites. In this study, we generated gut microbiota and blood metabolomic profile and identified multiple serum metabolites and gut bacteria species, which were associated with kidney injury on rat model exposed to As and F alone or combined. Combined As and F exposure significantly increased creatinine level. Abnormal autophagosomes and lysosome were observed, and the autophagic genes were enhanced in kidney tissue after single and combined As and F exposure. The metabolome data showed that single and combined As and F exposure remarkably altered the serum metabolites associated with the proximal tubule reabsorption function pathway, with glutamine and alpha-ketoglutarate level decreased in all exposed group. Furthermore, phosphatidylethanolamine (PE), the key contributor of autophagosomes, was decreased significantly in As and F + As exposed groups during the screen of autophagy-animal pathway. Multiple altered gut bacterial microbiota at phylum and species levels post As and F exposure were associated with targeted kidney injury, including p_Bacteroidetes, s_Chromohalobacter_unclassified, s_Halomonas_unclassified, s_Ignatzschineria_unclassified, s_Bacillus_subtilis, and s_Brevundimonas_sp._NA6. Meanwhile, our analysis indicated that As and F co-exposure possessed an interactive influence on gut microbiota. In conclusion, single or combined As and F exposure leads to the disruption of serum metabolic and gut microbiota profiles. Multiple metabolites and bacterial species are identified and associated with nephrotoxicity, which have potential to be developed as biomarkers of As and/or F-induced kidney damage.
Collapse
Affiliation(s)
- Xiaolin Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xushen Chen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
10
|
Zhang S, Zheng Y, Du H, Zhang W, Li H, Ou Y, Xu F, Lin J, Fu H, Ni X, Chang LJ, Shu G. The Pathophysiological Changes and Clinical Effects of Tetramethylpyrazine in ICR Mice with Fluoride-Induced Hepatopathy. Molecules 2023; 28:4849. [PMID: 37375405 DOI: 10.3390/molecules28124849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The excessive intake of fluoride, one of the trace elements required to maintain health, leads to liver injury. Tetramethylpyrazine (TMP) is a kind of traditional Chinese medicine monomer with a good antioxidant and hepatoprotective function. The aim of this study was to investigate the effect of TMP on liver injury induced by acute fluorosis. A total of 60 1-month-old male ICR mice were selected. All mice were randomly divided into five groups: a control (K) group, a model (F) group, a low-dose (LT) group, a medium-dose (MT) group, and a high-dose (HT) group. The control and model groups were given distilled water, while 40 mg/kg (LT), 80 mg/kg (MT), or 160 mg/kg (HT) of TMP was fed by gavage for two weeks, with a maximum gavage volume for the mice of 0.2 mL/10 g/d. Except for the control group, all groups were given fluoride (35 mg/kg) by an intraperitoneal injection on the last day of the experiment. The results of this study showed that, compared with the model group, TMP alleviated the pathological changes in the liver induced by the fluoride and improved the ultrastructure of liver cells; TMP significantly decreased the levels of ALT, AST, and MDA (p < 0.05) and increased the levels of T-AOC, T-SOD, and GSH (p < 0.05). The results of mRNA detection showed that TMP significantly increased the mRNA expression levels of Nrf2, HO-1, CAT, GSH-Px, and SOD in the liver compared with the model group (p < 0.05). In conclusion, TMP can inhibit oxidative stress by activating the Nrf2 pathway and alleviate the liver injury induced by fluoride.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611100, China
| | - Yilei Zheng
- Center for Veterinary Sciences, Zhejiang University, Hangzhou 310030, China
| | - Hong Du
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611100, China
| | - Wei Zhang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611100, China
| | - Haohuan Li
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611100, China
| | - Yangping Ou
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611100, China
| | - Funeng Xu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611100, China
| | - Juchun Lin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611100, China
| | - Hualin Fu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611100, China
| | - Xueqing Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Li-Jen Chang
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611100, China
| |
Collapse
|
11
|
Li D, Yang C, Xu X, Li S, Luo G, Zhang C, Wang Z, Sun D, Cheng J, Zhang Q. Low dosage fluorine ameliorates the bioaccumulation, hepatorenal dysfunction and oxidative stress, and gut microbiota perturbation of cadmium in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121375. [PMID: 36863438 DOI: 10.1016/j.envpol.2023.121375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Many "hot spot" geographic areas around the world with soils and crops co-polluted with cadmium (Cd) and fluorine (F), two of the most representative pollutants in the environment. However, it still exists argumentative on the dose-effect relationship between F and Cd so far. To explore this, a rat model was established to evaluate the effects of F on Cd-mediated bioaccumulation, hepatorenal dysfunction and oxidative stress, and the disorder of intestinal microbiota as well. 30 healthy rats were randomly assigned to Control group (C group), Cd 1 mg/kg (Cd group), Cd 1 mg/kg and F 15 mg/kg (L group), Cd 1 mg/kg and F 45 mg/kg (M group), and Cd 1 mg/kg and F 75 mg/kg (H group) for 12 weeks by gavage. Our results showed that Cd exposure could accumulate in organs, cause hepatorenal function damage and oxidative stress, and disorder of gut microflora. However, different dosages of F showed various effects on Cd-induced damages in liver, kidney, and intestine, and only the low supplement of F showed a consistent trend. After low supplement of F, Cd levels were declined by 31.29% for liver, 18.31% for kidney, and 2.89% for colon, respectively. The serum aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatinine (Cr), and N-acetyl-β-glucosaminidase (NAG) were significantly reduced (p < 0.01); The activity of superoxide dismutase (SOD) was elevated and mRNA expression level of NAD(P)H quinone oxidoreductase 1 (NQO1) was decreased in the liver and kidney (p < 0.05). Moreover, low F dosage up-regulated the abundance of Lactobacillus from 15.56% to 28.73% and the 6.23% of F/B ratio was declined to 3.70%. Collectively, this highlights that low dosage of F might be a potential strategy to ameliorate the hazardous effects by Cd-exposed in the environment.
Collapse
Affiliation(s)
- Dashuan Li
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Chaolian Yang
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Xiaomei Xu
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Shanghang Li
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Guofei Luo
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Cheng Zhang
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Zelan Wang
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Dali Sun
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Jianzhong Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Qinghai Zhang
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
12
|
Tian X, Wang M, Ying X, Dong N, Li M, Feng J, Zhao Y, Zhao Q, Tian F, Li B, Zhang W, Qiu Y, Yan X. Co-exposure to arsenic and fluoride to explore the interactive effect on oxidative stress and autophagy in myocardial tissue and cell. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114647. [PMID: 36801539 DOI: 10.1016/j.ecoenv.2023.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Co-contamination of arsenic and fluoride is widely distributed in groundwater. However, little is known about the interactively influence of arsenic and fluoride, especially the combined mechanism in cardiotoxicity. Cellular and animal models exposure to arsenic and fluoride were established to assess the oxidative stress and autophagy mechanism of cardiotoxic damage using the factorial design, a widely used statistical method for assessing two factor interventions. In vivo, combined exposure to high arsenic (50 mg/L) and high fluoride (100 mg/L) induced myocardial injury. The damage is accompanied by accumulation of myocardial enzyme, mitochondrial disorder, and excessive oxidative stress. Further experiment identified that arsenic and fluoride induced the accumulation of autophagosome and increased expression level of autophagy related genes during the cardiotoxicity process. These findings were further demonstrated through the in vitro model of arsenic and fluoride-treated the H9c2 cells. Additionally, combined of arsenic-fluoride exposure possesses the interactively influence on oxidative stress and autophagy, contributing to the myocardial cell toxicity. In conclusion, our data suggest that oxidative stress and autophagy are involved in the process of cardiotoxic injury, and that these indicators showed interaction effect in response to the combined exposure of arsenic and fluoride.
Collapse
Affiliation(s)
- Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Nisha Dong
- Heping Hospital Affiliated To Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jing Feng
- Laboratory of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenping Zhang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
13
|
Maternal Exposure to Acephate Caused Nephrotoxicity in Adult Offspring Rats Mediated by Excessive Autophagy Activation, Oxidative Stress Induction, and Altered Epithelial Sodium Channel and Na +/K +-ATPase Gene Expression. BIOLOGY 2023; 12:biology12020162. [PMID: 36829441 PMCID: PMC9952565 DOI: 10.3390/biology12020162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
This study examined how maternal exposure to acephate-an organophosphate-based insecticide-affected the renal development in rat offspring during adulthood. Virgin female Wistar rats were randomly allocated to three groups: group 1 (control) received sterile water; groups 2 and 3 were intragastrically exposed to low (14 mg/kg) and high (28 mg/kg) doses of acephate from day 6 of pregnancy until delivery, respectively. Further, the offspring of the adult female rats were euthanized in postnatal week 8. Compared with the controls, the adult rat offspring with exposure to low and high doses of acephate exhibited elevated plasma creatinine and blood urea nitrogen levels. Additionally, immunofluorescence analysis revealed the upregulation of autophagic marker genes (Beclin-1 and LC-3) in the acephate-treated rat offspring, thereby suggesting the induction of an autophagic mechanism. Notably, the increased malondialdehyde level, decreased glutathione level, and decreased superoxide dismutase and catalase activities confirmed the ability of acephate to induce oxidative stress and apoptosis in the kidneys of the rat offspring. This may explain the renal histopathological injury detected using hematoxylin and eosin staining. Furthermore, a reverse transcription polymerase chain reaction revealed that the mRNA expression levels of the Na+/K+-ATPase and the epithelial sodium channel (ENaC) genes were significantly higher in the kidney of female offspring than that of controls owing to acephate toxicity. However, there was no significant effect of acephate on the expression of NHE3 in the treatment group compared with the control group. Overall, the present findings suggest that oxidative stress caused by prenatal exposure to acephate causes nephrotoxicity and histopathological alterations in adult rat offspring, likely by actions on renal ENaC and Na+/K+-ATPase genes as well as the autophagic markers Beclin-1 and LC-3.
Collapse
|
14
|
Li F, Liao S, Zhao Y, Li X, Wang Z, Liao C, Sun D, Zhang Q, Lu Q. Soil exposure is the major fluoride exposure pathways for residents from the high-fluoride karst region in Southwest China. CHEMOSPHERE 2023; 310:136831. [PMID: 36241100 DOI: 10.1016/j.chemosphere.2022.136831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
In the karst areas of southwest China, soil fluoride levels are higher than in China (478 mg kg-1) and world (200 mg kg-1). High levels of F in the environment might pose a health risk to humans. The comprehensive exposure risk must be studied in this area. Herein, samples of crops and soil were collected from Bijie City, a typical karst area in southwest China, to investigate the pollution level and evaluate the comprehensive F exposure risk. The single-factor index (PFw) and the geological accumulation index (Igeo) were used. The hazard index (HI) was applied to assess exposure risk from multiple exposure routes. The results revealed that there is considerable F contamination in soil and crops in the study area. Average soil total fluorine (Ft) was 1139.13 mg kg-1, and soil water soluble F (Fw) was 3.792 mg kg-1. In corn, rice, wheat, and potatoes, F contents were 1.167-9.585, 1.222-6.698, 1.587-9.976, and 1.797-9.143 mg kg-1, respectively. The mean values of HI were 4.45 and 2.42 for children and adults, respectively, > 1, showing potential health risk exists. Youngsters are at a greater exposure risk than adults. From the results of contribution ratios of different exposure routes for health risk, the major exposure risk was determined to be from soil exposure. Based on this, we suggest that risk managers mainly strive to control the soil fluoride level and implement the risk education and communication.
Collapse
Affiliation(s)
- Fumin Li
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Shengmei Liao
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yifang Zhao
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xiangxiang Li
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Zelan Wang
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Chaoxuan Liao
- Guizhou Academy of Testing and Analysis, Guizhou, Guiyang, 550014, China
| | - Dali Sun
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Qinghai Zhang
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Qinhui Lu
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
15
|
Zhu X, Li H, Zhou L, Jiang H, Ji M, Chen J. Evaluation of the gut microbiome alterations in healthy rats after dietary exposure to different synthetic ZnO nanoparticles. Life Sci 2022; 312:121250. [PMID: 36455650 DOI: 10.1016/j.lfs.2022.121250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
AIMS Although synthetic ZnO nanoparticles (Nano-ZnO) as an alternative of ZnO compounds have been extensively used such as in livestock production, the increased consuming of Nano-ZnO has raised considerable concerns in environmental pollution and public health. Because of the low digestion of Nano-ZnO, the systematic studies on their interactions with gut microbiota remain to be clarified. MATERIALS AND METHODS Nano-ZnOs were prepared by co-precipitation (ZnO-cp) and high temperature thermal decomposition (ZnO-td) as well as the commercial type (ZnO-s). Transmission electron microscopy (TEM) was used to monitor the morphology of Nano-ZnO. CCK-8 assay was used for cytotoxicity evaluation. Total antioxidant capacity assay, total superoxide dismutase assay, and lipid peroxidation assay were used to evaluate oxidative states of rats. 16S rRNA was used to study the impact of Nano-ZnO on the rat gut microbiome. KEY FINDINGS Both ZnO-cp and ZnO-td exhibited low cytotoxicity while ZnO-s and ZnO-td exhibited prominent antibacterial activities. After a 28-day oral feeding with 1000 mg/kg Zn at dietary dosage, ZnO-s showed slight effect on causing oxidative stress in comparison with that of ZnO-cp and ZnO-td. Results of 16S rRNA sequencing analysis indicated that ZnO-td as a promising short-term nano-supplement can increase probiotics abundances like strains belonged to the genus Lactobacillus and provide the antipathogenic effect. SIGNIFICANCE The results of the gut microbiome alteration by synthetic Nano-ZnO not only provide solution to exposure monitoring of environmental hazard, but rationalize their large-scale manufacture as alternative additive in the food chain.
Collapse
Affiliation(s)
- Xinyi Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Henghui Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liuzhu Zhou
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166 Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing 211166, China
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China.
| |
Collapse
|
16
|
Saeed M, Rehman MYA, Farooqi A, Malik RN. Arsenic and fluoride co-exposure through drinking water and their impacts on intelligence and oxidative stress among rural school-aged children of Lahore and Kasur districts, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3929-3951. [PMID: 34751868 DOI: 10.1007/s10653-021-01141-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As), and fluoride (F-) are potent contaminants with established carcinogenic and non-carcinogenic impacts on the exposed populations globally. Despite elevated groundwater As and F- levels being reported from various regions of Pakistan no biomonitoring study has been reported yet to address the co-exposure impact of As and F- among school children. We aimed to investigate the effects of these two contaminants on dental fluorosis and intelligence quotient (IQ) along with the induction of oxidative stress in rural children under co-exposed conditions. A total of 148 children (5 to 16 years old) from the exposed and control group were recruited in the current study from endemic rural areas of Lahore and Kasur districts, Pakistan having elevated As and F- levels in drinking water than permissible limits. We monitored malondialdehyde and its probable association with antioxidants activity (SOD, CAT, and GR) as a biomarker of oxidative stress. GSTM1/T1 polymorphisms were measured to find the impact of As on health parameters. Mean urinary concentrations of As (2.70 vs. 0.016 µg/L, P < 0.000) and F- (3.27 vs. 0.24 mg/L, P < 0.000) as well as the frequency of dental fluorosis were found elevated among the exposed group. The cases of children with lower IQ were observed high in the exposed group. Additionally, lower concentrations of antioxidants (SOD, CAT, and GR) were found suggesting high susceptibility to F- toxicity. The findings suggest that F- accounted for high variations in health parameters of children under the co-exposure conditions with As.
Collapse
Affiliation(s)
- Muhammad Saeed
- Environmental Health and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Yasir Abdur Rehman
- Environmental Health and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Abida Farooqi
- Environmental Geochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Riffat Naseem Malik
- Environmental Health and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
17
|
Orta Yilmaz B, Aydin Y. Disruption of Leydig cell steroidogenic function by sodium arsenite and/or sodium fluoride. Theriogenology 2022; 193:146-156. [PMID: 36182826 DOI: 10.1016/j.theriogenology.2022.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
Arsenite (As) and fluoride (F), both of which are linked to a variety of human ailments, are regularly found in underground drinking water. Numerous studies have shown that As and/or F have negative impacts on testicular function and fertility. For this purpose, mouse Leydig cells, the main cells responsible for the generation and regulation of steroid hormones such as testosterone, were used to reveal the effects of individual and combined exposure of As and F on the steroidogenic pathway in the male reproductive system. Leydig cells were treated with 0.39 μM (50 ppb) As and 0.0476 mM (2 ppm) F alone and in combination for 24 h. The findings revealed that As and/or F exposure induced oxidative stress and apoptosis in Leydig cells and altered antioxidant equilibrium of the cells by reducing superoxide dismutase, catalase, glutathione peroxidase. Additionally, individual and combined administration of As and/or F significantly supressed the expression of both steroidogenic enzymes and the genes encoding these enzymes. In conclusion, this study showed that exposure to As and F at environmentally relevant concentrations dispersed by water decreased testosterone production in Leydig cells, an important cell of the male reproductive system. The deleterious effects of even the lowest concentrations of As and F elements that can reach humans from the environment on the Leydig cell, and therefore on male infertility, emphasize necessity new safe limits for these elements.
Collapse
Affiliation(s)
- Banu Orta Yilmaz
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey.
| | - Yasemin Aydin
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
18
|
Babu S, Manoharan S, Ottappilakkil H, Perumal E. Role of oxidative stress-mediated cell death and signaling pathways in experimental fluorosis. Chem Biol Interact 2022; 365:110106. [PMID: 35985521 DOI: 10.1016/j.cbi.2022.110106] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Free radicals and other oxidants have enticed the interest of researchers in the fields of biology and medicine, owing to their role in several pathophysiological conditions, including fluorosis (Fluoride toxicity). Radical species affect cellular biomolecules such as nucleic acids, proteins, and lipids, resulting in oxidative stress. Reactive oxygen species-mediated oxidative stress is a common denominator in fluoride toxicity. Fluorosis is a global health concern caused by excessive fluoride consumption over time. Fluoride alters the cellular redox homeostasis, and its toxicity leads to the activation of cell death mechanisms like apoptosis, autophagy, and necroptosis. Even though a surfeit of signaling pathways is involved in fluorosis, their toxicity mechanisms are not fully understood. Thus, this review aims to understand the role of reactive species in fluoride toxicity with an outlook on the effects of fluoride in vitro and in vivo models. Also, we emphasized the signal transduction pathways and the mechanism of cell death implicated in fluoride-induced oxidative stress.
Collapse
Affiliation(s)
- Srija Babu
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Harsheema Ottappilakkil
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
19
|
Avila-Rojas SH, Aparicio-Trejo OE, Sanchez-Guerra MA, Barbier OC. Effects of fluoride exposure on mitochondrial function: Energy metabolism, dynamics, biogenesis and mitophagy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103916. [PMID: 35738460 DOI: 10.1016/j.etap.2022.103916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Fluoride is ubiquitous in the environment. Furthermore, drinking water represents the main source of exposure to fluoride for humans. Interestingly, low fluoride concentrations have beneficial effects on bone and teeth development; however, chronic fluoride exposure has harmful effects on human health. Besides, preclinical studies associate fluoride toxicity with oxidative stress, inflammation, and apoptosis. On the other hand, it is well-known that mitochondria play a key role in reactive oxygen species production. By contrast, fluoride's effect on processes such as mitochondrial dynamics, biogenesis and mitophagy are little known. These processes modulate the size, content, and distribution of mitochondria and their depuration help to counter the reactive oxygen species production and cytochrome c release, thereby allowing cell survival. However, a maladaptive response could enhance fluoride-induced toxicity. The present review gives a brief account of fluoride-induced mitochondrial alterations on soft and hard tissues, including liver, reproductive organs, heart, brain, lung, kidney, bone, and tooth.
Collapse
Affiliation(s)
- Sabino Hazael Avila-Rojas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Toxicología (CINVESTAV-IPN), Av. IPN No. 2508 Col., San Pedro Zacatenco, México CP 07360, Mexico.
| | | | - Marco Antonio Sanchez-Guerra
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico 1100, Mexico.
| | - Olivier Christophe Barbier
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Toxicología (CINVESTAV-IPN), Av. IPN No. 2508 Col., San Pedro Zacatenco, México CP 07360, Mexico.
| |
Collapse
|
20
|
Wu Y, Wang W, Yu Z, Yang K, Huang Z, Chen Z, Yan X, Hu H, Wang Z. Mushroom-brush transitional conformation of mucus-inert PEG coating improves co-delivery of oral liposome for intestinal metaplasia therapy. BIOMATERIALS ADVANCES 2022; 136:212798. [PMID: 35929326 DOI: 10.1016/j.bioadv.2022.212798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The blocking of gastric mucosal intestinal metaplasia (IM) has been considered to be the pivotal method to control the occurrence of gastric cancer. However, there is still a lack of effective therapeutic agent. Here, we developed mucus-penetrating liposome system by covering surface with polyethylene glycol (PEG) chains (hydrophilic and electroneutral mucus-inert material) to co-delivery candidate drugs combination. Then studied the impact on the transmucus performance of different conformations, which were constructed by controlling the density of PEG chains on the surface. The results showed that the particle size of 5%PEG-Lip was less than 120 nm, the polydispersity index was less than 0.3, and the surface potential tended to be neutral. The D value (long chain spacing) of 5% PEG-Lip was 3.25 nm, which was close to the RF value (diameter of spherical PEG long chain group without external force interference) of 3.44 nm, and the L value (extended length) was slightly larger than 3.44 nm. In this case, PEG showed mushroom-brush transitional conformation on the surface of liposomes. This conformation was not only promoted stable delivery, but also shielded the capture of mucus more favorably, leading to a more unrestricted transportation in mucus. The further in vivo experimental results demonstrated the rapid distribution of liposomes, which gradually appeared both in the superficial and deep glandular of mucosa and gland cells at 1 h and absorbed into the cell cytoplasm at 6 h. The 5% PEG-Lip with the mushroom-brush transitional configuration recalled abnormal organ index and improved inflammation and intestinal metaplasia. The modified PEG conformation assay presented here was more suitable for liposomes. This PEG-modified liposome system has potential of mucus-penetrating and provides a strategy for local treatment of gastric mucosal intestinal metaplasia.
Collapse
Affiliation(s)
- Yuyi Wu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Yu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Yang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zecheng Huang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Yan
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhanguo Wang
- Collaborative Innovation Laboratory of Metabonomics, Standard Research and Extension Base & Collaborative Innovation Center of Qiang Medicine, School of Medicine, Chengdu University, Chengdu, China.
| |
Collapse
|
21
|
Zhou W, Luo W, Liu D, Canavese F, Li L, Zhao Q. Fluoride increases the susceptibility of developmental dysplasia of the hip via increasing capsular laxity triggered by cell apoptosis and oxidative stress in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113408. [PMID: 35298972 DOI: 10.1016/j.ecoenv.2022.113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The etiology of developmental dysplasia of the hip (DDH) is multifactorial, including breech presentation and hip capsular laxity. In particular, hip laxity is the main contributor to DDH by changing the ratio and distribution of collagens. Also, fluoride (F) affects collagens from various tissue besides bone and tooth. To investigate the association of DDH and excessive F intake, we conducted this research in lab on cell and animal model simultaneously. We established animal model of combination of DDH and F toxicity. The incidence of DDH in each group was calculated, and hip capsules were collected for testing histopathological and ultrastructural changes. The primary fibroblasts were further extracted from hip capsule and treated with F. The expression of collagen type I and III was both examined in vivo and in vitro, and the level of oxidative stress and apoptosis was also tested identically. We revealed that the incidence of DDH increased with F concentration. Furthermore, the oxidative stress and apoptosis levels of hip capsules and fibroblasts both increased after F exposure. Therefore, this study shows that excessive F intake increases susceptibility to DDH by altering hip capsular laxity in vivo and in vitro respectively. We believe that F might be a risk factor for DDH by increasing hip laxity induced by triggering fibroblast oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Weizheng Zhou
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Federico Canavese
- Department of Pediatric Orthopedics, Lille University Center, Jeanne de Flandres Hospital, Avenue Eugène-Avinée, Lille 59037, France
| | - Lianyong Li
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China.
| | - Qun Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| |
Collapse
|
22
|
Singh RD, Koshta K, Tiwari R, Khan H, Sharma V, Srivastava V. Developmental Exposure to Endocrine Disrupting Chemicals and Its Impact on Cardio-Metabolic-Renal Health. FRONTIERS IN TOXICOLOGY 2022; 3:663372. [PMID: 35295127 PMCID: PMC8915840 DOI: 10.3389/ftox.2021.663372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023] Open
Abstract
Developmental origin of health and disease postulates that the footprints of early life exposure are followed as an endowment of risk for adult diseases. Epidemiological and experimental evidence suggest that an adverse fetal environment can affect the health of offspring throughout their lifetime. Exposure to endocrine disrupting chemicals (EDCs) during fetal development can affect the hormone system homeostasis, resulting in a broad spectrum of adverse health outcomes. In the present review, we have described the effect of prenatal EDCs exposure on cardio-metabolic-renal health, using the available epidemiological and experimental evidence. We also discuss the potential mechanisms of their action, which include epigenetic changes, hormonal imprinting, loss of energy homeostasis, and metabolic perturbations. The effect of prenatal EDCs exposure on cardio-metabolic-renal health, which is a complex condition of an altered biological landscape, can be further examined in the case of other environmental stressors with a similar mode of action.
Collapse
Affiliation(s)
- Radha Dutt Singh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Kavita Koshta
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Ratnakar Tiwari
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University Chicago, Chicago, IL, United States
| | - Hafizurrahman Khan
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India
| | - Vineeta Sharma
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
23
|
Li M, Feng J, Cheng Y, Dong N, Tian X, Liu P, Zhao Y, Qiu Y, Tian F, Lyu Y, Zhao Q, Wei C, Wang M, Yuan J, Ying X, Ren X, Yan X. Arsenic-fluoride co-exposure induced endoplasmic reticulum stress resulting in apoptosis in rat heart and H9c2 cells. CHEMOSPHERE 2022; 288:132518. [PMID: 34637859 DOI: 10.1016/j.chemosphere.2021.132518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Exposure to arsenic (As) or fluoride (F) has been shown to cause cardiovascular disease (CVDs). However, evidence about the effects of co-exposure to As and F on myocardium and their mechanisms remain scarce. Our aim was to fill the gap by establishing rat and H9c2 cell exposure models. We determined the effects of As and/or F exposure on the survival rate, apoptosis rate, morphology and ultrastructure of H9c2 cells; in addition, we tested the related genes and proteins of endoplasmic reticulum stress (ERS) and apoptosis in H9c2 cells and rat heart tissues. The results showed that As and/or F exposure induced early apoptosis of H9c2 cells and caused endoplasmic reticulum expansion. Additionally, the mRNA and protein expression levels of GRP78, PERK and CHOP in H9c2 cells were higher in the exposure groups than in the control group, and could be inhibited by 4-PBA. Furthermore, we found that As and/or F exposure increased the expression level of GRP78 in rat heart tissues, but interestingly, the expression level of CHOP protein was increased in the F and As groups, while significantly decreased in the co-exposure group. Overall, our results suggested that ERS-induced apoptosis was involved in the damage of myocardium by As and/or F exposure. In addition, factorial analysis results showed that As and F mainly play antagonistic roles in inducing myocardial injury, initiating ERS and apoptosis after exposure.
Collapse
Affiliation(s)
- Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jing Feng
- Laboratory of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ying Cheng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Nisha Dong
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yi Lyu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jiyu Yuan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xuefeng Ren
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA.
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
24
|
Wu L, Fan C, Zhang Z, Zhang X, Lou Q, Guo N, Huang W, Zhang M, Yin F, Guan Z, Yang Y, Gao Y. Association between fluoride exposure and kidney function in adults: A cross-sectional study based on endemic fluorosis area in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112735. [PMID: 34478979 DOI: 10.1016/j.ecoenv.2021.112735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The kidney toxicity of fluoride exposure has been demonstrated in animal studies, and a few studies have reported kidney function injury in children with fluoride exposure. However, epidemiological information for the effects of long-term fluoride exposure on adult kidney function remains limited. METHODS We conducted a cross-sectional investigation in Wenshui County, Shanxi Province to examine the association between fluoride exposure and kidney function in adults, and a total of 1070 adults were included in our study. Urinary fluoride concentrations were measured using the national standardized ion selective electrode method. And markers of kidney function injury (urinary NAG, serum RBP, serum Urea, serum C3, serum UA and serum αl-MG) were measured using automatic biochemical analyzer. Multivariate linear regression analysis and binary logistic regression model were used to assess the relationship between urinary fluoride and markers of kidney function injury. RESULTS Urinary fluoride was positively correlated with urinary NAG and serum Urea, negatively correlated with serum C3. In multivariate linear regression models, every 1 mg/L increment of urinary fluoride was associated with 1.583 U/L increase in urinary NAG, 0.199 mmol/L increase in serum Urea, 0.037 g/L decrease in serum C3 after adjusting for potential confounding factors. In the binary logistic regression model, higher levels of urinary fluoride were associated with an increased risk of kidney function injury. Determination of kidney function based on urinary NAG, every 1 mg/L increment in the urinary fluoride concentrations was associated with significant increases of 22.8% in the risk of kidney function injury after adjusting for potential confounding factors. Sensitivity analysis for the association between urinary fluoride concentrations and markers of kidney function (urinary NAG, serum Urea, and serum C3) by adjusting for the covariates, it is consistent with the primary analysis. CONCLUSIONS Our study suggests that long-term fluoride exposure is associated with kidney function in adults, and urinary NAG is a sensitive and robust marker of kidney dysfunction caused by fluoride exposure, which could be considered for the identification of early kidney injury in endemic fluorosis areas.
Collapse
Affiliation(s)
- Liaowei Wu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Chenlu Fan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Zaihong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xin Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Ning Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Wei Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Zhizhong Guan
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang 550004, Guizhou Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
25
|
Ning H, Li C, Yin Z, Hu D, Ge Y, Chen L. Fluoride exposure decreased neurite formation on cerebral cortical neurons of SD rats in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50975-50982. [PMID: 33977427 DOI: 10.1007/s11356-021-13950-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Fluoride, a geochemical element, can damage the brain and result in dysfunction of the central nervous system. In recent years, fluoride-induced neurotoxicity has become one of research focuses of environmental toxicology. Our previous study showed that fluoride could induce the structural damages of the cerebral cortex and reduce the learning and memory abilities of mice offspring. However, the underlying mechanisms of these effects remain unclear. In this study, primary neurons were isolated from the cerebral cortices of postnatal 1-day SD rats. The primary cultured cerebral cortical neurons were adherent and the cellular network was obvious. Neurons were identified by Nissl's staining and were used for experiments. Different concentrations of sodium fluoride (0.5, 1.0, 1.5, 2.0 and 2.5 mM) were chosen to explore its toxic effects on neuron of SD rats in vitro. Results showed that neuronal morphology was obviously damaged in 2.0 and 2.5 mM, but was not adversely affected in 0.5 and 1 mM. Further studies revealed that the neurites of neuron were shrunken and even became fractured with the increase in NaF dose, which have been detected by scanning electron microscopy (SEM). Meanwhile, TEM showed marginated chromatin, widened nuclear gaps, damaged nuclei and swollen or even absent mitochondria in 1.5, 2 and 2.5 mM group. The cytoskeletal staining was consistent with the above results. The number of neurites of cerebral cortical neuron significantly decreased after fluoride exposure by immunofluorescent assay. In summary, high fluoride (1.5, 2 and 2.5 mM) concentrations exerted a significant toxic effect on the cellular morphologies and neural formation of primary cultured cortical neurons. These findings provide new insights into the roles of NaF in neuronal damage and can contribute to an improved understanding of fluoride-induced neurotoxicity.
Collapse
Affiliation(s)
- Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Chong Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
26
|
Yu H, Zhang Y, Zhang P, Shang X, Lu Y, Fu Y, Li Y. Effects of Fluorine on Intestinal Structural Integrity and Microbiota Composition of Common Carp. Biol Trace Elem Res 2021; 199:3489-3496. [PMID: 33119815 DOI: 10.1007/s12011-020-02456-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Fluorine is an environmental toxicant and exposure of fluorine could induce various health disorders. Gut microbiota has been known to be involved in maintaining animal or human health. Therefore, in the present study, we aimed to evaluate the relationship between fluorine exposure and gut microbiota in common carp. Gut microbiota composition was detected by 16S rRNA gene sequencing. Intestinal structural integrity was assessed by hematoxylin-eosin staining and tight junction protection detection. The results showed that exposure of carp to fluorine led to the injury of intestinal tissues. And compared to the control group, the expression of tight junction protein ZO-1 and occludin was decreased. Meanwhile, the gut microbial diversity and composition were changed by fluorine exposure. At the phylum level, the abundance of Fusobacteria and Firmicutes increased significantly, and the abundance of Actinobacteria decreased markedly after treatment of fluorine. At the genus level, interestingly, we found the abundance of Plesiomonas, an important pathogenic bacteria, increased significantly by the treatment of fluorine. And the abundance of Akkermansia, a critical probiotics, was markedly inhibited by the treatment of fluorine. In conclusion, the results suggested fluorine exposure changed the gut microbiome composition and led to the damage of intestinal structural integrity.
Collapse
Affiliation(s)
- Huiyuan Yu
- School of Public Health of Jilin University, Changchun, China
| | - Yue Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun, 130062, China
| | - Xinchi Shang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuting Lu
- School of Public Health of Jilin University, Changchun, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China.
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
27
|
Yan X, Chen X, Tian X, Qiu Y, Wang J, Yu G, Dong N, Feng J, Xie J, Nalesnik M, Niu R, Xiao B, Song G, Quinones S, Ren X. Co-exposure to inorganic arsenic and fluoride prominently disrupts gut microbiota equilibrium and induces adverse cardiovascular effects in offspring rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144924. [PMID: 33636766 DOI: 10.1016/j.scitotenv.2020.144924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/07/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Co-exposure to inorganic arsenic (iAs) and fluoride (F-) and their collective actions on cardiovascular systems have been recognized as a global public health concern. Emerging studies suggest an association between the perturbation of gut bacterial microbiota and adverse cardiovascular effects (CVEs), both of which are the consequence of iAs and F- exposure in human and experimental animals. The aim of this study was to fill the gap of understanding the relationship among co-exposure to iAs and F-, gut microbiota perturbation, and adverse CVEs. We systematically assessed cardiac morphology and functions (blood pressure, echocardiogram, and electrocardiogram), and generated gut microbiota profiles using 16S rRNA gene sequencing on rats exposed to iAs (50 mg/L NaAsO2), F- (100 mg/L NaF) or combined iAs and F- (50 mg/L NaAsO2 + 100 mg/L NaF), in utero and during early postnatal periods (postnatal day 90). Correlation analysis was then performed to examine relationship between significantly altered microbiota and cardiac performance indices. Our results showed that co-exposure to iAs and F- resulted in more prominent effects in CVEs and perturbation of gut microbiota profiles, compared to iAs or F- treatment alone. Furthermore, nine bacterial genera (Adlercreutzia, Clostridium sensu stricto 1, Coprococcus 3, Romboutsia, [Bacteroides] Pectinophilus group, Lachnospiraceae NC2004 group, Desulfovibrio, and two unidentified genera in Muribaculaceae and Ruminococcaceae family), which differed significantly in relative abundance between control and iAs and F- co-exposure group, were strongly correlated with the higher risk of CVEs (correlation coefficient = 0.70-0.88, p < 0.05). Collectively, these results suggest that co-exposure to iAs and F- poses a higher risk of CVEs, and the part of the mode of action is potentially through inducing gut microbiota disruption, and the strong correlations between them indicate a high potential for the development of novel microbiome-based biomarkers of iAs and/or F- associated CVEs.
Collapse
Affiliation(s)
- Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China.
| | - Xushen Chen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jie Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Nisha Dong
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jing Feng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China; Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Morgan Nalesnik
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Bo Xiao
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Guohua Song
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Sarah Quinones
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
28
|
Li M, Zhao Y, Tian X, Liu P, Xie J, Dong N, Feng J, Gao Y, Fan Y, Qiu Y, Tian F, Yan X. Fluoride Exposure and Blood Pressure: a Systematic Review and Meta-Analysis. Biol Trace Elem Res 2021; 199:925-934. [PMID: 32602052 DOI: 10.1007/s12011-020-02232-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/31/2020] [Indexed: 12/07/2022]
Abstract
Fluoride exposure may cause changes in blood pressure, but this conclusion is controversial. Therefore, this meta-analysis aims to investigate the potential relationship between fluoride exposure and blood pressure or hypertension. PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), WANFANG MED ONLINE, and Chinese Scientific Journals Full-Text Databases (VIP) were searched; in addition, two related studies were added manually. In total, 7 observational studies were identified, the pooled odds ratios (ORs) for hypertension between high and reference fluoride exposure groups were calculated, and the pooled standardized weighted mean difference (SMD) of systolic blood pressure (SBP) and diastolic blood pressure (DBP) was estimated using an inverse-variance weighted random-effects model; next, sensitivity analysis and subgroup analysis were used to assess potential sources of heterogeneity; furthermore, publication bias was assessed using the Begg and Egger test. In brief, there were no statistical differences between exposure groups and control groups in terms of blood pressure or hypertension when all included studies considered. However, subgroup analysis indicated that blood pressure will rise with the increase of fluoride exposure concentrations in endemic fluorosis areas. The corresponding pooled SMD estimates were 0.31 (95% CI 0.11, 0.51) and 0.27 (95% CI 0.11, 0.43) for SBP and DBP. Funnel plots suggested no asymmetry. Our findings support the possibility of a positive correlation between fluoride exposure and blood pressure in endemic fluorosis areas. Additional evidence is needed to assess the dose-response relationship between fluoride exposure and blood pressure.
Collapse
Affiliation(s)
- Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Nisha Dong
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Feng
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ye Fan
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
29
|
Gao J, Tian X, Yan X, Wang Y, Wei J, Wang X, Yan X, Song G. Selenium Exerts Protective Effects Against Fluoride-Induced Apoptosis and Oxidative Stress and Altered the Expression of Bcl-2/Caspase Family. Biol Trace Elem Res 2021; 199:682-692. [PMID: 32613488 DOI: 10.1007/s12011-020-02185-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Fluoride is widely distributed in nature, and at high concentrations, it targets the kidney and especially proximal tubule epithelial cells. Selenium is a typical trace element beneficial to humans, and the role of selenium in the prevention and treatment of fluoride-induced organ damage is an important research topic. The purpose of this study was to investigate the possible protective effects of selenium against fluoride-induced oxidative stress and apoptosis in rat renal tubular epithelial cells. We showed that the activity of antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and total antioxidant capacity were significantly reduced in NaF-treated normal rat kidney cells (NRK-52E), whereas the levels of nitrogen monoxide (NO) and malondialdehyde (MDA) were significantly increased. Moreover, the number of apoptotic cells, mRNA expression of Bax, Bad, caspase-3, caspase-8, and caspase-9, and protein expression of Bax were elevated, while mitochondrial membrane potential and the protein expression of Bcl-2 were reduced. Compared with the NaF group, pretreatment with selenium enhanced the activity of antioxidant enzymes, mitochondrial membrane potential, and protein expression of Bcl-2, while the levels of NO and MDA, number of apoptotic cells, mRNA expression of Bax, Bad, caspase-3, caspase-8, and caspase-9, and protein expression of Bax were decreased. In conclusion, selenium exerted remarkable protective effect against NaF-induced oxidative stress and apoptosis and altered the expression of Bcl-2/caspase family.
Collapse
Affiliation(s)
- Jiping Gao
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Xiaolin Tian
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, 030801, China
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoru Yan
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Yu Wang
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Jianing Wei
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Xiaotang Wang
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Xiaoyan Yan
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China.
- Mental Health Hosipital Affiliated to Shanxi Medical University, Street Nanshifang 55, Taiyuan City, 030001, Shanxi Province, China.
| |
Collapse
|
30
|
|
31
|
Lopes GO, Martins Ferreira MK, Davis L, Bittencourt LO, Bragança Aragão WA, Dionizio A, Rabelo Buzalaf MA, Crespo-Lopez ME, Maia CSF, Lima RR. Effects of Fluoride Long-Term Exposure over the Cerebellum: Global Proteomic Profile, Oxidative Biochemistry, Cell Density, and Motor Behavior Evaluation. Int J Mol Sci 2020; 21:E7297. [PMID: 33023249 PMCID: PMC7582550 DOI: 10.3390/ijms21197297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Although the literature does not provide evidence of health risks from exposure to fluoride (F) in therapeutic doses, questions remain about the effects of long-term and high-dose use on the function of the central nervous system. The objective of this study was to investigate the effect of long-term exposure to F at levels similar to those found in areas of artificial water fluoridation and in areas of endemic fluorosis on biochemical, proteomic, cell density, and functional parameters associated with the cerebellum. For this, mice were exposed to water containing 10 mg F/L or 50 mg F/L (as sodium fluoride) for 60 days. After the exposure period, the animals were submitted to motor tests and the cerebellum was evaluated for fluoride levels, antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (MDA), and nitrite levels (NO). The proteomic profile and morphological integrity were also evaluated. The results showed that the 10 mg F/L dose was able to decrease the ACAP levels, and the animals exposed to 50 mg F/L presented lower levels of ACAP and higher levels of MDA and NO. The cerebellar proteomic profile in both groups was modulated, highlighting proteins related to the antioxidant system, energy production, and cell death, however no neuronal density change in cerebellum was observed. Functionally, the horizontal exploratory activity of both exposed groups was impaired, while only the 50 mg F/L group showed significant changes in postural stability. No motor coordination and balance impairments were observed in both groups. Our results suggest that fluoride may impair the cerebellar oxidative biochemistry, which is associated with the proteomic modulation and, although no morphological impairment was observed, only the highest concentration of fluoride was able to impair some cerebellar motor functions.
Collapse
Affiliation(s)
- Géssica Oliveira Lopes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Lodinikki Davis
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Aline Dionizio
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, SP 17012-90, Brazil; (A.D.); (M.A.R.B.)
| | - Marília Afonso Rabelo Buzalaf
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, SP 17012-90, Brazil; (A.D.); (M.A.R.B.)
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil;
| | - Cristiane Socorro Ferraz Maia
- Laboratory of Inflammation and Behavior Pharmacology, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, PA 66075-110, Brazil;
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| |
Collapse
|
32
|
Li M, Cao J, Zhao Y, Wu P, Li X, Khodaei F, Han Y, Wang J. Fluoride impairs ovary development by affecting oogenesis and inducing oxidative stress and apoptosis in female zebrafish (Danio rerio). CHEMOSPHERE 2020; 256:127105. [PMID: 32450357 DOI: 10.1016/j.chemosphere.2020.127105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have shown that waterborne fluoride exposure has adverse effects on the reproductive system of zebrafish. However, the underlying toxic mechanisms were still not clear. In the present study, female zebrafish were exposed to different concentrations of 0.787 (Control), 18.599, 36.832 mg/L of fluoride for 30 d and 60 d, and the effects of different doses of fluoride on ovary development, reproductive hormones, oogenesis, ROS content, antioxidant levels, and the expression of apoptosis-related genes and proteins in the ovaries of female zebrafish were analyzed. The results showed that ovarian weight and GSI were significantly decreased, FSH, LH and VTG levels were significantly reduced, the transcriptional profiles of oogenesis-related genes (tgfβ1, bmp15, gdf9, mprα, mprβ, ptg2β) were remarkably altered, ROS levels was notably increased, the SOD, CAT, GPx activities and GSH content as well as their mRNA expressions were significantly decreased, MDA content was remarkably increased, the expressions of apoptosis-related genes and proteins (caspase3, caspase8, caspase9, Fas-L, Cytochrome C, Bax and Bcl-2) were significantly changed, the ratio of Bax/Bcl-2 protein levels were notably increased. Taken together, this study demonstrated that fluoride exposure significantly affected ovarian development, decreased the reproductive hormones, affected oogenesis, induced oxidative stress, caused apoptosis through both extrinsic and intrinsic pathways in ovary of zebrafish. Indicating that oogenesis, oxidative stress, and apoptosis were responsible for the impairment of ovarian development.
Collapse
Affiliation(s)
- Meiyan Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinling Cao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Panhong Wu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xuehua Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Forouzan Khodaei
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongli Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
33
|
Dong N, Feng J, Xie J, Tian X, Li M, Liu P, Zhao Y, Wei C, Gao Y, Li B, Qiu Y, Yan X. Co-exposure to Arsenic-Fluoride Results in Endoplasmic Reticulum Stress-Induced Apoptosis Through the PERK Signaling Pathway in the Liver of Offspring Rats. Biol Trace Elem Res 2020; 197:192-201. [PMID: 31768761 DOI: 10.1007/s12011-019-01975-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
Arsenic and fluoride are two of the major groundwater pollutants. To better understand the liver damage induced during development, 24 male rats exposed to fluoride (F), arsenic (As), and their combination (As + F) from the prenatal stage to 90 days after birth were selected for analysis. Histopathological results showed vacuolar degeneration in the As and As + F groups. Compared to those in the control group, aspartate aminotransferase and alanine aminotransferase levels were significantly increased in the combined group. Catalase activity significantly decreased in the treatment groups compared to that in the controls, and the malondialdehyde content in the As and As + F groups was significantly higher than those in the control group. We further evaluated whether this damage is linked to endoplasmic reticulum stress and its related pathways. The mRNA expression levels of PERK, GRP78, EIF2α, ATF4, and CHOP as well as the protein levels of CHOP was significantly increased in the As + F group compared with the control group. These results demonstrate that As, F, and their combination could lead to liver function damage and reduce the antioxidant capacity of the liver to cause oxidative damage to tissues. Moreover, the combination of As and F triggers endoplasmic reticulum stress-induced apoptosis in liver cells by activating the PERK pathway in the unfolded protein response. As and F seem to have different independent effects, whereas their combination resulted in more severe effects overall.
Collapse
Affiliation(s)
- Nisha Dong
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Feng
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaolin Tian
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
34
|
Zhou BH, Wei SS, Jia LS, Zhang Y, Miao CY, Wang HW. Drp1/Mff signaling pathway is involved in fluoride-induced abnormal fission of hepatocyte mitochondria in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138192. [PMID: 32278173 DOI: 10.1016/j.scitotenv.2020.138192] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Fluoride, a toxic substance, is widely distributed in the environment and causes serious damage to the body. This study was performed to investigate the effects of fluoride on mitochondrial fission in mouse hepatocytes. A total of 48 mice were equally divided into four groups and admisnistered with NaF in drinking water at fluorine ion concentrations of 0, 25, 50 and 100 mg/L for 70 days. The pathomorphology and ultrastructurre of hepatocytes were then observed. The mitochondrial lesion parameters (number, length, width and vacuolization area) are evaluated. The expression of Drp1, Mff, Fis1, MiD49, MiD51 and Dyn2, which are associated with mitochondrial fission, was determined by quantitative real-time PCR and Western blot analysis. Apoptosis was detected by using TUNEL assay. Results showed that fluoride causes notable changes in the pathological morphology of liver tissues and severely damages the ultrastructure of hepatocytes. Damage manifested as nuclear condensation, nuclear membrane breakdown, mitochondrial vacuolation, increased fragmentation, and mitochondrial fission. Moreover, mRNA and protein expression levels were significantly upregulated in the Drp1/Mff signaling pathway. The mRNA expression levels of Cyt c, caspase 9 and 3 markedly increased in the fluoride treated groups in a dose-dependent manner. The percentage of TUNEL-positive nuclei in the liver remarkably increased after fluoride treatment. Overall, the results indicate that excessive fluoride exposure can increase mitochondrial fission via the Drp1/Mff signaling pathway, severely damage the mitochondrial structure, and lead to apoptosis of hepatocytes.
Collapse
Affiliation(s)
- Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People's Republic of China.
| | - Shan-Shan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People's Republic of China
| | - Liu-Shu Jia
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People's Republic of China
| | - Yan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People's Republic of China
| | - Cheng-Yi Miao
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People's Republic of China
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People's Republic of China.
| |
Collapse
|
35
|
Qiu Y, Chen X, Yan X, Wang J, Yu G, Ma W, Xiao B, Quinones S, Tian X, Ren X. Gut microbiota perturbations and neurodevelopmental impacts in offspring rats concurrently exposure to inorganic arsenic and fluoride. ENVIRONMENT INTERNATIONAL 2020; 140:105763. [PMID: 32371304 DOI: 10.1016/j.envint.2020.105763] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/14/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Many "hot spot" geographic areas across the world with drinking water co-contaminated with inorganic arsenic (iAs) and fluoride (F-), two of the most common natural contaminants in drinking water. Both iAs and F- are known neurotoxins and affect neurodevelopment of children. However, very few studies have investigated the neurodevelopmental effects of concurrent exposure to iAs and F-, which could potentially pose a greater risk than iAs or F- exposure alone. Further, perturbations of gut microbiota, which plays a regulatory role in neurodevelopment, resulting from iAs and F- exposure has been reported in numerous studies. There is lacking of information regarding to the relationship among concurrent iAs and F- exposure, microbiome disruption, and neurodevelopmental impacts. To fill these gaps, we treated offspring rats to iAs (50 mg/L NaAsO2) and F- (100 mg/L NaF), alone or combined from early life (in utero and childhood) to puberty. We applied Morris water maze test to assess spatial learning and memory of these rats and generated gut microbiome profiles using 16S rRNA gene sequencing. We showed that concurrent iAs and F- exposure caused more prominent neurodevelopmental effects in rats than either iAs or F- exposure alone. Moreover, Unsupervised Principal Coordinates Analysis (PCoA) and Linear Discriminant Analysis Effect Size (LEfSe) analysis of gut microbiome sequencing results separated concurrent exposure group from others, indicating a more sophisticated change of gut microbial communities occurred under the concurrent exposure condition. Further, a correlation analysis between indices of the water maze test and microbial composition at the genus level identified featured genera that were clearly associated with neurobehavioral performance of rats. 75% (9 out of 12) genera, which had a remarkable difference in relative abundance between the control and combined iAs and F- exposure groups, showed significantly strong correlations (r = 0.70-0.90) with the water maze performance indicators. Collectively, these results suggest that concurrent iAs and F- exposure led to more prominent effects on neurodevelopment and gut microbiome composition structures in rats, and the strong correlation between them indicates a high potential for the development of novel microbiome-based biomarkers of iAs and/or F- associated neurodevelopmental deficits.
Collapse
Affiliation(s)
- Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xushen Chen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jie Wang
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Wenyan Ma
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Bo Xiao
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sarah Quinones
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Xiaolin Tian
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
36
|
Mondal P, Chattopadhyay A. Environmental exposure of arsenic and fluoride and their combined toxicity: A recent update. J Appl Toxicol 2019; 40:552-566. [PMID: 31867774 DOI: 10.1002/jat.3931] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022]
Abstract
Environmental exposure to arsenic (As) and fluoride (F) in the recent year has been increased because of excessive use of naturally contaminated ground water. Surface water is also regularly contaminated with these elements in various industrial areas. Arsenicosis and fluorosis upon individual exposure of As and F are reported in many studies. A syndrome of endemic As poisoning and fluorosis occurs during concurrent exposure of As and F. Previous reports showed synergistic, antagonistic and independent effects of these two compounds, although few recent reports also revealed antagonistic effects after co-exposure. Interaction during intestinal absorption and influence of F on As metabolism might be the cause of antagonism. The synergism/antagonism is thought to depend on the dose and duration of the co-exposure. However, the detailed mechanism is still not fully understood and needs further studies. Removal technologies of As and F from contaminated water is available but removal of such contaminants from food is yet to be developed. Antioxidants are useful to mitigate the toxic effects of As and F. This review focused on the effect of co-exposure, amelioration as well as removal techniques of As and F.
Collapse
Affiliation(s)
- Paritosh Mondal
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| | | |
Collapse
|
37
|
Deregulation of autophagy is involved in nephrotoxicity of arsenite and fluoride exposure during gestation to puberty in rat offspring. Arch Toxicol 2019; 94:749-760. [PMID: 31844926 DOI: 10.1007/s00204-019-02651-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/12/2019] [Indexed: 01/06/2023]
Abstract
Exposure to fluoride (F) or arsenite (As) through contaminated drinking water has been associated with chronic nephrotoxicity in humans. Autophagy is a regulated mechanism ubiquitous for the body in a toxic environment with F and As, but the underlying mechanisms of autophagy in the single or combined nephrotoxicity of F and As are unclear. In the present study, we established a rat model of prenatal and postnatal exposure to F and As with the aim of investigating the mechanism underlying nephrotoxicity of these pollutants in offspring. Rats were randomly divided into four groups that received NaF (100 mg/L), NaAsO2 (50 mg/L), or NaF (100 mg/L) with NaAsO2 (50 mg/L) in drinking water or clean water during pregnancy and lactation; after weaning, pups were exposed to the same treatment as their mothers until puberty. The results revealed that F and As exposure (alone or combined) led to significant increases of arsenic and fluoride levels in blood and bone, respectively. In this context, F and/or As disrupted histopathology and ultrastructure in the kidney, and also altered creatinine (CRE), urea nitrogen (BUN) and uric acid (UA) levels. Intriguingly, F and/or As uptake induced the formation of autophagosomes in kidney tissue and resulted in the upregulation of genes encoding autophagy-related proteins. Collectively, these results suggest that nephrotoxicity of F and As for offspring exposed to the pollutants from in utero to puberty is associated with deregulation of autophagy and there is an antagonism between F and As in the toxicity autophagy process.
Collapse
|