1
|
Zhu J, Nie G, Dai X, Wang D, Li S, Zhang C. Activating PPARβ/δ-Mediated Fatty Acid β-Oxidation Mitigates Mitochondrial Dysfunction Co-induced by Environmentally Relevant Levels of Molybdenum and Cadmium in Duck Kidneys. Biol Trace Elem Res 2025; 203:3870-3883. [PMID: 39546187 DOI: 10.1007/s12011-024-04450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Cadmium (Cd) and high molybdenum (Mo) pose deleterious effects on health. Prior studies have indicated that exposure to Mo and Cd leads to damage in duck kidneys, but limited studies have explored this damage from the perspective of fatty acid metabolism. In this study, 40 healthy 8-day-old ducks were randomly assigned to four groups and fed a basic diet containing Cd (4 mg/kg Cd) or Mo (100 mg/kg Mo) or both. Kidney tissues were harvested on the 16th week. Results demonstrated that Cd and/or Mo inhibited mitochondrial fatty acid β-oxidation and disrupted mitochondrial dynamics, along with significant suppression of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) protein in duck kidneys. In vitro study, duck renal tubular epithelial cells were exposed for 12 h to either Mo (480 μM Mo), Cd (2.5 μM Cd), and GW0742 (0.3 μM, a potent agonist of PPARβ/δ) alone or in combination. The results demonstrated that Cd and/or Mo led to marked fatty acid oxidation deficiency and mitochondrial dysfunction and that PPARβ/δ protein was involved in the process. Altogether, this study found that activating PPARβ/δ-mediated fatty acid β-oxidation mitigates mitochondrial dysfunction co-induced by Mo and Cd in duck kidneys.
Collapse
Affiliation(s)
- Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaohui Nie
- Jiangxi Hongzhou Vocational College, Fengcheng, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - ShanXin Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Song J, Luo X, Xiong L, Li S, Chen Y, Liu W, Yuan Y, Ma Y, Bian J, Liu Z, Zou H. Lycium barbarum polysaccharide alleviate cadmium-induced mitochondrial dysfunction mediated pyroptosis in duck liver. Int J Biol Macromol 2025; 311:143989. [PMID: 40339840 DOI: 10.1016/j.ijbiomac.2025.143989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/19/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Cadmium (Cd) is a persistent environmental heavy metal pollutant that has been an important issue in toxicology research worldwide. This toxic element is non-degradable and accumulates indefinitely in the ecosystem, and gradually accumulates in living organisms through nutrient transfer, ultimately posing a significant risk to the health of animals. The hepatic system is both the main target organ for Cd bioaccumulation and the metabolic center of organisms, and is particularly susceptible to heavy metal exposure. However, the underlying mechanism of whether LBP protects against Cd-induced liver injury in male Shaoxing ducks is still unknown. In our study, male Shaoxing ducks were treated with Cdcl2 (50 mg/kg) and/or LBP (50 mg/kg) for 30 days. We found that Cd exposure reduced the growth rate, feed intake, liver weight and organ index, and increased the serum biochemical indexes (AST, ALT, ALP) in Shaoxing ducks. Further studies have shown that Cd induces liver pathological damage and macro/trace element metabolism disorders, thereby inhibiting the activity of Nrf2 antioxidant signaling pathway and further inducing oxidative stress. Finally, we found that Cd induces the destruction of liver mitochondrial structure, disrupts the normal mitochondrial biogenesis and fusion/fission disorder, and thus causes liver pyroptosis and fibrosis. In this process, we found that LBP administration significantly improved Cd-induced growth inhibition and liver damage.
Collapse
Affiliation(s)
- Jie Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Xianzu Luo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Ling Xiong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Sifan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| |
Collapse
|
3
|
Bian DD, Zhang X, Zhu XR, Tang WH, Peng Q, Chen YH, Wang G, Zhang DZ, Tang BP, Liu QN. The Nrf2-Keap1/ARE signaling pathway in aquatic animals. Int J Biol Macromol 2025; 308:142595. [PMID: 40158560 DOI: 10.1016/j.ijbiomac.2025.142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/12/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
The complex and fluctuating conditions of aquatic ecosystems make aquatic organisms vulnerable to oxidative stress. The Nrf2-Keap1/ARE signaling pathway serves as an important intracellular defense mechanism, particularly for aquatic organisms exposed to environmental stressors and toxic substances. Environmental stimuli can disrupt an organism's internal redox balance, leading to cellular oxidative stress responses. To counteract these effects, cells develop intricate defense mechanisms, with the Nrf2-Keap1/ARE signaling pathway is playing a crucial role. In this pathway, the nuclear transcription factor Nrf2 translocates into the nucleus to initiate the transcription of antioxidant genes, thereby reducing reactive oxygen species (ROS)-induced cellular damage and maintaining the organism's oxidative-antioxidative equilibrium. While research on this pathway in mammals is well-established, studies on aquatic organisms are still limited. This review provides a comprehensive analysis of the regulatory functions of the Nrf2-Keap1/ARE pathway on oxidative stress and delves into the molecular structures of Nrf2, Keap1, and ARE, offering insights into the physiological regulation of antioxidant defenses in aquatic organisms.
Collapse
Affiliation(s)
- Dan-Dan Bian
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xue Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xi-Rong Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Wen-Hui Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qin Peng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Yao-Hui Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| |
Collapse
|
4
|
Aryal B, Kwakye J, Ariyo OW, Ghareeb AFA, Milfort MC, Fuller AL, Khatiwada S, Rekaya R, Aggrey SE. Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens. Antioxidants (Basel) 2025; 14:471. [PMID: 40298812 PMCID: PMC12023971 DOI: 10.3390/antiox14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Heat stress (HS) is one of the most important stressors in chickens, and its adverse effects are primarily caused by disturbing the redox homeostasis. An increase in electron leakage from the mitochondrial electron transport chain is the major source of free radical production under HS, which triggers other enzymatic systems to generate more radicals. As a defense mechanism, cells have enzymatic and non-enzymatic antioxidant systems that work cooperatively against free radicals. The generation of free radicals, particularly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), under HS condition outweighs the cellular antioxidant capacity, resulting in oxidative damage to macromolecules, including lipids, carbohydrates, proteins, and DNA. Understanding these detrimental oxidative processes and protective defense mechanisms is important in developing mitigation strategies against HS. This review summarizes the current understanding of major oxidative and antioxidant systems and their molecular mechanisms in generating or neutralizing the ROS/RNS. Importantly, this review explores the potential mechanisms that lead to the development of oxidative stress in heat-stressed chickens, highlighting their unique behavioral and physiological responses against thermal stress. Further, we summarize the major findings associated with these oxidative and antioxidant mechanisms in chickens.
Collapse
Affiliation(s)
- Bikash Aryal
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Josephine Kwakye
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Oluwatomide W. Ariyo
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Ahmed F. A. Ghareeb
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Boehringer Ingelheim Animal Health (BIAH), Gainesville, GA 30501, USA
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Alberta L. Fuller
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Saroj Khatiwada
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| |
Collapse
|
5
|
Chen J, Guo G, Wang X, Li Z, Ji T, Li Y, Dong H, Zhang H, Gao M. BRD4 Mediates Cadmium-Induced Oxidative Stress and Kidney Injury in Mice via Disruption of Redox Homeostasis. TOXICS 2025; 13:258. [PMID: 40278574 PMCID: PMC12031608 DOI: 10.3390/toxics13040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
Cadmium (Cd) is a toxic heavy metal that threatens public health, with kidney injury being one of the common manifestations after Cd exposure. Oxidative stress plays a crucial role in Cd-induced kidney injury, arising from an imbalance between cellular oxidation and antioxidation processes. Bromodomain-containing protein 4 (BRD4) has been identified as a significant factor in the initiation and advancement of multiple diseases, primarily due to its regulatory role in oxidative stress. Nevertheless, the specific role of BRD4 in Cd-induced kidney oxidative injury remains poorly understood. The present study demonstrates that BRD4 is activated in the kidney after Cd exposure, while JQ1 (a BRD4 inhibitor) treatment inhibits Cd-induced oxidative stress and kidney injury. Subsequently, we investigate the mechanisms by which Cd regulates oxidative stress both in vivo and in vitro. The results indicate that JQ1 treatment reduces the expression levels of NADPH oxidase 4 (Nox4), thereby alleviating mitochondrial damage and reducing reactive oxygen species (ROS) generation. Furthermore, JQ1 treatment facilitates nuclear translocation levels of Nuclear factor erythroid-derived 2-like 2 (Nrf2), thereby enhancing the antioxidant defense system in the kidney after Cd exposure. In conclusion, this study reveals that BRD4 is significantly involved in the process of Cd-induced oxidative damage in the kidney, while inhibiting BRD4 is observed to attenuate ROS generation by regulating Nox4 and enhance ROS scavenging by regulating Nrf2, which, in turn, suppresses the oxidative stress level in the kidney after Cd exposure. These findings suggest that targeting BRD4 may represent an effective strategy for the prevention and treatment of Cd-induced kidney diseases.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (J.C.); (G.G.)
| | - Guangling Guo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (J.C.); (G.G.)
| | - Xinyu Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.W.); (Z.L.)
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.W.); (Z.L.)
| | - Tingru Ji
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (T.J.); (Y.L.)
| | - You Li
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (T.J.); (Y.L.)
| | - Hongwei Dong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Hao Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.W.); (Z.L.)
- High-Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mingzhou Gao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
6
|
Koyama S, Mizutani Y, Goto Y, Yoda K. Species-specific physiological status in seabirds: insights from integrating oxidative stress measurements and biologging. Front Physiol 2025; 16:1509511. [PMID: 40177361 PMCID: PMC11962040 DOI: 10.3389/fphys.2025.1509511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Understanding the relationship between behavior and physiological state, as well as species differences in physiological responses, is key to identifying the behavioral and physiological adaptations necessary for wild animals to avoid physiological deterioration, thereby enhancing their survival and fitness. A commonly used measure of physiological condition is oxidative stress, which results from an imbalance between oxidative damage-often exacerbated by respiration during exercise and indicative of physical harm-and antioxidant capacity, which reflects the organism's ability to recover from such damage. Despite its importance, oxidative stress has rarely been linked to behavior, such as foraging, leaving this relationship underexplored. In this study, we focused on two seabird species, black-tailed gulls (Larus crassirostris) and streaked shearwaters (Calonectris leucomelas), which are similar in body size and primarily forage on the same prey species but differ in traits such as habitat, flight style, and physiological function. We recorded the trajectories of these birds for approximately 1 week using biologging and measured their plasma oxidative stress. We found that oxidative stress in black-tailed gulls was higher than that in streaked shearwaters, suggesting that species differences in life histories, habitats, and physiological function may be related to long-term oxidative stress. However, over a 1-week timescale, there were no significant species differences in changes in oxidative stress, suggesting that behavioral differences between the two species might not necessarily lead to species-specific oxidative stress responses in the short term. Additionally, no consistent relationship was found between changes in oxidative stress of the two species and their behavioral metrics in most years, suggesting that this relationship may vary depending on yearly environmental fluctuations. Based on our findings, we encourage future studies that would explore and integrate the interactions between marine environments, behavior, and oxidative stress of different bird species to clarify the contribution of specific foraging behaviors to either the deterioration or recovery of physiological conditions, and the varying effect of environmental conditions on these relationships.
Collapse
|
7
|
Bian Y, Dong J, Zhou Z, Zhou H, Xu Y, Zhang Q, Chen C, Pi J. The spatiotemporal and paradoxical roles of NRF2 in renal toxicity and kidney diseases. Redox Biol 2025; 79:103476. [PMID: 39724848 PMCID: PMC11732127 DOI: 10.1016/j.redox.2024.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Over 10% of the global population is at risk to kidney disorders. Nuclear factor erythroid-derived 2-related factor 2 (NRF2), a pivotal regulator of redox homeostasis, orchestrates antioxidant response that effectively counters oxidative stress and inflammatory response in a variety of acute pathophysiological conditions, including acute kidney injury (AKI) and early stage of renal toxicity. However, if persistently activated, NRF2-induced transcriptional cascade may disrupt normal cell signaling and contribute to numerous chronic pathogenic processes such as fibrosis. In this concise review, we assembled experimental evidence to reveal the cell- and pathophysiological condition-specific roles of NRF2 in renal chemical toxicity, AKI, and chronic kidney disease (CKD), all of which are closely associated with oxidative stress and inflammation. By incorporating pertinent research findings on NRF2 activators, we dissected the spatiotemporal roles of NRF2 in distinct nephrotoxic settings and kidney diseases. Herein, NRF2 exhibits diverse expression patterns and downstream gene profiles across distinct kidney regions and cell types, and during specific phases of nephropathic progression. These changes are directly or indirectly connected to altered antioxidant defense, damage repair, inflammatory response, regulated cell death and fibrogenesis, culminating ultimately in either protective or deleterious outcomes. The spatiotemporal and paradoxical characteristics of NRF2 in mitigating nephrotoxicity suggest that translational application of NRF2 activation strategy for prevention and interventions of kidney injury are unlikely to be straightforward - right timing and spatial precision must be taken into consideration.
Collapse
Affiliation(s)
- Yiying Bian
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jize Dong
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhengsheng Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
8
|
Hernández-Piedra G, Ruiz-Carrera V, Sánchez AJ, Escalante-Espinosa E, Calva-Calva G. Spatial-Temporal Dynamics of Adventitious Roots of Typha domingensis Pers. Seedlings Grown with Auxin/Cytokinin. Life (Basel) 2025; 15:121. [PMID: 39860061 PMCID: PMC11767029 DOI: 10.3390/life15010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
The spatial-temporal dynamics of an in vitro radicular system of Typha domingensis for the development of rhizofiltration technologies, with the potential for use as a phytotreatment of eutrophicated water, were studied for the first time in the roots of seedlings and in rhizotron systems. The effect of indole-3-acetic acid (AIA) in combination with kinetin (CIN) or 6-benzylaminopurine (BAP) on seedlings cultivated in the light and dark in three radicular systems and in a rhizotrophic regime for the screening of dynamic rhizogenic lines, by weekly allometric measurements of the length and number of roots, were studied. Inhibition of the elongation and branching velocities of roots by BAP and light was observed but CIN increased elongation and branching. In rhizotrons cultivated in light and dark conditions with different AIA/CIN ratios, isolated root explants remained inactive; however, roots attached to a meristematic base presented a significant increase in growth development, with values comparable to those of roots attached to seedlings cultivated in light without hormones. The results revealed that six adventitious rhizogenic root lines with basal meristems have the potential for use in a wide range of environmental and innovative applications in phytotreatment technologies involving eutrophicated water.
Collapse
Affiliation(s)
- Guadalupe Hernández-Piedra
- Programa de Doctorado en Ecología y Manejo de Sistemas Tropicales, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5 S/N Entronque a Bosques de Saloya, Villahermosa C.P. 86150, Tabasco, Mexico;
| | - Violeta Ruiz-Carrera
- Diagnóstico y Manejo de Humedales Tropicales, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5 S/N Entronque a Bosques de Saloya, Villahermosa C.P. 86150, Tabasco, Mexico; (A.J.S.); (E.E.-E.)
| | - Alberto J. Sánchez
- Diagnóstico y Manejo de Humedales Tropicales, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5 S/N Entronque a Bosques de Saloya, Villahermosa C.P. 86150, Tabasco, Mexico; (A.J.S.); (E.E.-E.)
| | - Erika Escalante-Espinosa
- Diagnóstico y Manejo de Humedales Tropicales, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5 S/N Entronque a Bosques de Saloya, Villahermosa C.P. 86150, Tabasco, Mexico; (A.J.S.); (E.E.-E.)
| | - Graciano Calva-Calva
- Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, Ciudad de México C.P. 07360, Mexico
| |
Collapse
|
9
|
Xu WY, Li XW, Sun JX, Malhi KK, Li XN, Li JL. Cadmium causes spleen toxicity in chickens by regulating mitochondrial unfolded protein response and nuclear receptors response. Poult Sci 2024; 103:104167. [PMID: 39180780 PMCID: PMC11387532 DOI: 10.1016/j.psj.2024.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024] Open
Abstract
Cadmium (Cd) is a heavy metal that pollutes the environment and threatens human and animal health via the food chain. The spleen is one of the target organs affected by Cd toxicity. However, the mechanism of Cd toxicity is not fully understood. In this study, 80 chicks were allocated into 4 groups (n = 20) and exposed to different doses of CdCl2 (0 mg/kg, 35 mg/kg, 70 mg/kg and 140 mg/kg) for 90 d. The pathological changes in the spleen, mitochondrial dynamics-related factors, cytochrome P450 (CYP450) enzyme system contents, activities, transcription levels, nuclear receptors (NRs) response molecule levels, and mitochondrial unfolded protein-related factors were detected. The findings indicate that exposure to Cd significantly leads to spleen injury. In Cd groups, the total contents of CYP450 and cytochrome b5 (Cyt b5) increased, and the activities of the CYP450 enzyme system (APND, ERND, AH, and NCR) changed. The NRs response was induced, and the gene levels of AHR/CAR and corresponding CYP450 isoforms (CYP1B1, CYP1A5, CYP1A1, CYP2C18, CYP2D6 and CYP3A4) were found altered. The study found that Cd exposure altered the mRNA expression levels of mitochondrial dynamics-related factors, such as OPA1, Fis1, MFF, Mfn1, and Mfn2, breaking mitochondrial fusion and cleavage and ultimately leading to mitochondrial dysfunction. Changes were detected in the gene levels of several mitochondrial unfolded protein response (mtUPR)-related factors, namely (SIRT1, PGC-1α, NRF1, TFAM, SOD2, and HtrA2). Cd also altered the gene levels of mitochondrial function-related factors (VDAC1, Cyt-C, COA6, PRDX3, RAF and SIRT3). It is showed that Cd can initiate the NRs response, influence the homeostasis of the CPY450 enzyme system, trigger the mtUPR, impair mitochondrial function, and ultimately lead to Cd toxicity in the spleen of chickens.
Collapse
Affiliation(s)
- Wang-Ye Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiao-Wei Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jin-Xu Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Kanwar Kumar Malhi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xue-Nan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Department of Obstetrics & Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and The Chinese University of Hong Kong-Sichuan University Joint Laboratory for Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jin-Long Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
10
|
Huang X, Yuan J, Gu J, Abbas Y, Yuan Y, Liu Z, Zou H, Bian J. Protective effect of honokiol on cadmium-induced liver injury in chickens. Poult Sci 2024; 103:104066. [PMID: 39067123 PMCID: PMC11338095 DOI: 10.1016/j.psj.2024.104066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Cadmium (Cd), a highly toxic heavy metal in the environment, poses a significant threat to livestock and poultry farming. Honokiol (HNK), a Chinese herbal extract with potent antioxidant activity, acts through oxidative damage and inflammation. Cd induces oxidative stress and causes liver damage in animals. However, whether HNK can alleviate Cd-induced liver injury in chickens and its mechanism remains unclear. In this study, the 48 chickens were randomly allocated into 4 groups, control group, Cd group (70 mg/kg Cd), HNK group (200 mg/kg HNK) and Cd + HNK group (70 mg/kg Cd+200 mg/kg HNK). Results showed that HNK improved the Cd induced reduction in chicken body weight, liver weight, and liver coefficient. HNK recovered the Cd induced liver damaged through increased serum liver biochemical indexes, impaired liver oxidase activity and the disordered the expression level of antioxidant genes. HNK alleviated Cd induced pathological and ultrastructure damage of liver tissue and liver cell that leads apoptosis. HNK decreased Cd contents in the liver, Cd induced disturbances in the levels of trace elements such as iron, copper, zinc, manganese, and selenium. HNK attenuated the damage to the gap junction structure of chicken liver cells caused by Cd and reduced the impairment of oxidase activity and the expression level of antioxidant genes induced by Cd. In conclusion, HNK presents essential preventive measures and a novel pharmacological potential therapy against Cd induced liver injury. Our experiments show that HNK can be used as a new green feed additive in the poultry industry, which provides a theoretical basis for HNK to deal with the pollution caused by Cd in the poultry industry.
Collapse
Affiliation(s)
- Xiaoqian Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Junzhao Yuan
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, Henan, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yassar Abbas
- Department of Animal Sciences, Jhang Campus, University of Veterinary and Animal Sciences, Jhang 54590, Pakistan
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
11
|
Zhang R, Liu Z, Li R, Wang X, Ai L, Li Y. An integrated bioinformatics analysis to identify the shared biomarkers in patients with obstructive sleep apnea syndrome and nonalcoholic fatty liver disease. Front Genet 2024; 15:1356105. [PMID: 39081807 PMCID: PMC11286465 DOI: 10.3389/fgene.2024.1356105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Background Obstructive sleep apnea (OSA) syndrome and nonalcoholic fatty liver disease (NAFLD) have been shown to have a close association in previous studies, but their pathogeneses are unclear. This study explores the molecular mechanisms associated with the pathogenesis of OSA and NAFLD and identifies key predictive genes. Methods Using the Gene Expression Omnibus (GEO) database, we obtained gene expression profiles GSE38792 for OSA and GSE89632 for NAFLD and related clinical characteristics. Mitochondrial unfolded protein response-related genes (UPRmtRGs) were acquired by collating and collecting UPRmtRGs from the GeneCards database and relevant literature from PubMed. The differentially expressed genes (DEGs) associated with OSA and NAFLD were identified using differential expression analysis. Gene Set Enrichment Analysis (GSEA) was conducted for signaling pathway enrichment analysis of related disease genes. Based on the STRING database, protein-protein interaction (PPI) analysis was performed on differentially co-expressed genes (Co-DEGs), and the Cytoscape software (version 3.9.1) was used to visualize the PPI network model. In addition, the GeneMANIA website was used to predict and construct the functional similar genes of the selected Co-DEGs. Key predictor genes were analyzed using the receiver operating characteristic (ROC) curve. Results The intersection of differentially expressed genes shared between OSA and NAFLD-related gene expression profiles with UPRmtRGs yielded four Co-DEGs: ASS1, HDAC2, SIRT3, and VEGFA. GSEA obtained the relevant enrichment signaling pathways for OSA and NAFLD. PPI network results showed that all four Co-DEGs interacted (except for ASS1 and HDAC2). Ultimately, key predictor genes were selected in the ROC curve, including HDAC2 (OSA: AUC = 0.812; NAFLD: AUC = 0.729), SIRT3 (OSA: AUC = 0.775; NAFLD: AUC = 0.750), and VEGFA (OSA: AUC = 0.812; NAFLD: AUC = 0.861) (they have a high degree of accuracy in predicting whether a subject will develop two diseases). Conclusion In this study, four co-expression differential genes for OSA and NAFLD were obtained, and they can predict the occurrence of both diseases. Transcriptional mechanisms involved in OSA and NAFLD interactions may be better understood by exploring these key genes. Simultaneously, this study provides potential diagnostic and therapeutic markers for patients with OSA and NAFLD.
Collapse
Affiliation(s)
- Rou Zhang
- Kunming Medical University, Kunming, China
| | - Zhijuan Liu
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ran Li
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaona Wang
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Ai
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongxia Li
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Shi Y, Gao Z, Xu B, Mao J, Wang Y, Liu Z, Wang J. Protective effect of naringenin on cadmium chloride-induced renal injury via alleviating oxidative stress, endoplasmic reticulum stress, and autophagy in chickens. Front Pharmacol 2024; 15:1440877. [PMID: 39070780 PMCID: PMC11275578 DOI: 10.3389/fphar.2024.1440877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Cadmium (Cd) is a highly hazardous toxic substance that can cause serious harm to animals. Previous studies have indicated that cadmium chloride (CdCl2) can damage organs, such as the liver, ovaries, and testicles. Naringenin (Nar) represents a flavonoid with various properties that promote the alleviation of Cd-induced damage. In this experiment, 60 chickens were divided into the control group, 150 mg/kg CdCl2 treatment group, 250 mg/kg Nar treatment group, and 150 mg/kg CdCl2 + 250 mg/kg Nar co-treatment group, which were treated for 8 weeks. Kidney tissues samples were collected to investigate kidney function, including oxidative stress (OS), endoplasmic reticulum (ER) stress, and autophagy activity. Experimental results showed the decreased weight of chickens and increased relative weight of their kidneys after CdCl2 treatment. The increase in NAG, BUN, Cr, and UA activities, as well as the increase in MDA and GSH contents, and the decrease activities of T-AOC, SOD, and CAT in the kidney, manifested renal injury by OS in the chickens. TUNEL staining revealed that CdCl2 induced apoptosis in renal cells. CdCl2 upregulates the mRNA and protein expression levels of GRP78, PERK, eIF2α, ATF4, ATF6, CHOP, and LC3, and inhibited the mRNA and protein expression levels of P62 proteins, which leads to ER stress and autophagy. The CdCl2 + Nar co-treatment group exhibited alleviated CdCl2-induced kidney injury, OS, ER stress, and autophagy. Research has demonstrated that Nar reduces CdCl2-induced kidney injury through alleviation of OS, ER stress, and autophagy.
Collapse
Affiliation(s)
- Yaning Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhixin Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Bing Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Junbing Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yue Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
13
|
Cui Y, Wu J, Wang Y, Li D, Zhang F, Jin X, Li M, Zhang J, Liu Z. Protective effects of ginsenoside F 2 on isoproterenol-induced myocardial infarction by activating the Nrf2/HO-1 and PI3K/Akt signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155637. [PMID: 38669969 DOI: 10.1016/j.phymed.2024.155637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Ginsenoside F2 (GF2) serves as the principal intestinal metabolite resulting from the oral intake of Panax ginseng and Panax quinquefolius, exhibiting antioxidative, hypolipidemic, antitumor, and anti-inflammatory properties. Nevertheless, its effect on myocardial infarction (MI) is still unknown. PURPOSE The purpose of this study is to investigate the protective effect and the underlying mechanisms of GF2 against isoproterenol (ISO)-induced MI. METHODS ISO-induced H9c2 cardiomyocytes and MI rat models were utilized as in vitro and in vivo models to evaluate the impact of anti-MI of GF2. The underlying mechanisms were investigated using a variety of methodologies, including electrocardiography, Western blot analysis, histopathological examination, immunofluorescence, immunohistochemistry, and ELISA techniques. RESULTS In vivo experiments, our results indicated that GF2 significantly ameliorated ISO-induced electrocardiographic (ECG) abnormalities, myocardial fiber necrosis, rupture, fibrosis of myocardial tissues, and suppressed cardiac enzyme activities. Meanwhile, GF2 notably raised the activity of antioxidant enzymes like CAT, GSH, and SOD. Furthermore, it downregulated Keap1 expression level while upregulating NQO1, Nrf2, and HO-1 expression levels. Additionally, GF2 suppressed the expression of the cleaved caspase-3 and pro-apoptotic protein Bax while promoting the expression of anti-apoptotic proteins Bcl-2, p-PI3K, and p-Akt. TUNEL fluorescence results also demonstrated that GF2 effectively inhibited cardiomyocyte apoptosis. Furthermore, consistent with the results of animal experiments, GF2 considerably attenuated ROS generation, changed apoptosis and mitochondrial function, and reduced oxidative stress in ISO-induced H9c2 cardiomyocytes through activating Nrf2/HO-1 and PI3K/Akt signaling pathways. CONCLUSION Taken together, GF2 ameliorated MI by preventing cardiocyte apoptosis, oxidative stress, and mitochondrial dysfunction via modulating the Nrf2/HO-1 and PI3K/Akt signaling pathways, showing potential as a treatment strategy for treating MI.
Collapse
Affiliation(s)
- Ying Cui
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianfa Wu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Dan Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Furui Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoman Jin
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Meihui Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun 130118, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun 130118, China.
| |
Collapse
|
14
|
Tong YX, Zhu SY, Wang ZY, Zhao YX, Saleem MAU, Malh KK, Li XN, Li JL. Sulforaphane Ameliorate Cadmium-Induced Blood-Thymus Barrier Disruption by Targeting the PI3K/AKT/FOXO1 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13382-13392. [PMID: 38814005 DOI: 10.1021/acs.jafc.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cadmium (Cd) is a transition metal ion that is extremely harmful to human and animal biological systems. Cd is a toxic substance that can accumulate in the food chain and cause various health issues. Sulforaphane (SFN) is a natural bioactive compound with potent antioxidant properties. In our study, 80 1 day-old chicks were fed with Cd (140 mg/kg BW/day) and/or SFN (50 mg/kg BW/day) for 90 days. The blood-thymus barrier (BTB) is a selective barrier separating T-lymphocytes from blood and cortical capillaries in the thymus cortex. Our research revealed that Cd could destroy the BTB by downregulating Wnt/β-catenin signaling and induce immunodeficiency, leading to irreversible injury to the immune system. The study emphasizes the health benefits of SFN in the thymus. SFN could ameliorate Cd-triggered BTB dysfunction and pyroptosis in the thymus tissues. SFN modulated the PI3K/AKT/FOXO1 axis, improving the level of claudin-5 (CLDN5) in the thymus to alleviate BTB breakdown. Our findings indicated the toxic impact of Cd on thymus, and BTB could be the specific target of Cd toxicity. The finding also provides evidence for the role of SFN in maintaining thymic homeostasis for Cd-related health issues.
Collapse
Affiliation(s)
- Yu-Xuan Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhao-Yi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ying-Xin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | | | - Kanwar Kumar Malh
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
15
|
Xu G, Li W, Zhao Y, Fan T, Gao Q, Wang Y, Zhang F, Gao M, An Z, Yang Z. Overexpression of Lias Gene Alleviates Cadmium-Induced Kidney Injury in Mice Involving Multiple Effects: Metabolism, Oxidative Stress, and Inflammation. Biol Trace Elem Res 2024; 202:2797-2811. [PMID: 37804446 DOI: 10.1007/s12011-023-03883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023]
Abstract
Oxidative stress is an important mechanism underlying toxicity induced by cadmium (Cd) exposure. However, there are significant differences of the antioxidant baseline in different populations. This means that different human has different intensity of oxidative stress in vivo after exposure to toxicants. LiasH/H mouse is a specific model which is created by genetically modifying the Lias 3'-untranslated region (3'-UTR). LiasH/H mice express high levels of LA and have high endogenous antioxidant capacity which is approximately 150% higher than wild-type C57BL/6 J mice (WT, Lias+/+). But more importantly, they have dual roles of metal chelator and antioxidant. Here, we applied this mouse model to evaluate the effect of endogenous antioxidant levels in the body on alleviating Cd-induced renal injury including Cd metabolism, oxidative stress, and inflammation. In the experiment, mice drank water containing Cd (50 mg/L), for 12 weeks. Many biomarkers of Cd metabolism, oxidative stress, inflammation, and major pathological changes in the kidney were examined. The results showed overexpression of the Lias gene decreased Cd burden in the body of mice, mitigated oxidative stress, attenuated the inflammatory response, and subsequent alleviated cadmium-induced kidney injury in mice.
Collapse
Affiliation(s)
- Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.
| | - Weibing Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Ting Fan
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Qiyu Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yongbin Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Mingjing Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Zijiang Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.
| |
Collapse
|
16
|
Hernández-Cruz EY, Aparicio-Trejo OE, Eugenio-Pérez D, Juárez-Peredo E, Zurita-León M, Valdés VJ, Pedraza-Chaverri J. Sulforaphane Exposure Prevents Cadmium-Induced Toxicity and Mitochondrial Dysfunction in the Nematode Caenorhabditis elegans by Regulating the Insulin/Insulin-like Growth Factor Signaling (IIS) Pathway. Antioxidants (Basel) 2024; 13:584. [PMID: 38790689 PMCID: PMC11117759 DOI: 10.3390/antiox13050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic to humans and animals. Its adverse effects have been widely associated with mitochondrial alterations. However, there are not many treatments that target mitochondria. This study aimed to evaluate the impact of sulforaphane (SFN) pre-exposure against cadmium chloride (CdCl2)-induced toxicity and mitochondrial alterations in the nematode Caenorhabditis elegans (C. elegans), by exploring the role of the insulin/insulin-like growth factor signaling pathway (IIS). The results revealed that prior exposure to SFN protected against CdCl2-induced mortality and increased lifespan, body length, and mobility while reducing lipofuscin levels. Furthermore, SFN prevented mitochondrial alterations by increasing mitochondrial membrane potential (Δψm) and restoring mitochondrial oxygen consumption rate, thereby decreasing mitochondrial reactive oxygen species (ROS) production. The improvement in mitochondrial function was associated with increased mitochondrial mass and the involvement of the daf-16 and skn-1c genes of the IIS signaling pathway. In conclusion, exposure to SFN before exposure to CdCl2 mitigates toxic effects and mitochondrial alterations, possibly by increasing mitochondrial mass, which may be related to the regulation of the IIS pathway. These discoveries open new possibilities for developing therapies to reduce the damage caused by Cd toxicity and oxidative stress in biological systems, highlighting antioxidants with mitochondrial action as promising tools.
Collapse
Affiliation(s)
- Estefani Yaquelin Hernández-Cruz
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.Y.H.-C.); (D.E.-P.); (E.J.-P.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico;
| | - Dianelena Eugenio-Pérez
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.Y.H.-C.); (D.E.-P.); (E.J.-P.)
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Biochemical Sciences, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Elí Juárez-Peredo
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.Y.H.-C.); (D.E.-P.); (E.J.-P.)
| | - Mariana Zurita-León
- Departamento de Biología y Desarrollo Celular, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (M.Z.-L.); (V.J.V.)
| | - Víctor Julián Valdés
- Departamento de Biología y Desarrollo Celular, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (M.Z.-L.); (V.J.V.)
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.Y.H.-C.); (D.E.-P.); (E.J.-P.)
| |
Collapse
|
17
|
Zhang K, Li J, Dong W, Huang Q, Wang X, Deng K, Ali W, Song R, Zou H, Ran D, Liu G, Liu Z. Luteolin Alleviates Cadmium-Induced Kidney Injury by Inhibiting Oxidative DNA Damage and Repairing Autophagic Flux Blockade in Chickens. Antioxidants (Basel) 2024; 13:525. [PMID: 38790630 PMCID: PMC11117664 DOI: 10.3390/antiox13050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Chickens are a major source of meat and eggs in human food and have significant economic value. Cadmium (Cd) is a common environmental pollutant that can contaminate feed and drinking water, leading to kidney injury in livestock and poultry, primarily by inducing the generation of free radicals. It is necessary to develop potential medicines to prevent and treat Cd-induced nephrotoxicity in poultry. Luteolin (Lut) is a natural flavonoid compound mainly extracted from peanut shells and has a variety of biological functions to defend against oxidative damage. In this study, we aimed to demonstrate whether Lut can alleviate kidney injury under Cd exposure and elucidate the underlying molecular mechanisms. Renal histopathology and cell morphology were observed. The indicators of renal function, oxidative stress, DNA damage and repair, NAD+ content, SIRT1 activity, and autophagy were analyzed. In vitro data showed that Cd exposure increased ROS levels and induced oxidative DNA damage and repair, as indicated by increased 8-OHdG content, increased γ-H2AX protein expression, and the over-activation of the DNA repair enzyme PARP-1. Cd exposure decreased NAD+ content and SIRT1 activity and increased LC3 II, ATG5, and particularly p62 protein expression. In addition, Cd-induced oxidative DNA damage resulted in PARP-1 over-activation, reduced SIRT1 activity, and autophagic flux blockade, as evidenced by reactive oxygen species scavenger NAC application. The inhibition of PARP-1 activation with the pharmacological inhibitor PJ34 restored NAD+ content and SIRT1 activity. The activation of SIRT1 with the pharmacological activator RSV reversed Cd-induced autophagic flux blockade and cell injury. In vivo data demonstrated that Cd treatment caused the microstructural disruption of renal tissues, reduced creatinine, and urea nitrogen clearance, raised MDA content, and decreased the activities or contents of antioxidants (GSH, T-SOD, CAT, and T-AOC). Cd treatment caused oxidative DNA damage and PARP-1 activation, decreased NAD+ content, decreased SIRT1 activity, and impaired autophagic flux. Notably, the dietary Lut supplement observably alleviated these alterations in chicken kidney tissues induced by Cd. In conclusion, the dietary Lut supplement alleviated Cd-induced chicken kidney injury through its potent antioxidant properties by relieving the oxidative DNA damage-activated PARP-1-mediated reduction in SIRT1 activity and repairing autophagic flux blockade.
Collapse
Affiliation(s)
- Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wenxuan Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266000, China;
| | - Qing Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueru Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Deng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Di Ran
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
18
|
Ye J, Qiu W, Pang X, Su Y, Zhang X, Huang J, Xie H, Liao J, Tang Z, Chen Z, Li F, Xiong Z, Su R. Polystyrene nanoplastics and cadmium co-exposure aggravated cardiomyocyte damage in mice by regulating PANoptosis pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123713. [PMID: 38462200 DOI: 10.1016/j.envpol.2024.123713] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Micro/nanoplastics (M/NPs) are the novel contaminants ubiquitous in the environment. Cadmium (Cd), a kind of heavy metal pollutant widely distributed, could potentially co-exist with PS-NPs in the environment. However, their combined effects on cardiomyocyte and its molecular mechanism in mammals remained ambiguous. Here, we examined whether PANoptosis, an emerging and complicated kind of programmed cell death, was involved in PS-NPs and Cd co-exposure-elicited cardiac injury. In this study, 60 male mice were orally subjected to environmentally relevant concentrations of PS-NPs (1 mg/kg) and/or CdCl2 (1.5 mg/kg) for 35 days. As we speculated, PS-NPs and Cd co-exposure affected the expression of pyroptosis(Caspase-1, Cleaved-Caspase-1, GSDMD, N-GSDMD, AIM2, Pyrin, NLRP3, IL-18, IL-1β)-, apoptosis(Caspase-3, Cleaved-Caspase-3, Caspase-8, Cleaved-Caspase-8, Caspase-7, BAX)- and necroptosis (t-RIPK3, p-RIPK3, t-RIPK1, p-RIPK1, t-MLKL, p-MLKL, ZBP1)-related genes and protein, resulting in growth restriction and damaged myocardial microstructure in mice. Notably, the combined effects on Cd and PS-NPs even predominantly aggravated the toxic damage. Intriguingly, we fortuitously discovered PS-NPs and/or Cd exposure facilitated linear ubiquitination of certain proteins in mice myocardium. In summation, this study shed light toward the effects of Cd and PS-NPs on cardiotoxicity, advanced the understanding of myocardial PANoptosis and provided a scientific foundation for further exploration of the combined toxicological effects of PS-NPs and heavy metals.
Collapse
Affiliation(s)
- Jiali Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenyue Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiman Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinting Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianjia Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haoming Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zefeng Chen
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Fei Li
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Zhaojun Xiong
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Rongsheng Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
19
|
Li M, Zhao D, Guo J, Pan T, Niu T, Jiang Y, Shi C, Huang H, Wang N, Zhang D, Zhang S, Wang C, Yang G. Bacillus halotolerans SW207 alleviates enterotoxigenic Escherichia coli-induced inflammatory responses in weaned piglets by modulating the intestinal epithelial barrier, the TLR4/MyD88/NF-κB pathway, and intestinal microbiota. Microbiol Spectr 2024; 12:e0398823. [PMID: 38451226 PMCID: PMC10986599 DOI: 10.1128/spectrum.03988-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the major pathogens contributing to piglet diarrhea, with significant implications for both piglet health and the economic aspects of the livestock industry. SW207 is an isolate of Bacillus halotolerans isolated from the cold- and disease-resistant Leixiang pigs in Northeastern China. We have discovered that SW207 can survive in the pig's gastrointestinal fluid and under conditions of high bile salt concentration, displaying potent antagonistic activity against ETEC. In this study, we established a weaned piglet diarrhea model infected with ETEC to investigate the role of SW207 in preventing diarrhea and improving intestinal health. Results indicate that SW207 upregulates the expression of tight junction proteins, including claudin-1, occludin, and zonula occludens-1, at both the transcriptional and translational levels. Furthermore, SW207 reduces serum endotoxin, D-lactic acid, and various oxidative stress markers while enhancing piglet mechanical barrier function. In terms of immune barrier, SW207 suppressed the activation of the TLR4/MyD88/NF-κB pathway, reducing the expression of various inflammatory factors and upregulating the expression of small intestine mucosal sIgA. Concerning the biological barrier, SW207 significantly reduces the content of E. coli in the intestines and promotes the abundance of beneficial bacteria, thereby mitigating the microbiota imbalance caused by ETEC. In summary, SW207 has the potential to prevent weaned piglet diarrhea caused by ETEC, alleviate intestinal inflammation and epithelial damage, and facilitate potential beneficial changes in the intestinal microbiota. This contributes to elucidating the potential mechanisms of host-microbe interactions in preventing pathogen infections.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC) has consistently been one of the significant pathogens causing mortality in weaned piglets in pig farming. The industry has traditionally relied on antibiotic administration to control ETEC-induced diarrhea. However, the overuse of antibiotics has led to the emergence of drug-resistant zoonotic bacterial pathogens, posing a threat to public health. Therefore, there is an urgent need to identify alternatives to control pathogens and reduce antibiotic usage. In this study, we assessed the protective effect of a novel probiotic in a weaned piglet model infected with ETEC and analyzed its mechanisms both in vivo and in vitro. The study results provide theoretical support and reference for implementing interventions in the gut microbiota to alleviate early weaned piglet diarrhea and improve intestinal health.
Collapse
Affiliation(s)
- Minghan Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dongyu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jialin Guo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tianxu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tianming Niu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanqi Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shumin Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
20
|
Zhu S, Li X, Dai X, Li J. Prenatal cadmium exposure impairs neural tube closure via inducing excessive apoptosis in neuroepithelium. J Environ Sci (China) 2024; 138:572-584. [PMID: 38135421 DOI: 10.1016/j.jes.2023.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 12/24/2023]
Abstract
Birth defects have become a public health concern. The hazardous environmental factors exposure to embryos could increase the risk of birth defects. Cadmium, a toxic environmental factor, can cross the placental barrier during pregnancy. Pregnant woman may be subjected to cadmium before taking precautionary protective actions. However, the link between birth defects and cadmium remains obscure. Cadmium exposure can induce excessive apoptosis in neuroepithelium during embryonic development progresses. Cadmium exposure activated the p53 via enhancing the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and reactive oxygen species' (ROS) level. And cadmium decreases the level of Paired box 3 (Pax3) and murine double minute 2 (Mdm2), disrupting the process of p53 ubiquitylation. And p53 accumulation induced excessive apoptosis in neuroepithelium during embryonic development progresses. Excessive apoptosis led to the failure of neural tube closure. The study emphasizes that environmental materials may increase the health risk for embryos. Cadmium caused the failure of neural tube closure during early embryotic day. Pregnant women may be exposed by cadmium before taking precautionary protective actions, because of cadmium concentration-containing foods and environmental tobacco smoking. This suggests that prenatal cadmium exposure is a threatening risk factor for birth defects.
Collapse
Affiliation(s)
- Shiyong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuenan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueyan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jinlong Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
21
|
Yu G, Wu L, Su Q, Ji X, Zhou J, Wu S, Tang Y, Li H. Neurotoxic effects of heavy metal pollutants in the environment: Focusing on epigenetic mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123563. [PMID: 38355086 DOI: 10.1016/j.envpol.2024.123563] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The pollution of heavy metals (HMs) in the environment is a significant global environmental issue, characterized by its extensive distribution, severe contamination, and profound ecological impacts. Excessive exposure to heavy metal pollutants can damage the nervous system. However, the mechanisms underlying the neurotoxicity of most heavy metals are not completely understood. Epigenetics is defined as a heritable change in gene function that can influence gene and subsequent protein expression levels without altering the DNA sequence. Growing evidence indicates that heavy metals can induce neurotoxic effects by triggering epigenetic changes and disrupting the epigenome. Compared with genetic changes, epigenetic alterations are more easily reversible. Epigenetic reprogramming techniques, drugs, and certain nutrients targeting specific epigenetic mechanisms involved in gene expression regulation are emerging as potential preventive or therapeutic tools for diseases. Therefore, this review provides a comprehensive overview of epigenetic modifications encompassing DNA/RNA methylation, histone modifications, and non-coding RNAs in the nervous system, elucidating their association with various heavy metal exposures. These primarily include manganese (Mn), mercury (Hg), lead (Pb), cobalt (Co), cadmium (Cd), nickel (Ni), sliver (Ag), toxic metalloids arsenic (As), and etc. The potential epigenetic mechanisms in the etiology, precision prevention, and target therapy of various neurodevelopmental disorders or different neurodegenerative diseases are emphasized. In addition, the current gaps in research and future areas of study are discussed. From a perspective on epigenetics, this review offers novel insights for prevention and treatment of neurotoxicity induced by heavy metal pollutants.
Collapse
Affiliation(s)
- Guangxia Yu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lingyan Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qianqian Su
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xianqi Ji
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jinfu Zhou
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Siying Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ying Tang
- Fujian Center for Prevention and Control Occupational Diseases and Chemical Poisoning, Fuzhou 350125, China
| | - Huangyuan Li
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
22
|
Xu YR, Talukder M, Li CX, Zhao YX, Zhang C, Ge J, Li JL. Nano-selenium alleviates cadmium-induced neurotoxicity in cerebrum via inhibiting gap junction protein connexin 43 phosphorylation. ENVIRONMENTAL TOXICOLOGY 2024; 39:1163-1174. [PMID: 37860879 DOI: 10.1002/tox.24001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/24/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Cadmium (Cd) as a ubiquitous toxic heavy metal is reported to affect the nervous system. Selenium (Se) has been shown to have antagonistic effects against heavy metal toxicity. In addition, it shows potential antioxidant and anti-inflammatory properties. Thus, the purpose of this study was to determine the possible mechanism of brain injury after high Cd exposure and the mitigation of Nano-selenium (Nano-Se) against Cd-induced brain injury. In this study, the Cd-treated group showed a decrease in the number of neurons in brain tissue, swelling of the endoplasmic reticulum and mitochondria, and the formation of autophagosomes. Nano-Se intervention restored Cd-caused alterations in neuronal morphology, endoplasmic reticulum, and mitochondrial structure, thereby reducing neuronal damage. Furthermore, we found that some differentially expressed genes were involved in cell junction and molecular functions. Subsequently, we selected eleven (11) related differentially expressed genes for verification. The qRT-PCR results revealed the same trend of results as determined by RNA-Seq. Our findings also showed that Nano-Se supplementation alleviated Cx43 phosphorylation induced by Cd exposure. Based on immunofluorescence colocalization it was demonstrated that higher expression of GFAP and lower expressions of Cx43 were restored by Nano-Se supplementation. In conclusion, the data presented in this study establish a direct association between the phosphorylation of Cx43 and the occurrence of autophagy and neuroinflammation. However, it is noteworthy that the introduction of Nano-Se supplementation has been observed to mitigate these alterations. These results elucidate the relieving effect of Nano-Se on Cd exposure-induced brain injury.
Collapse
Affiliation(s)
- Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Ying-Xin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
23
|
Abd-Alhameed EK, Azouz AA, Abo-Youssef AM, Ali FEM. The enteroprotective effect of nifuroxazide against methotrexate-induced intestinal injury involves co-activation of PPAR-γ, SIRT1, Nrf2, and suppression of NF-κB and JAK1/STAT3 signals. Int Immunopharmacol 2024; 127:111298. [PMID: 38070469 DOI: 10.1016/j.intimp.2023.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Methotrexate (MTX) has long manifested therapeutic efficacy in several neoplastic and autoimmune disorders. However, MTX-associated intestinal toxicity restricts the continuation of treatment. Nifuroxazide (NIF) is an oral antibiotic approved for gastrointestinal infections as an effective antidiarrheal agent with a high safety profile. The current study was designed to explore the potential efficacy of NIF in alleviating intestinal toxicity associated with MTX chemotherapy with the elucidation of the proposed molecular mechanisms. Rats were administered NIF (50 mg/kg; p.o.) for ten days. On day five, a single i.p. injection of MTX (20 mg/kg) was given to induce intestinal intoxication. At the end of the experiment, duodenal tissue samples were isolated for biochemical, Western blotting, immunohistochemical (IHC), and histopathological analysis via H&E, PSA, and Alcian blue stains. NIF showed antioxidant enteroprotective effects against MTX intestinal intoxication through enhanced expression of the redox-sensitive signals of PPAR-γ, SIRT1, and Nrf2 estimated by IHC. Moreover, NIF down-regulated the pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), NF-κB protein expression, and the phosphorylation of JAK1/STAT3 proteins, leading to mitigation of intestinal inflammation. In accordance, the histological investigation revealed that NIF ameliorated the intestinal pathological changes, preserved the goblet cells, and reduced the inflammatory cells infiltration. Therefore, NIF could be a promising candidate for adjunctive therapy with MTX to mitigate the associated intestinal injury and increase its tolerability.
Collapse
Affiliation(s)
- Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| |
Collapse
|
24
|
Zhang K, Long M, Dong W, Li J, Wang X, Liu W, Huang Q, Ping Y, Zou H, Song R, Liu G, Ran D, Liu Z. Cadmium Induces Kidney Iron Deficiency and Chronic Kidney Injury by Interfering with the Iron Metabolism in Rats. Int J Mol Sci 2024; 25:763. [PMID: 38255838 PMCID: PMC10815742 DOI: 10.3390/ijms25020763] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Cadmium (Cd) is a common environmental pollutant and occupational toxicant that seriously affects various mammalian organs, especially the kidney. Iron ion is an essential trace element in the body, and the disorder of iron metabolism is involved in the development of multiple pathological processes. An iron overload can induce a new type of cell death, defined as ferroptosis. However, whether iron metabolism is abnormal in Cd-induced nephrotoxicity and the role of ferroptosis in Cd-induced nephrotoxicity need to be further elucidated. Sprague Dawley male rats were randomly assigned into three groups: a control group, a 50 mg/L CdCl2-treated group, and a 75 mg/L CdCl2-treated group by drinking water for 1 month and 6 months, respectively. The results showed that Cd could induce renal histopathological abnormalities and dysfunction, disrupt the mitochondria's ultrastructure, and increase the ROS and MDA content. Next, Cd exposure caused GSH/GPX4 axis blockade, increased FTH1 and COX2 expression, decreased ACSL4 expression, and significantly decreased the iron content in proximal tubular cells or kidney tissues. Further study showed that the expression of iron absorption-related genes SLC11A2, CUBN, LRP2, SLC39A14, and SLC39A8 decreased in proximal tubular cells or kidneys after Cd exposure, while TFRC and iron export-related gene SLC40A1 did not change significantly. Moreover, Cd exposure increased SLC11A2 gene expression and decreased SLC40A1 gene expression in the duodenum. Finally, NAC or Fer-1 partially alleviated Cd-induced proximal tubular cell damage, while DFO and Erastin further aggravated Cd-induced cell damage. In conclusion, our results indicated that Cd could cause iron deficiency and chronic kidney injury by interfering with the iron metabolism rather than typical ferroptosis. Our findings suggest that an abnormal iron metabolism may contribute to Cd-induced nephrotoxicity, providing a novel approach to preventing kidney disease in clinical practice.
Collapse
Affiliation(s)
- Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengfei Long
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueru Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wenjing Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qing Huang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuyu Ping
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Di Ran
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
25
|
Zhu M, Yan M, Li H, Zou X, Li M. Egg white composition, antioxidant capacity, serum and yolk lipids and oxidative damage of the oviduct magnum in laying hens fed diets contaminated with different concentrations of cadmium. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2184730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Affiliation(s)
- Mingkun Zhu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ming Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Huaiyu Li
- Qingdao Animal Husbandry Workstation (Qingdao Institute of Animal Science and Veterinary Medicine), Qingdao, China
| | - Xiaoting Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Muwang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
26
|
Xu S, Liu H, Wang C, Deng Y, Xu B, Yang T, Liu W. Study of ATF4/CHOP axis-mediated mitochondrial unfolded protein response in neuronal apoptosis induced by methylmercury. Food Chem Toxicol 2023; 182:114190. [PMID: 37967789 DOI: 10.1016/j.fct.2023.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Methylmercury (MeHg) is a widely distributed environmental pollutant that can easily cross the blood-brain barrier and accumulate in the brain, thereby damaging the central nervous system. Studies have shown that MeHg-induced mitochondrial damage and apoptosis play a crucial role in its neurotoxic effects. Mitochondrial unfolded protein response (UPRmt) is indispensable to maintain mitochondrial protein homeostasis and ensure mitochondrial function, and the ATF4/CHOP axis is one of the signaling pathways to activate UPRmt. In this study, the role of the ATF4/CHOP axis-mediated UPRmt in the neurotoxicity of MeHg has been investigated by C57BL/6 mice and the HT22 cell line. We discovered that mice exposed to MeHg had abnormal neurobehavioral patterns. The pathological section showed a significant decrease in the number of neurons. MeHg also resulted in a reduction in mtDNA copy number and mitochondrial membrane potential (MMP). Additionally, the ATF4/CHOP axis and UPRmt were found to be significantly activated. Subsequently, we used siRNA to knock down ATF4 or CHOP and observed that the expression of UPRmt-related proteins and the apoptosis rate were significantly reduced. Our research showed that exposure to MeHg can over-activate the UPRmt through the ATF4/CHOP axis, leading to mitochondrial damage and ultimately inducing neuronal apoptosis.
Collapse
Affiliation(s)
- Si Xu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Haihui Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Chen Wang
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, China.
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, China.
| |
Collapse
|
27
|
Wang J, Wei X, Kong H, Zheng X, Guo H. Hydrothermal Ammonia Carbonization of Rice Straw for Hydrochar to Separate Cd(II) and Zn(II) Ions from Aqueous Solution. Polymers (Basel) 2023; 15:4548. [PMID: 38231969 PMCID: PMC10708519 DOI: 10.3390/polym15234548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 01/19/2024] Open
Abstract
Hydrochar is considered to be a good adsorbent for the separation of metal ions from aqueous solutions. However, the yield of hydrochar from raw straw is generally low, because the hydrothermal carbonization occurs via dehydration, polymerization, and carbonization. In this work, various hydrochar samples were prepared from rice straw with nitrogen and phosphorus salt; moreover, toilet sewage was used instead of nitrogen, and phosphorus salt and water were used to promote the polymerization and carbonization process. The modified carbon was characterized using XRD, XPS, SEM, and FTIR, and the adsorption capacity was investigated. A significant increase in hydrochar yield was observed when toilet sewage was used as the solvent in the hydrothermal carbonization process. The adsorption capacity of N/P-doped rice straw hydrochar for Cd2+ and Zn2+ metal ions was 1.1-1.4 times higher than that those using the rice straw hydrochar. The Langmuir models and pseudo-second-order models described the metal adsorption processes in both the single and binary-metal systems well. The characterization results showed the contribution of the surface complexation, the electrostatic interaction, the hydrogen bond, and the ion exchange to the extraction of Cd2+ and Zn2+ using N/P-doped rice straw hydrochar.
Collapse
Affiliation(s)
- Jiarui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.W.); (X.W.); (H.K.)
- Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.W.); (X.W.); (H.K.)
- Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hao Kong
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.W.); (X.W.); (H.K.)
- Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.W.); (X.W.); (H.K.)
- Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China
| | - Haixin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.W.); (X.W.); (H.K.)
- Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
28
|
Li J, Zhu M, Xian R, Chen S, Zang Q, Zhu H, Cao C. A preliminary study on the pathology and molecular mechanism of fumonisin B 1 nephrotoxicity in young quails. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114438-114451. [PMID: 37858030 DOI: 10.1007/s11356-023-30291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Fumonisin B1 (FB1) is a widely present mycotoxin that accumulates in biological systems and poses a health risk to animals. However, few studies have reported the molecular mechanism by which FB1 induces nephrotoxicity. The aim of this study was to assess the extent of nephrotoxicity during FB1 exposure and the possible molecular mechanisms behind it. Therefore, 180 young quails were equally divided into two groups. The control group was fed typical quail food, while the experimental group was fed quail food containing 30 mg·kg-1 FB1. Various parameters were assessed, which included histopathological, ultrastructural changes, levels of biochemical parameters, oxidative indicators, inflammatory factors, possible target organelles mitochondrial and endoplasmic reticulum (ER)-related factors, nuclear xenobiotic receptors (NXR) response, and cytochrome P450 system (CYP450s)-related factors in the kidneys on days 14, 28, and 42. The results showed that FB1 can induce oxidative stress through NXR response and disorder of the CYP450s system, leading to mitochondrial dysfunction and ER stress, promoting the expression of inflammatory factors (including IL-1β, IL-6, and IL-8) and causing kidney damage. This study elucidated the possible molecular mechanism by which FB1 induces nephrotoxicity in young quails.
Collapse
Affiliation(s)
- Jinhong Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Mingzhan Zhu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Runxi Xian
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Siqiu Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Qian Zang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Huquan Zhu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China.
| |
Collapse
|
29
|
Li Y, Feng L, Xie D, Luo Y, Lin M, Gao J, Zhang Y, He Z, Zhu YZ, Gong Q. Icariside II mitigates myocardial infarction by balancing mitochondrial dynamics and reducing oxidative stress through the activation of Nrf2/SIRT3 signaling pathway. Eur J Pharmacol 2023; 956:175987. [PMID: 37572941 DOI: 10.1016/j.ejphar.2023.175987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2)/silent mating type information regulation 2 homolog 3 (SIRT3) signaling pathway plays a pivotal role in regulating mitochondrial dynamics and oxidative stress, which are considered to be the principal pathogenesis of myocardial infarction (MI). Our previous study proved that pretreatment with icariside II (ICS II), a major active ingredient of Herbal Epimedii, exerts cardioprotective effect on MI, however, whether post-treatment with ICS II can alleviate MI and its underlying mechanism are still uncertain. Therefore, the present study was designed to investigate the therapeutic effect and the possible mechanism of ICS II on MI both in vivo and in vitro. The results revealed that post-treatment with ICS II markedly ameliorated myocardial injury in MI-induced mice and mitigated oxygen and glucose deprivation (OGD)-elicited cardiomyocyte injury. Further researches showed that ICS II promoted mitochondrial fusion, and suppressed mitochondrial fission and oxidative stress, which were achieved by facilitating the nuclear translocation of Nrf2 and activation of SIRT3. In summary, our findings indicate that ICS II mitigates MI-induced mitochondrial dynamics disorder and oxidative stress via activating the Nrf2/SIRT3 signaling pathway.
Collapse
Affiliation(s)
- Yeli Li
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Linying Feng
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Dianyou Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Yunmei Luo
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Mu Lin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Jianmei Gao
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuandong Zhang
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Yi Zhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China.
| | - Qihai Gong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
30
|
Zhu M, He J, Xu Y, Zuo Y, Zhou W, Yue Z, Shao X, Cheng J, Wang T, Mou S. AMPK activation coupling SENP1-Sirt3 axis protects against acute kidney injury. Mol Ther 2023; 31:3052-3066. [PMID: 37608549 PMCID: PMC10556228 DOI: 10.1016/j.ymthe.2023.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/24/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023] Open
Abstract
Acute kidney injury (AKI) is a critical clinical condition that causes kidney fibrosis, and it currently lacks specific treatment options. In this research, we investigate the role of the SENP1-Sirt3 signaling pathway and its correlation with mitochondrial dysfunction in proximal tubular epithelial cells (PTECs) using folic acid (FA) and ischemia-reperfusion-induced (IRI) AKI models. Our findings reveal that Sirt3 SUMOylation site mutation (Sirt3 KR) or pharmacological stimulation (metformin) protected mice against AKI and subsequent kidney inflammation and fibrosis by decreasing the acetylation level of mitochondrial SOD2, reducing mitochondrial reactive oxygen species (mtROS), and subsequently restoring mitochondrial ATP level, reversing mitochondrial morphology and alleviating cell apoptosis. In addition, AKI in mice was similarly alleviated by reducing mtROS levels using N-acetyl-L-cysteine (NAC) or MitoQ. Metabolomics analysis further demonstrated an increase in antioxidants and metabolic shifts in Sirt3 KR mice during AKI, compared with Sirt3 wild-type (WT) mice. Activation of the AMPK pathway using metformin promoted the SENP1-Sirt3 axis and protected PTECs from apoptosis. Hence, the augmented deSUMOylation of Sirt3 in mitochondria, activated through the metabolism-related AMPK pathway, protects against AKI and subsequently mitigated renal inflammation and fibrosis through Sirt3-SOD2-mtROS, which represents a potential therapeutic target for AKI.
Collapse
Affiliation(s)
- Minyan Zhu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201207, China
| | - Jianli He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao Xu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201207, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenyan Zhou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201207, China
| | - Zhiying Yue
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinghua Shao
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201207, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201207, China.
| |
Collapse
|
31
|
Gao Y, Yang P. The impaired swim bladder via ROS-mediated inhibition of the Wnt / Hedgehog pathway in zebrafish embryos exposed to eight toxic chemicals and binary chemical mixtures. CHEMOSPHERE 2023; 338:139593. [PMID: 37478986 DOI: 10.1016/j.chemosphere.2023.139593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
To comprehensively explore the potential toxicity of aquatic organisms exposed to chlorinated or brominated flame retardants (BFRs) and metals mixtures, it is necessary to find a common pathway to relate local toxic targeted sites or organs. A key challenge in environmental risk assessment (ERA) is how to clarify the same or different sites or organs of toxic action in a species after exposure to individual chemicals or chemical mixtures. In this study, zebrafish embryo was used to evaluate the sub-lethal toxicity (swim bladder damage) of tris(2,3-dibromo propyl) isocyanurate (TBC), chlorinated paraffins (CPs), hexabromocyclododecane (HBCD), Cu, Cd, Pb, Ag, and Zn through optical microscopy methods, and corresponding sub-lethal molecular levels (inflammation-related enzymes [deiodinase (DIO) enzymes] and transcriptional levels of key genes) in fish through quantitative real-time PCR (qRT-PCR). The tested chemicals all caused failed inflation of the swim bladder, as indicated by activity inhibition of type 2 iodothyronine deiodinase enzyme. Following embryonic exposure to respective TBC + Cu, HBCD + TBC, and Cd + Pb mixtures, as the concentration of the respective Cu, TBC, and Pb increased, the deformity of the swim bladder increased, as also indicated by activity inhibition of type 2 iodothyronine deiodinase enzyme. Additionally, eight chemicals down-regulated Wnt (wnt3, wnt9b, fzd3b, wnt1, fzd5, and fdz1) signaling pathways, which were neurotoxic responses to individual chemical treatments and Hedgehog (ihh, shh, ptc1 and ptc2) signaling pathways. Moreover, excessive ROS induced by eight chemicals effectively induced defects in the swim bladder and Wnt/Hedgehog signaling, which also be proved in respective TBC + Cu, HBCD + TBC, and Cd + Pb mixture treatments. Our results first revealed that eight chemicals caused swim bladder developmental defects via ROS-mediated inhibition of the Wnt and Hedgehog pathways, which revealed the common targeted sites or organs (swim bladders) for further studying the toxic mechanisms underlying the chemical mixtures.
Collapse
Affiliation(s)
- Yongfei Gao
- College of Ecology, Taiyuan University of Technology, Taiyuan, 030024, PR China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Pengyuan Yang
- College of Grain, Jilin Business and Technology College, Jilin, 130507, PR China
| |
Collapse
|
32
|
Qiu W, Ye J, Su Y, Zhang X, Pang X, Liao J, Wang R, Zhao C, Zhang H, Hu L, Tang Z, Su R. Co-exposure to environmentally relevant concentrations of cadmium and polystyrene nanoplastics induced oxidative stress, ferroptosis and excessive mitophagy in mice kidney. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121947. [PMID: 37270049 DOI: 10.1016/j.envpol.2023.121947] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Nanoplastics (NPs) are defined as a group of emerging pollutants. However, the adverse effect of NPs and/or heavy metals on mammals is still largely unclear. Therefore, we performed a 35-day chronic toxicity experiment with mice to observe the impacts of exposure to Cadmium (Cd) and/or polystyrene nanoplastics (PSNPs). This study revealed that combined exposure to Cd and PSNPs added to the mice's growth toxicity and kidney damage. Moreover, Cd and PSNPs co-exposure obviously increased the MDA level and expressions of 4-HNE and 8-OHDG while decreasing the activity of antioxidase in kidneys via inhibiting the Nrf2 pathway and its downstream genes and proteins expression. More importantly, the results suggested for the first time that Cd and PSNPs co-exposure synergistically increased iron concentration in kidneys, and induced ferroptosis through regulating expression levels of SLC7A11, GPX4, PTGS2, HMGB1, FTH1 and FTL. Simultaneously, Cd and PSNPs co-exposure further increased the expression levels of Pink, Parkin, ATG5, Beclin1, and LC3 while significantly reducing the P62 expression level. In brief, this study found that combined exposure to Cd and PSNPs synergistically caused oxidative stress, ferroptosis and excessive mitophagy ultimately aggravating kidney damage in mice, which provided new insight into the combined toxic effect between heavy metals and PSNPs on mammals.
Collapse
Affiliation(s)
- Wenyue Qiu
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Jiali Ye
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Yiman Su
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Xinting Zhang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Rongmei Wang
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Cuiyan Zhao
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Hui Zhang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Rongsheng Su
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China.
| |
Collapse
|
33
|
Sun Y, Liu G, Li M, Wang L, He Z, Gu S. Study on the Correlation Between Regulatory Proteins of N 6-methyladenosine and Oxidative Damage in Cadmium-induced Renal Injury. Biol Trace Elem Res 2023; 201:2294-2302. [PMID: 35794303 DOI: 10.1007/s12011-022-03345-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
Abstract
As a common environmental heavy metal pollutant, cadmium has been well evidenced to cause kidney damage; yet, the underlying mechanisms are still not fully clarified. In this study, cell viability of human renal tubular epithelial cell (HK-2) was determined by CCK-8 assay after treatment with CdSO4. Then, apoptotic morphology of cells was observed by Hoechst staining and level of reactive oxygen species (ROS) was detected by fluorescent probes. Subsequently, mRNA levels of Nrf2, HO-1, m6A methyltransferases (METTL3, METTL14, METTL16, WATP), m6A demethylases (FTO, ALKBH5), m6A methyl-binding proteins (YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2) were detected by real-time polymerase chain reaction (RT-PCR), closely followed by correlation analysis between Nrf2 mRNA levels and m6A methyltransferases and demethylases. Lastly, protein expressions of Nrf2, METTL3, and FTO were tested by western blotting assay. The detection results demonstrated that the treatment of CdSO4 decreased viability while increased apoptosis rate. The Nrf2 mRNA level in CdSO4-treated cells was significantly increased when compared with that in the control cells, and the HO-1 mRNA level elevated with the increasing of CdSO4 concentrations. In addition, mRNA levels of METTL3, METTL14, METTL16, WTAP, FTO, and methyl-binding proteins in CdSO4-treated cells were all higher than those in corresponding control cells. Further determination showed that protein expressions of Nrf2, METTL3, and FTO were also upregulation under the treatment of CdSO4. Lastly, correlation analysis indicated that mRNA level of Nrf2 was positively correlated with mRNA levels of m6A methyltransferases and demethylases. In a word, our results demonstrated that the molecular changes of Nrf2 signaling pathway are correlated with the levels of m6A regulatory proteins, suggesting that there may be a regulatory relationship between Nrf2 signaling pathway and m6A regulatory proteins in the process of cadmium-induced renal cell cytotoxicity.
Collapse
Affiliation(s)
- Yifei Sun
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Guofen Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Mengzhu Li
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Lei Wang
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China.
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China.
| |
Collapse
|
34
|
Li CX, Talukder M, Xu YR, Zhu SY, Zhao YX, Li JL. Cadmium aggravates the blood-brain barrier disruption via inhibition of the Wnt7A/β-catenin signaling axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121400. [PMID: 36878275 DOI: 10.1016/j.envpol.2023.121400] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is a non-biodegradable widespread environmental pollutant, which can cross the blood-brain barrier (BBB) and cause cerebral toxicity. However, the effect of Cd on the BBB is still unclear. In this study, a total of 80 (1-day-old) Hy-Line white variety chicks (20 chickens/group) were selected and randomly divided into four (4) groups: the control group (Con group) (fed with a basic diet, n = 20), the Cd 35 group (basic diet with 35 mg/kg CdCl2, n = 20), the Cd 70 group (basic diet with 70 mg/kg CdCl2, n = 20) and the Cd 140 group (basic diet with 140 mg/kg CdCl2, n = 20), and fed for 90 days. The pathological changes, factors associated with the BBB, oxidation level and the levels of Wingless-type MMTV integration site family, member 7 A (Wnt7A)/Wnt receptor Frizzled 4 (FZD4)/β-catenin signaling axis-related proteins in brain tissue were detected. Cd exposure induced capillary damage and neuronal swelling, degeneration and loss of neurons. Gene Set Enrichment Analysis (GSEA) showed the weakened Wnt/β-catenin signaling axis. The protein expression of the Wnt7A, FZD4, and β-catenin was decreased by Cd expusure. Inflammation generation and BBB dysfunction were induced by Cd, as manifested by impaired tight junctions (TJs) and adherens junctions (AJs) formation. These findings underscore that Cd induced BBB dysfunction via disturbing Wnt7A/FZD4/β-catenin signaling axis.
Collapse
Affiliation(s)
- Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying-Xin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
35
|
Lv MW, Zhang C, Ge J, Sun XH, Li JY, Li JL. Resveratrol protects against cadmium-induced cerebrum toxicity through modifications of the cytochrome P450 enzyme system in microsomes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37115015 DOI: 10.1002/jsfa.12668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Cadmium (Cd), known as a vital contaminant in the environment, penetrates the blood-brain barrier and accumulates in the cerebrum. Acute toxicosis of Cd, which leads to lethal cerebral edema, intracellular accumulation and cellular dysfunction, remains to be illuminated with regard to the exact molecular mechanism of cerebral toxicity. Resveratrol (RES), present in the edible portions of numerous plants, is a simply acquirable and correspondingly less toxic natural compound with neuroprotective potential, which provides some theoretical bases for antagonizing Cd-induced cerebral toxicity. RESULTS This work was executed to research the protective effects of RES against Cd-induced toxicity in chicken cerebrum. Markedly, these lesions were increased in the Cd group, which also exhibited a thinner cortex, reduced granule cells, vacuolar degeneration, and an enlarged medullary space in the cerebrum. Furthermore, Cd induced CYP450 enzyme metabolism disorders by disrupting the nuclear xenobiotic receptor response (NXRs), enabling the cerebrum to reduce the ability to metabolize exogenous substances, eventually leading to Cd accumulation. Meanwhile, accumulated Cd promoted oxidative damage and synergistically promoted the damage to neurons and glial cells. CONCLUSION RES initiated NXRs (especially for aromatic receptor and pregnancy alkane X receptor), decreasing the expression of CYP450 genes, changing the content of CYP450, maintaining CYP450 enzyme normal activities, and exerting antagonistic action against the Cd-induced abnormal response of nuclear receptors. These results suggest that the cerebrum toxicity caused by Cd was reduced by pretreatment with RES. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Xiao-Han Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Jin-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, PR China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
36
|
Kamitsuka PJ, Ghanem MM, Ziar R, McDonald SE, Thomas MG, Kwakye GF. Defective Mitochondrial Dynamics and Protein Degradation Pathways Underlie Cadmium-Induced Neurotoxicity and Cell Death in Huntington's Disease Striatal Cells. Int J Mol Sci 2023; 24:ijms24087178. [PMID: 37108341 PMCID: PMC10139096 DOI: 10.3390/ijms24087178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure to heavy metals, including cadmium (Cd), can induce neurotoxicity and cell death. Cd is abundant in the environment and accumulates in the striatum, the primary brain region selectively affected by Huntington's disease (HD). We have previously reported that mutant huntingtin protein (mHTT) combined with chronic Cd exposure induces oxidative stress and promotes metal dyshomeostasis, resulting in cell death in a striatal cell model of HD. To understand the effect of acute Cd exposure on mitochondrial health and protein degradation pathways, we hypothesized that expression of mHTT coupled with acute Cd exposure would cooperatively alter mitochondrial bioenergetics and protein degradation mechanisms in striatal STHdh cells to reveal novel pathways that augment Cd cytotoxicity and HD pathogenicity. We report that mHTT cells are significantly more susceptible to acute Cd-induced cell death as early as 6 h after 40 µM CdCl2 exposure compared with wild-type (WT). Confocal microscopy, biochemical assays, and immunoblotting analysis revealed that mHTT and acute Cd exposure synergistically impair mitochondrial bioenergetics by reducing mitochondrial potential and cellular ATP levels and down-regulating the essential pro-fusion proteins MFN1 and MFN2. These pathogenic effects triggered cell death. Furthermore, Cd exposure increases the expression of autophagic markers, such as p62, LC3, and ATG5, and reduces the activity of the ubiquitin-proteasome system to promote neurodegeneration in HD striatal cells. Overall, these results reveal a novel mechanism to further establish Cd as a pathogenic neuromodulator in striatal HD cells via Cd-triggered neurotoxicity and cell death mediated by an impairment in mitochondrial bioenergetics and autophagy with subsequent alteration in protein degradation pathways.
Collapse
Affiliation(s)
- Paul J Kamitsuka
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Marwan M Ghanem
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Rania Ziar
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Sarah E McDonald
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Morgan G Thomas
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Gunnar F Kwakye
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| |
Collapse
|
37
|
Lin S, Yang F, Hu M, Chen J, Chen G, Hu A, Li X, Fu D, Xing C, Xiong Z, Wu Y, Cao H. Selenium alleviates cadmium-induced mitophagy through FUNDC1-mediated mitochondrial quality control pathway in the lungs of sheep. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120954. [PMID: 36581240 DOI: 10.1016/j.envpol.2022.120954] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is a poisonous metal element that causes mitochondrial dysfunction. Selenium (Se) can reduce the damage of Cd to various organs of animals, but the protective mechanism of Se in Cd-induced lung injury has not been fully elucidated. For purpose of further illustrating the specific mechanism of Se alleviated Cd-triggered pulmonary toxicity, 48 sheep were divided into 4 groups, of which the sheep in the treatment group were taken 1 mg/kg body weight (BW) of Cd, 0.34 mg/kg BW of Se, and 0.34 mg Se + 1 mg/kg BW of Cd by intragastric administration for 50 d, respectively. The results indicated that Cd caused inflammatory cell infiltration and alveolar wall thickening, which facilitated mitochondrial vacuolation and formation of mitophagosomes in lung tissues. Simultaneously, Cd treatment impaired the antioxidant capacity of sheep lung tissue. Additionally, Cd treatment down-regulated the expression levels of mitochondrial biogenesis and mitochondrial fusion, but up-regulated the levels of mitochondrial fission and mitophagy mediated by FUNDC1. Moreover, the immunofluorescence co-localization puncta of LC3B/COX IV, LC3B/FUNDC1 were increased after Cd treatment. Nevertheless, co-treatment with Se improved effectively the above variation caused by Cd exposure. In summary, Se could mitigate Cd-generated mitophagy through FUNDC1-mediated mitochondrial quality control pathway in the lungs of sheep.
Collapse
Affiliation(s)
- Shixuan Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Mingwen Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guiping Chen
- Jiangxi Provincial Agricultural Ecology and Resource Protection Station, Nanchang 330046, Jiangxi, PR China
| | - Aiming Hu
- Ji'an Animal Husbandry and Veterinary Bureau, No.4 Luzhou West Road, Jizhou District, Ji'an 343000, Jiangxi, PR China
| | - Xiong Li
- Pingxiang Agricultural Science Research Center, Pingxiang 337000, Jiangxi, PR China
| | - Danghua Fu
- Nanchang Zoo, Nanchang, 330025, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhiwei Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Yunhui Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
38
|
Man Y, Liu Y, Xiong C, Zhang Y, Zhang L. Non-Lethal Concentrations of CdCl 2 Cause Marked Alternations in Cellular Stress Responses within Exposed Sertoli Cell Line. TOXICS 2023; 11:167. [PMID: 36851042 PMCID: PMC9962571 DOI: 10.3390/toxics11020167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Cadmium is a component of ambient metal pollution, which is linked to diverse health issues globally, including male reproductive impairment. Assessments of the acute effects of cadmium on male reproduction systems, such as testes, tend to be based on frank adverse effects, with particular molecular pathways also involved. The relationship between cytotoxicity potential and cellular stress response has been suggested to be one of the many possible drivers of the acute effects of cadmium, but the link remains uncertain. In consequence, there is still much to be learned about the cellular stress response induced by a non-lethal concentration of cadmium in male reproductive cells. The present study used temporal assays to evaluate cellular stress response upon exposure to non-lethal concentrations of Cadmium chloride (CdCl2) in the Sertoli cell line (TM4). The data showed alternations in the expression of genes intimated involved in various cellular stress responses, including endoplasmic reticulum (ER) stress, endoplasmic unfolded protein stress (UPRmt), endoplasmic dynamics, Nrf2-related antioxidative response, autophagy, and metallothionein (MT) expression. Furthermore, these cellular responses interacted and were tightly related to oxidative stress. Thus, the non-lethal concentration of cadmium perturbed the homeostasis of the Sertoli cell line by inducing pleiotropic cellular stresses.
Collapse
Affiliation(s)
- Yonghong Man
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
- Center of Scientific Research and Experiment, Nanyang Medical College, Nanyang 473006, China
| | - Yunhao Liu
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Chuanzhen Xiong
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Yang Zhang
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Ling Zhang
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
| |
Collapse
|
39
|
Hu Z, Nie G, Luo J, Hu R, Li G, Hu G, Zhang C. Molybdenum and Cadmium Co-induce Pyroptosis via Inhibiting Nrf2-Mediated Antioxidant Defense Response in the Brain of Ducks. Biol Trace Elem Res 2023; 201:874-887. [PMID: 35192142 DOI: 10.1007/s12011-022-03170-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Excess molybdenum (Mo) and cadmium (Cd) are harmful to animals, but the neurotoxic mechanism co-induced by Mo and Cd is unclear. To estimate the effects of Mo and Cd co-exposure on pyroptosis by nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant defense response in duck brains, 40 healthy 7-day-old ducks were randomly assigned to 4 groups and fed diet supplemented with Mo or/and Cd for 16 weeks, respectively. Results showed that Mo or/and Cd markedly increased Mo and Cd contents; decreased iron (Fe), copper (Cu), zinc (Zn), and selenium (Se) contents, elevated malondialdehyde (MDA) content; and decreased total-antioxidant capacity (T-AOC), total-superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities accompanied by pathological damage in brain. Additionally, Mo or/and Cd inhibited Nrf2 pathway via decreasing Nrf2, CAT, SOD1, glutathione S-transferase (GST), hemeoxygenase-1 (HO-1), NAD (P) H:quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase catalytic subunit (GCLC), and modifier subunit (GCLM) mRNA levels and Nrf2 protein level, which induced pyroptosis through upregulating nucleotide oligomerization domain-like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin A (GSDMA), gasdermin E (GSDME), interleukin-1β (IL-1β), interleukin-18 (IL-18), Caspase-1, NIMA-related kinase 7 (NEK7) mRNA levels and NLRP3, Caspase-1 p20, gasdermin D (GSDMD), ASC protein levels and IL-1β, and IL-18 contents. Besides, the changes of these indicators were most apparent in the Mo and Cd co-treated group. Collectively, the results certificated that Mo and Cd might synergistically induce pyroptosis via inhibiting Nrf2-mediated antioxidant defense response in duck brains, whose mechanism is closely related to Mo and Cd accumulation.
Collapse
Affiliation(s)
- Zhisheng Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West street, Economic and Technological Development District, Nanchang, 330032, Jiangxi, China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
40
|
Bi SS, Talukder M, Sun XT, Lv MW, Ge J, Zhang C, Li JL. Cerebellar injury induced by cadmium via disrupting the heat-shock response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22550-22559. [PMID: 36301385 DOI: 10.1007/s11356-022-23771-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a food contaminant that poses serious threats to animal health, including birds. It is also an air pollutant with well-known neurotoxic effects on humans. However, knowledge on the neurotoxic effects of chronic Cd exposure on chicken is limited. Thus, this study assessed the neurotoxic effects of chronic Cd on chicken cerebellum. Chicks were exposed to 0 (control), 35 (low), and 70 (high) mg/kg of Cd for 90 days, and the expression of genes related to the heat-shock response was investigated. The chickens showed clinical symptoms of ataxia, and histopathology revealed that Cd exposure decreased the number of Purkinje cells and induced degeneration of Purkinje cells with pyknosis, and some dendrites were missing. Moreover, Cd exposure increased the expression of heat-shock factors, HSF1, HSF2, and HSF3, and heat-shock proteins, HSP60, HSP70, HSP90, and HSP110. These changes indicate that HSPs improve the tolerance of the cerebellum to Cd. Conversely, the expressions of HSP10, HSP25, and HSP40 were decreased significantly, which indicated that Cd inhibits the expression of small heat-shock proteins. However, HSP27 and HSP47 were upregulated following low-dose Cd exposure, but downregulated under high-dose Cd exposure. This work sheds light on the toxic effects of Cd on the cerebellum, and it may provide evidence for health risks posed by Cd. Additionally, this work also identified a novel target of Cd exposure in that Cd induces cerebellar injury by disrupting the heat-shock response. Cd can be absorbed into chicken's cerebellum through the food chain, which eventually caused cerebellar injury. This study provided a new insight that chronic Cd-induced neurotoxicity in the cerebellum is associated with alterations in heat-shock response-related genes, which indicated that Cd through disturbing heat-shock response induced cerebellar injury.
Collapse
Affiliation(s)
- Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, People's Republic of China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Xue-Tong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
41
|
Deng P, Zhang H, Wang L, Jie S, Zhao Q, Chen F, Yue Y, Wang H, Tian L, Xie J, Chen M, Luo Y, Yu Z, Pi H, Zhou Z. Long-term cadmium exposure impairs cognitive function by activating lnc-Gm10532/m6A/FIS1 axis-mediated mitochondrial fission and dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159950. [PMID: 36336035 DOI: 10.1016/j.scitotenv.2022.159950] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd), a ubiquitous environmental contaminant, is deemed a possible aetiological cause of cognitive disorders in humans. Nevertheless, the exact mechanism by which chronic exposure to Cd causes neurotoxicity is not fully understood. In this study, mouse neuroblastoma cells (Neuro-2a cells) and primary hippocampal neurons were exposed to low-dose (1, 2, and 4 μM for Neuro-2a cells or 0.5, 1, and 1.5 μM for hippocampal neurons) cadmium chloride (CdCl2) for 72 h (h), and male mice (C57BL/6J, 8 weeks) were orally administered CdCl2 (0.6 mg/L, approximately equal to 2.58 μg/kg·bw/d) for 6 months to investigate the effects and mechanism of chronic Cd-induced neurotoxicity. Here, chronic exposure to Cd impaired mitochondrial function by promoting excess reactive oxygen species (ROS) production, altering mitochondrial membrane potential (Δψm) and reducing adenosine triphosphate (ATP) content, contributing to neuronal cell death. Specifically, microarray analysis revealed that the long noncoding RNA Gm10532 (lnc-Gm10532) was most highly expressed in Neuro-2a cells exposed to 4 μM CdCl2 for 72 h compared with controls, and inhibition of lnc-Gm10532 significantly antagonized CdCl2-induced mitochondrial dysfunction and neurotoxicity. Mechanistically, lnc-Gm10532 increased Fission 1 (FIS1) expression and mitochondrial fission by recruiting the m6A writer methyltransferase-like 14 (METTL14) and enhancing m6A modification of Fis1 mRNA. Moreover, lnc-Gm10532 was also required for chronic Cd-induced mitochondrial dysfunction and memory deficits in a rodent model. Therefore, data of this study reveal a new epigenetic mechanism of chronic Cd neurotoxicity.
Collapse
Affiliation(s)
- Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Huadong Zhang
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Sheng Jie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Qi Zhao
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Fengqiong Chen
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China.
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
42
|
Jia L, Ma T, Lv L, Yu Y, Zhao M, Chen H, Gao L. Endoplasmic reticulum stress mediated by ROS participates in cadmium exposure-induced MC3T3-E1 cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114517. [PMID: 36669278 DOI: 10.1016/j.ecoenv.2023.114517] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), as one of the seventh most toxic heavy metal pollutants, widely persisted in the environment, leading to osteoblast dysfunction and ultimately Cd-related skeletal disease. However, the damaging effects of Cd on cellular functions and the potential pathogenic mechanisms are still unclear. In our study, Cd is believed to induce mitochondrial dysfunction and endoplasmic reticulum stress (ERS) in a dose-dependent manner, thereby leading to apoptosis, as evident by elevated Drp1, Fis1, GRP78, CHOP, ATF4, P-EIF2α, P-PERK, BAX, cleaved caspase 3 proteins expression and ROS levels, and decreased the levels of Mfn2, OPA1, Bcl2, and intracellular Collagen I, B-ALP, RUNX2, and BGP genes. Additionally, when the exogenous addition of NAC and 4-PBA was added, it was found that NAC and 4-PBA had a positive moderating effect on Cd-induced cell dysfunction. Mechanistically, Cd-induced oxidative stress and apoptosis by upregulating the PERK-EIF2α-ATF4-CHOP signaling pathway and inhibiting the Nrf2/NQO1 pathway. In conclusion, we found that Cd was involved in mitochondrial dysfunction, ERS, and apoptosis in MC3T3-E1 cells, While NAC and 4-PBA relieved ERS and attenuated cell apoptosis.
Collapse
Affiliation(s)
- Lina Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Liangyu Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Yue Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Mingchao Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Hong Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China.
| |
Collapse
|
43
|
Sun XH, Lv MW, Zhao YX, Zhang H, Ullah Saleem MA, Zhao Y, Li JL. Nano-Selenium Antagonized Cadmium-Induced Liver Fibrosis in Chicken. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:846-856. [PMID: 36541832 DOI: 10.1021/acs.jafc.2c06562] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cadmium is a global ecological toxic pollutant; in animals, hepatotoxic fibrosis is caused by bioaccumulation of Cd through food chains. We determined the path of nano-Se antagonism in Cd-induced hepatocyte pyroptosis by targeting the APJ-AMPK-PGC1α pathway, using an in vivo model of hepatotoxicity. All 1-day-old chicks were treated with Cd (140 mg/kg BW/day) and/or nano-Se (0.3 or 0.6 mg/kg BW/day) for 90 days. The result showed that Cd (1.55 ± 0.148) activated NLRP3 inflammasome 49.903% as compared to the Con group (1.034 ± 0.008) to release the inflammasome as a result of hepatocyte pyroptosis (2.824 ± 0.057). Compared with the Con group (1.010 ± 0.021), Kupffer cells were 219.109% more to activate astrocytes through the APJ-AMPK-PGC1α pathway, resulting in 185.149% more hepatic fibrosis. However, the fibrosis degree of the H-Se + Cd group (1.252 ± 0.056) was 56.5278% (p < 0.001) lower than that of the Cd group (2.880 ± 0.124). Therefore, this study established that pyroptotic hepatocytes and Kupffer cells could be targeted for nano-Se antagonizing Cd toxicity, which reveals a potential new approach targeting astrocytes for the treatment of liver fibrosis triggered by Cd pollution.
Collapse
|
44
|
Fangninou FF, Yu Z, Li Z, Guadie A, Li W, Xue L, Yin D. Metastatic effects of environmental carcinogens mediated by MAPK and UPR pathways with an in vivo Drosophila Model. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129826. [PMID: 36084456 DOI: 10.1016/j.jhazmat.2022.129826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Metastasis includes tumor invasion and migration and underlies over 90% of cancer mortality. The metastatic effects of environmental carcinogens raised serious health concerns. However, the underlying mechanisms remained poorly studied. In the present study, an in vivo RasV12/lgl-/- model of the fruitfly, Drosophila melanogaster, with an 8-day exposure was employed to explore the metastatic effects of 3,3',4,4',5-pentachlorobiphenyl (PCB126), perfluorooctanoic acid (PFOA) and cadmium chloride (CdCl2). At 1.0 mg/L, PCB126, PFOA, and CdCl2 significantly increased tumor invasion rates by 1.32-, 1.33-, and 1.29-fold of the control, respectively. They also decreased the larval body weight and locomotion behavior. Moreover, they commonly disturbed the expression levels of target genes in MAPK and UPR pathways, and their metastatic effects were significantly abolished by the addition of p38 inhibitor (SB203580), JNK inhibitor (SP600125) and IRE1 inhibitor (KIRA6). Notably, the addition of the IRE inhibitor significantly influenced sna/E-cad pathway which is essential in both p38 and JNK regulations. The results demonstrated an essential role of sna/E-cad in connecting the effects of carcinogens on UPR and MAPK regulations and the resultant metastasis.
Collapse
Affiliation(s)
- Fangnon Firmin Fangninou
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; UNEP Tongji Institute of Environment for Sustainable Development, Tongji University, Shanghai 200092, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Awoke Guadie
- Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch 21, Ethiopia
| | - Wenzhe Li
- College of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| | - Lei Xue
- College of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
45
|
Yang TN, Li XN, Wang YX, Ma XY, Li JL. Disrupted microbiota-barrier-immune interaction in phthalates-mediated barrier defect in the duodenum. CHEMOSPHERE 2022; 308:136275. [PMID: 36058374 DOI: 10.1016/j.chemosphere.2022.136275] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
As one of the most used phthalates, Di (2-ethylhexyl) phthalate (DEHP) is a widespread environmental contaminant. Extremely persistent plastic can enter the food chain of animals through the aquatic environment, affect metabolic pathways and cause damage to the digestive system. But the molecular mechanism of its toxic effects on the duodenum in birds has not been elucidated. To investigate the toxicity of phthalates in the duodenum, quails were gavaged with 250, 500, and 750 mg/kg doses of DEHP for 45 days, and water and oil control groups were retained. This study revealed that subchronic exposure to DEHP could lead to duodenal barrier defect in quail. The damage to duodenum was reflected in a reduction in V/C and tight junction proteins. Moreover, DEHP also led to a breakdown of antimicrobial defenses through the flora derangement, which acted as a biological barrier. The massive presence of Lipopolysaccharide (LPS) led to the activation of TLR4 receptors. In addition, DEHP activated oxidative stress, which synergized the inflammatory response induced by the TLR4-NFκB pathway, and further promoted duodenum damage. This study provides a base for the further effect of phthalates on the microbiota-barrier-immune interaction.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
46
|
Bi SS, Talukder M, Jin HT, Lv MW, Ge J, Zhang C, Li JL. Nano-selenium alleviates cadmium-induced cerebellar injury by activating metal regulatory transcription factor 1 mediated metal response. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:402-412. [PMID: 36382201 PMCID: PMC9636061 DOI: 10.1016/j.aninu.2022.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 05/21/2023]
Abstract
This study aims to investigate the role of metal regulatory transcription factor 1 (MTF1)-mediated metal response in cadmium (Cd)-induced cerebellar injury, and to evaluate the antagonistic effects of nano-selenium (Nano-Se) against Cd toxicity. A total of 80 chicks (1 d old, male, Hy-Line Variety White) were randomly allocated to 4 treatment groups for 3 months: the control group (fed with a basic diet, n = 20), the Nano-Se group (basic diet with 1 mg/kg nano-Se 1 mg/kg Nano-Se in basic diet, n = 20), the Nano-Se + Cd group (basic diet with 1 mg/kg Nano-Se and 140 mg/kg CdCl2, n = 20) and the Cd group (basic diet with 140 mg/kg CdCl2 , n = 20). The results of the experiment showed that the Purkinje cells were significantly decreased with their degradation and indistinct nucleoli after Cd exposure. Moreover, exposure to Cd caused a significant accumulation of Cd and cupper. However, the contents of Se, iron, and zinc were decreased, thereby disturbing the metal homeostasis in the cerebellum. The Cd exposure also resulted in high levels of malondialdehyde (MDA) and down regulation of selenoprotein transcriptome. Furthermore, the expressions of MTF1, metallothionein 1 (MT1), MT2, zinc transporter 3 (ZNT3), ZNT5, ZNT10, zrt, irt-like protein 8 (ZIP8), ZIP10, transferrin (TF), ferroportin 1 (FPN1), ATPase copper transporting beta (ATP7B), and copper uptake protein 1 (CTR1) were inhibited by Cd exposure. However, all these changes were significantly alleviated by the supplementation of Nano-Se. This study proved that Cd could disorder metal homeostasis and induce oxidative stress, whereas Nano-Se could relieve all these negative effects caused by Cd via activating the MTF1-mediated metal response in the cerebellum of chicken.
Collapse
Affiliation(s)
- Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- College of Biotechnology and Pharmaceutical Engineering of West Anhui University, Lu’an 237012, China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Hai-Tao Jin
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150010, China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China
- Corresponding author. College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
47
|
Dai XY, Lin J, Zhu SY, Guo JY, Cui JG, Li JL. Atrazine-induced oxidative damage via modulating xenobiotic-sensing nuclear receptors and cytochrome P450 systems in cerebrum and antagonism of lycopene. Food Chem Toxicol 2022; 170:113462. [DOI: 10.1016/j.fct.2022.113462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/17/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
|
48
|
Zhang W, Xu M, Wen S, Wang L, Zhang K, Zhang C, Zou H, Gu J, Liu X, Bian J, Liu Z, Yuan Y. Puerarin alleviates cadmium-induced rat neurocyte injury by alleviating Nrf2-mediated oxidative stress and inhibiting mitochondrial unfolded protein response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114239. [PMID: 36326556 DOI: 10.1016/j.ecoenv.2022.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a highly neurotoxic environmental pollutant. Puerarin (Pur) is a natural antioxidant isolated from Kudzu root that exhibits a powerful neuroprotective effect. Herein, we illustrated the mechanism underlying the protective effect of Pur on Cd-induced rat neurocyte injury in an in vivo rat model as well as in vitro using PC12 cells and primary rat cerebral cortical neurons. First, the results showed that Pur alleviated Cd-induced cerebral cortical pathological damage and decreased the viability of neurocytes. Furthermore, Cd activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, which plays a negative role in Cd-induced rat neurocyte injury. In addition, Pur alleviated Cd-induced oxidative stress by enhancing antioxidant defense, reducing reactive oxygen species (ROS) accumulation and lipid peroxidation, and inhibiting activation of the Nrf2 signaling pathway in rat neurocytes. Moreover, Pur inhibited the Cd-induced mitochondrial unfolded protein response (UPRmt) in rat neurocytes. Overall, Pur alleviated Cd-induced rat neurocyte injury by alleviating Nrf2-mediated oxidative stress and inhibiting UPRmt.
Collapse
Affiliation(s)
- Wenhua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingchang Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chaofan Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
49
|
Shao Y, Tian C, Yang Y, Shao Y, Zhang T, Shi X, Zhang W, Zhu Y. Carbothermal Synthesis of Sludge Biochar Supported Nanoscale Zero-Valent Iron for the Removal of Cd 2+ and Cu 2+: Preparation, Performance, and Safety Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16041. [PMID: 36498112 PMCID: PMC9740856 DOI: 10.3390/ijerph192316041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The practical application of nanoscale zero-valent iron (NZVI) is restricted by its easy oxidation and aggregation. Here, sludge biochar (SB) was used as a carrier to stabilize NZVI for Cd2+ and Cu2+ removal. SB supported NZVI (SB-NZVI) was synthesized using the carbothermic method. The superior preparation conditions, structural characteristics, and performance and mechanisms of the SB-NZVI composites for the removal of Cd2+ and Cu2+ were investigated via batch experiments and characterization analysis. The optimal removal capacities of 55.94 mg/g for Cd2+ and 97.68 mg/g for Cu2+ were achieved at a Fe/sludge mass ratio of 1:4 and pyrolysis temperature of 900 °C. Batch experiments showed that the SB-NZVI (1:4-900) composite had an excellent elimination capacity over a broad pH range, and that weakly acidic to neutral solutions were optimal for removal. The XPS results indicated that the Cd2+ removal was mainly dependent on the adsorption and precipitation/coprecipitation, while reduction and adsorption were the mechanisms that play a decisive role in Cu2+ removal. The presence of Cd2+ had an opposite effect on the Cu2+ removal. Moreover, the SB-NZVI composites made of municipal sludge greatly reduces the leaching toxicity and bio-availability of heavy metals in the municipal sludge, which can be identified as an environmentally-friendly material.
Collapse
Affiliation(s)
- Yingying Shao
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Shandong Shanke Institute of Ecological Environment Co., Ltd., Jinan 250000, China
| | - Chao Tian
- Shandong Shanke Institute of Ecological Environment Co., Ltd., Jinan 250000, China
| | - Yanfeng Yang
- Shandong Shanke Institute of Ecological Environment Co., Ltd., Jinan 250000, China
| | - Yanqiu Shao
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Tao Zhang
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xinhua Shi
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Weiyi Zhang
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Ying Zhu
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
50
|
Kang X, Geng N, Li Y, Li X, Yu J, Gao S, Wang H, Pan H, Yang Q, Zhuge Y, Lou Y. Treatment of cadmium and zinc-contaminated water systems using modified biochar: Contaminant uptake, adsorption ability, and mechanism. BIORESOURCE TECHNOLOGY 2022; 363:127817. [PMID: 36031120 DOI: 10.1016/j.biortech.2022.127817] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Cd and Zn contamination in water occurs frequently that threatens water supply, human health, and food production. MnFeB, a novel absorbent biochar modified using KMnO4 and hematite, was prepared and used for the treatment of Cd2+ and Zn2+solutions. MnFeB exhibits a rough surface structure, large specific surface area, higher total pore volume, massive functional groups, and abundant iron oxide, all of which contribute to higher Cd2+ and Zn2+ adsorption capacity. In single metal systems, maximum Cd2+ and Zn2+ adsorption capacities of MnFeB were 1.88 and 1.79 times higher than those of unmodified biochar (CSB). The maximum Cd2+ and Zn2+ adsorption capacities of MnFeB were 2.73 and 2.65 times higher than CSB in the binary metal system. Key adsorption mechanisms of Cd2+ and Zn2+ by MnFeB included electrostatic interaction, co-precipitation, π-π interaction, complexation, and ion exchange. Thus, MnFeB can be used as a novel absorbent to treat Cd and Zn-polluted water.
Collapse
Affiliation(s)
- Xirui Kang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Na Geng
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Yaping Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Xu Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Jinpeng Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Shuo Gao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Hui Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Hong Pan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Quangang Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China
| | - Yanhong Lou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong 271018, PR China.
| |
Collapse
|