1
|
Shahid M, Khalid S, ALOthman ZA, Al-Kahtani AA, Bibi I, Naz R, Natasha N, Niazi NK, Iqbal J, Han C, Shah NS, Murtaza B. Trace element removal from wastewater by agricultural biowastes: A data analysis on removal efficacy and optimized conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179235. [PMID: 40174245 DOI: 10.1016/j.scitotenv.2025.179235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 04/04/2025]
Abstract
Valorization of agricultural biowastes to biosorbents provides an excellent opportunity to recycle these wastes into valuable products and filtration of contaminants, especially potentially toxic trace elements in aquatic ecosystems. Water contamination with potentially toxic trace elements is a widespread global issue. Various agricultural biosorbents have been tested to remove trace elements from wastewater. Despite abundant research, there are scarce studies regarding the critical data analysis on trace elements removal efficiency by agricultural biowastes under various conditions. This review critically delineates the data analysis of recent literature published from 2018 to 2024 for a critical comparison of different agricultural biosorbents and the applied conditions to remove trace elements from aqueous media. Data analysis (based on 1188 observations) revealed that the mean trace element removal by agricultural biowaste-derived biosorbents from contaminated water was 75 %, ranging from 2 to 100 %. The most frequently reported removal efficiencies of agricultural biosorbents were 90-100 %. Notably, few agricultural biosorbents such as banana peel demonstrated the highest removal efficiency of 97 %, followed by cassava peels at 92 %, emphasizing the significance of recycling these materials for sustainable trace element removal from wastewater. Data analysis revealed that the trend for trace element removal from wastewater follows a descending order, with zinc exhibiting the highest removal rate at 81 %, followed closely by lead at 80 %. This trend continues with arsenic at 75 %, nickel and cadmium both at 70 %, and so forth. Thus, agricultural biosorbents play a pivotal role in this process, showcasing their potential in waste valorization and environmental remediation. Hence, the present review article is expected to contribute towards the comparative efficiency of various agricultural biosorbents, and the selection of the best biosorbents, depending on applied conditions for trace element removal from targeted wastewater treatment facilities.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Al-Kahtani
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Irshad Bibi
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne 3053, Victoria, Australia.
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 44000, Pakistan
| | - Natasha Natasha
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jibran Iqbal
- Department of Environmental Sciences and Sustainability, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Changseok Han
- Department of Environmental Engineering, INHA University, Incheon 22212, Republic of Korea; Program in Environmental & Polymer Engineering, Graduate School, INHA University, Incheon 22212, Republic of Korea.
| | - Noor S Shah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan.
| |
Collapse
|
2
|
Jia X, Liu D, Xu J, Zhang H, Liu L, Han L, Xiao W, Shi S. Enhancement of caproate production via carboxylate chain elongation with sequential fermentation facilitated by biochar: A corn stover full-component utilization perspective. BIORESOURCE TECHNOLOGY 2025; 421:132208. [PMID: 39933665 DOI: 10.1016/j.biortech.2025.132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
In this study, caproate was synthesized from corn stover through sequential fermentation, and biochar was prepared from unhydrolyzable corn stover by pyrolysis to utilize full-component of corn stover. The results indicate that the caproate concentration in the unhydrolyzable corn stover biochar (UCSB) group was 2.2 times higher than that of the control group, and the fermentation start-up time was shortened by 18 days. Mechanistic analysis suggested that the rough surface of UCSB facilitated microbial colonization and reduced product inhibition. Genes expression analysis further demonstrated that UCSB significantly upregulated crucial functional genes responsible for ethanol oxidation and the reverse β-oxidation pathway, ultimately resulting in enhanced caproate production. The successful utilization of UCSB derived from unhydrolyzable solid residue effectively boosted fermentation, leading to a 37 % increase in the carbon utilization efficiency of corn stover. This study offering valuable insights for the high-value and full-component utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Xiwen Jia
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083 China
| | - Dong Liu
- Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Zhenjiang 212013 China
| | - Jiajie Xu
- School of Marine Science, Ningbo University, Ningbo 315832 China
| | - Hui Zhang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083 China
| | - Luoyang Liu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083 China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083 China
| | - Weihua Xiao
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083 China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Zhenjiang 212013 China.
| | - Suan Shi
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083 China.
| |
Collapse
|
3
|
Sobol Ł, Dyjakon A, Dlugogorski BZ. Dioxin-like polychlorinated biphenyls (dl-PCB) in hydrochars and biochars: Review of recent evidence, pollution levels, critical gaps, formation mechanisms and regulations. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136615. [PMID: 39721477 DOI: 10.1016/j.jhazmat.2024.136615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Contamination of chars with dioxin-like polychlorinated biphenyls (dl-PCB) significantly limits their use and hinders their deployment in the circular bioeconomy, specifically in applications that may lead to dietary exposure. Here, for the first time, we review the levels of contamination of chars produced from pyrolysis and hydrothermal carbonisation (HTC) with dl-PCB congeners. We conduct a detailed and critical examination of the role played by the processing parameters, such as temperature and residence time, and the reaction mechanisms, to detoxify the biomass under an oxygen-free atmosphere during its valorisation. The PCB-based toxicity of biomass depends mostly on the abundance of dl-PCB in the raw material, and on the dechlorination and other transformation processes that operate during the treatment. The key dechlorination steps make the toxicity of hydrochars pass through a maximum with increasing treatment time, whereas the toxicity of biochars in pyrolysis decreases monotonically. Pyrolysis displays more complex mechanistic pathways of volatilisation, dechlorination, degradation of PCB rings, minor de novo formation of dl-PCB in case of air leaks, and concentrating persistent organic pollutants (POP) in char matrices. In contrast, the mechanisms responsible for the evolution of toxicity in HTC processes comprise the dechlorination, possible chlorine position shift, and biomass densification. The kinetic model developed in this review affords insight into the evolution of the hydrochar toxicity that depends on process temperature and treatment time. The dl-PCB concentrations in treated biomass generally range from 1.06 ng WHO2005-TEQ (kg DM)-1 to 11.7 ng WHO2005-TEQ (kg DM)-1, whereas for biochars produced from contaminated sediments the toxicity varies from 0.00662 ng WHO1998-TEQ (kg DM)-1 to 1.42 ng WHO1998-TEQ (kg DM)-1. DM stands for dry matter, TEQ for toxic equivalency, and WHO1998 means the application of the toxic equivalency factors (TEF) set by the World Health Organization (WHO) in 1998 to calculate the TEQ. Finally, we identify the crucial gaps in the literature, review the regulations governing the use of biomass in feed and in the environment, and provide suggestions for future research. The findings in this article provide both the technical understanding of how to minimise the formation of dl-PCB in the production of chars and suggest modifications to the current guidelines. The latter will increase the consumer's trust in valorised biomass, leading to its wider acceptance in the circular bioeconomy as feed supplements and soil additives.
Collapse
Affiliation(s)
- Łukasz Sobol
- Energy, Environment and Society Centre, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., Wrocław 51-630, Poland
| | - Arkadiusz Dyjakon
- Energy, Environment and Society Centre, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., Wrocław 51-630, Poland
| | - Bogdan Z Dlugogorski
- Energy and Resources Institute, Charles Darwin University, Ellengowan Drive, Purple 12.01.08, Casuarina, NT 0810, Australia.
| |
Collapse
|
4
|
Ighalo JO, Ohoro CR, Ojukwu VE, Oniye M, Shaikh WA, Biswas JK, Seth CS, Mohan GBM, Chandran SA, Rangabhashiyam S. Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold. iScience 2025; 28:111524. [PMID: 39807171 PMCID: PMC11728978 DOI: 10.1016/j.isci.2024.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process. The alkaline nature of biochar is attributed to surface functional groups and addresses soil acidity issues. The porous structure and oxygen-containing functional groups contribute to soil microbial adhesion, affecting soil health and nutrient availability, improving plant root morphology, photosynthetic pigments, enzyme activities, and growth even under salinity stress conditions. The review underscores the potential of biochar to address diverse agricultural challenges, emphasizing the need for further research and application-specific considerations.
Collapse
Affiliation(s)
- Joshua O. Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka P. M. B. 5025, Nigeria
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Chinemerem R. Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa
| | - Victor E. Ojukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka P. M. B. 5025, Nigeria
| | - Mutiat Oniye
- Department of Chemical and Material Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Wasim Akram Shaikh
- Department of Basic Science, School of Science and Technology, The Neotia University, Sarisha, West Bengal 743368, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), International Centre for Ecological Engineering & Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | | | - Ganesh Babu Malli Mohan
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, USA
| | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Selvasembian Rangabhashiyam
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
5
|
Zhang W, Cui L, Ma J, Cui S, Quan G, Yan J, Sui F, Wang H, Hina K, Hussain Q. Evaluation of Fenton-like reaction for sorption and degradation of kasugamycin in the presence of biochar. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:50. [PMID: 39812884 DOI: 10.1007/s10653-025-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g-1) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system. The Fenton-like system improved the KSM adsorption capacity of pristine biochar by 222.2%, 169.9%, and 159.9% at 25 °C, 35 °C, and 45 °C comparing to control, respectively, and it also increased adsorption capacity by 97.4%, 63.8%, and 56.8% comparing to modified biochar. The amounts of biochar applied and the Fenton-like system affected KSM mineralization and degradation. The KSM degradation products had a significant amount of small molecular organic matter (m/z 384) and a tetrahydropyran structure that was difficult to degrade. The highly efficient degradation of KSM in Fenton-like system can be attributed to the generation of large amounts of hydroxyl radical (·OH) and functional groups (C=C, C=O, etc.).
Collapse
Affiliation(s)
- Wei Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China
| | - Jingwen Ma
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China
| | - Shuyan Cui
- College of Life Science, Shenyang Normal University, Shenyang, 110016, China
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China.
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China.
| | - Fengfeng Sui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China
| | - Hui Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China
| | - Kiran Hina
- Department of Environmental Sciences, Hafiz Hayat Campus, University of Gujrat, Gujrat, 54000, Pakistan
| | - Qaiser Hussain
- Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan
| |
Collapse
|
6
|
Ndour PMS, Langrand J, Fontaine J, Lounès-Hadj Sahraoui A. Exploring the significance of different amendments to improve phytoremediation efficiency: focus on soil ecosystem services. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:485-513. [PMID: 39730919 DOI: 10.1007/s11356-024-35660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/23/2024] [Indexed: 12/29/2024]
Abstract
Phytoremediation is recognized as an environmentally, economically and socially efficient phytotechnology for the reclamation of polluted soils. To improve its efficiency, several strategies can be used including the optimization of agronomic practices, selection of high-performance plant species but also the application of amendments. Despite evidences of the benefits provided by different types of amendments on pollution control through several phytoremediation pathways, their contribution to other soil ecosystem functions supporting different ecosystem services remains sparsely documented. This current review aims at (i) updating the state of the art about the contribution of organic, mineral and microbial amendments in improving phytostabilization, phytoextraction of inorganic and phytodegradation of organic pollutants and (ii) reviewing their potential beneficial effects on soil microbiota, nutrient cycling, plant growth and carbon sequestration. We found that the benefits of amendment application during phytoremediation go beyond limiting the dispersion of pollutants as they enable a more rapid recovery of soil functions leading to wider environmental, social and economic gains. Effects of amendments on plant growth are amendment-specific, and their effect on carbon balance needs more investigation. We also pointed out some research questions that should be investigated to improve amendment-assisted phytoremediation strategies and discussed some perspectives to help phytomanagement projects to improve their economic sustainability.
Collapse
Affiliation(s)
- Papa Mamadou Sitor Ndour
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France.
| | - Julien Langrand
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| | - Joel Fontaine
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| |
Collapse
|
7
|
Al-Hawadi JS, Majid S, Ahmad KS, Eldesoky GE, Ashraf GA. Bifenthrin's Environmental Fate: An Insight Into Its Soil Sorption and Degradation Studies. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:8868954. [PMID: 39628984 PMCID: PMC11614517 DOI: 10.1155/jamc/8868954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/19/2024] [Indexed: 12/06/2024]
Abstract
To fully comprehend each pesticide's behavior and interactions with soil and the environment, a thorough and nuanced analysis of each one is thought necessary. In this study, 10 randomly selected heterogeneous soil samples, each with distinct characteristics, were subjected to sorption trials as well as disintegration tests using biodegradation, hydrolysis, and photolysis. For sorption tests, the batch equilibrium approach was used, which revealed a dependence on the soils' physicochemical characteristics. Bifenthrin's distribution coefficient (K d ) varied from 7.27 to 25.89 μg·ml-1, with R 2 values varying from 0.92 to 0.99. Each soil physicochemical characteristic was associated with the various sorptive outcomes, which suggested an exothermic adsorptive reaction based on the negative thermodynamic values. The hydrolysis, soil-induced biodegradation, and photolysis processes had the shortest half-lives of bifenthrin, measuring 13.5 days, 12 days, and 121.5 days, respectively. According to these findings, bifenthrin has a moderate amount of binding and stability in soil, which makes partial decomposition of parent and daughter molecules challenging. This research advances our knowledge of bifenthrin's deteriorating processes and aids in the creation of cutting-edge strategies for ecological restoration using natural processes.
Collapse
Affiliation(s)
| | - Sara Majid
- Materials and Environmental Chemistry Lab, Lab-E21, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Khuram Shahzad Ahmad
- Materials and Environmental Chemistry Lab, Lab-E21, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Gaber E. Eldesoky
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghulam Abbas Ashraf
- College of Environment, Hohai University, Nanjing 210098, China
- New Uzbekistan University, Mustaqillik Ave. 54, Tashkent 100007, Uzbekistan
| |
Collapse
|
8
|
Liang D, Li C, Chen H, Sørmo E, Cornelissen G, Gao Y, Reguyal F, Sarmah A, Ippolito J, Kammann C, Li F, Sailaukhanuly Y, Cai H, Hu Y, Wang M, Li X, Cui X, Robinson B, Khan E, Rinklebe J, Ye T, Wu F, Zhang X, Wang H. A critical review of biochar for the remediation of PFAS-contaminated soil and water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:174962. [PMID: 39059650 DOI: 10.1016/j.scitotenv.2024.174962] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) present significant environmental and health hazards due to their inherent persistence, ubiquitous presence in the environment, and propensity for bioaccumulation. Consequently, the development of efficacious remediation strategies for soil and water contaminated with PFAS is imperative. Biochar, with its unique properties, has emerged as a cost-effective adsorbent for PFAS. Despite this, a comprehensive review of the factors influencing PFAS adsorption and immobilization by biochar is lacking. This narrative review examines recent findings indicating that the application of biochar can effectively immobilize PFAS, thereby mitigating their environmental transport and subsequent ecological impact. In addition, this paper reviewed the sorption mechanisms of biochar and the factors affecting its sorption efficiency. The high effectiveness of biochars in PFAS remediation has been attributed to their high porosity in the right pore size range (>1.5 nm) that can accommodate the relatively large PFAS molecules (>1.02-2.20 nm), leading to physical entrapment. Effective sorption requires attraction or bonding to the biochar framework. Binding is stronger for long-chain PFAS than for short-chain PFAS, as attractive forces between long hydrophobic CF2-tails more easily overcome the repulsion of the often-anionic head groups by net negatively charged biochars. This review summarizes case studies and field applications highlighting the effectiveness of biochar across various matrices, showcasing its strong binding with PFAS. We suggest that research should focus on improving the adsorption performance of biochar for short-chain PFAS compounds. Establishing the significance of biochar surface electrical charge in the adsorption process of PFAS is necessary, as well as quantifying the respective contributions of electrostatic forces and hydrophobic van der Waals forces to the adsorption of both short- and long-chain PFAS. There is an urgent need for validation of the effectiveness of the biochar effect in actual environmental conditions through prolonged outdoor testing.
Collapse
Affiliation(s)
- Dezhan Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Caibin Li
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Yurong Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jim Ippolito
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Kammann
- Department of Applied Ecology, Geisenheim University, 65366 Geisenheim, Germany
| | - Fangbai Li
- Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yerbolat Sailaukhanuly
- Laboratory of Engineering Profile, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Heqing Cai
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Yan Hu
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Maoxian Wang
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xinglan Cui
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Resources and Environmental Technology Corporation Limited, Beijing 101407, China
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Tingjin Ye
- IronMan Environmental Technology Co., Ltd., Foshan 528041, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
9
|
Cervantes-Díaz Á, Nieto-Carmona JC, Sevilla-Morán B, Alonso-Prados JL, Sandín-España P. Kinetic study, byproducts characterization and photodegradation pathway of profoxydim in a biochar water soil system. Sci Rep 2024; 14:27117. [PMID: 39511393 PMCID: PMC11543925 DOI: 10.1038/s41598-024-78621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
The study focused on the photodegradation of profoxydim, a low-toxicity cyclohexanedione herbicide commonly used in rice crops, under simulated sunlight conditions. Profoxydim's behavior in paddy field conditions is not well understood, and this research aimed to fill that gap, particularly examining the effect of commonly utilized organic amendments such as biochar (BC) on its degradation. Results indicated that profoxydim degrades rapidly, with a half-life of 2.4 ± 0.3 h in paddy water and 1.03 ± 0.1 h in paddy soil. However, when BC was introduced, the degradation slowed significantly, extending the half-lives to 3.1 ± 0.2 h in water and 3.07 ± 0.5 h in soil. The study identified five degradation products (DPs) using TOF mass accuracy measurements and MS/MS spectra fragmentation. Two of these DPs were found to be more stable than profoxydim itself. Additionally, the research proposed a novel photodegradation pathway, highlighting processes such as homolytic C-N bond cleavage, photoisomerization, and photoinduced oxidation. The study's findings contribute new insights into the environmental fate of profoxydim, offering a deeper understanding of its transformation in rice paddy fields and aiding in the assessment of potential risks associated with its residues in agricultural environments.
Collapse
Affiliation(s)
- Álvaro Cervantes-Díaz
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain
- Department of Agricultural Chemistry and Food Science, UAM-Madrid, Madrid, Spain
| | - Juan Carlos Nieto-Carmona
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain
| | - Beatriz Sevilla-Morán
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain
| | - José Luis Alonso-Prados
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain
| | - Pilar Sandín-España
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain.
| |
Collapse
|
10
|
Wang J, Norgaard T, Pugliese L, Carvalho PN, Wu S. Global meta-analysis and machine learning reveal the critical role of soil properties in influencing biochar-pesticide interactions. ENVIRONMENT INTERNATIONAL 2024; 193:109131. [PMID: 39541786 DOI: 10.1016/j.envint.2024.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Biochar application in soils is increasingly advocated globally for its dual benefits in enhancing agricultural productivity and sequestering carbon. However, lingering concerns persist regarding its environmental impact, particularly concerning its interactions with pesticide residues in soil. Previous research has fragmentarily indicated elevated pesticide residues and prolonged persistence in biochar-amended soil, suggesting a potential adverse consequence of biochar application on pesticide degradation. Yet, conclusive evidence and conditions for this phenomenon remain elusive. To address this gap, we conducted a comprehensive assessment using meta-analysis and machine learning techniques, synthesizing data from 58 studies comprising 386 observations worldwide. Contrary to initial concerns, our findings revealed no definitive increase in pesticide concentrations in soil following biochar application. Moreover, a significant reduction of 66 % in pesticide concentrations within soil organisms, such as plants and earthworms, was observed. The quantitative analysis identified soil organic matter content as a key factor influencing biochar-pesticide interactions, suggesting that applying biochar to soils rich in organic matter is less likely to increase pesticide persistence. This study provides a critical assessment of the environmental fate of pesticides under biochar application, offering valuable guidance for the optimal utilization of both pesticides and biochar in sustainable agricultural practices.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Trine Norgaard
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Lorenzo Pugliese
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark.
| |
Collapse
|
11
|
Sun C, Wang G, Liu Y, Bei K, Yu G, Zheng W, Liu Y. The adsorption mechanism and optimal dosage of walnut shell biochar for chloramphenicol. Heliyon 2024; 10:e39123. [PMID: 39640795 PMCID: PMC11620052 DOI: 10.1016/j.heliyon.2024.e39123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Biochar derived from biomass pyrolysis has proven to be an excellent material for pesticide adsorption and can be used as soil amendment for pesticide non-point pollution. However, the adsorption and desorption mechanisms for certain biochar and pesticide are still unclear. In this study, we investigated the properties of biochar derived from walnut (Juglans regia L.) shell (WSB), and used batch equilibrium method to investigate the adsorption and desorption behavior for chlorantraniliprole (CAP). The physical-chemical analysis showed that there were mainly lignin charcoal of alkyl carbon, methoxyl carbon, aromatic carbon, and carboayl carbon as the primary carbon compounds of WSB. The π - π electron donor acceptor interaction, electrostatic interaction, and hydrogen bond were the primary adsorption mechanisms of the WSB adsorption. Batch equilibrium study under 298 K showed that WSB application in the soil significantly improved the adsorption ability for CAP, and the adsorption behavior was a mono-layer adsorption process as Langmuir model fitted the adsorption isotherm data better than the Freundlich model. While Freundlich model analysis showed that WSB addition to the soil changed the isothermal adsorption line from the S style to the L style. The spontaneous degree reaction of sorbents from strong to weak was in the following order: 5%-WSB >7%-WSB >10%-WSB >1%-WSB >3%-WSB > soil > WSB, and the maximum application effect was achieved at 5 % (m/m) WSB dosage mixed with the soil. Therefore, we considered that WSB addition in soil increased its CAP adsorption capacity, and 5 % (m/m) WSB application was the best choice for CAP pollution control. These data will contribute to the adsorption mechanism and the optimal use dosage of WSB for CAP pollution control.
Collapse
Affiliation(s)
- Caixia Sun
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Gangjun Wang
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuhong Liu
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Guoguang Yu
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weiran Zheng
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuxue Liu
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
12
|
Liu H, Long J, Zhang K, Li M, Zhao D, Song D, Zhang W. Agricultural biomass/waste-based materials could be a potential adsorption-type remediation contributor to environmental pollution induced by pesticides-A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174180. [PMID: 38936738 DOI: 10.1016/j.scitotenv.2024.174180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The widespread use of pesticides that are inevitable to keep the production of food grains brings serious environmental pollution problems. Turning agricultural biomass/wastes into materials addressing the issues of pesticide contaminants is a feasible strategy to realize the reuse of wastes. Several works summarized the current applications of agricultural biomass/waste materials in the remediation of environmental pollutants. However, few studies systematically take the pesticides as an unitary target pollutant. This critical review comprehensively described the remediation effects of crop-derived waste (cereal crops, cash crops) and animal-derived waste materials on pesticide pollution. Adsorption is considered a superior and highlighted effect between pesticides and materials. The review generalized the sources, preparation, characterization, condition optimization, removal efficiency and influencing factors analysis of agricultural biomass/waste materials. Our work mainly emphasized the promising results in lab experiments, which helps to clarify the current application status of these materials in the field of pesticide remediation. In the meantime, rigorous pros and cons of the materials guide to understand the research trends more comprehensively. Overall, we hope to achieve a large-scale use of agricultural biomass/wastes.
Collapse
Affiliation(s)
- Hui Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jun Long
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| | - Kexin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Miqi Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Danyang Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Dongkai Song
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Weiyin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
13
|
Patro A, Dwivedi S, Thakur A, Sahoo PK, Biswas JK. Recent approaches and advancement in biochar-based environmental sustainability: Is biochar fulfilling the sustainable development goals? iScience 2024; 27:110812. [PMID: 39310752 PMCID: PMC11416529 DOI: 10.1016/j.isci.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
This review highlights the application of biochar (BC) for attaining different SDGs (SDG 6: clean water and sanitation, SDG 7: affordable and clean energy, SDG 13: climate action, and SDG 15: life on land). These goals coincide with the various existing environmental problems including wastewater treatment, soil amendment, greenhouse gas remediation, and bioenergy generation. So, the review encompasses the various mechanisms involved in the BC-assisted treatment and reclamation of water, pollutant immobilization and enhancing soil properties, reduction of greenhouse gas emission during the wastewater treatment process and soil amendment mechanisms, bioenergy generation through various electrode material, biodiesel production, and many more. The review also explains the various drawbacks and limitations of BC application to the available environmental issues. Conclusively, it was apprehended that BC is an appropriate material for several environmental applications. More research interventions are further required to analyze the applicability of different BC materials for attaining other available SDGs.
Collapse
Affiliation(s)
- Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Anjali Thakur
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| |
Collapse
|
14
|
Lopes JRA, Mendonça ZLL, da Silva JPS, Amaral A, Netto AM. Enhancing herbicide adsorption in low-fertility soil using sugarcane biochar: Insights from Imazapic dynamics. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104412. [PMID: 39121645 DOI: 10.1016/j.jconhyd.2024.104412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Biochar amendment has emerged as a potential solution for preventing, remediating, and mitigating agricultural compound pollution. This groundbreaking technique not only improves crucial soil properties like porosity, water retention capacity, cation exchange capacity, and pH, but also intricately impacts the interaction and retention mechanisms of polluting molecules. In this study, we investigate the dynamic of the herbicide Imazapic when subjected to applying pyrolyzed biochars, specifically at temperatures of 300 and 500 °C, within the context of a low-fertility soil characterized as dystrophic Yellow Ultisol (YUd) in a sugarcane cultivation area in Igarassu-PE, Brazil. The biochars were produced from sugarcane bagasse by pyrolysis process in a muffle furnace. In laboratory conditions, with saturated soil columns under steady-state, analyses of the mechanisms involved in interaction and transport and determining hydrodispersive parameters for Imazapic were performed by the two-site nonequilibrium transport model using the CXTFIT 2.0 program. Samples of YUd soil amended with biochar pyrolyzed at 300 °C presented a negligible interaction with Imazapic. However, adding biochar pyrolyzed at 500 °C (BC500) to the soil samples enhanced the adsorption coefficient and improved the interaction with Imazapic. This research points out that biochar produced from agricultural waste biomass, such as sugarcane bagasse specifically pyrolyzed at 500 °C, offers a potential means to adsorb herbicides, reducing their leaching to deeper layers of the amended soils and the risk of groundwater contamination and potential environmental negative impacts.
Collapse
Affiliation(s)
- Jéssica Rafaelly Almeida Lopes
- Federal Rural University of Pernambuco, Graduate Program in Environmental Engineering, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, PE 52171-900, Brazil.
| | - Zabele Laís Lyra Mendonça
- Federal Rural University of Pernambuco, Graduate Program in Environmental Engineering, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, PE 52171-900, Brazil.
| | - João Paulo Siqueira da Silva
- Federal University of Pernambuco, Department of Nuclear Energy, Av. Prof. Luiz Freire, 1000 - Curado, PE 50740-545, Brazil.
| | - Ademir Amaral
- Federal University of Pernambuco, Department of Nuclear Energy, Av. Prof. Luiz Freire, 1000 - Curado, PE 50740-545, Brazil.
| | - André Maciel Netto
- Federal University of Pernambuco, Department of Nuclear Energy, Av. Prof. Luiz Freire, 1000 - Curado, PE 50740-545, Brazil.
| |
Collapse
|
15
|
Sun C, Liu Y, Bei K, Zheng W, Wang Q, Wang Q. Impact of biochar on the degradation rates of three pesticides by vegetables and its effects on soil bacterial communities under greenhouse conditions. Sci Rep 2024; 14:19986. [PMID: 39198523 PMCID: PMC11358384 DOI: 10.1038/s41598-024-70932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
A 28 days pesticide degradation experiment was conducted for broccoli (Brassica oleracea L. var. italica Planch) and pakchoi (Brassica chinensis L.) with three pesticides (chlorantraniliprole (CAP), haloxyfop-etotyl (HPM), and indoxacarb (IXB)) to explore the effects of biochar on pesticide environmental fate and rhizosphere soil diversity. Rice straw biochar (RB) was applied to soil at a 25.00 t ha-1 dosage under greenhouse conditions, and its effects on the degradation of three pesticides in vegetables and in soil were investigated individually. Overall, RB application effectively facilitated CAP and HPM degradation in broccoli by 13.51-39.42% and in broccoli soil by 23.80-74.10%, respectively. RB application slowed the degradation of CAP, HPM and IXB in pakchoi by 0.00-57.17% and slowed the degradation of CAP in pakchoi by 37.32-43.40%. The results showed that the effect of RB application on pesticide degradation in crops and soil was related to biochar properties, pesticide solubility, plant growth status, and soil characteristics. Rhizosphere soil microorganisms were also investigated, and the results showed that biochar application may be valuable for altering bacterial richness and diversity. The effect of biochar application on pesticide residues in crops and soil was influenced by the vegetable variety first, and the second was pesticide characteristics. RB applied to soil at a 25.00 t ha-1 dosage under greenhouse conditions is recommended for broccoli production to ensure food safety. Our results suggested that biochar application in soil could reduce pesticide non-point source pollution, especially for highly soluble pesticides, and could affect soil microorganisms.
Collapse
Affiliation(s)
- Caixia Sun
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China.
| | - Yuhong Liu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Weiran Zheng
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Qinfei Wang
- Institute of Variety Resources, Chinese Academy of Thermal Sciences, Haikou, 270203, Hainan, People's Republic of China
| | - Qiang Wang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Chandi K, Udomkun P, Boonupara T, Kaewlom P. Enhancing soil health, microbial count, and hydrophilic methomyl and hydrophobic lambda-cyhalothrin remediation with biochar and nano-biochar. Sci Rep 2024; 14:19551. [PMID: 39174647 PMCID: PMC11341857 DOI: 10.1038/s41598-024-70515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
Pesticide contamination and soil degradation present significant challenges in agricultural ecosystems, driving extensive exploration of biochar (BC) and nano-biochar (NBC) as potential solutions. This study examines their effects on soil properties, microbial communities, and the fate of two key pesticides: the hydrophilic methomyl (MET) and the hydrophobic lambda-cyhalothrin (LCT), at different concentrations (1%, 3%, and 5% w w-1) in agricultural soil. Through a carefully designed seven-week black bean pot experiment, the results indicated that the addition of BC/NBC significantly influenced soil dynamics. Soil pH and moisture content (MC) notably increased, accompanied by a general rise in soil organic carbon (SOC) content. However, in BC5/NBC5 treatments, SOC declined after the 2nd or 3rd week. Microbial populations, including total plate count (TPC), phosphate-solubilizing bacteria (PSB), and nitrogen-fixing bacteria (NFB), showed dynamic responses to BC/NBC applications. BC1/NBC1 and BC3/NBC3 applications led to a significant increase in microbial populations, whereas BC5/NBC5 treatments experienced a decline after the initial surge. Furthermore, the removal efficiency of both MET and LCT increased with higher BC/NBC concentrations, with NBC demonstrating greater efficacy than BC. Degradation kinetics, modeled by a first-order equation, revealed that MET degraded faster than LCT. These findings underscore the profound impact of BC/NBC on pesticide dynamics and microbial communities, highlighting their potential to transform sustainable agricultural practices.
Collapse
Affiliation(s)
- Kanchana Chandi
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Puangrat Kaewlom
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
López-Cabeza R, Cox L, Gámiz B, Galán-Pérez JA, Celis R. Adsorption of sulfamethoxazole and ethofumesate in biochar- and organoclay-amended soil: Changes with adsorbent aging in the laboratory and in the field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173501. [PMID: 38797398 DOI: 10.1016/j.scitotenv.2024.173501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Biochars and organoclays have been proposed as efficient adsorbents to reduce the mobility of agrochemicals in soils. However, following their application to soils, these adsorbents undergo changes in their physicochemical properties over time due to their interaction with soil components. In this study, the adsorption capacity of a commercial biochar and a commercial organoclay for the antibiotic sulfamethoxazole (SFMX) and the pesticide ethofumesate (ETFM) was evaluated over aging periods of 3 months in the laboratory and 1 year in the field, subsequent to their application to a Mediterranean soil. The results showed that the adsorption of SFMX and ETFM in the soil amended with the adsorbents was greater than in the unamended soil, but for both chemicals, adsorption decreased with aging of the adsorbents in the soil. Characterization of the adsorbents before and after aging revealed physical blocking of adsorption sites by soil components. The loss of adsorption capacity of the adsorbents upon aging led to higher leaching of SFMX and ETFM in the soil containing field-aged adsorbents, although leaching remained lower than in unamended soil. Our findings reveal that, under the Mediterranean environment studied, the efficacy of the studied materials as adsorbents is maintained to a considerable extent for at least one year after their field application, which would have positive implications in their use for attenuating the dispersion of agricultural contaminants in the environment.
Collapse
Affiliation(s)
- Rocío López-Cabeza
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain.
| | - Lucía Cox
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Beatriz Gámiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain; Departamento de Química Inorgánica, Instituto de Química para la Energía y Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, 14014 Córdoba, Spain
| | - Jose Antonio Galán-Pérez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain; Environmental Sustainability and Health Institute, Technological University of Dublin, Greenway Hub, Grangegorman, Dublin, Ireland
| | - Rafael Celis
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| |
Collapse
|
18
|
Kumar V, Sharma P, Pasrija R, Chakraborty P, Basheer T, Thomas J, Sehgal SS, Gupta M, Muzammil K. Engineered lignocellulosic based biochar to remove endocrine-disrupting chemicals: Assessment of binding mechanism. CHEMOSPHERE 2024; 362:142584. [PMID: 38866332 DOI: 10.1016/j.chemosphere.2024.142584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
The safety and health of aquatic organisms and humans are threatened by the increasing presence of pollutants in the environment. Endocrine disrupting chemicals are common pollutants which affect the function of endocrine and causes adverse effects on human health. These chemicals can disrupt metabolic processes by interacting with hormone receptors upon consumptions by humans or aquatic species. Several studies have reported the presence of endocrine disrupting chemicals in waterbodies, food, air and soil. These chemicals are associated with increasing occurrence of obesity, metabolic disorders, reproductive abnormalities, autism, cancer, epigenetic variation and cardiovascular risk. Conventional treatment processes are expensive, not environment friendly and unable to achieve complete removal of these harmful chemicals. In recent years, biochar from different sources has gained a considerable interest due to their adsorption efficiency with porous structure and large surface areas. biochar derived from lignocellulosic biomass are widely used as sustainable catalysts in soil remediation, carbon sequestration, removal of organic and inorganic pollutants and wastewater treatment. This review conceptualizes the production techniques of biochar from lignocellulosic biomass and explores the functionalization and interaction of biochar with endocrine-disrupting chemicals. This review also identifies the further needs of research. Overall, the environmental and health risks of endocrine-disrupting chemicals can be dealt with by biochar produced from lignocellulosic biomass as a sustainable and prominent approach.
Collapse
Affiliation(s)
- Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pritha Chakraborty
- School of Allied Healthcare and Sciences, JAIN (Deemed to be University), Whitefield, Bangalore, 560066, Karnataka, India.
| | - Thazeem Basheer
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Mundur, Palakkad, 678592, Kerala, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Satbir S Sehgal
- Division of Research Innovation, Uttaranchal University, Dehradun, India
| | - Manish Gupta
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| |
Collapse
|
19
|
Kapoor RT, Zdarta J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. CHEMOSPHERE 2024; 358:142101. [PMID: 38653395 DOI: 10.1016/j.chemosphere.2024.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Biochar has emerged as an efficacious green material for remediation of a wide spectrum of environmental pollutants. Biochar has excellent characteristics and can be used to reduce the bioavailability and leachability of emerging pollutants in soil through adsorption and other physico-chemical reactions. This paper systematically reviewed previous researches on application of biochar/engineered biochar for removal of soil contaminants, and underlying adsorption mechanism. Engineered biochar are derivatives of pristine biochar that are modified by various physico-chemical and biological procedures to improve their adsorption capacities for contaminants. This review will promote the possibility to expand the application of biochar for restoration of degraded lands in the industrial area or saline soil, and further increase the useable area. This review shows that application of biochar is a win-win strategy for recycling and utilization of waste biomass and environmental remediation. Application of biochar for remediation of contaminated soils may provide a new solution to the problem of soil pollution. However, these studies were performed mainly in a laboratory or a small scale, hence, further investigations are required to fill the research gaps and to check real-time applicability of engineered biochar on the industrial contaminated sites for its large-scale application.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| |
Collapse
|
20
|
Kaswa M, Kumar A, Prasad M, Upadhyay D, Mahawer SK, Washnik VK, Tamboli P. Exploring the influence of invasive weed biochar on the sorption and dissipation dynamics of imazethapyr in sandy loam soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:478. [PMID: 38664274 DOI: 10.1007/s10661-024-12653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The management of invasive weeds on both arable and non-arable land is a vast challenge. Converting these invasive weeds into biochar and using them to control the fate of herbicides in soil could be an effective strategy within the concept of turning waste into a wealth product. In this study, the fate of imazethapyr (IMZ), a commonly used herbicide in various crops, was investigated by introducing such weeds as biochar, i.e., Parthenium hysterophorus (PB) and Lantana camara (LB) in sandy loam soil. In terms of kinetics, the pseudo-second order (PSO) model provided the best fit for both biochar-mixed soils. More IMZ was sorbed onto LB-mixed soil compared to PB-mixed soil. When compared to the control (no biochar), both PB and LB biochars (at concentrations of 0.2% and 0.5%) increased IMZ adsorption, although the extent of this effect varied depending on the dosage and type of biochar. The Freundlich adsorption isotherm provided a satisfactory explanation for IMZ adsorption in soil/soil mixed with biochar, with the adsorption process exhibiting high nonlinearity. The values of Gibb's free energy change (ΔG) were negative for both adsorption and desorption in soil/soil mixed with biochar, indicating that sorption was exothermic and spontaneous. Both types of biochar significantly affect IMZ dissipation, with higher degradation observed in LB-amended soil compared to PB-amended soil. Hence, the findings suggest that the preparation of biochar from invasive weeds and its utilization for managing the fate of herbicides can effectively reduce the residual toxicity of IMZ in treated agroecosystems in tropical and subtropical regions.
Collapse
Affiliation(s)
- Mamta Kaswa
- Rani Lakshmi Bai Central Agricultural University, Uttar Pradesh, Jhansi, India
| | - Anup Kumar
- ICAR-Indian Grassland and Fodder Research Institute, Uttar Pradesh, Jhansi, India.
| | - Mahendra Prasad
- ICAR-Indian Grassland and Fodder Research Institute, Uttar Pradesh, Jhansi, India
| | - Deepak Upadhyay
- ICAR-Indian Grassland and Fodder Research Institute, Uttar Pradesh, Jhansi, India
| | - Sonu Kumar Mahawer
- ICAR-Indian Grassland and Fodder Research Institute, Uttar Pradesh, Jhansi, India
| | - Vinod Kumar Washnik
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India
| | - Pooja Tamboli
- ICAR-Indian Grassland and Fodder Research Institute, Uttar Pradesh, Jhansi, India
| |
Collapse
|
21
|
Liu B, Tian W, Chu M, Lu Z, Zou M, Chen Z, Zhang R. Removal of sulfonylurea herbicides with g-C 3N 4-based photocatalysts: A review. CHEMOSPHERE 2024; 354:141742. [PMID: 38513951 DOI: 10.1016/j.chemosphere.2024.141742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
The accumulation of agricultural chemicals in the environment has become a global concern, of which sulfonylurea herbicides (SUHs) constitute a significant category. Solar-driven photocatalysis is favored for removing organic pollutants due to its high efficiency and environmental friendliness. Graphite carbon nitride (g-C3N4)-based materials with superior catalytic activities and physicochemical stabilities are promising photocatalysts. This review describes the g-C3N4-based materials and their uses in the photocatalytic degradation of SUHs or other organic pollutants with similar structures. First, the fundamentals of g-C3N4-based materials and photocatalytic SUHs degradation are discussed to provide an in-depth understanding of the mechanism for the photocatalytic activity. The ability of different g-C3N4-based materials to photocatalytically degrade SUH-like structures is then discussed and summarized based on different modification strategies (morphology modulation, elemental doping, defect engineering, and heterojunction formations). Meanwhile, the effects of different environmental factors on the photocatalytic performance of g-C3N4-based materials are described. Finally, the major challenges and opportunities of g-C3N4-based materials for the photocatalytic degradation of SUHs are proposed. It is hoped that this review will show the feasibility of photocatalytic degradation of SUHs with g-C3N4-based materials.
Collapse
Affiliation(s)
- Bingkun Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Laoshan Laboratory, Qingdao, 266234, PR China.
| | - Meile Chu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zhiyang Lu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Mengyuan Zou
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zhuo Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Ruijuan Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
22
|
Dollinger J, Thoisy JC, Gomez C, Samouelian A. Application of mid-infrared spectroscopy to the prediction and specification of pesticide sorption: A promising and cost-effective tool. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123566. [PMID: 38360386 DOI: 10.1016/j.envpol.2024.123566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
The cocktail of pesticides sprayed to protect crops generates a miscellaneous and generalized contamination of water bodies. Sorption, especially on soils, regulates the spreading and persistence of these contaminants. Fine resolution sorption data and knowledge of its drivers are needed to manage this contamination. The aim of this study is to investigate the potential of Mid-Infrared spectroscopy (MIR) to predict and specify the adsorption and desorption of a diversity of pesticides. We constituted a set of 37 soils from French mainland and West Indies covering large ranges of texture, organic carbon, minerals and pH. We measured the adsorption and desorption coefficients of glyphosate, 2,4-dichlorophenoxyacetic acid (2,4-D) and difenoconazole and acquired MIR Lab spectra for these soils. We developed Partial Least Square Regression (PLSR) models for the prediction of the sorption coefficients from the MIR spectra. We further identified the most influencing spectral bands and related these to putative organic and mineral functional groups. The prediction performance of the PLSR models was generally high for the adsorption coefficients Kdads (0.4 < R2 < 0.9 & RPIQ >1.8). It was contrasted for the desorption coefficients and related to the magnitude of the desorption hysteresis. The most significant spectral bands in the PLSR differ according to the pesticides indicating contrasted interactions with mineral and organic functional groups. Glyphosate interacts primarily with polar mineral groups (OH) and difenoconazole with hydrophobic organic groups (CH2, CC, COO-, C-O, C-O-C). 2,4-D has both positive and negative interactions with these groups. Finally, this work suggests that MIR combined with PLSR is a promising and cost-effective tool. It allows both the prediction of adsorption and desorption parameters and the specification of these mechanisms for a diversity of pesticides including polar active ingredients.
Collapse
Affiliation(s)
- Jeanne Dollinger
- UMR LISAH, Université Montpellier, INRAE, IRD, Institut Agro, AgroParisTech, Montpellier 34060, France.
| | | | - Cécile Gomez
- UMR LISAH, Université Montpellier, INRAE, IRD, Institut Agro, AgroParisTech, Montpellier 34060, France
| | - Anatja Samouelian
- UMR LISAH, Université Montpellier, INRAE, IRD, Institut Agro, AgroParisTech, Montpellier 34060, France
| |
Collapse
|
23
|
Dong X, Chu Y, Tong Z, Sun M, Meng D, Yi X, Gao T, Wang M, Duan J. Mechanisms of adsorption and functionalization of biochar for pesticides: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116019. [PMID: 38295734 DOI: 10.1016/j.ecoenv.2024.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Agricultural production relies heavily on pesticides. However, factors like inefficient application, pesticide resistance, and environmental conditions reduce their effective utilization in agriculture. Subsequently, pesticides transfer into the soil, adversely affecting its physicochemical properties, microbial populations, and enzyme activities. Different pesticides interacting can lead to combined toxicity, posing risks to non-target organisms, biodiversity, and organism-environment interactions. Pesticide exposure may cause both acute and chronic effects on human health. Biochar, with its high specific surface area and porosity, offers numerous adsorption sites. Its stability, eco-friendliness, and superior adsorption capabilities render it an excellent choice. As a versatile material, biochar finds use in agriculture, environmental management, industry, energy, and medicine. Added to soil, biochar helps absorb or degrade pesticides in contaminated areas, enhancing soil microbial activity. Current research primarily focuses on biochar produced via direct pyrolysis for pesticide adsorption. Studies on functionalized biochar for this purpose are relatively scarce. This review examines biochar's pesticide absorption properties, its characteristics, formation mechanisms, environmental impact, and delves into adsorption mechanisms, functionalization methods, and their prospects and limitations.
Collapse
Affiliation(s)
- Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Mingna Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Dandan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Xiaotong Yi
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Tongchun Gao
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China.
| |
Collapse
|
24
|
Zhang YM, Dong WR, Lin CY, Xu WB, Li BZ, Liu GX, Shu MA. Risk assessment of pesticide compounds: IPT and TCZ cause hepatotoxicity, activate stress pathway and affect the composition of intestinal flora in red swamp crayfish (Procambarusclarkii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123315. [PMID: 38185353 DOI: 10.1016/j.envpol.2024.123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Isoprothiolane (IPT) and tricyclazole (TCZ) are widely used in rice farming and recently in combined rice-fish farming. However, co-cultured animals are affected by these pesticides. To investigate the organismal effects and toxicity of pesticides, crayfish were exposed to 0, 1, 10, or 100 ppt TCZ or IPT for 7 days. Pesticide bioaccumulation, survival rate, metabolic parameters, structure of intestinal flora, and antioxidant-, apoptosis-, and HSP-related gene expression were determined. Pesticide exposure caused bioaccumulation of IPT or TCZ in the hepatopancreas and muscles of crayfish; however, IPT bioaccumulation was higher than that of TCZ. Both groups showed significant changes in hepatopancreatic serum biochemical parameters. Mitochondrial damage and chromosomal agglutination were observed in hepatopancreatic cells exposed to 100 ppt IPT or TCZ. IPT induced more significant changes in serum biochemical parameters than TCZ. The results of intestinal flora showed that Vibro, Flavobacterium, Anaerorhabdus and Shewanella may have potential for use as a bacterial marker of TCZ and IPT. Antioxidant-, apoptosis-, and HSP-related gene expression was disrupted by pesticide exposure, and was more seriously affected by IPT. The results suggest that IPT or TCZ induce hepatopancreatic cell toxicity; however, IPT or TCZ content in dietary crayfish exposed to 1 ppt was below the food safety residue standard. The data indicated that IPT exposure may be more toxic than TCZ exposure in hepatopancreas and intestines and toxicity of organism are alleviated by activating the pathway of stress-response, providing an understanding of pesticide compounds in rice-fish farming and food safety.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guang-Xu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Kim HS, Lee YK, Park BJ, Lee JE, Jeong SS, Kim KR, Kim SC, Kirkham MB, Yang JE, Kim KH, Yoon JH. Alginate-encapsulated biochar as an effective soil ameliorant for reducing Pb phytoavailability to lettuce (Lactuca sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22802-22813. [PMID: 38411914 DOI: 10.1007/s11356-024-32594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
The alginate-biochar formulation for metal removal from aquatic environments has been widely tried but its use for lowering phytoavailability of metals in the soil-crop continuum is limited. Biochar has been increasingly used as a soil amendment due to its potential for soil carbon sequestration and sorption capacity. Handling of powdery biochar as a soil top-dressing material is, however, cumbersome and vulnerable to loss by water and wind. In this experiment, biochar powder, which was pyrolyzed from oak trees, was encapsulated into beads with alginate, which is a naturally occurring polysaccharide found in brown algae. Both batch and pot experiments were conducted to examine the effects of the alginate-encapsulated biochar beads (BB), as compared to its original biochar powdery form (BP), on the Pb adsorption capacity and phytoavailability of soil Pb to lettuce (Lactuca sativa L.). The BB treatment improved reactivity about six times due to a higher surface area (287 m2 g-1) and five times due to a higher cation exchange capacity (50 cmolc kg-1) as compared to the BP treatment. The maximum sorption capacity of Pb was increased to 152 from 81 mg g-1 because of surface chemosorption. Adsorption of Pb onto BB followed multiple first-order kinetics and comprised fast and slow steps. More than 60% of the Pb was adsorbed in the fast step, i.e., within 3 h. Also, the BB treatment, up to the 5% level (w/w), increased soil pH from 5.4 to 6.5 and lowered the phytoavailable fraction of Pb in soil from 5.7 to 0.3 mg kg-1. The Pb concentrations in lettuce cultivated at 5% for the BP and BB treatments were similar but 63 and 66% lower, respectively, than those of the control soil. The results showed that the encapsulation of biochar with alginate enhanced adsorption by the biochar.
Collapse
Affiliation(s)
- Hyuck Soo Kim
- Department of Biological Environment, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yeon Kyu Lee
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Byung Jun Park
- Department of Biological Environment, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ji Eun Lee
- Department of Biological Environment, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seok Soon Jeong
- Department of Biological Environment, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kwon Rae Kim
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Sung Chul Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506-0110, USA
| | - Jae E Yang
- Department of Biological Environment, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kye-Hoon Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Biological Environment, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
26
|
Cervantes-Díaz A, Alonso-Prados E, Alonso-Prados JL, Sandín-España P. Assessing the effect of organic amendments on the degradation of profoxydim in paddy soils: Kinetic modeling and identification of degradation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169072. [PMID: 38048997 DOI: 10.1016/j.scitotenv.2023.169072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The fate and behavior of herbicides can be altered in an unpredictable way when organic amendments are added to soil as a beneficial management tool. The objective of this work was to investigate the effect exerted by the addition of two different organic amendments (alperujo compost and biochar) to soil in the degradation of one of the most relevant new generation rice herbicides, profoxydim. In unamended soils, the degradation of profoxydim was quite fast and was governed by both chemical (DT50steril soil = from 1.52 to 9.21 days) and microbial (DT50nonsterile soil = from 0.47 to 0.53 days) processes. Alperujo- and biochar-amended soils significantly increased the persistence of the herbicide in both soils, especially in the presence of biochar, due to the high capacity absorption of this amendment, increasing DT90 from 1.92 to 3.54 days for DT90unamended to 41.02-48.41 days for DT90biochar amended. Different kinetics models applied to fit the observed dissipation datasets showed that a HS biphasic model fits well with the dissipation of profoxydim in amended and unamended soils. For the first time, five degradation products (DPs) were identified by HPLC-QTOF-MS/MS in soil and a degradation pathway was described. Main DP was generated via oxidation of the sulfur atom to give rise to the corresponding sulfoxide derivative, with this DP being more persistent than the active substance. These outcomes can be very useful for the assessment of the environmental risk associated with the use of profoxydim in rice crops and the application of organic amendments as potential measures for minimizing the risk of contamination of natural water resources.
Collapse
Affiliation(s)
- A Cervantes-Díaz
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - E Alonso-Prados
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - J L Alonso-Prados
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - P Sandín-España
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain.
| |
Collapse
|
27
|
Chen Y, Yang W, Zou Y, Wu Y, Mao W, Zhang J, Zia-Ur-Rehman M, Wang B, Wu P. Quantification of the effect of biochar application on heavy metals in paddy systems: Impact, mechanisms and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168874. [PMID: 38029988 DOI: 10.1016/j.scitotenv.2023.168874] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Biochar (BC) has shown great potential in remediating heavy metal(loid)s (HMs) contamination in paddy fields. Variation in feedstock sources, pyrolysis temperatures, modification methods, and application rates of BC can result in great changes in its effects on HM bioavailability and bioaccumulation in soil-rice systems and remediation mechanisms. Meanwhile, there is a lack of application guidelines for BC with specific properties and application rates when targeting rice fields contaminated with certain HMs. To elucidate this topic, this review focuses on i) the effects of feedstock type, pyrolysis temperature, and modification method on the properties of BC; ii) the changes in bioavailability and bioaccumulation of HMs in soil-rice systems applying BC with different feedstocks, pyrolysis temperatures, modification methods, and application rates; and iii) exploration of potential remediation mechanisms for applying BC to reduce the mobility and bioaccumulation of HMs in rice field systems. In general, the application of Fe/Mn modified organic waste (OW) derived BC for mid-temperature pyrolysis is still a well-optimized choice for the remediation of HM contamination in rice fields. From the viewpoint of remediation efficiency, the application rate of BC should be appropriately increased to immobilize Cd, Pb, and Cu in rice paddies, while the application rate of BC for immobilizing As should be <2.0 % (w/w). The mechanism of remediation of HM-contaminated rice fields by applying BC is mainly the direct adsorption of HMs by BC in soil pore water and the mediation of soil microenvironmental changes. In addition, the application of Fe/Mn modified BC induced the formation of iron plaque (IP) on the root surface of rice, which reduced the uptake of HM by the plant. Finally, this paper describes the prospects and challenges for the extension of various BCs for the remediation of HM contamination in paddy fields and makes some suggestions for future development.
Collapse
Affiliation(s)
- Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China.
| | - Yuzheng Zou
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Yuhong Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Wenjian Mao
- Guizhou Environment and Engineering Appraisal Center, Guiyang, China
| | - Jian Zhang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Bing Wang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
28
|
Di S, Diao Z, Cang T, Wang Z, Xu L, Qi P, Zhao H, Liu Z, Wang X. Enantioselective fate and risk assessment of chiral fungicide pydiflumetofen in rice-fish and wheat farming systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169262. [PMID: 38081426 DOI: 10.1016/j.scitotenv.2023.169262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Fungicides have been widely used for reducing the losses caused by plant diseases. Rice and wheat are the most basic food crops, and the potential risks after applying fungicides are worthy of attention. Especially rice-fish farming system is an ecological symbiosis system that is beneficial to both environmental and ecological protection. However, the application of pesticides will stress the ecosystem, and the pesticide residues in rice and fish would be transmitted along the food chain, which is harmful to human health. Here, the enantioselective behaviors of chiral pydiflumetofen in rice-fish and wheat farming systems were clarified. In the rice-fish farming system, pydiflumetofen enantiomers were preferentially attached to the plants, entering the paddy water and settling into the paddy soil, and then accumulating and dissipating in the fish. With the growth of rice, it was transported to rice fruits. The wheat farming system was similar. Enantioselective dissipation occurred in carp (Cyprinus carpio), brown rice and wheat soil, and S-(+)-pydiflumetofen was preferentially dissipated. In other words, R-(-)-pydiflumetofen showed higher concentrations, especially in carp, which meant R-(-)-pydiflumetofen was more easily accumulated in the environment, and posed a greater potential risk to the farming system. The pydiflumetofen residues in brown rice and wheat were lower than MRLs from the EFSA (0.02 mg/kg) and eCFR (0.3 mg/kg), respectively. What deserves attention is that the MRL of pydiflumetofen in fish is not clear. Meanwhile, pydiflumetofen in paddy soil and wheat soil had a persistent residual effect, and the risks could not be ignored. Combined with the previous research, developing S-(+)-pydiflumetofen products will help to reduce the dosage and reduce the risks to environment and people. This study evaluated the environmental fate and risk of chiral pydiflumetofen from the perspective of farming system, and would provide data support for its rational use and risk assessment.
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| | - Ziyang Diao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Lu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
29
|
McGinley J, Healy MG, Scannell S, Ryan PC, Harmon O'Driscoll J, Mellander PE, Morrison L, Siggins A. Field assessment of coconut-based activated carbon systems for the treatment of herbicide contamination. CHEMOSPHERE 2024; 349:140823. [PMID: 38042422 DOI: 10.1016/j.chemosphere.2023.140823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/25/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Once released into the environment, herbicides can move through soil or surface water to streams and groundwater. Filters containing adsorbent media placed in fields may be an effective solution to herbicide loss in the environment. However, to date, no study has investigated the use of adsorbent materials in intervention systems at field-scale, nor has any study investigated their optimal configuration. Therefore, the aim of this paper was to examine the efficacy of low-cost, coconut-based activated carbon (CAC) intervention systems, placed in streams and tributaries, for herbicide removal. Two configurations of interventions were investigated in two agricultural catchments and one urban area in Ireland: (1) filter bags and (2) filter bags fitted into polyethylene pipes. Herbicide sampling was conducted using Chemcatcher® passive sampling devices in order to identify trends in herbicide exceedances at the sites, and to quantifiably assess, compare, and contrast the efficiency of the two intervention configurations. While the Chemcatcher® passive sampling devices are capable of analysing eighteen different acid herbicides, only six different acid herbicides (2,4-D, clopyralid, fluroxypyr, MCPA, mecoprop and triclopyr) were ever detected within the three catchment areas, which were also the only acid herbicides used therein. The CAC was capable of complete herbicide removal, when the water flow was slow (0.5-1 m3 s-1), and the interventions spanned the width and depth of the waterway. Overall, the reduction in herbicide concentrations was better for the filter pipes than for the filter bags, with a 48% reduction in detections and a 37% reduction in exceedances across all the sampling sites for the filter pipe interventions compared to a 13% reduction in the number of detections and a 24% reduction in exceedances across all sampling sites for the filter bag interventions (p < 0.05). This study demonstrates, for the first time, that CAC may be an effective in situ remediation strategy to manage herbicide exceedances close to the source, thereby reducing the impact on environmental and public health.
Collapse
Affiliation(s)
- John McGinley
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - Mark G Healy
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - Shane Scannell
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - Paraic C Ryan
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jenny Harmon O'Driscoll
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland
| | - Per-Erik Mellander
- Agricultural Catchments Programme, Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - Liam Morrison
- Ryan Institute, University of Galway, Ireland; Earth and Ocean Sciences, Earth and Life Sciences, School of Natural Sciences, University of Galway, Ireland
| | - Alma Siggins
- Ryan Institute, University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland.
| |
Collapse
|
30
|
Sarker A, Shin WS, Masud MAA, Nandi R, Islam T. A critical review of sustainable pesticide remediation in contaminated sites: Research challenges and mechanistic insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122940. [PMID: 37984475 DOI: 10.1016/j.envpol.2023.122940] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Incidental pesticide application on farmlands can result in contamination of off-target biota, soil, groundwater, and surrounding ecosystems. To manage these pesticide contaminations sustainably, it is important to utilize advanced approaches to pesticide decontamination. This review assesses various innovative strategies applied for remediating pesticide-contaminated sites, including physical, chemical, biological, and nanoremediation. Integrated remediation approaches appear to be more effective than singular technologies. Bioremediation and chemical remediation are considered suitable and sustainable strategies for decontaminating contaminated soils. Furthermore, this study highlights key mechanisms underlying advanced pesticide remediation that have not been systematically studied. The transformation of applied pesticides into metabolites through various biotic and chemical triggering factors is well documented. Ex-situ and in-situ technologies are the two main categories employed for pesticide remediation. However, when selecting a remediation technique, it is important to consider factors such as application sites, cost-effectiveness, and specific purpose. In this review, the sustainability of existing pesticide remediation strategies is thoroughly analyzed as a pioneering effort. Additionally, the study summarizes research uncertainties and technical challenges associated with different remediation approaches. Lastly, specific recommendations and policy advocacy are suggested to enhance contemporary remediation approaches for cleaning up pesticide-contaminated sites.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55356, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh.
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| |
Collapse
|
31
|
Facenda G, Celis R, Gámiz B, López-Cabeza R. An enantioselective study of the behavior of the herbicide ethofumesate in agricultural soils: Impact of the addition of organoclays and biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115870. [PMID: 38159340 DOI: 10.1016/j.ecoenv.2023.115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Chiral pesticides that are still commercialized and incorporated into the environment as racemic mixtures of enantiomers require evaluation of the enantioselectivity of their biological activity and environmental fate processes for a better prediction of their field efficacy and environmental risks. In this work, we successfully separated the enantiomers of the chiral herbicide ethofumesate (ETFM), determined their absolute configuration, and characterized their herbicidal activity as well as their adsorption, degradation, enantiomerization, and leaching in Mediterranean agricultural soils. While the herbicidal activity of R-ethofumesate to the sensitive species Portulaca grandiflora was greater than that of S-ethofumesate, the adsorption, degradation, and leaching of the herbicide showed negligible enantioselectivity and enantiomer interconversion did not occur in soils. The adsorption of both enantiomers showed a positive correlation with the soil organic carbon content (r = 0.856, P = 0.015), and their degradation in soils occurred slowly (DT50 > 60 days) and at similar rates independent of their application as individual enantiomers or as a racemic mixture of enantiomers. The addition of three highly adsorptive materials to a scarcely adsorptive soil increased the adsorption of the enantiomers of ETFM and delayed their degradation without affecting the non-enantioselective character of the processes. As a result of their high adsorption capacity, the materials were highly effective in reducing the leaching of both enantiomers of ETFM through soil columns. The results of this work indicate that the application of single-enantiomer ETFM formulations, based on a higher herbicidal activity or a lower toxicity to non-target organisms of the formulated enantiomer, would reduce considerable exposure risks associated with incorporating into the environment the less favorable enantiomer, as this would show long persistence and high leaching potential in soils similar to its optical isomer.
Collapse
Affiliation(s)
- Gracia Facenda
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Rafael Celis
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Beatriz Gámiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain; Departamento de Química Inorgánica, Instituto de Química para la Energía y Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, 14014 Córdoba, Spain
| | - Rocío López-Cabeza
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain.
| |
Collapse
|
32
|
Cheng H, Xing D, Twagirayezu G, Lin S, Gu S, Tu C, Hill PW, Chadwick DR, Jones DL. Effects of field-aging on the impact of biochar on herbicide fate and microbial community structure in the soil environment. CHEMOSPHERE 2024; 348:140682. [PMID: 37952819 DOI: 10.1016/j.chemosphere.2023.140682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Biochar can enhance organic carbon storage and mitigate the adverse effects of pesticides in the soil. However, the mechanisms by which field-aging affects the impacts of biochar on herbicide behavior and the composition of microbial communities in the soil remain unclear. This study aimed to investigate the influences of aged and fresh biochar on herbicide behavior and microbial community structure in the soil. Herein, with 14C-labeled technology, aged treatment (soil amended with field-aged biochar), fresh treatment (soil amended with fresh biochar), and control (soil without biochar) were installed to evaluate their treatment capacities. The results showed that the average leaching out and mineralization of simazine in the aged treatment were significantly higher by 4.8% and 1.66% (P < 0.05) compared with the fresh treatment. Relative to the control, the pesticide was significantly adsorbed (P < 0.05) in the aged treatment. The abundance of arbuscular mycorrhizal fungi (AMF) significantly increased by 1.03 and 1.16-fold, whereas fungi increased dramatically by 1.02-fold and decreased by 1.21-fold in the aged and fresh treatments, respectively (P < 0.05). In addition, eukaryotes were effectively reduced by 1.02 and 1.14-fold in these treatments, respectively (P < 0.05). This study suggests that field aging can undermine the impacts of biochar on pesticides and modify the microbial community structure in the soil environment.
Collapse
Affiliation(s)
- Hongguang Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550002, China; School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Dan Xing
- Guizhou Academy of Agricultural Science, Institute of Pepper Guiyang, Guiyang, 550000, China
| | - Gratien Twagirayezu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550002, China
| | - Shan Lin
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shangyi Gu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Chenglong Tu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Gui'an New Region, Guiyang, 550025, China
| | - Paul W Hill
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - David R Chadwick
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Davey L Jones
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
33
|
Masud MAA, Shin WS, Sarker A, Septian A, Das K, Deepo DM, Iqbal MA, Islam ARMT, Malafaia G. A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166813. [PMID: 37683867 DOI: 10.1016/j.scitotenv.2023.166813] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Biochar, a carbon-rich material produced from the pyrolysis of organic biomass, has gained significant attention as a potential solution for sustainable green remediation practices. Several studies analyze biomass-derived biochar techniques and environmental applications, but comprehensive assessments of biochar limitations, uncertainty, and future research directions still need to be improved. This critical review aims to present a comprehensive analysis of biochar's efficacy in environmental applications, including soil, water, and air, by sequentially addressing its preparation, application, and associated challenges. The review begins by delving into the diverse methods of biochar production, highlighting their influence on physical and chemical properties. This review explores the diverse applications of biochar in remediating contaminated soil, water, and air while emphasizing its sustainability and eco-friendly characteristics. The focus is on incorporating biochar as a remediation technique for pollutant removal, sequestration, and soil improvement. The review highlights the promising results obtained from laboratory-scale experiments, field trials, and case studies, showcasing the effectiveness of biochar in mitigating contaminants and restoring ecosystems. The environmental benefits and challenges of biochar production, characterization, and application techniques are critically discussed. The potential synergistic effects of combining biochar with other remediation methods are also explored to enhance its efficacy. A rigorous analysis of the benefits and drawbacks of biochar for diverse environmental applications in terms of technical, environmental, economic, and social issues is required to support the commercialization of biochar for large-scale uses. Finally, future research directions and recommendations are presented to facilitate the development and implementation of biochar-based, sustainable green remediation strategies.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Aniruddha Sarker
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea.
| | - Ardie Septian
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency (Badan Riset dan Inovasi Nasional, BRIN), Serpong 15314, Indonesia.
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| | | | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
34
|
Sojithamporn P, Leksakul K, Sawangrat C, Charoenchai N, Boonyawan D. Degradation of Pesticide Residues in Water, Soil, and Food Products via Cold Plasma Technology. Foods 2023; 12:4386. [PMID: 38137190 PMCID: PMC10743213 DOI: 10.3390/foods12244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Water, soil, and food products contain pesticide residues. These residues result from excessive pesticides use, motivated by the fact that agricultural productivity can be increased by the use of these pesticides. The accumulation of these residues in the body can cause health problems, leading to food safety concerns. Cold plasma technology has been successfully employed in various applications, such as seed germination, bacterial inactivation, wound disinfection, surface sterilization, and pesticide degradation. In recent years, researchers have increasingly explored the effectiveness of cold plasma technology in the degradation of pesticide residues. Most studies have shown promising outcomes, encouraging further research and scaling-up for commercialization. This review summarizes the use of cold plasma as an emerging technology for pesticide degradation in terms of the plasma system and configuration. It also outlines the key findings in this area. The most frequently adopted plasma systems for each application are identified, and the mechanisms underlying pesticide degradation using cold plasma technology are discussed. The possible factors influencing pesticide degradation efficiency, challenges in research, and future trends are also discussed. This review demonstrates that despite the nascent nature of the technology, the use of cold plasma shows considerable potential in regards to pesticide residue degradation, particularly in food applications.
Collapse
Affiliation(s)
- Phanumas Sojithamporn
- Graduate Program in Industrial Engineering, Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Komgrit Leksakul
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Nivit Charoenchai
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Center (PBP), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
35
|
Sarker A, Yoo JH, Jeong WT. Environmental fate and metabolic transformation of two non-ionic pesticides in soil: Effect of biochar, moisture, and soil sterilization. CHEMOSPHERE 2023; 345:140458. [PMID: 37844696 DOI: 10.1016/j.chemosphere.2023.140458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/04/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Soil moisture, organic matter, and soil microbes are the key considering factors that control the persistence, degradation, and transformation of applied pesticides under varied soil conditions. In this study, underlying influence of these factors was assessed through the fates and metabolic transformation of two non-ionic pesticides (e.g., Phorate and Terbufos) in soils. Concisely, two distinct experiments including a customized batch equilibrium (sorption study), and a lab incubation trial (degradation study) were performed, following the OECD guidelines. As per study findings, biochar (BC) amendment was found to be the most influential factors during sorption study, particularly, 1% BC amendment contributed to achieve the best results. In addition, the non-linearity of sorption isotherm (1/n < 1.0) was revealed through Freundlich isotherm, indicating the strong adsorption of studied pesticides onto the soils. On the other hand, during degradation study, soil moisture initiates the enhanced degradation of parent pesticides and subsequent metabolism. In the presence of 40% water holding capacity (WHC), 1% BC amendment enhances the metabolic transformation, while H2O2 treatment could hinder the process. Additionally, the half-life degradation (t1/2) of phorate and terbufos was controlled by biochar amendment, moisture, and soil sterilization, respectively. Finally, BC can accelerate the metabolic transformation, whereas, phorate underwent a metabolic change into sulfoxide and sulfone while terbufos turned into solely sulfoxide. This pioneering study gathered crucial data for understanding the persistence and metabolic transition of non-ionic pesticides in soils and their patterns of degradation.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55356, Republic of Korea
| | - Ji-Hyock Yoo
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55356, Republic of Korea
| | - Won-Tae Jeong
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55356, Republic of Korea.
| |
Collapse
|
36
|
Song B, Zhou C, Qin M, Zhao B, Sang F. When biochar is involved in rhizosphere dissipation and plant absorption of pesticides: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118518. [PMID: 37385197 DOI: 10.1016/j.jenvman.2023.118518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Clarifying the influences of biochar input on the rhizosphere dissipation and plant absorption of pesticides is a crucial prerequisite for utilizing biochar in the restoration of pesticide-contaminated soils. Nevertheless, the application of biochar to pesticide-contaminated soils does not always achieve consistent results on the rhizosphere dissipation and plant absorption of pesticides. Under the new situation of vigorously promoting the application of biochar in soil management and carbon sequestration, a timely review is needed to further understand the key factors affecting biochar remediation of pesticide-contaminated soil. In this study, a meta-analysis was conducted utilizing variables from three dimensions of biochar, remediation treatment, and pesticide/plant type. The pesticide residues in soil and the pesticide uptake by plant were used as response variables. Biochar with high adsorption capacity can impede the dissipation of pesticides in soil and mitigate their absorption by plants. The specific surface area of biochar and the type of pesticide are critical factors that affect pesticide residues in soil and plant uptake, respectively. Applying biochar with high adsorption capacity, based on specific dosages and soil characteristics, is recommended for the remediation of continuously cultivated soil contaminated with pesticides. This article aims to provide a valuable reference and understanding for the application of biochar-based soil remediation technology and the treatment of pesticide pollution in soil.
Collapse
Affiliation(s)
- Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Meng Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Beichen Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Fan Sang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
37
|
Khan M, Ahmed S, Yasin NA, Sardar R, Hussaan M, Gaafar ARZ, Haider FU. 28-Homobrassinolide Primed Seed Improved Lead Stress Tolerance in Brassica rapa L. through Modulation of Physio-Biochemical Attributes and Nutrient Uptake. PLANTS (BASEL, SWITZERLAND) 2023; 12:3528. [PMID: 37895994 PMCID: PMC10610288 DOI: 10.3390/plants12203528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Brassinosteroids (BRs) influence a variety of physiological reactions and alleviate different biotic and abiotic stressors. Turnip seedlings were grown with the goal of further exploring and expanding their function in plants under abiotic stress, particularly under heavy metal toxicity (lead stress). This study's objective was to ascertain the role of applied 28-homobrassinolide (HBL) in reducing lead (Pb) stress in turnip plants. Turnip seeds treated with 1, 5, and 10 µM HBL and were grown-up in Pb-contaminated soil (300 mg kg-1). Lead accumulation reduces biomass, growth attributes, and various biochemical parameters, as well as increasing proline content. Seed germination, root and shoot growth, and gas exchange characteristics were enhanced via HBL treatment. Furthermore, Pb-stressed seedlings had decreased total soluble protein concentrations, photosynthetic pigments, nutrition, and phenol content. Nonetheless, HBL increased chlorophyll a and chlorophyll b levels in plant, resulting in increased photosynthesis. As a result, seeds treated with HBL2 (5 µM L-1) had higher nutritional contents (Mg+2, Zn+2, Na+2, and K+1). HBL2-treated seedlings had higher DPPH and metal tolerance indexes. This led to the conclusion that HBL2 effectively reduced Pb toxicity and improved resistance in lead-contaminated soil.
Collapse
Affiliation(s)
- Mawra Khan
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Nasim Ahmad Yasin
- SSG RO-II Department, University of the Punjab, Lahore 54590, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Hussaan
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Abdel-Rhman Z. Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
38
|
Alshemmari H, Al-Kasbi MM, Kavil YN, Orif MI, Al-Hulwani EK, Al-Darii RJ, Al-Shukaili SM, Al-Balushi FAA, Chakraborty P. New and legacy pesticidal persistent organic pollutants in the agricultural region of the Sultanate of Oman. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132205. [PMID: 37604036 DOI: 10.1016/j.jhazmat.2023.132205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
Comprehensive air and surface soil monitoring was conducted for new and legacy organochlorine pesticides (OCPs) to fill the knowledge and data gap on the sources and fate of pesticidal persistent organic pollutants (POPs) in the Sultanate of Oman. DDTs in agricultural soil samples ranged from 0.013 to 95.80 ng/g (mean: 8.4 ± 25.06 ng/g), with a median value of 0.07 ng/g. The highest concentration was observed at Shinas, where intensive agricultural practice is prevalent. The dominance of p,p'-DDT in soil and air reflected technical DDT formulation usage in Oman. Among newly enlisted POPs, pentachlorobenzene had the maximum detection frequency in air (47%) and soil (41%). Over 90% of sites reflected extensive past use of hexachlorobenzene. Major OCP isomers and metabolites showed net volatilisation from the agricultural soil, thereby indicating concurrent emission and re-emission processes from the soil of Oman. However, the cleansing effect of oceanic air mass is the possible reason for relatively lower atmospheric OCP levels from a previous study. Although DDT displayed maximum cancer risk, the level is below the permissible limit. DDT primarily stemmed from obsolete stock and inadequate management practices. Hence, we suggest there is a need for DDT regulation in Oman.
Collapse
Affiliation(s)
- Hassan Alshemmari
- Environmental Pollution and Climate Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, State of Kuwait; Stockholm Convention Regional Center for Capacity-Building and the Transfer of Technology for West Asia (SCRC-Kuwait), Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, State of Kuwait
| | - Mohammed M Al-Kasbi
- Department of Chemical and Waste Management, Environment Authority, PO. Box 323, Muscat P.C:100, Sultanate of Oman
| | - Yasar N Kavil
- Stockholm Convention Regional Center for Capacity-Building and the Transfer of Technology for West Asia (SCRC-Kuwait), Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, State of Kuwait; Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Mohammed I Orif
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Ebtesam K Al-Hulwani
- Department of Chemical and Waste Management, Environment Authority, PO. Box 323, Muscat P.C:100, Sultanate of Oman
| | - Rawya J Al-Darii
- Department of Chemical and Waste Management, Environment Authority, PO. Box 323, Muscat P.C:100, Sultanate of Oman
| | - Suleiman M Al-Shukaili
- Department of Chemical and Waste Management, Environment Authority, PO. Box 323, Muscat P.C:100, Sultanate of Oman
| | - Fawaz A A Al-Balushi
- Department of Chemical and Waste Management, Environment Authority, PO. Box 323, Muscat P.C:100, Sultanate of Oman
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
39
|
Natasha, Shahid M, Khalid S, Murtaza B, Anwar H, Shah AH, Sardar A, Shabbir Z, Niazi NK. A critical analysis of wastewater use in agriculture and associated health risks in Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5599-5618. [PMID: 32875481 DOI: 10.1007/s10653-020-00702-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Freshwater shortage and its contamination with various types of pollutants are becoming the most alarming issues worldwide due to impacts on socioeconomic values. Considering an increasing freshwater scarcity, it is imperative for the growers, particularly in semiarid and arid areas, to use wastewater for crop production. Wastewaters generally contain numerous essential inorganic and organic nutrients which are considered necessary for plant metabolism. Besides, this practice provokes various hygienic, ecological and health concerns due to the occurrence of toxic substances such as heavy metals. Pakistan nowadays faces a severe freshwater scarcity. Consequently, untreated wastewater is used routinely in the agriculture sector. In this review, we have highlighted the negative and positive affectivity of wastewater on the chemical characteristics of the soil. This review critically delineates toxic metal accumulation in soil and their possible soil-plant-human transfer. We have also estimated and deliberated possible health hazards linked with the utilization of untreated city waste effluents for the cultivation of food/vegetable crops. Moreover, we carried out a multivariate analysis of data (144 studies of wastewater crop irrigation in Pakistan) to trace out common trends in published data. We have also compared the limit values of toxic metals in irrigation water, soil and plants. Furthermore, some viable solutions and future viewpoints are anticipated taking into account the on-ground situation in Pakistan-such as planning and sanitary matters, remedial/management technologies, awareness among local habitants (especially farmers) and the role of the government, NGOs and pertinent stakeholders. The data are supported by 13 tables and 7 figures.
Collapse
Affiliation(s)
- Natasha
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Hasnain Anwar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Ali Haidar Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Aneeza Sardar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Zunaira Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW, 2480, Australia
| |
Collapse
|
40
|
Mielke KC, Brochado MGDS, Laube AFS, Guimarães T, Medeiros BADP, Mendes KF. Pyrolysis Temperature vs. Application Rate of Biochar Amendments: Impacts on Soil Microbiota and Metribuzin Degradation. Int J Mol Sci 2023; 24:11154. [PMID: 37446332 DOI: 10.3390/ijms241311154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Biochar-amended soils influence the degradation of herbicides depending on the pyrolysis temperature, application rate, and feedstock used. The objective of this study was to evaluate the influence of sugarcane straw biochar (BC) produced at different pyrolysis temperatures (350 °C, 550 °C, and 750 °C) and application rates in soil (0, 0.1, 0.5, 1, 1.5, 5, and 10% w/w) on metribuzin degradation and soil microbiota. Detection analysis of metribuzin in the soil to find time for 50% and 90% metribuzin degradation (DT50 and DT90) was performed using high-performance liquid chromatography (HPLC). Soil microbiota was analyzed by respiration rate (C-CO2), microbial biomass carbon (MBC), and metabolic quotient (qCO2). BC350 °C-amended soil at 10% increased the DT50 of metribuzin from 7.35 days to 17.32 days compared to the unamended soil. Lower application rates (0.1% to 1.5%) of BC550 °C and BC750 °C decreased the DT50 of metribuzin to ~4.05 and ~5.41 days, respectively. BC350 °C-amended soil at high application rates (5% and 10%) provided high C-CO2, low MBC fixation, and high qCO2. The addition of low application rates (0.1% to 1.5%) of sugarcane straw biochar produced at high temperatures (BC550 °C and BC750 °C) resulted in increased metribuzin degradation and may influence the residual effect of the herbicide and weed control efficiency.
Collapse
Affiliation(s)
- Kamila Cabral Mielke
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | | | - Tiago Guimarães
- Department of Chemistry, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | | |
Collapse
|
41
|
Cheng Y, Wang X, Zhao L, Zhang X, Kong Q, Li H, You X, Li Y. Wheat straw pyrochar more efficiently decreased enantioselective uptake of dinotefuran by lettuce and dissemination of antibiotic resistance genes than hydrochar in an agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163088. [PMID: 36996986 DOI: 10.1016/j.scitotenv.2023.163088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023]
Abstract
Remediation of soils pollution caused by dinotefuran, a chiral pesticide, is indispensable for ensuring human food security. In comparison with pyrochar, the effect of hydrochar on enantioselective fate of dinotefuran, and antibiotic resistance genes (ARGs) profiles in the contaminated soils remain poorly understood. Therefore, wheat straw hydrochar (SHC) and pyrochar (SPC) were prepared at 220 and 500 °C, respectively, to investigate their effects and underlying mechanisms on enantioselective fate of dinotefuran enantiomers and metabolites, and soil ARG abundance in soil-plant ecosystems using a 30-day pot experiment planted with lettuce. SPC showed a greater reduction effect on the accumulation of R- and S-dinotefuran and metabolites in lettuce shoots than SHC. This was mainly resulted from the lowered soil bioavailability of R- and S-dinotefuran due to adsorption/immobilization by chars, together with the char-enhanced pesticide-degrading bacteria resulted from increased soil pH and organic matter content. Both SPC and SHC efficiently reduced ARG levels in soils, owing to lowered abundance of ARG-carrying bacteria and declined horizontal gene transfer induced by decreased dinotefuran bioavailability. The above results provide new insights for optimizing char-based sustainable technologies to mitigate pollution of dinotefuran and spread of ARGs in agroecosystems.
Collapse
Affiliation(s)
- Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Liuwei Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xin Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Qingxian Kong
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
42
|
Dong X, Chen Z, Chu Y, Tong Z, Gao T, Duan J, Wang M. Degradation, adsorption, and bioaccumulation of novel triketone HPPD herbicide tembotrione. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27501-4. [PMID: 37170049 DOI: 10.1007/s11356-023-27501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Tembotrione is a new triketone HPPD herbicide widely used in Europe, USA, and other areas. However, tembotrione is moderately to highly toxic to algae and daphnia in aquatic ecosystems. In this study, hydrolysis, photolysis, soil degradation, soil adsorption, and bioaccumulation of tembotrione were systematically studied. Hydrolysis experiment revealed that tembotrione was stable in acidic, neutral, and alkaline conditions with half-lives of 231-289 days. The photolysis half-lives of tembotrione were 112-158 days and 76-107 days in pH 4, 7, 9 buffer solutions and on three soils surface, respectively, which demonstrated that tembotrione could be persisted in soil and water. Meanwhile, tembotrione Kfoc was 128-196 mL/g, indicating that tembotrione was not easily adsorbed to soil, and the adsorption capacity increased with the decrease in pH. The half-lives of tembotrione in the test soil were 32-48 days, and high organic matter soil is conducive to microbial activity and accelerates the degradation of tembotrione. Moreover, bioaccumulation experiment demonstrated that tembotrione with a BCF of 0.664 to 0.724 had a low risk of exposure to zebrafish. This study is very helpful for the evaluation environmental risk and safe use of tembotrione.
Collapse
Affiliation(s)
- Xu Dong
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu Province, 210095, China
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zihao Chen
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu Province, 210095, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Tongchun Gao
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
43
|
Zhu G, Chao H, Sun M, Jiang Y, Ye M. Toxicity sharing model of earthworm intestinal microbiome reveals shared functional genes are more powerful than species in resisting pesticide stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130646. [PMID: 36587599 DOI: 10.1016/j.jhazmat.2022.130646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Earthworm intestinal bacteria and indigenous soil bacteria work closely during various biochemical processes and play a crucial role in maintaining the internal stability of the soil environment. However, the response mechanism of these bacterial communities to external pesticide disturbance is unknown. In this study, soil and earthworm gut contents were metagenomically sequenced after exposure to various concentrations of nitrochlorobenzene (0-1026.7 mg kg-1). A high degree of similarity was found between the microbial community composition and abundance in the worm gut and soil, both of which decreased significantly (P < 0.05) under elevated pesticide stress. The toxicity sharing model (TSM) showed that the toxicity sharing capacity was 97.4-125.7 % and 100.4-130.2 % for Egenes (genes in the worm gut) and Emet(degradation genes in the worm gut) in the earthworm intestinal microbiome, respectively. This indicated that the earthworm intestinal microbiome assisted in relieving the pesticide toxicity of the indigenous soil microbiome. This study showed that the TSM could quantitatively describe the toxic effect of pesticides on the earthworm intestinal microbiome. It provides a new analytical model for investigating the ecological alliance between earthworm intestinal microbiome and indigenous soil microbiome under pesticide stress while contributing a more profound understanding of the potential to use earthworms to mitigate pesticide pollution in soils and develop earthworm-based soil remediation techniques.
Collapse
Affiliation(s)
- Guofan Zhu
- National Engineering Laboratort of Soil Nutrients Management, Pollution Control and Remediation Technoligies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
| | - Mao Ye
- National Engineering Laboratort of Soil Nutrients Management, Pollution Control and Remediation Technoligies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
44
|
Vlajkov V, Pajčin I, Vučetić S, Anđelić S, Loc M, Grahovac M, Grahovac J. Bacillus-Loaded Biochar as Soil Amendment for Improved Germination of Maize Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:1024. [PMID: 36903885 PMCID: PMC10004800 DOI: 10.3390/plants12051024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biochar is considered one of the most promising long-term solutions for soil quality improvement, representing an ideal environment for microorganisms' immobilization. Hence there is a possibility to design microbial products formulated using biochar as a solid carrier. The present study was aimed at development and characterization of Bacillus-loaded biochar to be applied as a soil amendment. The producing microorganism Bacillus sp. BioSol021 was evaluated in terms of plant growth promotion traits, indicating significant potential for production of hydrolytic enzymes, indole acetic acid (IAA) and surfactin and positive tests for ammonia and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production. Soybean biochar was characterised in terms of physicochemical properties to evaluate its suitability for agricultural applications. The experimental plan for Bacillus sp. BioSol021 immobilisation to biochar included variation of biochar concentration in cultivation broth and adhesion time, while the soil amendment effectiveness was evaluated during maize germination. The best results in terms of maize seed germination and seedling growth promotion were achieved by applying 5% of biochar during the 48 h immobilisation procedure. Germination percentage, root and shoot length and seed vigour index were significantly improved when using Bacillus-biochar soil amendment compared to separate treatments including biochar and Bacillus sp. BioSol021 cultivation broth. The results indicated the synergistic effect of producing microorganism and biochar on maize seed germination and seedling growth promotion, pointing out the promising potential of this proposed multi-beneficial solution for application in agricultural practices.
Collapse
Affiliation(s)
- Vanja Vlajkov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ivana Pajčin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Snežana Vučetić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Stefan Anđelić
- Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Marta Loc
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
45
|
Zhen Z, Luo S, Chen Y, Li G, Li H, Wei T, Huang F, Ren L, Liang YQ, Lin Z, Zhang D. Performance and mechanisms of biochar-assisted vermicomposting in accelerating di-(2-ethylhexyl) phthalate biodegradation in farmland soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130330. [PMID: 36372018 DOI: 10.1016/j.jhazmat.2022.130330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Biochar and earthworms can accelerate di-(2-ethylhexyl) phthalate (DEHP) degradation in soils. However, little is known regarding the effect of biochar-assisted vermicomposting on soil DEHP degradation and the underlying mechanisms. Therefore, the present study investigated DEHP degradation performance and bacterial community changes in farmland soils using earthworms, biochar, or their combination. Biochar-assisted vermicomposting significantly improved DEHP degradation through initial physical adsorption on biochar and subsequent rapid biodegradation in the soil, earthworm gut, and charosphere. Burkholderiaceae, Pseudomonadaceae, and Flavobacteriaceae were the potential DEHP degraders and were enriched in biochar-assisted vermicomposting. In particularly, Burkholderiaceae and Sphingomonadaceae were enriched in the earthworm gut and charosphere, possibly explaining the mechanism of accelerated DEHP degradation in biochar-assisted vermicomposting. Soil pH, soil organic matter, and humus (humic acid, fulvic acid, and humin) increased by earthworms or biochar enhanced DEHP degradation. These findings imply that biochar-assisted vermicomposting enhances DEHP removal not only through rapid physical sorption but also through the improvement of soil physicochemical characteristics and promotion of degraders in the soil, earthworm gut, and charosphere. Overall, biochar-assisted vermicomposting is a suitable method for the remediation of organic-contaminated farmland soils.
Collapse
Affiliation(s)
- Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shuwen Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
46
|
Yadav R, Tripathi P, Singh RP, Khare P. Assessment of soil enzymatic resilience in chlorpyrifos contaminated soils by biochar aided Pelargonium graveolens L. plantation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7040-7055. [PMID: 36029442 DOI: 10.1007/s11356-022-22679-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Chlorpyrifos (CP), a broad-spectrum organophosphorus insecticide, is known for deleterious effects on soil enzymatic activities. Hence, the present study aims to examine the resilience effect of biochar (BC) aided Pelargonium graveolens L. plantation on enzymatic activities of chlorpyrifos contaminated soil. The two chlorpyrifos contaminated agriculture soils (with concentrations: S1: 46.1 and S2: 95.5 mg kg-1) were taken for the pot experiment. The plant biomass, plant growth parameters, soil microbial biomass, and enzymatic activities such as alkaline phosphatase, N-acetyl glucosaminidase, aryl sulphatase, cellulase, β-glucosidase, dehydrogenase, phenoloxidase, and peroxidase enzymes were examined. Ecoenzyme activities and their stoichiometry were used to enumerate the different indices including geometric mean, weighted mean, biochemical activity indices, integrated biological response, treated-soil quality index, and vector analysis in all treatments. The results of the study demonstrated that the biochar incorporation enhanced the tolerance of P. graveolens (from 42-45% to 55-67%) in chlorpyrifos contaminated soil and reduced the CP accumulation in plants. A reduction in the inhibitory effect of chlorpyrifos on soil enzymatic activities and plant growth by BC incorporation was observed along with an increase in the activities of ecoenzymes (16.7-18.6%) in soil. The investigation indicated more microbial investments in C and P than that in N acquisition under CP stress. The BC amendment catalyzed the activities of lignin and cellulose-degrading enzymes and enhanced nutrition acquisition. The CP contamination and BC amendment have no significant effect on the oil quality of P. graveolens. The study demonstrated that BC-aided P. graveolens plantation offers sustainable phytotechnology for CP contaminated soil with an economic return.
Collapse
Affiliation(s)
- Ranu Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pratibha Tripathi
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
| | - Raghavendra Pratap Singh
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
47
|
Haider FU, Wang X, Zulfiqar U, Farooq M, Hussain S, Mehmood T, Naveed M, Li Y, Liqun C, Saeed Q, Ahmad I, Mustafa A. Biochar application for remediation of organic toxic pollutants in contaminated soils; An update. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114322. [PMID: 36455351 DOI: 10.1016/j.ecoenv.2022.114322] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Bioremediation of organic contaminants has become a major environmental concern in the last few years, due to its bio-resistance and potential to accumulate in the environment. The use of diverse technologies, involving chemical and physical principles, and passive uptake utilizing sorption using ecofriendly substrates have drawn a lot of interest. Biochar has got attention mainly due to its simplicity of manufacturing, treatment, and disposal, as it is a less expensive and more efficient material, and has a lot of potential for the remediation of organic contaminants. This review highlighted the adverse impact of persistent organic pollutants on the environment and soil biota. The utilization of biochar to remediate soil and contaminated compounds i.e., pesticides, polycyclic aromatic hydrocarbons, antibiotics, and organic dyes has also been discussed. The soil application of biochar has a significant impact on the biodegradation, leaching, and sorption/desorption of organic contaminants. The sorption/desorption of organic contaminants is influenced by chemical composition and structure, porosity, surface area, pH, and elemental ratios, and surface functional groups of biochar. All the above biochar characteristics depend on the type of feedstock and pyrolysis conditions. However, the concentration and nature of organic pollutants significantly alters the sorption capability of biochar. Therefore, the physicochemical properties of biochar and soils/wastewater, and the nature of organic contaminants, should be evaluated before biochar application to soil and wastewater. Future initiatives, however, are needed to develop biochars with better adsorption capacity, and long-term sustainability for use in the xenobiotic/organic contaminant remediation strategy.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, China.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Saddam Hussain
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tariq Mehmood
- College of Environment, Hohai University, Nanjing, China
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China.
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Ishtiaq Ahmad
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
48
|
Wang P, Cao J, Mao L, Zhu L, Zhang Y, Zhang L, Jiang H, Zheng Y, Liu X. Effect of H 3PO 4-modified biochar on the fate of atrazine and remediation of bacterial community in atrazine-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158278. [PMID: 36029817 DOI: 10.1016/j.scitotenv.2022.158278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The application of chemically modified biochar is a promising strategy for the remediation of contaminated (e.g., pesticides) soil. In this study, H3PO4 was used to modify peanut shell to improve the remediation performance of biochar. Surface area (980.19 m2/g), pore volume (0.12 cm3/g), and the functional groups (OH, CO, and phosphorus-containing groups) on the biochar were increased by H3PO4 treatment. The sorption experimental data were well fitted by Freundlich model, while the sorption affinity (Kf) of H3PO4 modified biochar (PBC) for atrazine was 128 times greater than that of the untreated biochar (BC) in the aquatic systems. The Kf values of PBC-amended soil to atrazine were increased by 13.57 times than that of single soil. The strong sorption of PBC on atrazine delayed the degradation of atrazine in soil, and the residual percentage of atrazine in soil and soil-PBC mixture were 4.90% and 71.44% at the end of 60-day incubation, with the degradation half-life increased from 13.3 to 121.6 d. The analysis of high-throughput sequencing results showed that atrazine reduced the diversity of soil microbial community, but the abundance of microorganisms with degradation function increased and became dominant species. The addition of PBC in soil accelerated the microbial remediation of atrazine stress, which may promote the soil nitrogen cycle. Therefore, amendment of atrazine contaminated soil with PBC can reduce the environmental risk of atrazine and benefit the soil microbial ecology.
Collapse
Affiliation(s)
- Pingping Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junli Cao
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
49
|
Qiu M, Liu L, Ling Q, Cai Y, Yu S, Wang S, Fu D, Hu B, Wang X. Biochar for the removal of contaminants from soil and water: a review. BIOCHAR 2022; 4:19. [DOI: doi.org/10.1007/s42773-022-00146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 06/25/2023]
Abstract
AbstractBiochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil.
Graphical Abstract
Collapse
|
50
|
McGinley J, Healy MG, Ryan PC, Mellander PE, Morrison L, O'Driscoll JH, Siggins A. Batch adsorption of herbicides from aqueous solution onto diverse reusable materials and granulated activated carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116102. [PMID: 36103789 DOI: 10.1016/j.jenvman.2022.116102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This study reports the kinetics and isotherms of the adsorption of five herbicides, MCPA, mecoprop-P, 2,4-D, fluroxypyr and triclopyr, from aqueous solutions onto a range of raw and pyrolysed waste materials originating from an industrial setting. The raw waste materials investigated demonstrated little capability for any herbicide adsorption. Granulated activated carbon (GAC) was capable of the best removal of the herbicides, with >95% removal observed. A first order kinetic model fitted the data best for GAC adsorption of 2,4-D, while a pseudo-first order model fitted the data best for GAC adsorption of fluroxypyr and triclopyr, indicating that adsorption was via physisorption. A pseudo-second order kinetic model fitted the GAC adsorption of MCPA and mecoprop-P, which is indicative of chemisorption. The adsorption of the herbicides in all cases was best described by the Freundlich model, indicating that adsorption occurred onto heterogeneous surfaces.
Collapse
Affiliation(s)
- J McGinley
- Civil Engineering and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - M G Healy
- Civil Engineering and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - P C Ryan
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - P-E Mellander
- Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - L Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - J Harmon O'Driscoll
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland
| | - A Siggins
- Civil Engineering and Ryan Institute, National University of Ireland Galway, Galway, Ireland; Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland.
| |
Collapse
|