1
|
Lu Y, Liu C, Zheng L, Chen F, Qian J, Meng X, Chen Z, Zhong S, He B. N 3C-Defect-Tuned g-C 3N 4 Photocatalysts: Structural Optimization and Enhanced Tetracycline Degradation Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:466. [PMID: 40137639 PMCID: PMC11946266 DOI: 10.3390/nano15060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/09/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
The introduction of nitrogen defects in graphitic carbon nitride (g-C3N4) has the important effect of improving its photocatalytic performance. This study employs a simple and environmentally friendly one-step pyrolysis method, successfully preparing g-C3N4 materials with adjustable N3C defect concentrations through the calcination of a urea and ammonium acetate mixture. By introducing N3C defects and adjusting the band structure, the conduction band of the g-C3N4 was shifted downward by 0.12 V, overcoming the traditional application limitations of N3C defects and enabling an innovative transition from enhanced oxidation to enhanced reduction capabilities. This transition significantly enhanced the adsorption and activation of O2. Characterization results showed that the introduction of N3C defects increased the specific surface area from 44.07 m2/g to 87.08 m2/g, enriching reactive sites, while narrowing the bandgap to 2.41 eV enhanced visible light absorption capacity. The g-C3N4 with N3C defects showed significantly enhanced photocatalytic activity, achieving peak performance of 54.8% for tetracycline (TC), approximately 1.5 times that of the original g-C3N4, with only a 5.4% (49.4%) decrease in photocatalytic efficiency after four cycles of testing. This study demonstrates that the introduction of N3C defects significantly enhances the photocatalytic performance of g-C3N4, expanding its potential applications in environmental remediation.
Collapse
Affiliation(s)
- Yu Lu
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chengbao Liu
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Leizhi Zheng
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Feng Chen
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junchao Qian
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xianrong Meng
- Suzhou Institute of Environmental Science, Suzhou 215007, China
| | - Zhigang Chen
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sheng Zhong
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Bin He
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Ban J, Zhou L, Jiang Y, Wu Y, Yang W, Chen D, Liu G. Study for Hydrogen Migration Characteristics in the Elbow of a Hydrogen-Doped Natural Gas Pipeline under Normal Transport and Shutdown Conditions. ACS OMEGA 2024; 9:47621-47636. [PMID: 39651076 PMCID: PMC11618432 DOI: 10.1021/acsomega.4c06890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 10/16/2024] [Indexed: 12/11/2024]
Abstract
During the transportation of hydrogen-doped natural gas (HCNG), there is a risk of uneven distribution of hydrogen at the elbow, causing hydrogen damage to the pipeline. Therefore, based on the basic principles of computational fluid dynamics, this paper uses a hybrid model to describe the flow process of HCNG in an elbow. The results show that under normal transportation, the hydrogen volume fraction varies within 0.2% with the influence of pressure, flow velocity, temperature, hydrogen volume fraction, and undulating angle, and the uneven distribution of hydrogen in the elbow can be ignored. However, in the shutdown state, the hydrogen slip rate gradually slows down, the hydrogen volume fraction is distributed in a horizontal concentration gradient along the vertical direction, and it gradually accumulates at the height of the undulating tube. The difference in hydrogen volume fraction reaches 50%, and the stratification phenomenon is obvious.
Collapse
Affiliation(s)
- Jiuqing Ban
- Natural
Gas Research Institute, PetroChina Southwest
Oil & Gas Field Company, Chengdu 610213, China
- Key
Laboratory of Natural Gas Quality Control and Energy Measurement for
State Market Regulation, Chengdu 610213, China
| | - Li Zhou
- Natural
Gas Research Institute, PetroChina Southwest
Oil & Gas Field Company, Chengdu 610213, China
- Key
Laboratory of Natural Gas Quality Control and Energy Measurement for
State Market Regulation, Chengdu 610213, China
| | - Yun Jiang
- PetroChina
Southwest Oil & Gas Field Company, Branch Company in Northeast of Sichuan Province, Chengdu 610000, China
| | - Yan Wu
- PipeChina
West-East Gas Pipeline Company, Shanghai 200122, China
| | - Wei Yang
- Natural
Gas Research Institute, PetroChina Southwest
Oil & Gas Field Company, Chengdu 610213, China
- Key
Laboratory of Natural Gas Quality Control and Energy Measurement for
State Market Regulation, Chengdu 610213, China
| | - Duo Chen
- College
of Safety Science and Engineering, Chongqing
University of Science & Technology, Chongqing 401331, China
| | - Gang Liu
- College
of Safety Science and Engineering, Chongqing
University of Science & Technology, Chongqing 401331, China
| |
Collapse
|
3
|
Barragán-Ocaña A, Silva-Borjas P, Cecilio-Ayala E, Guzmán-Guzmán HE, Bilyaminu AM, Rene ER. An exploratory diagnosis and proposed index of technological change and sustainable industrial development in selected OECD member countries. ENVIRONMENTAL RESEARCH 2024; 257:119122. [PMID: 38734288 DOI: 10.1016/j.envres.2024.119122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Industrial development has resulted in economic progress and the well-being of the society. At the same time, the impact of the industrial complex has disrupted the environment and resulted in climate change related impacts. The purpose of this study was to carry out an exploratory diagnosis and propose a technological change and sustainable industrial development index at the international level. Therefore, a network study was conducted to identify the main nodes and thematic clusters associated with cleaner production. A patent analysis was applied to technologies related three selected/relevant areas of cleaner production, i.e. carbon footprint, wastewater treatment, and renewable energy. Additionally, based on factor analysis, an index including different indicators related to scientific, technological, economic, environmental, and social issues was developed and proposed in this study.
Collapse
Affiliation(s)
- Alejandro Barragán-Ocaña
- National Polytechnic Institute (Instituto Politécnico Nacional-IPN), Center for Economic, Administrative and Social Research (Centro de Investigaciones Económicas, Administrativas y Sociales-CIECAS), Lauro Aguirre 120, Col. Agricultura, Miguel Hidalgo, C. P. 11360, Ciudad de México, Mexico.
| | - Paz Silva-Borjas
- National Polytechnic Institute (Instituto Politécnico Nacional-IPN), Center for Economic, Administrative and Social Research (Centro de Investigaciones Económicas, Administrativas y Sociales-CIECAS), Lauro Aguirre 120, Col. Agricultura, Miguel Hidalgo, C. P. 11360, Ciudad de México, Mexico
| | - Erick Cecilio-Ayala
- Mathematics Research Center (Centro de Investigación en Matemáticas, A.C-CIMAT), Jalisco S/N, Col. Valenciana, C. P. 36023, Guanajuato, Gto, Mexico
| | - Harry Esmith Guzmán-Guzmán
- University of Antioquia (Universidad de Antioquia), Calle 67, No. 53-108, Medellín-Colombia, C. P. 050010, Colombia
| | - Abubakar M Bilyaminu
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2601DA, Delft, the Netherlands
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2601DA, Delft, the Netherlands
| |
Collapse
|
4
|
Arias LVA, Silva VDS, Vieira JMM, Fakhouri FM, de Oliveira RA. Plant-Based Films for Food Packaging as a Plastic Waste Management Alternative: Potato and Cassava Starch Case. Polymers (Basel) 2024; 16:2390. [PMID: 39274023 PMCID: PMC11397551 DOI: 10.3390/polym16172390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The escalating environmental impact of plastic packaging waste necessitates sustainable alternatives in food packaging. This study explores starch-based films derived from cassava and potato as viable substitutes, aiming to mitigate plastic pollution and enhance environmental sustainability. Utilizing a casting method, formulations optimized by CCRD were characterized for their physical, physicochemical, and morphological properties. Comprehensive analysis revealed both cassava and potato starch films to exhibit robust structural integrity, high tensile strength (up to 32.6 MPa for cassava starch films), and semi-crystalline morphology. These films demonstrated low water vapor permeability and moderate solubility, akin to conventional low-density polyethylene used in packaging. Differential scanning calorimetry indicated glass transition temperatures between 116.36 °C and 119.35 °C, affirming thermal stability suitable for packaging applications. Scanning electron microscopy confirmed homogeneous film surfaces, with cassava starch films (C4-15) exhibiting superior transparency and uniformity. X-ray diffraction corroborated the films' semi-crystalline nature, unaffected by sorbitol content variations. Despite their mechanical and thermal suitability, further enhancements in thermal degradation resistance are essential for broader thermoprocessing applicability. These findings underscore the potential of starch-based films to be used as lids or other part of a food package, decreasing the plastic dependency in food packaging, contributing decisively to waste reduction and environmental preservation.
Collapse
Affiliation(s)
| | - Viviane de Souza Silva
- School of Agricultural Engineering, University of Campinas, Campinas 13083-875, SP, Brazil
| | | | - Farayde Matta Fakhouri
- Poly 2 Group, Department of Materials Science and Engineering, Polytechnic University of Catalonia, 08019 Terrassa, Spain
| | | |
Collapse
|
5
|
Ihsanullah I, Bilal M, Tariq Khan M. Harnessing Nanomaterials for Enhanced Biohydrogen Generation from Wastewater. Chem Asian J 2024; 19:e202300618. [PMID: 37642141 DOI: 10.1002/asia.202300618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
Biohydrogen is considered a green fuel due to its eco-friendly nature since it only produces water and energy on combustion. However, their lower yield and production rate is one of the foremost challenges that need an instant sustainable approach. The use of nanotechnology is a potential approach for the enhanced generation of biohydrogen, owing to the significant characteristics of the nanomaterials such as greater specificity, high surface-area-to-volume ratio, better reactivity and dispersibility, enhanced catalytic activity, superb selectivity, greater electron transfer, and better anaerobic microbiota activity. This article explores the recent trends and innovations in the production of biohydrogen from wastewater through the applications of different nanomaterials. The potential of various nanomaterials employed for biohydrogen production from wastewater is evaluated and the impacts of important parameters such as the concentration and size of the nanomaterials, temperature, and pH on the production and yield of biohydrogen are explained in detail. Several pathways involved in the mechanistic approach of biohydrogen generation from wastewater are critically assessed. Lastly, numerous technological challenges are highlighted and recommendations regarding future research are also provided.
Collapse
Affiliation(s)
- I Ihsanullah
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Muhammad Tariq Khan
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai po New Territories, Hong Kong
| |
Collapse
|
6
|
Pan I, Umapathy S. Probiotics an emerging therapeutic approach towards gut-brain-axis oriented chronic health issues induced by microplastics: A comprehensive review. Heliyon 2024; 10:e32004. [PMID: 38882279 PMCID: PMC11176854 DOI: 10.1016/j.heliyon.2024.e32004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Applications for plastic polymers can be found all around the world, often discarded without any prior care, exacerbating the environmental issue. When large waste materials are released into the environment, they undergo physical, biological, and photo-degradation processes that break them down into smaller polymer fragments known as microplastics (MPs). The time it takes for residual plastic to degrade depends on the type of polymer and environmental factors, with some taking as long as 600 years or more. Due to their small size, microplastics can contaminate food and enter the human body through food chains and webs, causing gastrointestinal (GI) tract pain that can range from local to systemic. Microplastics can also acquire hydrophobic organic pollutants and heavy metals on their surface, due to their large surface area and surface hydrophobicity. The levels of contamination on the microplastic surface are significantly higher than in the natural environment. The gut-brain axis (GB axis), through which organisms interact with their environment, regulate nutritional digestion and absorption, intestinal motility and secretion, complex polysaccharide breakdown, and maintain intestinal integrity, can be altered by microplastics acting alone or in combination with pollutants. Probiotics have shown significant therapeutic potential in managing various illnesses mediated by the gut-brain axis. They connect hormonal and biochemical pathways to promote gut and brain health, making them a promising therapy option for a variety of GB axis-mediated illnesses. Additionally, taking probiotics with or without food can reduce the production of pro-inflammatory cytokines, reactive oxygen species (ROS), neuro-inflammation, neurodegeneration, protein folding, and both motor and non-motor symptoms in individuals with Parkinson's disease. This study provides new insight into microplastic-induced gut dysbiosis, its associated health risks, and the benefits of using both traditional and next-generation probiotics to maintain gut homeostasis.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
7
|
Garg A, Basu S, Shetti NP, Bhattu M, Alodhayb AN, Pandiaraj S. Biowaste to bioenergy nexus: Fostering sustainability and circular economy. ENVIRONMENTAL RESEARCH 2024; 250:118503. [PMID: 38367840 DOI: 10.1016/j.envres.2024.118503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Existing fossil-based commercial products present a significant threat to the depletion of global natural resources and the conservation of the natural environment. Also, the ongoing generation of waste is giving rise to challenges in waste management. Conventional practices for the management of waste, for instance, incineration and landfilling, emit gases that contribute to global warming. Additionally, the need for energy is escalating rapidly due to the growing populace and industrialization. To address this escalating desire in a sustainable manner, access to clean and renewable sources of energy is imperative for long-term development of mankind. These interrelated challenges can be effectively tackled through the scientific application of biowaste-to-bioenergy technologies. The current article states an overview of the strategies and current status of these technologies, including anaerobic digestion, transesterification, photobiological hydrogen production, and alcoholic fermentation which are utilized to convert diverse biowastes such as agricultural and forest residues, animal waste, and municipal waste into bioenergy forms like bioelectricity, biodiesel, bio alcohol, and biogas. The successful implementation of these technologies requires the collaborative efforts of government, stakeholders, researchers, and scientists to enhance their practicability and widespread adoption.
Collapse
Affiliation(s)
- Anushka Garg
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech, Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech, Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India.
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India.
| | - Monika Bhattu
- Department of Chemistry, University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India
| | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Saravanan Pandiaraj
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
8
|
Mandal RR, Bashir Z, Mandal JR, Raj D. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:502. [PMID: 38700594 DOI: 10.1007/s10661-024-12680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Water pollution is an inextricable problem that stems from natural and human-related factors. Unfortunately, with rapid industrialization, the problem has escalated to alarming levels. The pollutants that contribute to water pollution include heavy metals (HMs), chemicals, pesticides, pharmaceuticals, and other industrial byproducts. Numerous methods are used for treating HMs in wastewater, like ion exchange, membrane filtration, chemical precipitation, adsorption, and electrochemical treatment. But the remediation through the plant, i.e., phytoremediation is the most sustainable approach to remove the contaminants from wastewater. Aquatic plants illustrate the capacity to absorb excess pollutants including organic and inorganic compounds, HMs, and pharmaceutical residues present in agricultural, residential, and industrial discharges. The extensive exploitation of these hyperaccumulator plants can be attributed to their abundance, invasive mechanisms, potential for bioaccumulation, and biomass production. Post-phytoremediation, plant biomass can be toxic to both water bodies and soil. Therefore, the circular bioeconomy approach can be applied to reuse and repurpose the toxic plant biomass into different circular bioeconomy byproducts such as biochar, biogas, bioethanol, and biodiesel is essential. In this regard, the current review highlights the potential strategies for the phytoremediation of HMs in wastewater and various strategies to efficiently reuse metal-enriched biomass material and produce commercially valuable products. The implementation of circular bioeconomy practices can help overcome significant obstacles and build a new platform for an eco-friendlier lifestyle.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Jyoti Ranjan Mandal
- Electro-Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
9
|
Paul R, Maibam A, Chatterjee R, Wang W, Mukherjee T, Das N, Yellappa M, Banerjee T, Bhaumik A, Venkata Mohan S, Babarao R, Mondal J. Purification of Waste-Generated Biogas Mixtures Using Covalent Organic Framework's High CO 2 Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22066-22078. [PMID: 38629710 DOI: 10.1021/acsami.4c03245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Development of crystalline porous materials for selective CO2 adsorption and storage is in high demand to boost the carbon capture and storage (CCS) technology. In this regard, we have developed a β-keto enamine-based covalent organic framework (VM-COF) via the Schiff base polycondensation technique. The as-synthesized VM-COF exhibited excellent thermal and chemical stability along with a very high surface area (1258 m2 g-1) and a high CO2 adsorption capacity (3.58 mmol g-1) at room temperature (298 K). The CO2/CH4 and CO2/H2 selectivities by the IAST method were calculated to be 10.9 and 881.7, respectively, which were further experimentally supported by breakthrough analysis. Moreover, theoretical investigations revealed that the carbonyl-rich sites in a polymeric backbone have higher CO2 binding affinity along with very high binding energy (-39.44 KJ mol-1) compared to other aromatic carbon-rich sites. Intrigued by the best CO2 adsorption capacity and high CO2 selectivity, we have utilized the VM-COF for biogas purification produced by the biofermentation of municipal waste. Compared with the commercially available activated carbon, VM-COF exhibited much better purification ability. This opens up a new opportunity for the creation of functionalized nanoporous materials for the large-scale purification of waste-generated biogases to address the challenges associated with energy and the environment.
Collapse
Affiliation(s)
- Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashakiran Maibam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Materials Division, CSIR-National Chemical Laboratory, Pune 411 008, India
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne 3001, Victoria, Australia
| | - Rupak Chatterjee
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Triya Mukherjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Nitumani Das
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Masapogu Yellappa
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Tanmay Banerjee
- Department of Chemistry, BITS Pilani, Pilani 333031, Gujarat, India
| | - Asim Bhaumik
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - S Venkata Mohan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Ravichandar Babarao
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne 3001, Victoria, Australia
- CSIRO, Normanby Road, Clayton 3168, Victoria, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, School of Science, RMIT University, Melbourne 3000, Australia
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Liang J, Zhang P, Zhang R, Chang J, Chen L, Zhang G, Wang A. Bioconversion of volatile fatty acids from organic wastes to produce high-value products by photosynthetic bacteria: A review. ENVIRONMENTAL RESEARCH 2024; 242:117796. [PMID: 38040178 DOI: 10.1016/j.envres.2023.117796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Anaerobic fermentation of organic waste to produce volatile fatty acids (VFAs) production is a relatively mature technology. VFAs can be used as a cheap and readily available carbon source by photosynthetic bacteria (PSB) to produce high value-added products, which are widely used in various applications. To better enhance the VFAs obtained from organic wastes for PSB to produce high value-added products, a comprehensive review is needed, which is currently not available. This review systematically summarizes the current status of microbial proteins, H2, poly-β-hydroxybutyrate (PHB), coenzyme Q10 (CoQ10), and 5-aminolevulinic acid (ALA) production by PSB utilizing VFAs as a carbon resource. Meanwhile, the metabolic pathways involved in the H2, PHB, CoQ10, and 5-ALA production by PSB were deeply explored. In addition, a systematic resource utilization pathway for PSB utilizing VFAs from anaerobic fermentation of organic wastes to produce high value-added products was proposed. Finally, the current challenges and priorities for future research were presented, such as the screening of efficient PSB strains, conducting large-scale experiments, high-value product separation, recovery, and purification, and the mining of metabolic pathways for the VFA utilization to generate high value-added products by PSB.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ru Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jianning Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Le Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China; Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
11
|
Bae DW, Lee SH, Park JH, Son SY, Lin Y, Lee J, Jang BR, Lee KH, Lee YH, Lee H, Kang S, Kim B, Cha SS. An archaeal transcription factor EnfR with a novel 'eighth note' fold controls hydrogen production of a hyperthermophilic archaeon Thermococcus onnurineus NA1. Nucleic Acids Res 2023; 51:10026-10040. [PMID: 37650645 PMCID: PMC10570040 DOI: 10.1093/nar/gkad699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
Thermococcus onnurineus NA1, a hyperthermophilic carboxydotrophic archaeon, produces H2 through CO oxidation catalyzed by proteins encoded in a carbon monoxide dehydrogenase (CODH) gene cluster. TON_1525 with a DNA-binding helix-turn-helix (HTH) motif is a putative repressor regulating the transcriptional expression of the codh gene cluster. The T55I mutation in TON_1525 led to enhanced H2 production accompanied by the increased expression of genes in the codh cluster. Here, TON_1525 was demonstrated to be a dimer. Monomeric TON_1525 adopts a novel 'eighth note' symbol-like fold (referred to as 'eighth note' fold regulator, EnfR), and the dimerization mode of EnfR is unique in that it has no resemblance to structures in the Protein Data Bank. According to footprinting and gel shift assays, dimeric EnfR binds to a 36-bp pseudo-palindromic inverted repeat in the promoter region of the codh gene cluster, which is supported by an in silico EnfR/DNA complex model and mutational studies revealing the implication of N-terminal loops as well as HTH motifs in DNA recognition. The DNA-binding affinity of the T55I mutant was lowered by ∼15-fold, for which the conformational change of N-terminal loops is responsible. In addition, transcriptome analysis suggested that EnfR could regulate diverse metabolic processes besides H2 production.
Collapse
Affiliation(s)
- Da-Woon Bae
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seong Hyuk Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
| | - Ji Hye Park
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Se-Young Son
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, Chungbuk 28119, Republic of Korea
| | - Jung Hyen Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Bo-Ram Jang
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Kyu-Ho Lee
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, Chungbuk 28119, Republic of Korea
- Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
12
|
Liu J, Gao Y, Zhang Z, Dang R, El Houda Tiri RN, MuhammedBekmezci, Bayat R, Darabi R, Sen F. Photocatalytic activity of TiO 2-ZnO/g-C 3N 4 nanocomposites for methylene orange and Rhodamine B dyes removal from water and photocatalytic hydrogen generation. CHEMOSPHERE 2023; 339:139426. [PMID: 37467853 DOI: 10.1016/j.chemosphere.2023.139426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
In this work, for the removal of azo dyes that cause environmental pollution, TiO2-ZnO has been modified with graphitic carbon nitride (g-C3N4) to form an advanced hetero-linked photocatalyst. With this catalyst, photocatalytic hydrogen production and photodegradation activity against methylene orange (MO) and rhodamineB (RhB) dye removal were studied. The synthesized nanostructure was extensively characterized by several techniques such as XRD, TEM, UV-Vis and fluorescence spectrophotometer (PL) techniques. According to the analysis, a significant increase in the photocatalytic efficiency of TiO2-ZnO was determined after it was modified with g-C3N4 nanostructures. The combination between TiO2-ZnO and g-C3N4 was shown to be responsible for the improvement in photocatalytic activity because it significantly decreased electron-hole recombination. After 90 min the 62.81% of MO dye was removed but at 120 min only 57% of RhB was degraded. In addition, the antibacterial activity of TiO2-ZnO/g-C3N4 catalyst was carried out against gram positive and gram negatif bacteria. The bacterial inhibition (%) of TiO2-ZnO/g-C3N4 catalyst.was found to be 44 % against E. coli and 33 % against at 100 μg/ml concentration. In line with the analyzes obtained with this study, important results have been revealed for the application of photocatalytic methods in more industrial dimensions in the production of hydrogen, which is a valuable energy type.
Collapse
Affiliation(s)
- Jieying Liu
- School of Chemistry and Chemical Engineering Yulin University; Yulin, 719000, China.
| | - Yong Gao
- School of Chemistry and Chemical Engineering Yulin University; Yulin, 719000, China
| | - Zhifang Zhang
- School of Chemistry and Chemical Engineering Yulin University; Yulin, 719000, China
| | - Rui Dang
- School of Chemistry and Chemical Engineering Yulin University; Yulin, 719000, China
| | | | - MuhammedBekmezci
- School of Chemistry and Chemical Engineering Yulin University; Yulin, 719000, China; Department of Materials Science & Engineering, Faculty of Engineering, University of Dumlupinar, Evliya Celebi Campus, 43000 Kutahya, Turkiye
| | - Ramazan Bayat
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000 Kutahya, Turkiye; Department of Materials Science & Engineering, Faculty of Engineering, University of Dumlupinar, Evliya Celebi Campus, 43000 Kutahya, Turkiye
| | - Rozhin Darabi
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O.Box 611731, Xiyuan Ave, Chengdu, China.
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000 Kutahya, Turkiye; SRG Incorporated Company, Kutahya Design & Technopole, Calca OSB Neighbourhood, 43100 Kutahya, Turkiye.
| |
Collapse
|
13
|
Dhar K, Venkateswarlu K, Megharaj M. Anoxygenic phototrophic purple non-sulfur bacteria: tool for bioremediation of hazardous environmental pollutants. World J Microbiol Biotechnol 2023; 39:283. [PMID: 37594588 PMCID: PMC10439078 DOI: 10.1007/s11274-023-03729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
The extraordinary metabolic flexibility of anoxygenic phototrophic purple non-sulfur bacteria (PNSB) has been exploited in the development of various biotechnological applications, such as wastewater treatment, biohydrogen production, improvement of soil fertility and plant growth, and recovery of high-value compounds. These versatile microorganisms can also be employed for the efficient bioremediation of hazardous inorganic and organic pollutants from contaminated environments. Certain members of PNSB, especially strains of Rhodobacter sphaeroides and Rhodopseudomonas palustris, exhibit efficient remediation of several toxic and carcinogenic heavy metals and metalloids, such as arsenic, cadmium, chromium, and lead. PNSB are also known to utilize diverse biomass-derived lignocellulosic organic compounds and xenobiotics. Although biodegradation of some substituted aromatic compounds by PNSB has been established, available information on the involvement of PNSB in the biodegradation of toxic organic pollutants is limited. In this review, we present advancements in the field of PNSB-based bioremediation of heavy metals and organic pollutants. Furthermore, we highlight that the potential role of PNSB as a promising bioremediation tool remains largely unexplored. Thus, this review emphasizes the necessity of investing extensive research efforts in the development of PNSB-based bioremediation technology.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
14
|
Yang Z, Yang Z, Zhan Y, Hu C, Zhang Z, He M, Huang J, Wang J, Yin H, Liu Z. Optimizing SCND with carbon-rich hydrolysates from typical organic wastes: Material composition, augmentation performance, microbiome response, and life cycle impact. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117966. [PMID: 37116417 DOI: 10.1016/j.jenvman.2023.117966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/22/2023] [Accepted: 04/16/2023] [Indexed: 05/12/2023]
Abstract
The rapid growth of production and consumption has led to severe environmental pollution, creating a major challenge to achieving the United Nations' sustainable development goals (SDGs). To address it, recycling of organic wastes into value-added products is a possible solution. In this work, four typical organic wastes including sewage sludge (SS), chicken manure (CM), food waste (FW), and corn straw (CS) were employed to produce hydrolysates augmenting shortcut nitrification-denitrification (SCND) for nitrogen depletion in wastewater. The hydrolysates were carbon-rich, with total COD (TCOD), soluble COD (SCOD), and volatile fatty acids (VFA) concentrations ranging from 32.5 to 102.7, 5.7 to 48.4, and 2.0-16.5 mg/L, respectively. The most effective nitrogen depletion was obtained in units supplemented with CM and FW hydrolysates, which had reduced average NH3-N concentrations and near-zero TN removal failure rates under legal requirements. The microbial community analysis demonstrated that various functional bacteria from phylum to genus level were detected in all scenarios, which was corroborated by abundant genetic functions involved in nitrogen metabolism. Further, life cycle assessment revealed negative environmental impact on all categories, with an exception of eutrophication potential (EP) with negative values (∼-0.04 kg Phosphate eq.), allowing positive net environmental benefit (NEB). Operational cost analysis revealed that CM and FW are more effective but costlier than SS and CS. Together, these results indicate that, after hydrolysis, organic wastes can be efficient stimulant augmenting SCND performance for nitrogen depletion in wastewater, benefiting the overall environmental impact.
Collapse
Affiliation(s)
- Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Yazhi Zhan
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Cheng Hu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Zhenyu Zhang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Miao He
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Jin Huang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Jing Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
15
|
Tomás-Pejó E, González-Fernández C, Greses S, Kennes C, Otero-Logilde N, Veiga MC, Bolzonella D, Müller B, Passoth V. Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:96. [PMID: 37270640 DOI: 10.1186/s13068-023-02349-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Carboxylic acids have become interesting platform molecules in the last years due to their versatility to act as carbon sources for different microorganisms or as precursors for the chemical industry. Among carboxylic acids, short-chain fatty acids (SCFAs) such as acetic, propionic, butyric, valeric, and caproic acids can be biotechnologically produced in an anaerobic fermentation process from lignocellulose or other organic wastes of agricultural, industrial, or municipal origin. The biosynthesis of SCFAs is advantageous compared to chemical synthesis, since the latter relies on fossil-derived raw materials, expensive and toxic catalysts and harsh process conditions. This review article gives an overview on biosynthesis of SCFAs from complex waste products. Different applications of SCFAs are explored and how these acids can be considered as a source of bioproducts, aiming at the development of a circular economy. The use of SCFAs as platform molecules requires adequate concentration and separation processes that are also addressed in this review. Various microorganisms such as bacteria or oleaginous yeasts can efficiently use SCFA mixtures derived from anaerobic fermentation, an attribute that can be exploited in microbial electrolytic cells or to produce biopolymers such as microbial oils or polyhydroxyalkanoates. Promising technologies for the microbial conversion of SCFAs into bioproducts are outlined with recent examples, highlighting SCFAs as interesting platform molecules for the development of future bioeconomy.
Collapse
Affiliation(s)
- Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- Institute of Sustainable Processes, Valladolid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - Nuria Otero-Logilde
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7070, 75007, Uppsala, Sweden
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7070, 75007, Uppsala, Sweden.
| |
Collapse
|
16
|
Mao X, Guo R, Chen Q, Zhu H, Li H, Yan Z, Guo Z, Wu T. Recent Advances in Graphitic Carbon Nitride Based Electro-Catalysts for CO 2 Reduction Reactions. Molecules 2023; 28:molecules28083292. [PMID: 37110526 PMCID: PMC10146859 DOI: 10.3390/molecules28083292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C3N4 in the electrocatalytic reduction of CO2. This review focuses on the synthesis and functionalization of g-C3N4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO2. The modification of g-C3N4-based catalysts for enhanced CO2 reduction is critically reviewed. In addition, opportunities for future research on g-C3N4-based catalysts for electrocatalytic CO2 reduction are discussed.
Collapse
Affiliation(s)
- Xinyi Mao
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Ruitang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Quhan Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Huiwen Zhu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Hongzhe Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zijun Yan
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zeyu Guo
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Wu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| |
Collapse
|
17
|
Lacroux J, Llamas M, Dauptain K, Avila R, Steyer JP, van Lis R, Trably E. Dark fermentation and microalgae cultivation coupled systems: Outlook and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161136. [PMID: 36587699 DOI: 10.1016/j.scitotenv.2022.161136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The implementation of a sustainable bio-based economy is considered a top priority today. There is no doubt about the necessity to produce renewable bioenergy and bio-sourced chemicals to replace fossil-derived compounds. Under this scenario, strong efforts have been devoted to efficiently use organic waste as feedstock for biohydrogen production via dark fermentation. However, the technoeconomic viability of this process needs to be enhanced by the valorization of the residual streams generated. The use of dark fermentation effluents as low-cost carbon source for microalgae cultivation arises as an innovative approach for bioproducts generation (e.g., biodiesel, bioactive compounds, pigments) that maximizes the carbon recovery. In a biorefinery context, after value-added product extraction, the spent microalgae biomass can be further valorised as feedstock for biohydrogen production. This integrated process would play a key role in the transition towards a circular economy. This review covers recent advances in microalgal cultivation on dark fermentation effluents (DFE). BioH2 via dark fermentation processes and the involved metabolic pathways are detailed with a special focus on the main aspects affecting the effluent composition. Interesting traits of microalgae and current approaches to solve the challenges associated to the integration of dark fermentation and microalgae cultivation are also discussed.
Collapse
Affiliation(s)
- Julien Lacroux
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Mercedes Llamas
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France; Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Edificio 46., Ctra. de Utrera km. 1, 41013 Sevilla, Spain
| | - Kevin Dauptain
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Romina Avila
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | | | - Robert van Lis
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Eric Trably
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France.
| |
Collapse
|
18
|
Islam H, Gufrana T, Khare S, Pandey A, Radha P. Chicken tallow, a low-cost feedstock for the two-step lipase-catalysed synthesis of biolubricant. BIOCATAL BIOTRANSFOR 2023. [DOI: 10.1080/10242422.2023.2176225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Hasibul Islam
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Tasneem Gufrana
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Shivani Khare
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ankita Pandey
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - P. Radha
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
19
|
Iyyappan J, Baskar G, Deepanraj B, Anand AV, Saravanan R, Awasthi MK. Promising strategies of circular bioeconomy using heavy metal phytoremediated plants - A critical review. CHEMOSPHERE 2023; 313:137097. [PMID: 36334740 DOI: 10.1016/j.chemosphere.2022.137097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/15/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Phytoremediation is an excellent method for removing harmful heavy metals from the environment since it is eco-friendly, uses little energy, and is inexpensive. However, as phytoremediated plants can turn into secondary sources for heavy metals, complete heavy metal removal from phytoremediated plants is necessary. Elimination of toxic heavy metals from phytoremediated plants should be considered with foremost care. This review highlights about important sources of heavy metal contamination, health effects caused by heavy metal contamination and technological breakthroughs of phytoremediation. This review critically emphasis about promising strategies to be engaged for absolute reutilization of heavy metals and spectacular approaches of production of commercially imperative products from phytoremediated plants through circular bioeconomy with key barriers. Thus, phytoremediation combined with circular bioeconomy can create a new platform for the eco-friendly life.
Collapse
Affiliation(s)
- J Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha Nagar, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - G Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600119, Tamil Nadu, India.
| | - B Deepanraj
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - A Vivek Anand
- Department of Aeronautical Engineering, MLR Institute of Technology, Hyderabad, Telangana, India.
| | - R Saravanan
- Departamento de Ingeniería Mecanica, Facultad de Ingeniería, Universidad de Tarapaca, Avda. General Velasquez, 1775, Arica, Chile
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China
| |
Collapse
|
20
|
Hsu CC, Chien F. The impact of high economic growth and technology advancement on extensive energy production in China: evidence using NARDL model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1656-1671. [PMID: 35921012 DOI: 10.1007/s11356-022-22205-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
High energy production is the global requirement that is the demand of high economic growth in the country and needs regulators and recent researchers' emphasis. Therefore, the current study examines the impact of economic factors such as gross domestic product (GDP), national income, employment rate, foreign direct investment (FDI), and inflation and technological advancement on energy production in China. The present article has used the secondary data extracted from World Development Indicators (WDIs) from 1976 to 2020. The present research has employed the nonlinear autoregressive distributed lagged (NARDL) model to explore the association among the understudy constricts. The findings revealed that all the economic factors such as GDP, national income, employment rate, FDI, inflation, and technological advancement have a significant and positive association with energy production in China. This article guides the relevant authorities and policymakers in developing and implementing the policies related to generating high energy production using foremost economic factors.
Collapse
Affiliation(s)
- Ching-Chi Hsu
- School of Finance and Accounting, Fuzhou University of International Studies and Trade, 350202, Fujian, China
| | - Fengsheng Chien
- School of Finance and Accounting, Fuzhou University of International Studies and Trade, 350202, Fujian, China.
- Faculty of Business, City university of Macau, Macau, China.
| |
Collapse
|
21
|
Cui P, Wang S, Su H. Enhanced biohydrogen production of anaerobic fermentation by the Fe 3O 4 modified mycelial pellets-based anaerobic granular sludge. BIORESOURCE TECHNOLOGY 2022; 366:128144. [PMID: 36265787 DOI: 10.1016/j.biortech.2022.128144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
To improve the catalytic efficiency and stability of hydrogen-producing bacteria (HPB), the Fe3O4 nanoparticles modified Aspergillus tubingensis mycelial pellets (AT)-based anaerobic granular sludge (Fe3O4@AT-AGS) was developed. The Fe3O4@AT-AGS protected flora with abundant extracellular polymeric substances, which increased diversity and stability of flora in early and late stage. The porous structure enhanced mass transfer efficiency, thus promoted dominant flora transferred from lactate-producing bacteria (LPB) to HPB in middle stage. The Fe3O4 improved biomass of mycelial by 19.5 %. The enhancement of dehydrogenase and conductivity of Fe3O4 increased the HPB proportion, electron transfer, and butyrate fermentation in early and middle stage. The Fe3O4@AT-AGS enhanced HPB abundance, dehydrogenase activity and stability, and significantly inhibited propionate fermentation. The biohydrogen production and yield respectively reached 2792 mL/L and 2.56 mol/mol glucose. Clostridium sensu stricto 11 as dominant microbes reached 77.3 %. This provided strategy for alleviating inhibition of LPB and improving competitiveness of HPB during biohydrogen production.
Collapse
Affiliation(s)
- Peiqi Cui
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
22
|
Establishing a water-to-energy platform via dual-functional photocatalytic and photoelectrocatalytic systems: A comparative and perspective review. Adv Colloid Interface Sci 2022; 309:102793. [DOI: 10.1016/j.cis.2022.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022]
|
23
|
Lee HS, Xin W, Katakojwala R, Venkata Mohan S, Tabish NMD. Microbial electrolysis cells for the production of biohydrogen in dark fermentation - A review. BIORESOURCE TECHNOLOGY 2022; 363:127934. [PMID: 36100184 DOI: 10.1016/j.biortech.2022.127934] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
To assess biohydrogen for future green energy, this review revisited dark fermentation and microbial electrolysis cells (MECs). Hydrogen evolution rate in mesophilic dark fermentation is as high as 192 m3 H2/m3-d, however hydrogen yield is limited. MECs are ideal for improving hydrogen yield from carboxylate accumulated from dark fermentation, whereas hydrogen production rate is too slow in MECs. Hence, improving anode kinetic is very important for realizing MEC biohydrogen. Intracellular electron transfer (IET) and extracellular electron transfer (EET) can limit current density in MECs, which is proportional to hydrogen evolution rate. EET does not limit current density once electrically conductive biofilms are formed on anodes, potentially producing 300 A/m2. Hence, IET kinetics mainly govern current density in MECs. Among parameters associated with IET kinetic, population of anode-respiring bacteria in anode biofilms, biofilm density of active microorganisms, biofilm thickness, and alkalinity are critical for current density.
Collapse
Affiliation(s)
- Hyung-Sool Lee
- KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH) 200 Hyeoksin-ro, Naju-si, Jeollanam-do, Republic of Korea.
| | - Wang Xin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Ranaprathap Katakojwala
- Bioengineering and Environmental Engineering Lab, Department of Energy and Environmental Engineering, Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Engineering Lab, Department of Energy and Environmental Engineering, Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Noori M D Tabish
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala De Henares, Madrid 28801, Spain
| |
Collapse
|
24
|
Research trends and strategies for the improvement of anaerobic digestion of food waste in psychrophilic temperatures conditions. Heliyon 2022; 8:e11174. [PMID: 36340003 PMCID: PMC9626950 DOI: 10.1016/j.heliyon.2022.e11174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The organic fraction of municipal solid waste is mainly composed of food waste (FW), and traditional disposal practices for this fraction are generally considered to have negative environmental and economic impacts. However, the organic characteristics of this fraction could also be exploited through the anaerobic digestion of FW (FW-AD), which represents unique advantages, including the reduction of the area required for final disposal and environmental pollution and the same time the generation of renewable energy (mainly methane gas), and a by-product for agricultural use (digestate) due to its high nutrient content. Although approximately 88% of the world's population resides in areas with temperatures below 8 °C, psychrophilic conditions (temperatures below 20 °C) have hardly been studied, while mesophilic (66%) and thermophilic (27%) ranges were found to be more common than psychrophilic FW-AD (7%). The latter condition could decrease microbial activity and organic matter removal, which could affect biogas production and even make AD unfeasible. To improve the efficiency of the psychrophilic FW-AD process, there are strategies such as: measurement of physical properties as particle size, rheological characteristics (viscosity, consistency index and substrate behavior index), density and humidity, bioaugmentation and co-digestion with other substrates, use of inocula with psychrophilic methanogenic communities, reactor heating and modification of reactor configurations. However, these variables have hardly been studied in the context of psychrophilic conditions and future research should focus on evaluating the influence of these variables on FW-AD under psychrophilic conditions. Through a bibliometric analysis, this paper has described and analyzed the FW-AD process, with a focus on the psychrophilic conditions (<20 °C) so as to identify advances and future research trends, as well as determine strategies toward improving the anaerobic process under low temperature conditions. Temperature has a great influence on anaerobic digestion of food waste (FW-AD). Studies on the psychrophilic condition are limited, warranting further research. Physical properties of the substrate and inoculum influence psychrophilic FW-AD. The use of inocula adapted to low temperatures could increase biogas production. Changes in reactor configurations could improve biogas yield at low temperature.
Collapse
|
25
|
Moura A, Delforno T, Rabelo C, Kumar G, Silva E, Varesche M. Iron and Nickel nanoparticles role in volatile fatty acids production enhancement: functional genes and bacterial taxonomy in an anaerobic fluidized bed reactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Building Better Cities: Evaluating the Effect of Circular Economy City Construction on Air Quality via a Quasi-Natural Experiment. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:3151072. [PMID: 36148400 PMCID: PMC9489379 DOI: 10.1155/2022/3151072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
The resource utilization of a circular economy should reflect both economic and environmental values. Resource utility can be measured by GDP in the short term, while environmental value is challenging to measure; that is, the improvement in air quality is not effectively evaluated. In order to examine this initiative, using China's pilot cities of circular economy as a quasi-natural experiment, we construct a difference-in-difference (DID) strategy for estimation. The results demonstrate the following: (1) the pollutant emissions of pilot cities decline by 2.92 percentage points (p < 0.01) compared to unpiloted cities, (2) the policies on pilot cities more rapidly enhanced air quality for central cities and those with a low level of economic development, and (3) pilot cities significantly enhance air quality by decreasing energy consumption per unit of GDP. We provide the first empirical evidence of the effectiveness of circular economy pilot cities in improving air quality.
Collapse
|
27
|
Eloffy MG, Elgarahy AM, Saber AN, Hammad A, El-Sherif DM, Shehata M, Mohsen A, Elwakeel KZ. Biomass-to-sustainable biohydrogen: insights into the production routes, and technical challenges. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
The Role of the Circular Economy in Road Transport to Mitigate Climate Change and Reduce Resource Depletion. SUSTAINABILITY 2022. [DOI: 10.3390/su14148951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The transport sector is responsible for several environmental impacts, including contributions to climate change through greenhouse gas emissions and depleting natural resources. A strategy to reduce these issues goes towards the application of a circular economy, a concept that offers a response to increasing concerns about resource scarcity and the associated impacts from their use. Thus, this paper aims to fill a gap in the literature that consists of the scarcity of studies that consider the circular economy application on a micro, meso, and macro level in road transport, including all stages as well as the 7 Rs of the reverse cycle. Therefore, an approach is presented to meet road transport needs, highlighting best practices obtained through a literature review, to promote climate change mitigation and resource depletion. Qualitative data were presented for each circular economy stage with 46 best practices identified, providing invaluable guidance to transport decision-makers. Thus, public policies focusing on all of the CE stages should be taken into consideration, not only those responsible for closing the cycle, such as waste and recycling or disposal and treatment.
Collapse
|
29
|
Aggarwal M, Shetti NP, Basu S, Aminabhavi TM. Two-dimensional ultrathin metal-based nanosheets for photocatalytic CO 2 conversion to solar fuels. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114916. [PMID: 35367674 DOI: 10.1016/j.jenvman.2022.114916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Artificially simulated photosynthesis has created substantial curiosity as the majority of efforts in this arena have been aimed to upsurge solar fuel efficiencies for commercialization. The layered inorganic 2D nanosheets offer considerably higher tunability of their chemical surface, physicochemical properties and catalytic activity. Despites the intrinsic advantages of such metal-based materials viz., metal oxides, transition metal dichalcogenides, metal oxyhalides, metal organic frameworks, layered double hydroxide, MXene's, boron nitride, black phosphorous and perovskites, studies on such systems are limited for applications in photocatalytic CO2 reduction. The role of metal-based layers for CO2 conversion and new strategies such as surface modifications, defect generation and heterojunctions to optimize their functionalities are discussed in this review. Research prospects and technical challenges for future developments of layered 2D metal-based nanomaterials are critically discussed.
Collapse
Affiliation(s)
- Maansi Aggarwal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India.
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India.
| |
Collapse
|
30
|
Brown B, Wilkins M, Saha R. Rhodopseudomonas palustris: A biotechnology chassis. Biotechnol Adv 2022; 60:108001. [PMID: 35680002 DOI: 10.1016/j.biotechadv.2022.108001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Rhodopseudomonas palustris is an attractive option for biotechnical applications and industrial engineering due to its metabolic versatility and its ability to catabolize a wide variety of feedstocks and convert them to several high-value products. Given its adaptable metabolism, R. palustris has been studied and applied in an extensive variety of applications such as examining metabolic tradeoffs for environmental perturbations, biodegradation of aromatic compounds, environmental remediation, biofuel production, agricultural biostimulation, and bioelectricity production. This review provides a holistic summary of the commercial applications for R. palustris as a biotechnology chassis and suggests future perspectives for research and engineering.
Collapse
Affiliation(s)
- Brandi Brown
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
31
|
Zhu X, Li Y, Yang Y, He Y, Gao M, Peng W, Wu Q, Zhang G, Zhou Y, Chen F, Bao J, Li W. Ordered micropattern arrays fabricated by lung-derived dECM hydrogels for chemotherapeutic drug screening. Mater Today Bio 2022; 15:100274. [PMID: 35601895 DOI: 10.1016/j.mtphys.2020.100274] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/28/2023] Open
Abstract
AIMS This study aims to evaluate ECM-coated micropattern arrays derived from decellularization of native porcine lungs as a novel three-dimensional cell culture platform. METHODS ECM derived from decellularization of native porcine lungs was exploited to prepare hydrogels. Then, dECM-coated micropattern arrays were fabricated at four different diameters (50, 100, 150 and 200 μm) using polydimethylsiloxane (PDMS). Two lung cancer cell lines, A549 and H1299, were tested on a dECM-coated micropattern array as a novel culture platform for cell adhesion, distribution, proliferation, viability, phenotype expression, and drug screening to evaluate the cytotoxicity of paclitaxel, doxorubicin and cisplatin. RESULTS The ECM derived from decellularization of native porcine lungs supported cell adhesion, distribution, viability and proliferation better than collagen I and Matrigel as the coated matrix on the surface. Moreover, the optimal diameter of the micropattern arrays was 100-150 μm, as determined by measuring the morphology, viability, proliferation and phenotype of the cancer cell spheroids. Cell spheroids of A549 and H1299 on dECM-coated micropattern arrays showed chemoresistance to anticancer drugs compared to that of the monolayer. The different distributions of HIF-1α, MCL-1 (in the center) and Ki-67 and MRP2 (in the periphery) of the spheroids demonstrated the good establishment of basal-lateral polarity and explained the chemoresistance phenomenon of spheroids. CONCLUSIONS This novel three-dimensional cell culture platform is stable and reliable for anticancer drug testing. Drug screening in dECM-coated micropattern arrays provides a powerful alternative to existing methods for drug testing and metabolic profiling in the drug discovery process.
Collapse
Affiliation(s)
- Xinglong Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuting He
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mengyu Gao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanliu Peng
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiong Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guangyue Zhang
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanyan Zhou
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weimin Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
32
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Deng L, Chen Z, Ye Y, Bui XT, Hoang NB. Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment. BIORESOURCE TECHNOLOGY 2022; 351:127045. [PMID: 35331884 DOI: 10.1016/j.biortech.2022.127045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
As a clean energy carrier, hydrogen is a promising alternative to fossil fuel so as the global growing energy demand can be met. Currently, producing hydrogen from biowastes through fermentation has attracted much attention due to its multiple advantages of biowastes management and valuable energy generation. Nevertheless, conventional dark fermentation (DF) processes are still hindered by the low biohydrogen yields and challenges of biohydrogen purification, which limit their commercialization. In recent years, researchers have focused on various advanced strategies for enhancing biohydrogen yields, such as screening of super hydrogen-producing bacteria, genetic engineering, cell immobilization, nanomaterials utilization, bioreactors modification, and combination of different processes. This paper critically reviews by discussing the above stated technologies employed in DF, respectively, to improve biohydrogen generation and stating challenges and future perspectives on biowaste-based biohydrogen production.
Collapse
Affiliation(s)
- Dongle Cheng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University 442-760, Republic of Korea
| | - Lijuan Deng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 700000, Vietnam
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
33
|
Shah AV, Singh A, Sabyasachi Mohanty S, Kumar Srivastava V, Varjani S. Organic solid waste: Biorefinery approach as a sustainable strategy in circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 349:126835. [PMID: 35150857 DOI: 10.1016/j.biortech.2022.126835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Waste generation is associated with numerous environmental consequences, making it a point of discussion in the environmental arena. Efforts have been made around the world to develop a systematic management approach coupled with a sustainable treatment technology to maximize resource utilization of organic solid waste. Biorefineries and bio-based products play a critical role in lowering total emissions and supporting energy systems. However, economic viability of biorefineries, on the other hand, is a stumbling hurdle to their commercialization. This communication provides a thorough study of the concept of biorefinery in waste management, as well as technological advancements in this field. In addition, the notion of techno-economic assessment, as well as challenges and future prospects have been covered. To find the most technologically and economically viable solution, further techno-economic study to the new context is required. Overall, this communication would assist decision-makers in identifying environmentally appropriate biorefinery solutions ahead of time.
Collapse
Affiliation(s)
- Anil V Shah
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar 384 315, Gujarat, India
| | - Aditi Singh
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Swayansu Sabyasachi Mohanty
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Vijay Kumar Srivastava
- Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar 384 315, Gujarat, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar 384 315, Gujarat, India.
| |
Collapse
|
34
|
Boas JV, Oliveira VB, Simões M, Pinto AMFR. Review on microbial fuel cells applications, developments and costs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114525. [PMID: 35091241 DOI: 10.1016/j.jenvman.2022.114525] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The microbial fuel cell (MFC) technology has attracted significant attention in the last years due to its potential to recover energy in a wastewater treatment. The idea of using an MFC in industry is very attractive as the organic wastes can be converted into energy, reducing the waste disposal costs and the energy needs while increasing the company profit. However, taking aside these promising prospects, the attempts to apply MFCs in large-scale have not been succeeded so far since their lower performance and high costs remains challenging. This review intends to present the main applications of the MFC systems and its developments, particularly the advances on configuration and operating conditions. The diagnostic techniques used to evaluate the MFC performance as well as the different modeling approaches are described. Towards the introduction of the MFC in the market, a cost analysis is also included. The development of low-cost materials and more efficient systems, with high higher power outputs and durability, are crucial towards the application of MFCs in industrial/large scale. This work is a helpful tool for discovering new operation and design regimes.
Collapse
Affiliation(s)
- Joana Vilas Boas
- CEFT, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vânia B Oliveira
- CEFT, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Alexandra M F R Pinto
- CEFT, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
35
|
Bareha Y, Saoudi M, Santellani AC, Le Bihan A, Picard S, Mebarki C, Cunha M, Daumer ML. Use of fermentation processes for improving the dissolution of phosphorus and its recovery from waste activated sludge. ENVIRONMENTAL TECHNOLOGY 2022; 43:1307-1317. [PMID: 32957838 DOI: 10.1080/09593330.2020.1827301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Recycling phosphorus from waste activated sludge has attracted a lot of interest to tackle the problem of phosphorus stocks depletion and the increase in food demand. In this study, the use of fermentation processes was investigated to enhance phosphorus dissolution from waste activated sludge to improve its recycling. Two fermentation processes, bioacidification and dark fermentation, were used on two different sludges fermented with wheat starch syrup in continuous operating conditions. Hydrogen yield from the co-substrate fermentation with waste activated sludge reached 3.9 mmolH2.gCODcosubstrate-1 yield during dark fermentation process and was negligible during bioacidification. Dissolved phosphorus in the waste activated sludge increased by 68% during bioacidification and by 43% during dark fermentation. In both processes, phosphorus dissolution was accompanied by iron, calcium and magnesium dissolution. Results show that fermentation enhances phosphorus dissolution in waste activated sludge to improve its recovery along with hydrogen and organic acids.
Collapse
Affiliation(s)
- Y Bareha
- INRAE, UR OPAALE, Rennes, France
| | - M Saoudi
- INRAE, UR OPAALE, Rennes, France
| | | | | | - S Picard
- INRAE, UR OPAALE, Rennes, France
| | - C Mebarki
- Business Support & Performance, Veolia, Aubervilliers, France
| | - M Cunha
- Technical & Performance Department, Veolia, Aubervilliers, France
| | | |
Collapse
|
36
|
Dzulkarnain ELN, Audu JO, Wan Dagang WRZ, Abdul-Wahab MF. Microbiomes of biohydrogen production from dark fermentation of industrial wastes: current trends, advanced tools and future outlook. BIORESOUR BIOPROCESS 2022; 9:16. [PMID: 38647867 PMCID: PMC10991117 DOI: 10.1186/s40643-022-00504-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/14/2022] [Indexed: 01/02/2023] Open
Abstract
Biohydrogen production through dark fermentation is very attractive as a solution to help mitigate the effects of climate change, via cleaner bioenergy production. Dark fermentation is a process where organic substrates are converted into bioenergy, driven by a complex community of microorganisms of different functional guilds. Understanding of the microbiomes underpinning the fermentation of organic matter and conversion to hydrogen, and the interactions among various distinct trophic groups during the process, is critical in order to assist in the process optimisations. Research in biohydrogen production via dark fermentation is currently advancing rapidly, and various microbiology and molecular biology tools have been used to investigate the microbiomes. We reviewed here the different systems used and the production capacity, together with the diversity of the microbiomes used in the dark fermentation of industrial wastes, with a special emphasis on palm oil mill effluent (POME). The current challenges associated with biohydrogen production were also included. Then, we summarised and discussed the different molecular biology tools employed to investigate the intricacy of the microbial ecology associated with biohydrogen production. Finally, we included a section on the future outlook of how microbiome-based technologies and knowledge can be used effectively in biohydrogen production systems, in order to maximise the production output.
Collapse
Affiliation(s)
| | - Jemilatu Omuwa Audu
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Department of Science Laboratory Technology, Modibbo Adama University, PMB 2076, Yola, Adamawa, Nigeria
| | - Wan Rosmiza Zana Wan Dagang
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Firdaus Abdul-Wahab
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
- Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
37
|
Soltani F, Navidjouy N, Rahimnejad M. A review on bio-electro-Fenton systems as environmentally friendly methods for degradation of environmental organic pollutants in wastewater. RSC Adv 2022; 12:5184-5213. [PMID: 35425537 PMCID: PMC8982105 DOI: 10.1039/d1ra08825d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Bio-electro-Fenton (BEF) systems have been potentially studied as a promising technology to achieve environmental organic pollutants degradation and bioelectricity generation. The BEF systems are interesting and constantly expanding fields of science and technology. These emerging technologies, coupled with anodic microbial metabolisms and electrochemical Fenton's reactions, are considered suitable alternatives. Recently, great attention has been paid to BEFs due to special features such as hydrogen peroxide generation, energy saving, high efficiency and energy production, that these features make BEFs outstanding compared with the existing technologies. Despite the advantages of this technology, there are still problems to consider including low production of current density, chemical requirement for pH adjustment, iron sludge formation due to the addition of iron catalysts and costly materials used. This review has described the general features of BEF system, and introduced some operational parameters affecting the performance of BEF system. In addition, the results of published researches about the degradation of persistent organic pollutants and real wastewaters treatment in BEF system are presented. Some challenges and possible future prospects such as suitable methods for improving current generation, selection of electrode materials, and methods for reducing iron residues and application over a wide pH range are also given. Thus, the present review mainly revealed that BEF system is an environmental friendly technology for integrated wastewater treatment and clean energy production.
Collapse
Affiliation(s)
- Fatemeh Soltani
- Student Research Committee, Urmia University of Medical Sciences Urmia Iran
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology Babol Iran
| |
Collapse
|
38
|
Naresh Kumar A, Sarkar O, Chandrasekhar K, Raj T, Narisetty V, Mohan SV, Pandey A, Varjani S, Kumar S, Sharma P, Jeon BH, Jang M, Kim SH. Upgrading the value of anaerobic fermentation via renewable chemicals production: A sustainable integration for circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150312. [PMID: 34844320 DOI: 10.1016/j.scitotenv.2021.150312] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The single bioprocess approach has certain limitations in terms of process efficiency, product synthesis, and effective resource utilization. Integrated or combined bioprocessing maximizes resource recovery and creates a novel platform to establish sustainable biorefineries. Anaerobic fermentation (AF) is a well-established process for the transformation of organic waste into biogas; conversely, biogas CO2 separation is a challenging and expensive process. Biological fixation of CO2 for succinic acid (SA) mitigates CO2 separation issues and produces commercially important renewable chemicals. Additionally, utilizing digestate rich in volatile fatty acid (VFA) to produce medium-chain fatty acids (MCFAs) creates a novel integrated platform by utilizing residual organic metabolites. The present review encapsulates the advantages and limitations of AF along with biogas CO2 fixation for SA and digestate rich in VFA utilization for MCFA in a closed-loop approach. Biomethane and biohydrogen processes CO2 utilization for SA production is cohesively deliberated along with the role of biohydrogen as an alternative reducing agent to augment SA yields. Similarly, MCFA production using VFA as a substrate and functional role of electron donors namely ethanol, lactate, and hydrogen are comprehensively discussed. A road map to establish the fermentative biorefinery approach in the framework of AF integrated sustainable bioprocess development is deliberated along with limitations and factors influencing for techno-economic analysis. The discussed integrated approach significantly contributes to promote the circular bioeconomy by establishing carbon-neutral processes in accord with sustainable development goals.
Collapse
Affiliation(s)
- A Naresh Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Vivek Narisetty
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
39
|
Karray R, Elloumi W, Ben Ali R, Loukil S, Chamkha M, Karray F, Sayadi S. A novel bioprocess combining anaerobic co-digestion followed by ultra-filtration and microalgae culture for optimal olive mill wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114188. [PMID: 34875565 DOI: 10.1016/j.jenvman.2021.114188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Treatment of olive mill wastewater (OMW) has received considerable research globally due to its influence on the technical, economic, and environmental sustainability of wastewater biogas production. This work presents a novel combined biological process for OMW treatment in terms to produce for the first time, treated OMW and a valuable microalgae biomass. The process involves anaerobic co-digestion (AD), a low cut-off membrane ultra-filtration (UF) and a subsequent Scenedesmus sp. culture. The AD of OMW was conducted at high initial COD ranging from 28 to 38 g/L using an up-flow anaerobic fixed bed bio-reactor (300 L). Results revealed that the maximum biogas production was about 0.507 L/g CODintroduced.day containing 73% of methane corresponding to a methane yield of 0.370 L/g CODintroduced.day obtained at an organic loading rate of 4.58 g COD/L.day. High removal levels of COD, total phenolic compounds, and total suspended solids in the anaerobic liquid digestate (ALD) were achieved after AD and UF. Scenedesmus sp. was then cultivated on the ultra-filtrated ALD. A maximum biomass productivity of 0.15 g/L.day was recorded when Scenedesmus sp. is grown on 25% of ultra-filtrated ALD with a maximum nitrogen removal rate of 15.18 mg/L.day and an almost total elimination of phosphorus and phenolic compounds.
Collapse
Affiliation(s)
- Raida Karray
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, P.B "1177", 3018, Sfax, Tunisia.
| | - Wièm Elloumi
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, P.B "1177", 3018, Sfax, Tunisia
| | - Rihab Ben Ali
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, P.B "1177", 3018, Sfax, Tunisia
| | - Slim Loukil
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, P.B "1177", 3018, Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, P.B "1177", 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, P.B "1177", 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
40
|
Rathi A, Barman S, Basu S, Arya RK. Post-fabrication structural changes and enhanced photodegradation activity of semiconductors@zeolite composites towards noxious contaminants. CHEMOSPHERE 2022; 288:132609. [PMID: 34687683 DOI: 10.1016/j.chemosphere.2021.132609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
This review article provides the recent progress in semiconductor-based zeolite photoactive materials for the application of noxious contaminants removal. The rapidly expanding industrialization and globalization cause serious threats to the environment or water bodies. The semiconductor@zeolite photocatalysts were implemented for water quality management/sustainment. The exclusive properties of zeolite material have been elaborated with their role in the photocatalysis process. The photoactive material's properties like single-atom catalysts (SACs), distribution of metal in the zeolite crystal were elaborated along with their role in catalytic reactions. Differently prepared semiconductor@zeolite composites such as TiO2@zeolite, binary and ternary composites, Fe/Ag/bismuth-modified/ZnO/ZnS/NiO/g-C3N4/core-shell/quantum dots modified zeolite composites, were systematically summarized. The research progress in morphologies, structural effect, degradation mechanism were recapitulated and tabulated form of % degradation with their optimal parameters such as catalyst dose, pollutant concentrations, pH, light source intensities were also provided. The significance of zeolite frameworks, the structural properties of semiconductor@zeolite photoactive materials to enhance the degradation efficiencies was explored. Analysis of the intermediate products of Norfloxacin, TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), TCDF (2,3,7,8-tetrachlorodibenzofuran), diclofenac contaminants were systematically represented and structurally identified by GC-MS/HPLC-MS techniques.
Collapse
Affiliation(s)
- Aanchal Rathi
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, India
| | - Sanghamitra Barman
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, India.
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, India.
| | - Raj Kumar Arya
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
41
|
Sekar M, Ponnusamy VK, Pugazhendhi A, Nižetić S, Praveenkumar TR. Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114046. [PMID: 34775338 DOI: 10.1016/j.jenvman.2021.114046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
This paper reviews the new progress, challenges and barriers on production of pyrolysis oil from the plastic waste. Among the different processes thermal and catalytic are the potential methods to produce oil. Since the global plastic production increased over years the accumulation of plastic waste increases. Thus, converting the waste plastics into useful energy is very essential to avoid the environmental concerns. Initially the thermal pyrolysis process and its advantage on production of pyrolysis oil were discussed. During the thermal decomposition the waste plastic had been converted into the products such as gas, crude oil and solid residues. Secondly, the catalytic process and its recent trends were discussed. In addition, the factors affecting the catalytic pyrolysis process had been evaluated. Furthermore, the optimized concentration of catalyst subjected to the higher yield of fuel with low hydrocarbon content was found. The pyrolysis oil produced from the catalytic process has higher heating values, lower density and lower viscosity compared to thermal process. In addition, the application of pyrolysis oil on the diesel engines had been discussed. The effects of pyrolysis oil on combustion and emission characteristics were observed. This review summarizes the potential advantages and barriers of both thermal and catalytic process. Further, the optimized solutions and applications of pyrolysis oil are suggested for sustainability of the process. Besides the introduction of the pyrolysis oil were viable without making major modification to the existing engine design.
Collapse
Affiliation(s)
- Manigandan Sekar
- Department of Aeronautical Engineering, Sathyabama Institute of Science and Technology, Chennai City, Tamil Nadu, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan
| | | | - Sandro Nižetić
- Laboratory for Thermodynamics and Energy Efficiency, University of Split, Croatia
| | | |
Collapse
|
42
|
Rajabloo T, De Ceuninck W, Van Wortswinkel L, Rezakazemi M, Aminabhavi T. Environmental management of industrial decarbonization with focus on chemical sectors: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114055. [PMID: 34768037 DOI: 10.1016/j.jenvman.2021.114055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
A considerable portion of fossil CO2 emissions comes from the energy sector for production of heat and electricity. The industrial sector has the second order in emission in which the main parts are released from energy-intensive industries, namely metallurgy, building materials, chemicals, and manufacturing. The decarbonization of industrial wastes contemplates the classic decarbonization through optimization of conventional processes as well as utilization of renewable energy and resources. The upgrading of existing processes and integration of the methodologies with a focus on efficiency improvement and reduction of energy consumption and the environment is the main focus of this review. The implementation of renewable energy and feedstocks, green electrification, energy conversion methodologies, carbon capture, and utilization, and storage are also covered. The main objectives of this review are towards chemical industries by introducing the potential technology enhancement at different subsectors. For this purpose, state-of-the-art roadmaps and pathways from the literature findings are presented. Both common and innovative renewable attempts are needed to reach out both short- and long-term deep decarbonization targets. Even though all of the innovative solutions are not economically viable at the industrial scale, they play a crucial role during and after the energy transition interval.
Collapse
Affiliation(s)
- Talieh Rajabloo
- Hasselt University, Institute for Materials Research IMO, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; EnergyVille, Thor park 8320, 3600, Genk, Belgium.
| | - Ward De Ceuninck
- Hasselt University, Institute for Materials Research IMO, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; EnergyVille, Thor park 8320, 3600, Genk, Belgium
| | - Luc Van Wortswinkel
- EnergyVille, Thor park 8320, 3600, Genk, Belgium; Flemish Institute for Technology Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Tejraj Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
43
|
Singla S, Shetti NP, Basu S, Mondal K, Aminabhavi TM. Hydrogen production technologies - Membrane based separation, storage and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113963. [PMID: 34700079 DOI: 10.1016/j.jenvman.2021.113963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/16/2021] [Indexed: 05/27/2023]
Abstract
The production of hydrogen, its separation, and storage for use as a primary source of energy is an important component of the green energy economy of the world. Hydrogen is a potential non-carbon-based energy source, which is gradually replacing the dependency on fossil fuels. It is anticipated that as the alternative fuel since hydrogen can be produced from green and clean sources. The evolution of hydrogen from renewable and non-renewable sources by various technologies has now gained tremendous research and industrial interest. The most appropriate methods for hydrogen generation involve the direct conversion of solar energy, exploitation of solar and wind energy for the electrolysis of water, besides conversion of fuel and biomass. To produce cleaner hydrogen and its separation from the chemical impurities is crucial and several methods including photobiological, photoelectrochemical, electrochemical, photocatalytic, thermochemical, thermolysis, and steam gasification have been used. The diverse types of membranes along with the pressure gas swing adsorption technique is another technique used to separate hydrogen, but the storage of hydrogen in an inexpensive, safe, compact, and environmentally friendly manner is one of the major concerns contributing to the country's economy. Apart from the countless advantages, storage and handling of hydrogen is a serious concern. Owing to its high inflammability, enough safety measures should be adopted during its production and storage as a fuel. It is necessary to provide information regarding the production technologies, storage, and separation methods of hydrogen and the present review addresses these issues.
Collapse
Affiliation(s)
- Shelly Singla
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India.
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India.
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID, 83415, USA; Department of Civil & Environmental Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India.
| |
Collapse
|
44
|
Challenging Novelties within the Circular Economy Concept under the Digital Transformation of Society. SUSTAINABILITY 2022. [DOI: 10.3390/su14020702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The study makes, under a new configuration of the circular economy, a cross-country analysis based on the Competitiveness and Innovation Indicators in the E.U., i.e., two sub-criteria: private investments, jobs, and gross value added; and patents related to recycling and secondary raw materials as a proxy for innovation. The analysis proved that investments influence the number of patents, and participate in societal transformation. A further cluster analysis classified countries on the level of innovation. The cluster analysis in SPSS centres on significant potential, weaknesses, impact, and waste management control through blockchain technology. It is found that the factors that influence innovation, according to the Global Competitiveness Report, link the business dynamism and innovation capability with the capacity to sustain resilient ideas, such as competitive intelligence and social entrepreneurship. The discussions aim to prove that the efforts to rethink the circular economy principles contribute to its conceptual and societal transformation role through the implementation of innovative processes, inventive solutions, and blockchain technologies, and their social consequences to solve environmental problems. Once understood and accepted, CE will drive sustainable behaviour.
Collapse
|
45
|
Research Trends on Climate Change and Circular Economy from a Knowledge Mapping Perspective. SUSTAINABILITY 2022. [DOI: 10.3390/su14010521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The circular economy (CE) has been proposed as a potentially significant catalyst to enhance the current response to the global climate crisis. The objective of this study was to investigate the scientific literature of the research between climate change and CE adopting a knowledge mapping approach. Based on a total of 789 peer-reviewed publications extracted from Scopus, we found that research on climate change and CE is continually growing and interdisciplinary in nature. Europe notably leads scientific production. Keyword evolution shows that CE has been influenced by more lines of research than climate change. We also found that waste management is the CE approach most associated with climate change, mitigation is the climate action most impacted by CE, and food is the most reported greenhouse gas (GHG)-emitting material. However, there are knowledge gaps in the integration of the social dimension, the promotion of climate change adaptation, and the association of sustainable development goal (SDG) 13. Finally, we identified four potentially valuable directions for future studies: (i) CE practices, (ii) bioeconomy, (iii) climate and energy, and (iv) sustainability and natural resources, in which carbon recovery technologies, green materials, regional supply chains, circular agriculture models, and nature-based solutions are promising themes.
Collapse
|
46
|
Velvizhi G, Balakumar K, Shetti NP, Ahmad E, Kishore Pant K, Aminabhavi TM. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. BIORESOURCE TECHNOLOGY 2022; 343:126151. [PMID: 34673197 DOI: 10.1016/j.biortech.2021.126151] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 05/28/2023]
Abstract
Lignocellulosic biomass is an effective and sustainable alternative for petroleum-derived fuels and chemicals to produce biofuels and bio-based products. Despite the high availability, the degradation of biomass is a substantial challenge. Hence, it is necessary to integrate several unit processes such as biochemical, thermochemical, physical, and catalytic conversion to produce wide range of bio-based products. Integrating these processes enhances the yield, reduces the reaction time, and can be cost-effective. Process integration could significantly lead to various outcomes which guides towards the circular economy. This review addresses integration of several biorefinery processes for the production of multifaceted products. In addition, modern and sustainable biorefinery technologies are discussed to pave the path towards circular economy through the closed-loop approach.
Collapse
Affiliation(s)
- G Velvizhi
- CO(2) Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore 632 014, India.
| | - K Balakumar
- CO(2) Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore 632 014, India
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Hubballi 580 031, Karnataka, India.
| | - Ejaz Ahmad
- Department of Chemical Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India
| | - Kamal Kishore Pant
- Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580 031, Karnataka, India.
| |
Collapse
|
47
|
Mojaver M, Hasanzadeh R, Azdast T, Park CB. Comparative study on air gasification of plastic waste and conventional biomass based on coupling of AHP/TOPSIS multi-criteria decision analysis. CHEMOSPHERE 2022; 286:131867. [PMID: 34411931 DOI: 10.1016/j.chemosphere.2021.131867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
A broad range of conventional biomass and plastic waste types was considered and their air gasification process was modeled using a Gibbs free energy minimization coupled with Lagrange multiplier approach. The comparison between the performances of biomass and plastic waste gasification is the main issue of this study. Another important novelty and contribution of this study is analytical hierarchy process/technique for order performance by similarity to the ideal solution coupled method that is employed in gasification of conventional biomass and plastic waste, to prioritize the considered criteria and to select the best feedstock for gasification. Hydrogen production was linearly reduced in the case of conventional biomass with an in increase in the equivalence ratio; however, there was an optimum equivalence ratio to achieve the highest hydrogen production in plastic waste gasification. Plastic waste had a higher low heating value compared to conventional biomass. However, carbon monoxide and nitrogen production from conventional biomass was smaller than from plastic waste. Ten types of feedstock, comprising six types of conventional biomass and four types of plastic waste, were selected as alternatives. The multi-criteria decision analysis coupled method revealed that waste polypropylene and polyethylene were the best alternatives.
Collapse
Affiliation(s)
- Mehran Mojaver
- Department of Mechanical Engineering, Urmia University, Urmia, Iran
| | | | - Taher Azdast
- Department of Mechanical Engineering, Urmia University, Urmia, Iran; Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada.
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Kahar P, Rachmadona N, Pangestu R, Palar R, Triyono Nugroho Adi D, Betha Juanssilfero A, Manurung I, Hama S, Ogino C. An integrated biorefinery strategy for the utilization of palm-oil wastes. BIORESOURCE TECHNOLOGY 2022; 344:126266. [PMID: 34740797 DOI: 10.1016/j.biortech.2021.126266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Each year, the palm oil industry generates a significant amount of biomass residue and effluent waste; both have been identified as significant sources of greenhouse gas (GHG) emissions. This issue poses a severe environmental challenge for the industry due to the possibility of long-term negative effects on human well-being. The palm-oil industry must invest significantly in the technology that is required to resolve these issues and to increase the industry's sustainability. However, current technologies for converting wastes such as lignocellulosic components and effluents into biochemical products are insufficient for optimal utilization. This review discusses the geographical availability of palm-oil biomass, its current utilization routes, and then recommends the development of technology for converting palm-oil biomass into value-added products through an integrated biorefinery strategy. Additionally, this review summarizes the palm oil industry's contribution to achieving sustainable development goals (SDGs) through a circular bioeconomy concept.
Collapse
Affiliation(s)
- Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Nova Rachmadona
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Radityo Pangestu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, West Java 16911, Indonesia
| | - Rendi Palar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, West Java 16911, Indonesia
| | - Deddy Triyono Nugroho Adi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Research Center for Biomaterial, Indonesian Institute of Sciences, Cibinong, West Java 16911, Indonesia
| | - Ario Betha Juanssilfero
- Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, West Java 16911, Indonesia
| | - Immanuel Manurung
- P. T. Agricinal, Kecamatan Putri Hijau, Kabupaten Bengkulu Utara, Bengkulu 38362, Indonesia
| | - Shinji Hama
- Research and Development Laboratory, Bio-energy Corporation, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
49
|
Monir MU, Aziz AA, Ahmed MT, Hasan MY. Hydrogen energy–Potential in developing countries. RENEWABLE ENERGY AND SUSTAINABILITY 2022:299-325. [DOI: 10.1016/b978-0-323-88668-0.00013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
50
|
Khew Mun Hong G, Hussain MA, Abdul Wahab AK. Fuzzy logic controller implementation on a microbial electrolysis cell for biohydrogen production and storage. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.03.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|