1
|
Chen L, Zhang LY, Qiao S. Heterojunction-enhanced electron transfer of copper nanoparticles promotes electrocatalytic ammonia synthesis from nitric oxide. J Colloid Interface Sci 2025; 692:137534. [PMID: 40209427 DOI: 10.1016/j.jcis.2025.137534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
Electrocatalytic nitric oxide (NO) reduction to ammonia (NH3) serves as an innovative approach that concurrently addresses two pressing challenges: sustainable NH3 synthesis through renewable pathways and environmental detoxification of hazardous nitric oxide. While the thermodynamic driving force of the electrocatalytic NO-to-NH3 conversion (NORR) favors NH3 generation, the system's practical viability is compromised by kinetically sluggish reaction pathways and the inherent solubility constraints of NO (1.93 mM in aqueous media at 25 ℃), with performance attenuation becoming progressively severe when the NO concentration decreases. However, an efficient copper-based catalyst that can effectively adsorb and activate NO is not yet available. Here, we have utilized the strategy of biphasic carriers to enhance MSI (metal-support interactions) to develop rutile-anatase titanium dioxide (TiO2) heterojunction-supported copper nanoparticles (Cu@AR-TiO2) as an effective catalyst for NORR. Under processing conditions of 10 % v/v NO, the NH3-Faraday efficiency reached 91.38 % at -0.7 V vs. RHE, with the NH3 yield rate achieving 393.73 μmol h-1 mg-1cat at -0.8 V vs. RHE, surpassing counterparts devoid of heterojunction or copper nanoparticles. X-ray photoelectron spectroscopy and X-ray absorption spectroscopy shows that the three-phase interface formed by rutile-anatase TiO2 (AR-TiO2) heterojunction with copper nanoparticles (Cu NPs) enhanced the MSI of Cu NPs with the carrier to effectively promote the electron transfer from Cu NPs to carriers to form electron-deficient copper. In-situ Raman coupled with NO temperature-programmed desorption experiments revealed that the distinctive electron structure of Cu@AR-TiO2 (copper nanoparticles supported by AR-TiO2) strengthened the adsorption of NO and facilitated the generation of·NH3 (ammonia being absorbed) intermediate, ultimately achieving superior catalytic efficiency in NH3 production. This provides a novel approach to the design of NO-to-NH3 catalysts.
Collapse
Affiliation(s)
- LiWei Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, ChinaChina), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Li-Ying Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, ChinaChina), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, ChinaChina), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China.
| |
Collapse
|
2
|
Zhang Z, Li Y, Zhong Y, Li P, Zhu L, Zheng Z, Jia B, David M, Fu Y, Yu H, Ma T. sp 2/sp 3-Hybridized nitrogen-mediated electrochemical CO 2 capture and utilization. SCIENCE ADVANCES 2025; 11:eadw6592. [PMID: 40540579 DOI: 10.1126/sciadv.adw6592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/19/2025] [Indexed: 06/22/2025]
Abstract
Electrochemical carbon dioxide (CO2) capture and utilization, powered by renewable energy, are essential to achieving net-zero emissions and CO2 valorization. While remarkable progress has been made in catalysts, solution design, and system engineering, recent breakthroughs reveal that nitrogen-containing molecules-specifically sp2-hybridized structures (e.g., pyridine) and sp3-hybridized moieties (e.g., ethanolamine) -hold untapped potential to revolutionize both CO2 capture and conversion. These structures have been demonstrated as the Holy Grail in facilitating CO2 activation, stabilizing key intermediates, and streamlining reaction pathways-capabilities rarely achievable with conventional strategies. However, limited mechanistic understanding of their physicochemical properties and interactions with CO2 hampers broader application. This review highlights recent advances in leveraging sp2/sp3-hybridized nitrogen structures, unpacks their molecular roles in electrochemical CO2 management, and offers a unifying framework for their dual-functionality across capture and conversion. By illuminating these nitrogen-based motifs, we uncover practical design principles and open avenues for integrating expanded N-containing compounds into energy technologies-paving the way for next-generation carbon management strategies.
Collapse
Affiliation(s)
- Zhenfang Zhang
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yitong Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Yiwen Zhong
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Peng Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| | - Lingfeng Zhu
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Zhi Zheng
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW 2304, Australia
| | - Baohua Jia
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| | - Matthew David
- GrapheneX Pty Ltd., Level 3A, Suite 2, 1 Bligh Street, Sydney, NSW 2000, Australia
| | - Yang Fu
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| | - Hai Yu
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW 2304, Australia
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| |
Collapse
|
3
|
Wang H, Deng S, Hu H, Fang C, Luo G, Wang Z, Li S. Wet oxidation of NO with NaClO 2 in alkaline conditions: effects of acidic components in flue gas. ENVIRONMENTAL RESEARCH 2025; 278:121722. [PMID: 40306451 DOI: 10.1016/j.envres.2025.121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/23/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Excessive ClO2 tends to be produced and escape, causing secondary pollution when wet oxidation of NO with NaClO2 is conducted under acidic conditions. NaClO2 alkaline oxidation has accordingly received a wide attention. In this work, NaClO2 alkaline oxidation of NO has been systematically studied in a self-built spray tower. Focus has been placed on the effects of acidic components contained in flue gas such as CO2, HCl and SO2. ClO2 and HClO2 are considered more effective for NO oxidation, which tend to be produced in an acidic environment. HCO3- has a relatively higher hydrolysis coefficient than ClO2-, leading to more HClO2 formation. Similarity is found with HCl although the effect is not as significant as CO2 due to its low concentration in flue gas. SO2 exhibits a negative effect on NO removal since HClO2 can be consumed by SO2. Nearly 100 % NO removal efficiency can be achieved although there is an initial time delay necessary for the neutralization of alkaline environment. A similar performance has been observed for HCl. On the contrary, SO2 exhibits a negative effect on NO removal due to the competition with NO in the consumption of NaClO2. Additives such as NaClO and CTAC were also used to enhance NaClO2 alkaline oxidation performance. Interesting to note that CTAC can nearly eliminate the time delay by intensifying the gas-liquid mass transfer.
Collapse
Affiliation(s)
- Huasheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuang Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Hongyun Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Can Fang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangqian Luo
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ze Wang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songgeng Li
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Tan AZL, Ho WS, Hassim MH, Abdullah F, Lim LY. Evaluation of industrial air pollution contribution by type of industry in Pasir Gudang using AERMOD. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:385. [PMID: 40072627 DOI: 10.1007/s10661-025-13797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
In industrialized areas, air pollution is a recurring problem, especially in areas with high manufacturing and energy-intensive businesses. The challenge lies in the tension between industrial growth and environmental protection, as these sectors significantly contribute to pollution, resource depletion, and climate change. The objectives of the study were (1) to assess the contribution of each industrial group to the air quality in and around the Pasir Gudang industrial area, Malaysia, and (2) to evaluate the Air Pollution Index (API). Industrial emission sources were grouped into 10 specific groups, namely (1) biomass energy plants, (2) ceramic and mineral, (3) chemical, (4) electrical, (5) food and beverage, (6) metal industries, (7) paint, (8) rubber product, (9) waste recovery, and (10) wood respectively. For this, hourly, daily, and annual modelling of pollutant gases and particulate matter (SO2, NO2, and PM10) for 3 years (2019 to 2021) were conducted using the AERMOD dispersion model. The maximum hourly, daily, and annual average ground level concentrations of SO2 and PM10 were mainly contributed by Wood industry group emissions, while NO2 was dominated by metal industry group emissions. It was observed that the average hourly and daily NO2 levels exceeded Malaysia's standard limits. The API during the study period was 146.97, contributed by NO2, which indicates unhealthy conditions for sensitive groups. Therefore, NO2 pollutant control measures from the Metal industry group should be prioritized in this industrial area.
Collapse
Affiliation(s)
- Adeline Zhi Li Tan
- Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia
- Process Systems Engineering Centre (PROSPECT), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia
| | - Wai Shin Ho
- Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia.
- Process Systems Engineering Centre (PROSPECT), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia.
| | - Mimi H Hassim
- Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia
- Safety and Health Research Group/UTM-MPRC Institute for Oil and Gas, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia
| | - Faizuan Abdullah
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM , Johor Bahru, Johor, 81310, Malaysia
| | - Li Yee Lim
- Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia
| |
Collapse
|
5
|
Liu J, Jiang J, Xing X, Zhang H, Chen J, Dong Y. The denitrification characteristics of Na 2S 2O 8 solution in a falling film reactor. ENVIRONMENTAL TECHNOLOGY 2025; 46:1138-1146. [PMID: 39002156 DOI: 10.1080/09593330.2024.2376292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024]
Abstract
Wet scrubbing technology is an effective emission control technology for marine diesel engines. Nitric oxide (NO) is one of the main component of ship emissions, the sodium persulfate (Na2S2O8) can facilitate the NO mass transfer process to a rapid reaction. Falling film reactors are widely used in rapid gas-liquid reactions, however, the reaction characteristics of denitrification using Na2S2O8 solution in a falling film reactor are not clear, which were investigated in this paper. The factors of NO mass transfer flux were tested with the liquid-gas ratio of 15 L/m3. The effects of solution properties and temperatures on the reaction driving force were studied by calculating the chemical reaction equilibrium constants and Gibbs free energy changes. The results showed that the NO mass transfer flux increased with the increase of temperature, Na2S2O8 concentration, O2 concentration and NO concentration. NO mass transfer flux increased by 41.00% and then decreased by 2.12% as the pH value increased from 7 to 10 and then rising to 12. The Gibbs free energy changes of alkaline solutions were 114.22%-130.99% lower than those of acidic solution at 303-343 K, and the chemical reaction equilibrium constants were higher. Na2S2O8/seawater system has great application potential in marine exhaust gas purification.
Collapse
Affiliation(s)
- Jing Liu
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong University, Jinan, People's Republic of China
| | - Jingxuan Jiang
- Tongfang Environment Co., LTD, Beijing, People's Republic of China
| | - Xiangwen Xing
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong University, Jinan, People's Republic of China
| | - Hao Zhang
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong University, Jinan, People's Republic of China
| | - Juan Chen
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong University, Jinan, People's Republic of China
| | - Yong Dong
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
6
|
Zhang W, Chen S, Chen Z, Li Z, Zhou M, Ma Z. A review of chemical kinetic mechanisms and after-treatment of amino fuel combustion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178220. [PMID: 39754946 DOI: 10.1016/j.scitotenv.2024.178220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Ammonia is a highly promising carbon-neutral fuel. The use of ammonia as a fuel for internal combustion engines can reduce fossil energy consumption and greenhouse gas emissions. However, the high ignition energy required for ammonia and the slow flame propagation rate result in low combustion efficiency when ammonia is used directly in internal combustion engines. The combination of ammonia with highly reactive fuels improves combustion quality and increases efficiency. However, the combustion of these combined fuels generates particulate matter, CO, hydrocarbon, and significant amounts of NOx. Therefore, pollutant emissions must be reduced through after-treatment technologies. In this paper, a series of combustion and post-treatment challenges faced by amino fuel combustion in internal combustion engines are extensively discussed and the combustion reaction mechanisms of different amino fuels are also analyzed. The paper then reviews five key technologies applicable to the reprocessing of amino fuels, including selective catalytic reduction, selective catalytic reduction filter technology, electrochemical methods for NOx removal, direct catalytic decomposition of N2O, and ammonia sliding catalysts. An in-depth discussion of the catalytic materials and reaction mechanisms involved in these technologies is also provided in this paper. Finally, the paper summarizes the main technical challenges that must be addressed for the future application of amino fuels in internal combustion engines. These discussions can serve as an essential reference for developing and applying critical technologies for combustion control and pollutant treatment of amino fuels.
Collapse
Affiliation(s)
- Wei Zhang
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuai Chen
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhaohui Chen
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zehong Li
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| | - Mayi Zhou
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhenzhu Ma
- Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
7
|
Huang Y, Xu J, Ling H, Liu W, Jiao F. Deactivation Mechanism of Spent TiO 2-Based Selective Catalytic Reduction (SCR) Catalysts and State-of-the-Art Recycling Technologies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26371-26386. [PMID: 39630120 DOI: 10.1021/acs.langmuir.4c03515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nitrogen oxides (NOx) make up a group of gases that are mainly formed during the combustion of fossil fuels at high temperatures. NOx contributes to environmental degradation by forming acid rain and enhancing global warming. Exposure to air with a high concentration of NOx can aggravate respiratory diseases, particularly asthma. The elimination of NOx in practical applications mainly proceeds through selective catalytic reduction (SCR) of NOx with NH3 to harmless N2 and H2O. One practical issue of the SCR process is the deactivation of TiO2-based SCR catalysts. In addition, growing numbers of spent SCR catalysts present a serious waste-management challenge for recyclers at end of life. It is therefore crucial to disclose the deactivation mechanism of the spent TiO2-based NH3-SCR catalysts and propose effective recycling technologies for waste valorization. Here we outline the catalyst deactivation pathways for TiO2-based SCR catalysts and critically review methods of improving the direct sustainability of spent catalysts, in areas such as direct regeneration and recovery of spent catalysts. Through this review, the challenges, solutions, and future strategies for handling spent SCR catalysts are clarified for future studies of application on an industrial scale.
Collapse
Affiliation(s)
- Yalin Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Jiaqi Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Hongbin Ling
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Wei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Fen Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Khaleghiabbasabadi M, Taghavian H, Gholami P, Khodabakhshi S, Gheibi M, Wacławek S, Černík M, Silvestri D, Raczak KB, Moezzi R. A Novel Organic-Inorganic-Nanocomposite-Based Reduced Graphene Oxide as an Efficient Nanosensor for NO 2 Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1983. [PMID: 39728519 PMCID: PMC11728541 DOI: 10.3390/nano14241983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
There are three components to every environmental protection system: monitoring, estimation, and control. One of the main toxic gases with considerable effects on human health is NO2, which is released into the atmosphere by industrial activities and the transportation network. In the present research, a NO2 sensor is designed based on Fe3O4 piperidine-4-sulfonic acid grafted onto a reduced graphene oxide Fe3O4@rGO-N-(piperidine-4-SO3H) nanocomposite, due to the highly efficient detection of pollution in the air. In the first phase of the present study, the nanocomposite synthesis is performed in four steps. Afterward, the novel fabricated nanosensor is characterized through energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Raman, surface area analysis, and field emission scanning electron microscopy (FE-SEM). To determine the optimal condition for sensor performance, graphene-based nanosensors are prepared with various weight percentages (wt%) of rGO-N-(piperidine-4-SO3H) (1 wt%, 5 wt%, 10 wt%, and 15 wt%). During the experimental process, the performance of the sensors, in terms of the sensitivity and response time, is investigated at different NO2 concentrations, between 2.5 and 50 ppm. The outputs of this study demonstrate that the synthesized nanosensor has the best efficiency at more than a 5 ppm contamination concentration and with at least 15 wt% of rGO-N-(piperidine-4-SO3H).
Collapse
Affiliation(s)
- Masoud Khaleghiabbasabadi
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 46001 Liberec, Czech Republic; (M.K.); (H.T.); (M.G.); (S.W.); (M.Č.); (K.B.R.)
- Faculty of Mechatronics, Informatics, and Interdisciplinary Studies, Technical University of Liberec, 46001 Liberec, Czech Republic;
| | - Hadi Taghavian
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 46001 Liberec, Czech Republic; (M.K.); (H.T.); (M.G.); (S.W.); (M.Č.); (K.B.R.)
- Faculty of Mechatronics, Informatics, and Interdisciplinary Studies, Technical University of Liberec, 46001 Liberec, Czech Republic;
| | - Pooya Gholami
- Faculty of Chemical, Petroleum and Gas Eng, Semnan University, Semnan 35196, Iran;
| | - Saeed Khodabakhshi
- Energy Safety Research Institute, Swansea University, Bay Campus, Swansea SA1 8EN, UK;
| | - Mohammad Gheibi
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 46001 Liberec, Czech Republic; (M.K.); (H.T.); (M.G.); (S.W.); (M.Č.); (K.B.R.)
- Faculty of Mechatronics, Informatics, and Interdisciplinary Studies, Technical University of Liberec, 46001 Liberec, Czech Republic;
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 46001 Liberec, Czech Republic; (M.K.); (H.T.); (M.G.); (S.W.); (M.Č.); (K.B.R.)
- Faculty of Mechatronics, Informatics, and Interdisciplinary Studies, Technical University of Liberec, 46001 Liberec, Czech Republic;
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 46001 Liberec, Czech Republic; (M.K.); (H.T.); (M.G.); (S.W.); (M.Č.); (K.B.R.)
| | - Daniele Silvestri
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 46001 Liberec, Czech Republic; (M.K.); (H.T.); (M.G.); (S.W.); (M.Č.); (K.B.R.)
| | - Klaudia Barbara Raczak
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 46001 Liberec, Czech Republic; (M.K.); (H.T.); (M.G.); (S.W.); (M.Č.); (K.B.R.)
- Faculty of Mechatronics, Informatics, and Interdisciplinary Studies, Technical University of Liberec, 46001 Liberec, Czech Republic;
| | - Reza Moezzi
- Faculty of Mechatronics, Informatics, and Interdisciplinary Studies, Technical University of Liberec, 46001 Liberec, Czech Republic;
- Association of Talent under Liberty in Technology (TULTECH), Sõpruse pst, 10615 Tallinn, Estonia
| |
Collapse
|
9
|
Castro-Ferro N, Vaquerizo L. Nitric oxide recovery from hydrogen combustion streams. A clean pathway for the sustainable production of nitrogen compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122561. [PMID: 39305873 DOI: 10.1016/j.jenvman.2024.122561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
This work proves that nitric oxide (NO) can be successfully recovered from hydrogen flue gas streams in nitric acid, opening new pathways for NO control in combustion streams. Recovering NO from hydrogen combustion streams allows for increasing the combustion temperature in the turbine, reducing the fuel consumption per kWh, while obtaining a building block for nitric acid production. The solubility of nitric oxide is determined in amines, ethanol, and nitric acid solutions at a laboratory scale, suitable candidates for nitric oxide absorption. The solubility of nitric oxide in amines and ethanol is very low (0.009 mol/L/bar & 0.018 mol/L/bar respectively) compared with nitric acid (0.23 mol/L/bar), which is in the same range as the solubility of CO2 in amines solutions. Nitric acid, in addition to having good NO solubility, also presents high selectivity towards nitric oxide and easy recovery of nitric oxide by simply raising the temperature. Finally, a fugacity-activity coefficient model combining the Peng-Robinson (PR) equation of state with the Non-Random Two-Liquid (NRTL) activity coefficient model is proposed as a thermodynamic model to represent the NO-HNO3-H2O equilibrium, giving as a result an average absolute deviation between the experimental results and the model predictions of only 5%.
Collapse
Affiliation(s)
- Nataly Castro-Ferro
- Institute of Bioeconomy, PressTech Group, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Doctor Mergelina s/n, 47011, Valladolid, Spain
| | - Luis Vaquerizo
- Institute of Bioeconomy, PressTech Group, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Doctor Mergelina s/n, 47011, Valladolid, Spain.
| |
Collapse
|
10
|
Yazikova AA, Efremov AA, Poryvaev AS, Polyukhov DM, Gjuzi E, Oetzmann D, Hoffmann F, Fröba M, Fedin MV. Xerogel mesoporous materials based on ultrastable Blatter radicals for efficient sorption of nitric oxide. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135520. [PMID: 39159578 DOI: 10.1016/j.jhazmat.2024.135520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The reduction of hazardous nitric oxide emissions remains a significant ecological challenge. Despite the variety of possibilities, sorbents able to capture low concentrations of NO from flue gas with high selectivity are still in demand. In this work a new type of mesoporous xerogel material highly loaded with ultrastable Blatter radicals (BTR, >60 % by mass) that act as selective NO sorption sites is developed. Electron Paramagnetic Resonance (EPR) spectroscopy evidences reversible NO sorption in nanometer-scale pores of BTR-based xerogels and indicates the high NO capacity of such radical-rich sorbent. Efficient NO capture from model flue gas mixture is also evidenced in experiments with a fixed bed reactor. Such advanced properties of new materials as selectivity, strong binding with NO and an ability for mild regeneration via thermodesorption promote them for future ecological applications.
Collapse
Affiliation(s)
- Anastasiya A Yazikova
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Aleksandr A Efremov
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Artem S Poryvaev
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia
| | - Daniil M Polyukhov
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia
| | - Eva Gjuzi
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, Hamburg 20146, Germany
| | - Denise Oetzmann
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, Hamburg 20146, Germany
| | - Frank Hoffmann
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, Hamburg 20146, Germany
| | - Michael Fröba
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, Hamburg 20146, Germany.
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia.
| |
Collapse
|
11
|
Lee H, Kwon S, Park N, Cha SG, Lee E, Kong TH, Cha J, Kwon Y. Scalable Low-Temperature CO 2 Electrolysis: Current Status and Outlook. JACS AU 2024; 4:3383-3399. [PMID: 39328755 PMCID: PMC11423314 DOI: 10.1021/jacsau.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
The electrochemical CO2 reduction (eCO2R) in membrane electrode assemblies (MEAs) has brought e-chemical production one step closer to commercialization because of its advantages of minimized ohmic resistance and stackability. However, the current performance of reported eCO2R in MEAs is still far below the threshold for economic feasibility where low overall cell voltage (<2 V) and extensive stability (>5 years) are required. Furthermore, while the production cost of e-chemicals heavily relies on the carbon capture and product separation processes, these areas have received much less attention compared to CO2 electrolysis, itself. In this perspective, we examine the current status of eCO2R technologies from both academic and industrial points of view. We highlight the gap between current capabilities and commercialization standards and offer future research directions for eCO2R technologies with the hope of achieving industrially viable e-chemical production.
Collapse
Affiliation(s)
- Hojeong Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seontaek Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Namgyoo Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sun Gwan Cha
- Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Eunyoung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae-Hoon Kong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihoo Cha
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
12
|
Chen Z, Wang H, Zhang X, Wu M, Qu H. Construction of multifunctional interface engineering on Cu-SSZ-13@Ce-MnO x/Mesoporous-silica catalyst for boosting activity, SO 2 tolerance and hydrothermal stability. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135268. [PMID: 39047562 DOI: 10.1016/j.jhazmat.2024.135268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Although small pore Cu-SSZ-13 catalysts have been successful as commercial catalysts for controlling NOx emissions from mobile sources, the challenges of high light-off temperature, SO2 tolerance and hydrothermal stability still need to be addressed. Here, we synthesized a multifunctional core-shell catalyst with Cu-SSZ-13 as the core phase and Ce-MnOx supported Mesoporous-silica (Meso-SiO2) as the shell phase via self-assembly and impregnation. The core-shell catalyst exhibited excellent low-temperature activity, SO2 tolerance and hydrothermal stability compared to the Cu-SSZ-13. The Ce-MnOx species dispersed in the shell are found to enhance both the acidic and oxidative properties of the core-shell catalyst. More critically, these species can rapidly activate NO and oxidize it to NO2, which allows the NH3-SCR reaction on the core-shell catalyst to be initiated in the shell phase. Meanwhile, Ce-MnOx species can react preferentially with SO2 as sacrifice components, effectively avoiding the sulfur inactivation of the copper active sites. Furthermore, the hydrophobic Meso-SiO2 shell provides an important barrier for the core phase, which reduces the loss of active species, acid sites and framework Al of the aged core-shell catalyst and mitigates the collapse of the zeolite framework. This work provides a new strategy for the design of novel and efficient NH3-SCR catalysts.
Collapse
Affiliation(s)
- Zhiqiang Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Hang Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinjia Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mei Wu
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Hongxia Qu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
13
|
Rizwan M, Tanveer H, Ali MH, Sanaullah M, Wakeel A. Role of reactive nitrogen species in changing climate and future concerns of environmental sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51147-51163. [PMID: 39138725 DOI: 10.1007/s11356-024-34647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
The nitrogen (N) cycle is an intricate biogeochemical process that encompasses the conversion of several chemical forms of N. Given its role in food production, the need for N for life on Earth is obvious. However, the release of reactive nitrogen (Nr) species throughout different biogeochemical processes contributes to atmospheric pollution. Several human activities generate many species, including ammonia, nitrous oxide (N2O), nitric oxide, and nitrate. The primary reasons for this change are the use of nitrogen-based fertilizers, industrial activities, and the burning of fossil fuels. N2O poses a significant threat to environmental sustainability on our planet, with its global warming potential approximately 298 times greater than that of CO2. It has direct or indirect impacts on the environment, agroecosystem, and human life on earth. Solar, hydroelectric, geothermal, and wind turbines must be used to reduce Nr emissions. In addition, enterprises should install catalytic converters to minimize nitrogen gas emissions. To reduce Nr emissions, strategic interventions like fertilizer balancing are needed. This work will serve as a comprehensive guide for researchers, academics, and policymakers. Additionally, it will also assist social workers in emphasizing the Nr issue to the public in order to raise awareness within worldwide society.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Hurain Tanveer
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Hayder Ali
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Wakeel
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
14
|
Li J, Wang H, Luo Y, Zhou Z, Zhang H, Chen H, Tao K, Liu C, Zeng L, Huo F, Wu J. Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm. NANO-MICRO LETTERS 2024; 16:256. [PMID: 39073674 PMCID: PMC11286924 DOI: 10.1007/s40820-024-01466-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/16/2024] [Indexed: 07/30/2024]
Abstract
Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks. Most of the current rescue robots lack the ability to interact with environments, leading to low rescue efficiency. The multimodal electronic skin (e-skin) proposed not only reproduces the pressure, temperature, and humidity sensing capabilities of natural skin but also develops sensing functions beyond it-perceiving object proximity and NO2 gas. Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin. Rescue robots integrated with multimodal e-skin and artificial intelligence (AI) algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping, laying the foundation for automated post-earthquake rescue. Besides, the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time, thereby adopting appropriate measures to protect trapped people from the toxic environment. Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities, which, as an interface for interaction with the physical world, dramatically expands intelligent robots' application scenarios.
Collapse
Affiliation(s)
- Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- State Key Laboratory of Transducer Technology, Shanghai, 200050, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zijing Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - He Zhang
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Guangzhou, 510641, People's Republic of China
| | - Huizhi Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, People's Republic of China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, People's Republic of China.
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lingxing Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Fengwei Huo
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, People's Republic of China.
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Transducer Technology, Shanghai, 200050, People's Republic of China.
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Guangzhou, 510641, People's Republic of China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
15
|
Qian SJ, Cao H, Wang YG, Li J. Controlling the Selectivity of Electrocatalytic NO Reduction through pH and Potential Regulation on Single-Atom Catalysts. J Am Chem Soc 2024; 146:12530-12537. [PMID: 38664859 DOI: 10.1021/jacs.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Electrocatalytic nitrogen oxide reduction (NOxRR) emerges as an effective way to bring the disrupted nitrogen cycle back into balance. However, efficient and selective NOxRR is still challenging partly due to the complex reaction mechanism, which is influenced by experimental conditions such as pH and electrode potential. Here, we have studied the enzyme-inspired iron single-atom catalysts (Fe-N4-C) and identified that the selectivity roots in the first step of the nitric oxide reduction. Combining the constrained molecular dynamics (MD) simulations with the quasi-equilibrium approximation, the effects of electrode potential and pH on the reaction free energy were considered explicitly and predicted quantitatively. Systematic heat maps for selectivity between single-N and N-N-coupled products in a wide pH-potential space are further developed, which have reproduced the experimental observations of NOxRR. The approach presented in this study allows for a realistic simulation of the electrocatalytic interfaces and a quantitative evaluation of interfacial effects. Our results in this study provide valuable and straightforward guidance for selective NOx reduction toward desired products by precisely designing the experimental conditions.
Collapse
Affiliation(s)
- Sheng Jie Qian
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Hao Cao
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yang Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Barla RJ, Raghuvanshi S, Gupta S. A comprehensive review of flue gas bio-mitigation: chemolithotrophic interactions with flue gas in bio-reactors as a sustainable possibility for technological advancements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33165-33189. [PMID: 38668951 DOI: 10.1007/s11356-024-33407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Abstract
Flue gas mitigation technologies aim to reduce the environmental impact of flue gas emissions, particularly from industrial processes and power plants. One approach to mitigate flue gas emissions involves bio-mitigation, which utilizes microorganisms to convert harmful gases into less harmful or inert substances. The review thus explores the bio-mitigation efficiency of chemolithotrophic interactions with flue gas and their potential application in bio-reactors. Chemolithotrophs are microorganisms that can derive energy from inorganic compounds, such as carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur dioxide (SO2), present in the flue gas. These microorganisms utilize specialized enzymatic pathways to oxidize these compounds and produce energy. By harnessing the metabolic capabilities of chemolithotrophs, flue gas emissions can be transformed into value-added products. Bio-reactors provide controlled environments for the growth and activity of chemolithotrophic microorganisms. Depending on the specific application, these can be designed as suspended or immobilized reactor systems. The choice of bio-reactor configuration depends on process efficiency, scalability, and ease of operation. Factors influencing the bio-mitigation efficiency of chemolithotrophic interactions include the concentration and composition of the flue gas, operating conditions (such as temperature, pH, and nutrient availability), and reactor design. Chemolithotrophic interactions with flue gas in bio-reactors offer a potentially efficient approach to mitigating flue gas emissions. Continued research and development in this field are necessary to optimize reactor design, microbial consortia, and operating conditions. Advances in understanding the metabolism and physiology of chemolithotrophic microorganisms will contribute to developing robust and scalable bio-mitigation technologies for flue gas emissions.
Collapse
Affiliation(s)
- Rachael Jovita Barla
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Smita Raghuvanshi
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India.
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| |
Collapse
|
17
|
He W, Zhang Q, Chen K, Nie Y, Li Y, Zhu L, Shen K. Theoretical Study of the Decomposition Reactions of 2-Vinylfuran. ACS OMEGA 2024; 9:19063-19070. [PMID: 38708254 PMCID: PMC11064205 DOI: 10.1021/acsomega.3c09818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
With the development of new synthetic methods, 2-vinylfuran (V2F) has become a potential renewable biofuel. In this work, the potential energy surfaces for the V2F unimolecular dissociation reaction, the H-addition reaction, and the H-abstraction reaction were constructed at the G4 level. The temperature- and pressure-dependent rate constants for the relevant reactions on the potential energy surfaces were calculated by solving the master equation based on the transition state theory and Rice-Ramsperger-Kassel-Marcus theory. The results show that the rate constant for the intramolecular H-transfer reaction of V2F with H atoms from the C(5) site to the C(4) site to form 2-vinylfuran-3(2H)-carbene, followed by the decomposition to form h145te3o, is the highest. The rate constants for the H-abstraction reaction of V2F with H atoms were the largest at C(6) on the branched chain, followed by C(7), and the rate constants for the H-abstraction reaction at C(3), C(4), and C(5) on the furan ring were not competitive. Negative temperature coefficient effects are observed for the rate constants of the addition reactions of V2F with H atoms at low pressures, with the H-addition rate constant at the C(5) site being the largest. This work not only provides the necessary rate constants for the reaction mechanism of V2F combustion but also provides theoretical guidance for the practical application of furan-based fuels.
Collapse
Affiliation(s)
- Wei He
- Eastern
Michigan Joint college of Engineering, Beibu
Gulf University, Qinzhou 535011, P. R. China
- Guangxi
Key Laboratory of Ocean Engineering Equipment and Technology, Qinzhou 535011, P. R. China
- Education
Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Beibu Gulf Offshore Engineering Equipment and Technology
(Beibu Gulf University), Qinzhou 535011, P. R. China
| | - Qichun Zhang
- Guangxi
Key Laboratory of Ocean Engineering Equipment and Technology, Qinzhou 535011, P. R. China
- Education
Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Beibu Gulf Offshore Engineering Equipment and Technology
(Beibu Gulf University), Qinzhou 535011, P. R. China
| | - Kaixuan Chen
- Guangxi
Key Laboratory of Ocean Engineering Equipment and Technology, Qinzhou 535011, P. R. China
- Education
Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Beibu Gulf Offshore Engineering Equipment and Technology
(Beibu Gulf University), Qinzhou 535011, P. R. China
| | - Yusen Nie
- Eastern
Michigan Joint college of Engineering, Beibu
Gulf University, Qinzhou 535011, P. R. China
| | - Yan Li
- Guangxi
Key Laboratory of Ocean Engineering Equipment and Technology, Qinzhou 535011, P. R. China
- Education
Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Beibu Gulf Offshore Engineering Equipment and Technology
(Beibu Gulf University), Qinzhou 535011, P. R. China
| | - Liucun Zhu
- Advanced
Science and Technology Research Institute, Beibu Gulf University, Qinzhou 535011, P. R. China
- Research
Institute for Integrated Science, Kanagawa
University, Kanagawa 259-1293, Japan
| | - Kang Shen
- Eastern
Michigan Joint college of Engineering, Beibu
Gulf University, Qinzhou 535011, P. R. China
- Guangxi
Key Laboratory of Ocean Engineering Equipment and Technology, Qinzhou 535011, P. R. China
- College of
Electrical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
18
|
Abstract
CO2 electrolyzers have progressed rapidly in energy efficiency and catalyst selectivity toward valuable chemical feedstocks and fuels, such as syngas, ethylene, ethanol, and methane. However, each component within these complex systems influences the overall performance, and the further advances needed to realize commercialization will require an approach that considers the whole process, with the electrochemical cell at the center. Beyond the cell boundaries, the electrolyzer must integrate with upstream CO2 feeds and downstream separation processes in a way that minimizes overall product energy intensity and presents viable use cases. Here we begin by describing upstream CO2 sources, their energy intensities, and impurities. We then focus on the cell, the most common CO2 electrolyzer system architectures, and each component within these systems. We evaluate the energy savings and the feasibility of alternative approaches including integration with CO2 capture, direct conversion of flue gas and two-step conversion via carbon monoxide. We evaluate pathways that minimize downstream separations and produce concentrated streams compatible with existing sectors. Applying this comprehensive upstream-to-downstream approach, we highlight the most promising routes, and outlook, for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
19
|
Feng X, Zeng J, Zhu J, Song K, Zhou X, Guo X, Xie C, Shi JW. Gd-modified Mn-Co oxides derived from layered double hydroxides for improved catalytic activity and H 2O/SO 2 tolerance in NH 3-SCR of NO x reaction. J Colloid Interface Sci 2024; 659:1063-1071. [PMID: 38212197 DOI: 10.1016/j.jcis.2024.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Metal oxides derived from layered double hydroxides (LDHs) are expected to obtain low-temperature denitrification (de-NOx) catalysts with high catalytic activity and H2O/SO2 tolerance in the selective catalytic reduction (SCR) of NOx with NH3. In current work, we successfully prepared Gd-modified Mn-Co metal oxides derived from Gd-modified Mn-Co LDHs. The resultant Gd-modified Mn-Co metal oxides exhibit excellent catalytic activity and high H2O/SO2 tolerance in the NH3-SCR de-NOx reaction. The reasons for the enhancement can be ascribed to the unique surface physicochemical properties inherited from LDHs and the modification of Gd, which increase the specific surface area, improve the relative content of Mn4+ and Co3+ on the surface, enhance the number of acidic sites, strengthen the reducibility of catalyst, resulting in the enhanced catalytic activity and H2O/SO2 tolerance. Additionally, it is demonstrated that the NH3-SCR de-NOx reaction occurred on the surface of Gd-modified Mn-Co oxides followed both Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms. This study provides us with a design approach to promote catalytic activity and H2O/SO2 tolerance through morphology control and rare earth modification.
Collapse
Affiliation(s)
- Xiangbo Feng
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, Shaanxi, China
| | - Jialing Zeng
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, Shaanxi, China
| | - Jianru Zhu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Kunli Song
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xinya Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xuanlin Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Chong Xie
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
20
|
Lv Z, He G, Zhang W, Liu J, Lian Z, Yang Y, Yan Z, Xu G, Shan W, Yu Y, He H. Interface sites on vanadia-based catalysts are highly active for NO x removal under realistic conditions. J Environ Sci (China) 2024; 136:523-536. [PMID: 37923461 DOI: 10.1016/j.jes.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2023]
Abstract
TiO2-supported V2O5 catalysts are commonly used in NOx reduction with ammonia due to their robust catalytic performance. Over these catalysts, it is generally considered that the active species are mainly derived from the vanadia species rather than the intrinsic structure of V-O-Ti entities, namely the interface sites. To reveal the role of V-O-Ti entities in NH3-SCR, herein, we prepared TiO2/V2O5 catalysts and demonstrated that V-O-Ti entities were more active for NOx reduction under wet conditions than the V sites (V=O) working alone. On the V-O-Ti entities, kinetic measurements and first principles calculations revealed that NH3 activation exhibited a much lower energy barrier than that on V=O sites. Under wet conditions, the V-O-Ti interface significantly inhibited the transformation of V=O to V-OH sites thus benefiting NH3 activation. Under wet conditions, meanwhile, the migration of NH4+ from Ti site neighboring the V-O-Ti interface to Ti site of the V-O-Ti interface was exothermic; thus, V-O-Ti entities together with neighboring Ti sites could serve as channels linking NH3 pool and active centers for activation of NH4+. This finding reveals that the V-O-Ti interface sites on V-based catalysts play a crucial role in NOx removal under realistic conditions, providing a new perspective on NH3-SCR mechanism.
Collapse
Affiliation(s)
- Zhihui Lv
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenshuo Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Lian
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yang Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zidi Yan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Guangyan Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Research Center for Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
21
|
Wu Q, Zhu F, Wallace G, Yao X, Chen J. Electrocatalysis of nitrogen pollution: transforming nitrogen waste into high-value chemicals. Chem Soc Rev 2024; 53:557-565. [PMID: 38099452 DOI: 10.1039/d3cs00714f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
On 16 June 2023, the United Nations Environment Programme highlighted the severity of nitrogen pollution faced by humans and called for joint action for sustainable nitrogen use. Excess nitrogenous waste (NW: NO, NO2, NO2-, NO3-, etc.) mainly arises from the use of synthetic fertilisers, wastewater discharge, and fossil fuel combustion. Although the amount of NW produced can be minimised by reducing the use of nitrogen fertilisers and fossil fuels, the necessity to feed seven billion people on Earth limits the utility of this approach. Compared to current industrial processes, electrocatalytic NW reduction or CO2-NW co-reduction offers a potentially greener alternative for recycling NW and producing high-value chemicals. However, upgrading this technology to connect upstream and downstream industrial chains is challenging. This viewpoint focuses on electrocatalytic NW reduction, a cutting-edge technology, and highlights the challenges in its practical application. It also discusses future directions to meet the requirements of upstream and downstream industries by optimising production processes, including the pretreatment and supply of nitrogenous raw materials (e.g. flue gas and sewage), design and macroscopic preparation of electrocatalysts, and upscaling of reactors and other auxiliary equipment.
Collapse
Affiliation(s)
- Qilong Wu
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia.
| | - Fangfang Zhu
- School of Advanced Energy, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Gordon Wallace
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia.
| | - Xiangdong Yao
- School of Advanced Energy, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jun Chen
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia.
| |
Collapse
|
22
|
Larki I, Zahedi A, Asadi M, Forootan MM, Farajollahi M, Ahmadi R, Ahmadi A. Mitigation approaches and techniques for combustion power plants flue gas emissions: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166108. [PMID: 37567281 DOI: 10.1016/j.scitotenv.2023.166108] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Population growth and urbanization are driving energy demand. Despite the development of renewable energy technologies, most of this demand is still met by fossil fuels. Flue gases are the main air pollutants from combustion power plants. These pollutants include particulate matter (PM), sulfur oxides (SOx), nitrogen oxides (NOx), and carbon oxides (COx). The release of these pollutants has adverse effects on human health and the environment, including serious damage to the human respiratory system, acid rain, climate change, and global warming. In this review, a wide range of conventional and new technologies that have the potential to be used in the combustion power plant sector to manage and reduce flue gas pollutants have been examined. Nowadays, conventional approaches to emissions control and management, which focus primarily on post-combustion techniques, face several challenges despite their widespread use and commendable effectiveness. Therefore, studies that have proposed alternative approaches to achieve improved and more efficient methods are reviewed. The results show that new advances such as novel PM collectors, attaining an efficiency of nearly 100 % for submicron particles, microwave systems, boasting an efficiency of nearly 90 % for NO and over 95 % for SO2, electrochemical systems achieving above 90 % efficiency for NOx reduction, non-thermal plasma processes demonstrating an efficiency close to 90 % for NOx, microalgae-based methods with efficiency ranging from 80 % to 99 % for CO2, and wet scrubbing, exhibit considerable potential in addressing the shortcomings of conventional systems. Furthermore, the integration of hybrid methods, particularly in regions prioritizing environmental concerns over economic considerations, holds promise for enhanced control and removal of flue gas pollutants with superior efficiency.
Collapse
Affiliation(s)
- Iman Larki
- Department of Energy Systems Engineering, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Alireza Zahedi
- Department of Energy Systems Engineering, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran.
| | - Mahdi Asadi
- Department of Energy Systems Engineering, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Mahdi Forootan
- Department of Energy Systems Engineering, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Meisam Farajollahi
- Department of Energy Systems Engineering, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Rouhollah Ahmadi
- Department of Energy Systems Engineering, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Abolfazl Ahmadi
- Department of Energy Systems Engineering, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
23
|
D'Aquino A, Kalinainen N, Auvinen H, Andreottola G, Puhakka JA, Palmroth MRT. Effects of inorganic ions on autotrophic denitrification by Thiobacillus denitrificans and on heterotrophic denitrification by an enrichment culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165940. [PMID: 37541515 DOI: 10.1016/j.scitotenv.2023.165940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/11/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Salinity of nitrate-laden wastewaters, such as those produced by metal industries, tanneries, and wet flue gas cleaning systems may affect their treatment by denitrification. Salt inhibition of denitrification has been reported, while impacts of individual ions remain poorly understood whilst being relevant for wastewaters where often the concentration of a single ion rather than the salts varies. The aim of this study was to determine the inhibition by inorganic ions (Na+, Cl-, SO42- and K+) commonly present in saline wastewaters on denitrification and reveal its potential for the treatment of such waste streams, like those produced by NOx-SOx removal scrubbers. The inhibitory effects were investigated for both heterotrophic (enrichment culture) and autotrophic (T. denitrificans) denitrification in batch assays, by using NaCl, Na2SO4, KCl and K2SO4 salts at increasing concentrations. The half inhibition concentrations (IC50) of Na+ (as NaCl), Na+ (as Na2SO4) and Cl- (as KCl) were: 4.3 ± 0.3, 7.9 ± 0.5 and 5.2 ± 0.3 g/L for heterotrophic, and 1-2.5, 2.5-5 and 4.1 ± 0.3 g/L for autotrophic denitrification, respectively. Heterotrophic denitrification was completely inhibited at 20 g/L Na+ (as NaCl), 30 g/L Na+ (as Na2SO4) and 30 g/L Cl- (as KCl), while autotrophic at 8 g/L Na+ (as NaCl), 10 g/L Na+ (as Na2SO4) and 15 g/L Cl- (as KCl). In both cases, Cl- addition had the most important role in decreasing denitrification rate, while Na+ at 1 g/L stimulated autotrophic denitrification but rapidly inhibited the rate at higher concentrations. Nitrite reduction was less inhibited by the ions than nitrate reduction and both the osmotic pressure and the toxicity of the single ions played key roles in the overall inhibition of denitrification. Eventually, both autotrophic and heterotrophic denitrification showed potential for the treatment of a saline wastewater from a NOx-SO2 removal scrubber from a pulp mill.
Collapse
Affiliation(s)
- Alessio D'Aquino
- Tampere University, Faculty of Engineering and Natural Sciences, Bio- and Circular Economy Unit, Korkeakoulunkatu 8, P.O. Box 541, 33014 Tampere, Finland.
| | - Niko Kalinainen
- Valmet Technologies Oy, Lentokentänkatu 11, 33900 Tampere, Finland
| | - Hannele Auvinen
- Tampere University, Faculty of Engineering and Natural Sciences, Bio- and Circular Economy Unit, Korkeakoulunkatu 8, P.O. Box 541, 33014 Tampere, Finland
| | - Gianni Andreottola
- University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, 38123 Trento, Italy
| | - Jaakko A Puhakka
- Tampere University, Faculty of Engineering and Natural Sciences, Bio- and Circular Economy Unit, Korkeakoulunkatu 8, P.O. Box 541, 33014 Tampere, Finland
| | - Marja R T Palmroth
- Tampere University, Faculty of Engineering and Natural Sciences, Bio- and Circular Economy Unit, Korkeakoulunkatu 8, P.O. Box 541, 33014 Tampere, Finland
| |
Collapse
|
24
|
Li M, Verkuil J, Bunea S, Kortlever R, Urakawa A. Towards Higher NH 3 Faradaic Efficiency: Selective-Poisoning of HER Active Sites by Co-Feeding CO in NO Electroreduction. CHEMSUSCHEM 2023; 16:e202300949. [PMID: 37530423 DOI: 10.1002/cssc.202300949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Direct electroreduction of nitric oxide offers a promising avenue to produce valuable chemicals, such as ammonia, which is an essential chemical to produce fertilizers. Direct ammonia synthesis from NO in a polymer electrolyte membrane (PEM) electrolyzer is advantageous for its continuous operation and excellent mass transport characteristics. However, at a high current density, the faradaic efficiency of NO electroreduction reaction is limited by the competing hydrogen evolution reaction (HER). Herein, we report a CO-mediated selective poisoning strategy to enhance the faradaic efficiency (FE) towards ammonia by suppressing the HER. In the presence of only NO at the cathode, Pt/C and Pd/C catalysts showed a lower FE towards NH3 than to H2 due to the dominating HER. Cu/C catalyst showed a 78 % FE towards NH3 at 2.0 V due to the stronger binding affinity to NO* compared to H*. By co-feeding CO, the FE of Cu/C catalyst towards NH3 was improved by 12 %. More strikingly, for Pd/C, the FE towards NH3 was enhanced by 95 % with CO co-feeding, by effectively suppressing HER. This is attributed to the change of the favorable surface coverage resulting from the selective and competitive binding of CO* to H* binding sites, thereby improving NH3 selectivity.
Collapse
Affiliation(s)
- Min Li
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jarco Verkuil
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Sorin Bunea
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ruud Kortlever
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Large-Scale Energy Storage, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Atsushi Urakawa
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
25
|
Liu T, Wei J, Liu P, Shi H, Wang Q, Yang Y. Insight into the mechanism of direct N-C coupling in selective catalytic reduction of NO by CO over Ni(111)-supported graphene. Phys Chem Chem Phys 2023; 25:26185-26195. [PMID: 37740345 DOI: 10.1039/d3cp01810e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Selective catalytic reduction (SCR) of NO using CO as a reducing agent is a straightforward and promising approach to the simultaneous removal of NO and CO. Herein, a novel mechanism of N-C direct coupling of gaseous NO and CO into ONCO and subsequent hydrogenation of *ONCO to nitrogen-containing compounds over Ni(111)-supported graphene ((Gr/Ni(111)) is reported. The results indicate that Gr/Ni(111) can not only trigger direct N-C coupling of NO and CO to form ONCO with a low activation energy barrier of 0.11 eV, but also enable the key intermediate of *ONCO to be stable. The *ONCO chemisorbed on Gr/Ni(111) exhibits negative univalent [ONCO]- and is more stable than neutral ONCO. The hydrogenation pathways show that HNCO preferably forms through a kinetically favorable initial N-C coupling due to the lowest free-energy barrier of 0.18 eV, while NH2CH3 is a considerably competitive product because its free-energy barrier is only 0.20 eV higher than that of HNCO. Our results provide a fundamental insight into the novel reaction mechanism of the SCR of NO and also suggest that nickel-supported graphene is a potential and high-efficient catalyst for eliminating CO and NO harmful gases.
Collapse
Affiliation(s)
- Tiantian Liu
- School of Chemistry and Molecular Engineering, Institute of Chemical Biology and Functional Molecules (ICBFM), Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Juan Wei
- School of Chemistry and Molecular Engineering, Institute of Chemical Biology and Functional Molecules (ICBFM), Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Pengfei Liu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, P. R. China
| | - Hui Shi
- School of Chemistry and Molecular Engineering, Institute of Chemical Biology and Functional Molecules (ICBFM), Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Qiang Wang
- School of Chemistry and Molecular Engineering, Institute of Chemical Biology and Functional Molecules (ICBFM), Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yanhui Yang
- School of Chemistry and Molecular Engineering, Institute of Chemical Biology and Functional Molecules (ICBFM), Nanjing Tech University, Nanjing 211816, P. R. China.
- Institute of Advanced Synthesis (IAS), Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
26
|
Gan Y, Dai W, Huang P, Zhang B, Cui S. Preparation of Denitrification Materials with Nickel Slag for Nitric Oxide Decomposition in Cement Kilns. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5859. [PMID: 37687552 PMCID: PMC10489123 DOI: 10.3390/ma16175859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
NOx emission from the cement industry have received much attention. In order to reduce the NOx emission in cement kilns, nickel slag was used to prepare the non-ammonia denitrification material, and a denitrification mechanism was proposed in this study. The results showed that the denitrification material prepared at pH 7 exhibited the best denitrification performance. At low temperature, the highest denitrification performance was achieved between 200 and 300 °C with a NO decomposition rate of approximately 40%. Then, the NO decomposition rate increased as the temperature increased, reaching over 95% above 700 °C. The physicochemical characteristics showed that the material had the highest specific surface area and the highest relative Fe content, which benefited the denitrification performance. The divalent iron of the denitrification material was considered the active site for the reaction, and trivalent iron was not conducive to denitrification performance at a low temperature range. After the denitrification reaction, the Fe3+/Fe2+ increased from 0.89 to 1.31. The proposed denitrification mechanism was the redox process between divalent iron and trivalent iron. This study not only recycles industrial waste to reduce solid waste pollution but also efficiently removes nitrogen oxides from cement kilns without ammonia.
Collapse
Affiliation(s)
- Yanling Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; (W.D.); (P.H.); (B.Z.)
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, No. 855 Xingye Avenue East, Guangzhou 511443, China
- College of Materials Science and Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Wenjing Dai
- School of Environmental Science and Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; (W.D.); (P.H.); (B.Z.)
| | - Pingli Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; (W.D.); (P.H.); (B.Z.)
| | - Boge Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; (W.D.); (P.H.); (B.Z.)
| | - Suping Cui
- College of Materials Science and Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
27
|
Okoji AI, Anozie AN, Omoleye JA, Taiwo AE, Babatunde DE. Evaluation of adaptive neuro-fuzzy inference system-genetic algorithm in the prediction and optimization of NOx emission in cement precalcining kiln. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54835-54845. [PMID: 36882651 DOI: 10.1007/s11356-023-26282-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The increasing demand for cement due to urbanization growth in Africa countries may result in an upsurge of pollutants associated with its production. One major air pollutant in cement production is nitrogen oxides (NOx) and reported to cause serious damage to human health and the ecosystem. The operation of a cement rotary kiln NOx emission was studied with plant data using the ASPEN Plus software. It is essential to understand the effects of calciner temperature, tertiary air pressure, fuel gas, raw feed material, and fan damper on NOx emissions from a precalcining kiln. In addition, the performance capability of adaptive neuro-fuzzy inference systems and genetic algorithms (ANFIS-GA) to predict and optimize NOx emissions from a precalcining cement kiln is evaluated. The simulation results were in good agreement with the experimental results, with root mean square error of 2.05, variance account (VAF) of 96.0%, average absolute deviation (AAE) of 0.4097, and correlation coefficient of 0.963. Further, the optimal NOx emission was 273.0 mg/m3, with the parameters as determined by the algorithm were calciner temperature at 845 °C, tertiary air pressure - 4.50 mbar, fuel gas of 8550 m3/h, raw feed material 200 t/h, and damper opening of 60%. Consequently, it is recommended that ANFIS should be combined with GA for effective prediction, and optimization of NOx emission in cement plants.
Collapse
Affiliation(s)
- Anthony I Okoji
- Department of Chemical Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Ambrose N Anozie
- Department of Chemical Engineering, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - James A Omoleye
- Department of Chemical Engineering, Covenant University, Ota, Ogun State, Nigeria
| | - Abiola E Taiwo
- Faculty of Engineering, Mangosuthu University of Technology, Durban, South Africa.
| | - Damilola E Babatunde
- Department of Chemical Engineering, Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
28
|
Bi12TiO20-TiO2 S‑scheme heterojunction for improved photocatalytic NO removal: Experimental and DFT insights. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
29
|
Jin G, Wang M, Zhang J, Chen L, Liao X, He W. Efficient reduction of NOx emissions from waste double-base propellant in co-pyrolysis with pine sawdust. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
30
|
Engineering the Mechanically Mixed BaMnO3-CeO2 Catalyst for NO Direct Decomposition: Effect of Thermal Treatment on Catalytic Activity. Catalysts 2023. [DOI: 10.3390/catal13020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A 5 wt% BaMnO3-CeO2 composite catalyst prepared by the one-pot method exhibits extraordinary catalytic performance for nitrogen monoxide (NO) direct decomposition into N2 and O2; however, the reasons for the high activity remain to be explored. Here, the catalyst was prepared by mechanical mixing and then subjected to thermal treatment at different temperatures (600–800 °C) to explore the underlying reasons. The thermal pre-treatment at temperatures higher than 600 °C can improve the catalytic activity of the mechanically mixed samples. The 700 °C-treated 5%BaMnO3-CeO2 sample shows the highest activity, with NO conversion to N2 of 13.4%, 40.6% and 57.1% at 600, 700, and 800 °C, respectively. Comparative activity study with different supports (ZrO2, TiO2, SiO2, Al2O3) reveals that CeO2 is indispensable for the high performance of a BaMnO3-CeO2 composite catalyst. The Ce species (mainly Ce3+) in CeO2 components diffuse into the lattice of BaMnO3, generating oxide ion vacancy in both components as evidenced by X-ray photoelectron spectroscopy and Raman spectra, which accelerates the rate-determining step and thus higher activity. The chemisorption results show that the interaction between BaMnO3 and CeO2 leads to higher redox activity and mobility of lattice oxygen. This work demonstrates that engineering the oxide ion vacancy, e.g., by thermal treatment, is an effective strategy to enhance the catalytic activity towards NO direct decomposition, which is expected to be applicable to other heterogeneous catalysts involving oxide ion vacancy.
Collapse
|
31
|
Sharif HMA, Asif MB, Wang Y, Hou YN, Yang B, Xiao X, Li C. Spontaneous intra-electron transfer within rGO@Fe 2O 3-MnO catalyst promotes long-term NO x reduction at ambient conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129951. [PMID: 36115094 DOI: 10.1016/j.jhazmat.2022.129951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe)-based catalysts are widely used for taming nitrogen oxides (NOx) containing flue gas, but the regeneration and long-term reusability remains a concern. The reusability can be acquired by external additives, and resultantly can not only increase the cost but can also add to process complexity as well as secondary pollutants. Herein, a self-sustainable material is designed to regenerate the catalyst for long-term reusability without adding to process complexity. The catalyst is based on reduced graphene-oxide impregnated by Fe2O3-MnO (rGO@Fe2O3-MnO; G-F-M) for spontaneous intra electron (e-)-transfer from Mn to Fe. The developed catalyst; G-M-F exhibited 93.7% NOx reduction, which suggests its high catalytic activity. The morphological and structure characterizations confirmed the Fe/Mn loading, contributing to e--transfer between Mn and Fe due to its conductivity. The synthesized G-F-M showed higher NOx reduction about 2.5 folds, than rGO@Fe2O3 (G-FeO) and rGO@MnOx (G-MnOx). The performance of G-M-F without and with an electrochemical system was also compared, and the difference was only 5%, which is an evidence of the spontaneous e- transfer between the Mn and Fe-NOx complex. The designed catalyst can be used for a long time without external assistance, and its efficiency was not affected significantly (<3.7%) in the presence of high oxygen contents (8%). The as-prepared G-M-F catalyst has great potential for executing a dual role NOx removal and self-regeneration of catalyst (SRC), promoting a sustainable remediation approach for large-scale applications.
Collapse
Affiliation(s)
- Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China; School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yuwei Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xu Xiao
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China
| | - Changping Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
32
|
Liu Y, Chen L, Liu S, Yang S, Ju S. Role of iron-based catalysts in reducing NO emissions from coal combustion. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Liu X, Guo H, Wang J, Huang Q, Chen X, Bao J, Yu J. A first-principles study of the adsorption mechanism of NO 2 on monolayer antimonide phosphide: a highly sensitive and selective gas sensor. NEW J CHEM 2023. [DOI: 10.1039/d2nj05553h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A NO2/SbP adsorption system with high adsorption energy (−0.876 eV) and charge transfer value (−0.83 e) is reported.
Collapse
Affiliation(s)
- Xiaodong Liu
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Haojie Guo
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, China
| | - Jia Wang
- College of Architectural Engineering, Shanxi Institute of Applied Science and Technology, Taiyuan 030031, China
| | - Qing Huang
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xianping Chen
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, China
| | - Jiading Bao
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jiabing Yu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, China
| |
Collapse
|
34
|
Lee YJ, Kang JG, Kwon YH, Ko YJ, Lee WS. Measurement of the NO x reduction effect on food wastewater during waste incineration. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:195-204. [PMID: 35913072 DOI: 10.1177/0734242x221105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Incineration is the most effective method for reducing the increasing waste volume. However, as the pollutants generated during incineration may cause secondary pollution, blocking them in advance is necessary. During incineration, prevention facilities are operated to reduce the amount of pollutants. Conventional selective non-catalytic reduction (SNCR) reduces nitrogen oxides (NOx) by injecting ammonia and urea as reducing agents. In this study, the NOx reduction effect on food wastewater (FW) was examined. In addition, the removal efficiency was compared at different concentrations of urea mixed with FW. When different concentrations of urea were injected in SNCR facilities A, B and C, NOx removal efficiencies of up to 75% were observed; with FW injection only, removal efficiency was 56%; and when both urea and FW were injected, removal efficiency was up to 79%. Although FW showed a lower NOx removal efficiency than urea, injecting both increased the efficiency. In addition, when air pollutant emissions and the incinerator temperature were analysed, we found that they could be managed without exceeding the allowed limits. However, for the injection and incineration of reducing agents, the characteristics of the incineration facility and reducing agents must be considered.
Collapse
Affiliation(s)
- Young-Jin Lee
- Environmental Resources Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Jun-Gu Kang
- Environmental Resources Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Young-Hyun Kwon
- Measurement Analysis Department, Wonju Regional Environment Agency, Wonju-si, Gangwon-do, South Korea
| | - Young-Jae Ko
- Air Environment Management Team, Geumgang Basic Environment Agency, Daejeon, South Korea
| | - Won-Seok Lee
- Environmental Resources Research Department, National Institute of Environmental Research, Incheon, South Korea
| |
Collapse
|
35
|
Fan Y, Zhang J, Yang L, Lu M, Ying T, Deng B, Dai W, Luo X, Zou J, Luo S. Enhancing SO2-shielding effect and Lewis acid sites for high efficiency in low-temperature SCR of NO with NH3: Reinforced electron-deficient extent of Fe3+ enabled by Ti4+ in Fe2O3. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
36
|
Tao H, Liu Y. Dynamic Adsorption/Desorption of NO x on MFI Zeolites: Effects of Relative Humidity and Si/Al Ratio. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:156. [PMID: 36616066 PMCID: PMC9824700 DOI: 10.3390/nano13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Adsorption is a potential technology that is expected to meet NOx ultra-low emission standards and achieve the recovery of NO2. In this study, the adsorption/desorption behavior of NOx with competitive gases (e.g., H2O(g) and CO2) was studied on MFI zeolites with different Si/Al ratios and under different relative humidity (0~90% RH). Sample characterization of self-synthesizing zeolites was conducted by means of X-ray diffraction, Ar adsorption-desorption, and field emission scanning electron microscopy. The results showed that low-silica HZSM-5(35) showed the highest NOx adsorption capacity of 297.8 μmol/g (RH = 0) and 35.4 μmol/g (RH = 90%) compared to that of other adsorbents, and the efficiency loss factor of NOx adsorption capacity at 90%RH ranged from 85.3% to 88.1%. A water-resistance strategy was proposed for NOx multicomponent competitive adsorption combined with dynamic breakthrough tests and static water vapor adsorption. The presence of 14% O2 and lower adsorption temperature (25 °C) favored NOx adsorption, while higher CO2 concentrations (~10.5%) had less effect. The roll-up factor (η) was positively correlated with lower Si/Al ratios and higher H2O(g) concentrations. Unlike Silicalite-1, HZSM-5(35) exhibited an acceptable industrial desorption temperature window of NO2 (255~265 °C). This paper aims to provide a theoretical guideline for the rational selection of NOx adsorbents for practical applications.
Collapse
Affiliation(s)
- Haiyang Tao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection, Beijing 100083, China
| | - Yingshu Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection, Beijing 100083, China
| |
Collapse
|
37
|
Numerical Simulation and Optimization of SCR-DeNOx Systems for Coal-Fired Power Plants Based on a CFD Method. Processes (Basel) 2022. [DOI: 10.3390/pr11010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In order to solve the problem of the uneven distribution of the flow and ammonia concentration field in the selective catalytic reduction (SCR) denitrification system of a 660 MW coal-fired power plant, a three-dimensional computational fluid dynamics (CFD) model was established at a scale of 1:1. The existing flow guide and ammonia fume mixing device were then calibrated and optimized. The relative standard deviation of the velocity field distribution upstream of the ammonia injection grid (AIG) was optimized from 15.4% to 9.9%, with a reasonable radius of the deflector at the inlet flue elbows, and the relative standard deviation of the velocity field distribution above the inlet surface of the first catalyst layer in the reactor was optimized from 25.4% to 10.2% by adjusting the angle between the deflector and the wall plate of the inlet hood. Additionally, with the use of a double-layer spoiler ammonia fume mixing device, the relative standard deviation of the ammonia mass concentration distribution above the inlet surface of the first catalyst layer in the reactor was optimized from 12.9% to 5.3%. This paper can provide a valuable reference with practical implications for subsequent research.
Collapse
|
38
|
Effect of Hydroxylation and Carboxylation on the Catalytic Activity of Fe2O3/Graphene for Oxidative Desulfurization and Denitration. Catalysts 2022. [DOI: 10.3390/catal12121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Iron-based particles loaded on porous carbon materials have attracted extensive attention as catalysts for denitration and desulfurization reactions. However, the carbon support of a high-temperature denitration catalyst is inevitably oxidized in the presence of H2O and O2. The mechanism of denitration catalyst oxidation and its influence on the catalytic reaction remain to be further explored. Fe2O3-loaded graphene models with carbon vacancy (Gdef), hydroxyl (HyG), and carboxyl (CyG) were constructed to investigate the effects of hydroxylation and carboxylation on the catalytic activity of Fe2O3/graphene for oxidative desulfurization and denitration by using density functional theory (DFT) calculations. According to the analysis of structural properties and adsorption energy, the adsorption process of Fe2O3 on HyG and CyG was observed to have proceeded more favorably than that on Gdef. The density-of-states (DOS) results also affirmed that HyG and CyG promote the electron delocalization of Fe2O3 around the Fermi level, enhancing the chemical activity of Fe2O3. Moreover, adsorption energy analysis indicates that hydroxylation and carboxylation enhanced the adsorption of SO2 and H2O2 on Fe2O3/graphene while also maintaining preferable adsorption stability of NO. Furthermore, mechanistic research explains that adsorbed H2O2 on HyG and CyG directly oxidizes NO and SO2 into HNO2 and H2SO4 following a one-step reaction. The results provide a fundamental understanding of the oxidized catalyst on catalytic denitration and desulfurization reactions.
Collapse
|
39
|
Zhao S, Song K, Zhu J, Ma D, Shi JW. Gd-Mn-Ti composite oxides anchored on waste coal fly ash for the low-temperature catalytic reduction of nitrogen oxide. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Sm-modified Mn-Ce oxides supported on cordierite as monolithic catalyst for the low-temperature reduction of nitrogen oxides. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Prakash J, Agrawal SB, Agrawal M. Global Trends of Acidity in Rainfall and Its Impact on Plants and Soil. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2022; 23:398-419. [PMID: 36415481 PMCID: PMC9672585 DOI: 10.1007/s42729-022-01051-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/27/2022] [Indexed: 06/02/2023]
Abstract
Due to its deleterious and large-scale effects on the ecosystem and long-range transboundary nature, acid rain has attracted the attention of scientists and policymakers. Acid rain (AR) is a prominent environmental issue that has emerged in the last hundred years. AR refers to any form of precipitation leading to a reduction in pH to less than 5.6. The prime reasons for AR formation encompass the occurrence of sulfur dioxide (SO2), nitrogen oxides (NOx), ozone (O3), and organic acids in air produced by natural as well as anthropogenic activities. India, the top SO2 emitter, also shows a continuous increase in NO2 level responsible for AR formation. The plants being immobile unavoidably get exposed to AR which impacts the natural surrounding negatively. Plants get affected directly by AR due to reductions in growth, productivity, and yield by damaging photosynthetic mechanisms and reproductive organs or indirectly by affecting underground components such as soil and root system. Genes that play important role in plant defense under abiotic stress gets also modulated in response to acid rain. AR induces soil acidification, and disturbs the balance of carbon and nitrogen metabolism, litter properties, and microbial and enzymatic activities. This article overviews the factors contributing to AR, and outlines the past and present trends of rainwater pH across the world, and its effects on plants and soil systems.
Collapse
Affiliation(s)
- Jigyasa Prakash
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
42
|
Zhou Z, Chang J, Wang X. Large eddy simulation of hydrodynamics and deNOx process in a coal-fired power plant SCR system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115800. [PMID: 35933877 DOI: 10.1016/j.jenvman.2022.115800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/25/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This paper presents a CFD modeling of deNOx process in a coal-fired power plant selective catalytic reduction (SCR) system, with focus on the transient hydrodynamics of multi-species flow and the influence of vortex on the deNOx process. For this purpose, a comprehensive CFD model is established, parameter study and model validation are performed, and the hydrodynamics, vortex evolution and species concentration distribution are numerically investigated. Simulation results indicate that many vortices with various scale/intensity/shape exist in the SCR system, causing apparent pressure pulsations and velocity fluctuations. High-intensity eddies are mainly distributed in the deflector group Ι, the NH3 nozzles, the static mixer, and the right part of the rectifying grille. The number of eddies decreases significantly with reducing the unit loads. Affected by vortex evolution, the NH3 concentration fluctuates in the SCR system, especially in the vertical flue. The deNOx process completes within 6 s, and the ammonia slip is less than 1.0 ppm, which well meets the requirement of industrial standards. In addition, the static mixer severely destroys the velocity uniformity but favors the mixing of NH3 and NOx. The rectifying grille improves the uniformity of flow field and species concentration field significantly.
Collapse
Affiliation(s)
- Zhijian Zhou
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jian Chang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Xin Wang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, PR China
| |
Collapse
|
43
|
Purification Technologies for NOx Removal from Flue Gas: A Review. SEPARATIONS 2022. [DOI: 10.3390/separations9100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Nitrogen oxide (NOx) is a major gaseous pollutant in flue gases from power plants, industrial processes, and waste incineration that can have adverse impacts on the environment and human health. Many denitrification (de-NOx) technologies have been developed to reduce NOx emissions in the past several decades. This paper provides a review of the recent literature on NOx post-combustion purification methods with different reagents. From the perspective of changes in the valence of nitrogen (N), purification technologies against NOx in flue gas are classified into three approaches: oxidation, reduction, and adsorption/absorption. The removal processes, mechanisms, and influencing factors of each method are systematically reviewed. In addition, the main challenges and potential breakthroughs of each method are discussed in detail and possible directions for future research activities are proposed. This review provides a fundamental and systematic understanding of the mechanisms of denitrification from flue gas and can help researchers select high-performance and cost-effective methods.
Collapse
|
44
|
Yang F, Ngo TD, Kontogeorgis GM, de Hemptinne JC. A Benchmark Database for Mixed-Solvent Electrolyte Solutions: Consistency Analysis Using E-NRTL. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fufang Yang
- IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, CEDEX 92852 Rueil-Malmaison, France
- Center for Energy Resources Engineering (CERE), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tri Dat Ngo
- IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, CEDEX 92852 Rueil-Malmaison, France
| | - Georgios M. Kontogeorgis
- Center for Energy Resources Engineering (CERE), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
45
|
Abstract
Vehicle exhaust has been acknowledged as an essential factor affecting human health due to the extensive use of cars. Its main components include volatile organic compounds (VOCs) and nitrogen oxides (NOx), which can cause acute irritation and chronic diseases, and significant research on the treatment of vehicle exhaust has received increasing attention in recent decades. Recently, photocatalytic technology has been considered a practical approach for eliminating vehicle emissions. This review highlights the crucial role of photocatalytic technology in eliminating vehicle emissions using semiconductor catalysts. A particular emphasis has been placed on various photocatalytic materials, such as TiO2-based materials, Bi-based materials, and Metal–Organic Frameworks (MOFs), and their recent advances in the performance of VOC and NOx photodegradation. In addition, the applications of photocatalytic technology for the elimination of vehicle exhaust are presented (including photocatalysts combined with pavement surfaces, making photocatalysts into architectural coatings and photoreactors), which will offer a promising strategy for photocatalytic technology to remove vehicle exhaust.
Collapse
|
46
|
Liu Y, Li S, Xiao S, Du K. Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Li T, Li L, Wang J, Wu Y, Wang Y, Li M. Selective catalytic reduction of NO by CO over α-Fe2O3 catalysts. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Christian MS, Nenoff TM, Rimsza JM. Discovery of Complex Binding and Reaction Mechanisms from Ternary Gases in Rare Earth Metal–Organic Frameworks. Chemistry 2022; 28:e202201926. [DOI: 10.1002/chem.202201926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/05/2022]
Affiliation(s)
| | - Tina M. Nenoff
- Material, Chemical, and Physical Sciences Sandia National Laboratories Albuquerque NM 87123 USA
| | - Jessica M. Rimsza
- Geochemistry Department Sandia National Laboratories Albuquerque NM 87123 USA
| |
Collapse
|
49
|
Lontio Fomekong R, Saruhan B, Debliquy M, Lahem D. High-temperature NO sensing performance of WO 3 deposited by spray coating. RSC Adv 2022; 12:22064-22069. [PMID: 36043074 PMCID: PMC9361927 DOI: 10.1039/d2ra02360a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/02/2022] [Indexed: 01/11/2023] Open
Abstract
Nitric oxide (NO) selective sensors capable of sensing in a hot-gas environment are increasingly required for monitoring combustion and processes yielding high temperature gas containing NO. This work reports the fabrication of sensors by a facile deposition of water-based ink blended commercial WO3 powders via spray coating on sensor platforms fitted with Au-interdigitated electrodes (IDEs) and the characterization of their sensing performances under hot NO-containing air at temperatures exceeding 500 °C. After deposition and heat treatment of the sensing material on the substrate fitted with Au-IDE at 700 °C, the composition and morphology of the active material were analyzed and the presence of a single phase, fine particulates of WO3, has been confirmed by XRD and SEM, respectively. The investigation of the sensing properties revealed that, contrary to the previous reports, this WO3 sensor can detect NO with a good sensitivity (∼22% for 200 ppm NO) and selectivity at 700 °C under humidity. The effect of relative humidity on sensing performance was also investigated. Also, under humidity values as high as 10% RH and at gas temperatures as high as 700 °C, a reasonably good sensor performance has been observed. It is likely that the improved response towards NO at moderately elevated temperatures resulted from the humidity related water molecules which are adsorbed on the surfaces of WO3 particles, providing high affinity hydrogen bonds between NO and OH.
Collapse
Affiliation(s)
| | - Bilge Saruhan
- German Aerospace Center (DLR), Institute of Materials Research, Department of High-Temperature and Functional Coatings Cologne 51147 Germany
| | - Marc Debliquy
- UMONS, Materials Science Department 56, Rue de l'Epargne 7000-Mons Belgium
| | - Driss Lahem
- Materia Nova R&D Center, Materials Science Unit 56, Rue de l'Epargne 7000-Mons Belgium
| |
Collapse
|
50
|
Wang W, Zhao S, Tang X, Chen C, Yi H. Stainless steel catalyst for air pollution control: structure, properties, and activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55367-55399. [PMID: 35672638 PMCID: PMC9173842 DOI: 10.1007/s11356-022-21079-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
With the awakening of environmental awareness, the importance of air quality to human health and the proper functioning of social mechanisms is becoming increasingly prominent. The low cost and high efficiency of catalytic technique makes it a natural choice for achieving deep air purification. Stainless steel alloys have demonstrated their full potential for application in a variety of catalytic fields. The diversity of 3D networks or fibrous structures increases the turbulence within the heterogeneous catalysis, balance the temperature distribution in the reaction bed and, in combination with a highly thermally conductive skeleton, avoid agglomeration and deactivation of the active components; corrosion resistance and thermal stability are adapted to highly endothermic/exothermic or corrosive reaction environments; oxide layers formed by bulk transition metals activated by thermal treatment or etching can significantly alter the physico-chemical properties between the substrate and active species, further improving the stability of stainless steel catalysts; suitable electronic conductivity can be applied to the electrothermal catalysis, which is expected to provide guidance for the reduction of intermittent emission exhausts and the storage of renewable energy. The current applications of stainless steel as catalyst or support in the air purification have covered soot particle capture and combustion, catalytic oxidation of VOCs, SCR, and air sterilization. This paper summarizes several preparation methods and presents the relationships between the preparation process and the activity, and reviews its application and the current status of research in atmospheric environmental management, proposing the advantages and challenges of the stainless steel-based catalysts.
Collapse
Affiliation(s)
- Weixiao Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shunzheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Chaoqi Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|