1
|
Deng D, Xu L, Liu Y, Li C, Jiang Q, Shi J, Feng S, Lin Y. HIIT versus MICT in MASLD: mechanisms mediated by gut-liver axis crosstalk, mitochondrial dynamics remodeling, and adipokine signaling attenuation. Lipids Health Dis 2025; 24:144. [PMID: 40241065 PMCID: PMC12004573 DOI: 10.1186/s12944-025-02565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/10/2025] [Indexed: 04/18/2025] Open
Abstract
OBJECTIVE Compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on metabolic dysfunction-associated steatotic liver disease (MASLD), focusing on the mechanisms by which these two exercise modalities influence gut microbiota structure, bile acid metabolism, and intestinal barrier function, as well as their regulatory roles in hepatic lipid synthesis and oxidative dynamics. Explore the synergistic effects of exercise-mediated mitochondrial fusion remodeling and leptin signaling, elucidate the causal relationship between gut-derived factors and hepatic metabolic reprogramming, and reveal the potential multi-scale and cross-organ dominant mechanisms of exercise, providing a theoretical basis for systematically comparing the effects of different exercise modalities. METHODS Thirty-two male rats were randomly divided into NFD (n = 8) and HFD (n = 24) groups and fed normal chow and high-fat chow, respectively. After eight weeks, the HFD group was randomly divided into three groups: (1) MICT-8; (2) HIIT-8; and (3) HFD-8. At the end of the experiment, blood, liver, ileum, and skeletal muscle samples were collected for analysis of the rats' baseline conditions, mitochondrial function, hepatic lipid metabolism, bile acid pathway and gut microbiota, and synthesis of analyses. RESULTS Both modes of exercise ameliorated metabolic dysregulation and attenuated pathological progression, insulin resistance, and liver fat accumulation in rats with MASLD. Furthermore, both interventions counteracted HFD-induced intestinal barrier dysfunction and restored gut-liver axis homeostasis. HIIT and MICT also upregulated bile acid-related gene expression modulated butyrate-producing bacterial taxa, and adjusted the abundance of butyrate-generating bacteria. CONCLUSION Both HIIT and MICT improved lipid metabolism in MASLD rats and the difference between the HIIT and MICT groups was not statistically significant. It is noteworthy that HIIT was more effective in improving mitochondrial function in MASLD than MICT (P < 0.001).
Collapse
Affiliation(s)
- Dongkun Deng
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Lin Xu
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China.
| | - Yufei Liu
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China.
| | - Chang Li
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Qingfeng Jiang
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Jiaming Shi
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Shuo Feng
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Yunhua Lin
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| |
Collapse
|
2
|
Chen D, Tang H, Liu J, Zhang H, Rao K, Teng X, Yang F, Liu H. Luteolin-mediated phosphoproteomic changes in chicken splenic lymphocytes: Unraveling the detoxification mechanisms against ammonia-induced stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136931. [PMID: 39709809 DOI: 10.1016/j.jhazmat.2024.136931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Long-term exposure to high ammonia concentrations could severely impact chicken health. On the other hand, luteolin has been shown to protect against ammonia poisoning. Although phosphorylation is critically involved in toxicity induction, the specific role of phosphorylated proteins in ammonia poisoning remains unclear. Herein, we constructed an in vitro model to study chicken ammonia poisoning and also analyzed the protective effects of luteolin. Specifically, a combined series of organic techniques such as protein extraction, enzyme digestion, modified peptide enrichment, Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) analysis, and bioinformatics analysis were employed for a quantitative omics study of phosphorylation modification in three groups of samples. Our findings revealed thousands of Differentially Expressed Proteins (DEPs). The differentially expressed modified proteins were subjected to GO classification, KEGG pathway analysis, cluster analysis, and protein interaction analysis, revealing the detoxification mechanism encompassed mitochondrial maintenance, signal transduction, transcriptional regulation, and cytoskeleton regulation. In the process, mitochondria and Golgi apparatus were the key organelles. Furthermore, the AKT1/FOXO signaling pathway and Heat Shock Proteins (HSPs) were the key core modifiers of the proteins. We hope that our findings will provide a theoretical basis and experimental support for future research on luteolin's detoxification mechanism against ammonia poisoning.
Collapse
Affiliation(s)
- Dechun Chen
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Haojinming Tang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Liu
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Huanrong Zhang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Kaijing Rao
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Pan S, Wang B, Yu M, Zhang J, Fan B, Nie C, Zou R, Yang X, Zhang Z, Hong X, Yang W. Hydrogen alleviates myocardial infarction by impeding apoptosis via ROS-mediated mitochondrial endogenous pathway. Free Radic Res 2025; 59:226-238. [PMID: 40040521 DOI: 10.1080/10715762.2025.2474014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a deadly cardiovascular disease with no effective solution except for percutaneous coronary intervention and coronary artery bypass grafting. Inflammation and apoptosis of the injured myocardium after revascularization seriously affect the prognosis. Hydrogen possesses anti-inflammatory, anti-oxidative, and anti-apoptotic effects and may become a new treatment for AMI. This study explored the specific mechanism by which hydrogen operates during AMI treatment. METHODS Thirty Sprague-Dawley rats were randomly divided into three groups: control, myocardial infarction (MI), and myocardial infarction + hydrogen (MI+H2), each containing 10 rats. The MI rat model was established by ligation of the left anterior descending branch. The MI+H2 group received 2% hydrogen inhalation treatment for 3 h/Bid. RESULTS Myocardial infarct size was evaluated using triphenyl tetrazolium chloride staining. Transmission electron microscopy showed reduced mitochondrial damage compared with the MI group. JC-1 staining, which indicates mitochondrial membrane potential, showed a low red/green fluorescence intensity ratio in the MI group compared to that in the control group, indicating mitochondrial membrane potential loss. After hydrogen inhalation, this ratio increased, suggesting partial recovery of membrane potential. In addition, mitochondrial ATP content, mitochondrial complex I, and mitochondrial complex III activity were significantly decreased in the MI group, which was improved after hydrogen administration. Western blotting analysis showed decreased Cyt-c protein levels in the myocardial mitochondria and increased levels in the cytoplasm of MI rats. Following hydrogen inhalation, the levels of ROS, 8-OHdG, and MDA that could represent oxidative stress injury significantly decreased. Besides, the expression of Cyt-C, Bax, cleaved-caspase-9, and cleaved-caspase-3 in MI group significantly increased, while the Bcl-2, TRX2, SOD2 expression decreased. The expression of these proteins in MI+H2 group was improved compared with the MI group. CONCLUSION Overall, hydrogen inhalation reduces myocardial infarct size, improves mitochondrial dysfunction, and modulates the levels of apoptosis-related substances. Importantly, Hydrogen reduces acute myocardial infarction damage by downregulating ROS and upregulating antioxidant proteins.
Collapse
Affiliation(s)
- Shuang Pan
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Wang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengshu Yu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawen Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bowei Fan
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Nie
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rentong Zou
- Department of Critical Care Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, China
| | - Xinrui Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuoqun Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaojian Hong
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yang
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Pei L, Yao Z, Liang D, Yang K, Tao L. Mitochondria in skeletal system-related diseases. Biomed Pharmacother 2024; 181:117505. [PMID: 39499974 DOI: 10.1016/j.biopha.2024.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 12/21/2024] Open
Abstract
Skeletal system-related diseases, such as osteoporosis, arthritis, osteosarcoma and sarcopenia, are becoming major public health concerns. These diseases are characterized by insidious progression, which seriously threatens patients' health and quality of life. Early diagnosis and prevention in high-risk populations can effectively prevent the deterioration of these patients. Mitochondria are essential organelles for maintaining the physiological activity of the skeletal system. Mitochondrial functions include contributing to the energy supply, modulating the Ca2+ concentration, maintaining redox balance and resisting the inflammatory response. They participate in the regulation of cellular behaviors and the responses of osteoblasts, osteoclasts, chondrocytes and myocytes to external stimuli. In this review, we describe the pathogenesis of skeletal system diseases, focusing on mitochondrial function. In addition to osteosarcoma, a characteristic of which is active mitochondrial metabolism, mitochondrial damage occurs during the development of other diseases. Impairment of mitochondria leads to an imbalance in osteogenesis and osteoclastogenesis in osteoporosis, cartilage degeneration and inflammatory infiltration in arthritis, and muscle atrophy and excitationcontraction coupling blockade in sarcopenia. Overactive mitochondrial metabolism promotes the proliferation and migration of osteosarcoma cells. The copy number of mitochondrial DNA and mitochondria-derived peptides can be potential biomarkers for the diagnosis of these disorders. High-risk factor detection combined with mitochondrial component detection contributes to the early detection of these diseases. Targeted mitochondrial intervention is an effective method for treating these patients. We analyzed skeletal system-related diseases from the perspective of mitochondria and provided new insights for their diagnosis, prevention and treatment by demonstrating the relationship between mitochondria and the skeletal system.
Collapse
Affiliation(s)
- Liang Pei
- Department of Pediatrics, Shengjing Hospital of China Medical University, China
| | - Zhuo Yao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Dong Liang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| |
Collapse
|
5
|
Liu J, Liu H, Tang H, Ran L, Wang D, Yang F, Zhang H, Teng X, Chen D. Golgi apparatus regulated pyroptosis through the miR-32-5p/Golga7/NLRP3 axis in chicken splenic lymphocytes exposure to ammonia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124923. [PMID: 39260552 DOI: 10.1016/j.envpol.2024.124923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Ammonia, a common toxic gas, posed a hazard to both human and chickens. The Golgi apparatus, an essential organelle, helped maintain the internal environment of the organism and supported the protein foundation for the endoplasmic reticulum to be involved in pyroptosis. Thus, the Golgi apparatus has garnered significant attention. The purpose of our research was to explore the mechanisms of Golgin A7 (Golga7) involved in pyroptosis after chicken exposure to ammonia. To reach our goal, we first created an in vitro ammonia model to study the effect of ammonia on chicken splenic lymphocyte pyroptosis. Then, leveraging this model, we established Golga7 and miR-32-5p knockdown and overexpression models to investigate their roles in ammonia-induced pyroptosis. We found the ultrastructural changes in the nucleus, Golgi apparatus, and mitochondria of chicken splenic lymphocytes exposure to ammonia. The damage of mitochondria increased the level of Reactive Oxygen Species (ROS), which caused the down-regulation of miR-32-5p. The miR-32-5p inhibitor increased the expression of Golga7 and pyroptosis-related genes (NOD-like receptor protein 3 (NLRP3), Cysteine aspartase-1 (Caspase-1), Golgin A3 (Golga3), Nuclear Factor-kappa B (NF-κB), and Tumor Necrosis Factor-alpha (TNF-α)), which induced the pyroptosis, but when miR-32-5p mimic/si-Golga7 (Golga7 inhibitor) was utilized, these effects were reduced. Our research demonstrated that miR-32-5p/Golga7 regulated NLRP3 involving in the pyroptosis of chicken splenic cells exposed to ammonia. Our study provided a valuable foundation for the prevention and treatment chickens ammonia poisoning in the livestock production.
Collapse
Affiliation(s)
- Jiahao Liu
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haojinming Tang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Longjun Ran
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Danni Wang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Falong Yang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Huanrong Zhang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Dechun Chen
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Ahmad S, Nasser W, Ahmad A. Epigenetic mechanisms of alveolar macrophage activation in chemical-induced acute lung injury. Front Immunol 2024; 15:1488913. [PMID: 39582870 PMCID: PMC11581858 DOI: 10.3389/fimmu.2024.1488913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Airways, alveoli and the pulmonary tissues are the most vulnerable to the external environment including occasional deliberate or accidental exposure to highly toxic chemical gases. However, there are many effective protective mechanisms that maintain the integrity of the pulmonary tissues and preserve lung function. Alveolar macrophages form the first line of defense against any pathogen or chemical/reactant that crosses the airway mucociliary barrier and reaches the alveolar region. Resident alveolar macrophages are activated or circulating monocytes infiltrate the airspace to contribute towards inflammatory or reparative responses. Studies on response of alveolar macrophages to noxious stimuli are rapidly emerging and alveolar macrophage are also being sought as therapeutic target. Here such studies have been reviewed and put together for a better understanding of the role pulmonary macrophages in general and alveolar macrophage in particular play in the pathogenesis of disease caused by chemical induced acute lung injury.
Collapse
Affiliation(s)
- Shama Ahmad
- Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | |
Collapse
|
7
|
Wang Y, Xia F, Jia S, Yang Y, Zhang X. Exogenous sulfide regulates hypoxia/reoxygenation stress through the intrinsic apoptotic pathway in the blood clam (Tegillarca granosa). Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109953. [PMID: 38852914 DOI: 10.1016/j.cbpc.2024.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
The intertidal organism Tegillarca granosa can survive under frequent hypoxia/reoxygenation (H/R) exposure. Sulfides as accompanying products in benthic hypoxic environments, may play an important regulatory role, but the mechanisms are not well understood. This article investigated the physiological and molecular changes of T. granosa after adding different concentrations of sulfides (0.1, 0.5, 1 mM) at 72 h into a 120-h exposure to hypoxia, as well as the recovery state of 24 h of reoxygenation. The results indicated that H/R stress induces ROS production and mild mitochondrial depolarization in clams, and sulfide can participate in its regulation. Among them, a low concentration of sulfide up-regulated glutathione content and alternative oxidase activity, maintained the stability of antioxidant enzymes, and up-regulated the expression of the survival genes XIAP/BCL-xl which mediate cell survival via the NFκB signaling pathway. High concentrations of sulfide had a significant inhibitory effect on the p38/MPAK pathway and inhibited intrinsic apoptosis caused by ROS accumulation during reoxygenation. Taken together, our study suggested that different concentrations of sulfides are involved in regulating the endogenous apoptosis of clams during H/R.
Collapse
Affiliation(s)
- Yihang Wang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Feiyu Xia
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shunan Jia
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yang Yang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiumei Zhang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
8
|
He F, Yu J, Ma S, Zhao W, Wang Q, He H, Zhang M, Wang J, Lu Z. MiR-34a promotes mitochondrial pathway of apoptosis in human salivary gland epithelial cells by activating NF-κB signaling. Arch Biochem Biophys 2024; 758:110063. [PMID: 38880321 DOI: 10.1016/j.abb.2024.110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
To investigate the potential molecular mechanism of miR-34a in Sjögren's syndrome (SS). Transmission electron microscopy was used to observe the salivary gland tissues of mild and severe SS patients. SS mouse model was constructed and injected with miR-34a antagonist. HSGE cells were transfected with miR-34a mimic. Starbase predicted miR-34a binding sites and validated them with dual-luciferase reporter assays. Immunohistochemistry, HE staining, CCK-8, TUNEL assay, flow cytometry, immunofluorescence and Western Blot were used to investigate the effects of miR-34a on NF-κB signaling and mitochondrial pathway of apoptosis in HSGE cells. Severe SS patients showed obvious mitochondrial damage and apoptosis in salivary glands. MiR-34a was overexpressed and NF-κB signaling is activated in salivary glands of severe SS patients. Inhibition of miR-34a alleviated salivary gland injury in SS mice, as well as inhibited the activation of NF-κB signaling and mitochondrial pathway of apoptosis. In conclusion, miR-34a promoted NF-κB signaling by targeting IκBα, thereby causing mitochondrial pathway apoptosis and aggravating SS-induced salivary gland damage.
Collapse
Affiliation(s)
- Fang He
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province, China
| | - Juan Yu
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province, China
| | - Sha Ma
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province, China
| | - Weiqing Zhao
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province, China
| | - Qi Wang
- Department of Hematology, The First People's Hospital of Yunnan Province, China
| | - Haitao He
- Department of Hematology, The First People's Hospital of Yunnan Province, China
| | - Mingxing Zhang
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province, China
| | - Juan Wang
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province, China
| | - Zhixiang Lu
- Department of Hematology, The First People's Hospital of Yunnan Province, China.
| |
Collapse
|
9
|
Fu H, Ge Y, Liu X, Deng S, Li J, Tan P, Yang Y, Wu Z. Exposure to the environmental pollutant chlorpyrifos induces hepatic toxicity through activation of the JAK/STAT and MAPK pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:171711. [PMID: 38494025 DOI: 10.1016/j.scitotenv.2024.171711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Chlorpyrifos (CHP) is an inexpensive highly effective organophosphate insecticide used worldwide. The unguided and excessive use of CHP by farmers has led to its significant accumulation in crops as well as contamination of water sources, causing health problems for humans and animals. Therefore, this study evaluated the toxicological effects of exposure to the environmental pollutant CHP at low, medium, and high (2.5, 5, and 10 mg·kg-1 BW) levels on rat liver by examining antioxidant levels, inflammation, and apoptosis based on the no observed adverse effect levels (NOAEL) (1 mg·kg-1 BW) and the CHP dose that does not cause any visual symptoms (5 mg·kg-1 BW). Furthermore, the involvement of the JAK/STAT and MAPK pathways in CHP-induced toxic effects was identified. The relationship between the expression levels of key proteins (p-JAK/JAK, p-STAT/STAT, p-JNK/JNK, p-P38/P38, and p-ERK/ERK) in the pathways and changes in the expression of markers associated with inflammation [inflammatory factors (IL-1β, IL-6, IL-10, TNF-α), chemokines (GCLC and GCLM), and inflammatory signaling pathways (NF-кB, TLR2, TLR4, NLRP3, ASC, MyD88, IFN-γ, and iNOS)] and apoptosis [Bad, Bax, Bcl-2, Caspase3, Caspase9, and the cleavage substrate of Caspase PARP1] were also determined. The results suggest that CHP exposure disrupts liver function and activates the JAK/STAT and MAPK pathways via oxidative stress, exacerbating inflammation and apoptosis. Meanwhile, the JAK/STAT and MAPK pathways are involved in CHP-induced hepatotoxicity. These findings provide a novel direction for effective prevention and amelioration of health problems caused by CHP abuse in agriculture and households.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Yao Ge
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Xiyuan Liu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Siwei Deng
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Jun Li
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Guo T, Geng X, Zhang Y, Hou L, Lu H, Xing M, Wang Y. New insights into the spleen injury by mitochondrial dysfunction of chicken under polystyrene microplastics stress. Poult Sci 2024; 103:103674. [PMID: 38583309 PMCID: PMC11004413 DOI: 10.1016/j.psj.2024.103674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Microplastics biological toxicity, environmental persistence and biological chemicals have been paid widespread attention. Microplastics exposed to chicken spleen injury of the specific mechanism is unclear. Thus, we randomly assigned chickens to 4 groups: C (normal diet), L-MPs (1 mg/L), M-MPs (10 mg/L), and H-MPs (100 mg/L), and assessed spleen damage after 42 d of exposure. Morphologically, the boundary between the red and white pulp of the spleen was blurred, along with the expansion of the white pulp. It was further speculated that microplastics induced mitochondrial dynamic homeostasis (Drp1 upgraded, Mfn1, Mfn2, and OPA1 reduced), and provoked the mitochondrial apoptotic pathway (Bcl-2/Bax decreased, cytc, caspase3, and caspase9 raised), resulting in redox imbalance and lipid peroxide accumulation (MDA increased, CAT, GSH, and T-AOC plummeted), and further stimulated ferroptosis (FTH1, GPX4, and SLC7A11 decreased). Here we explored the impact of polystyrene microplastics on the spleen, as well as the programmed death (apoptosis and ferroptosis) involved, and the regulative role of mitochondria in this process. This could be of significant importance in bridging the gap in laboratory research on microplastics-induced spleen injury in chicken.
Collapse
Affiliation(s)
- Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Xiren Geng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China.
| |
Collapse
|
11
|
Chen D, Shen F, Liu J, Tang H, Teng X, Yang F, Liu H. Luteolin enhanced antioxidant capability and induced pyroptosis through NF-κB/NLRP3/Caspase-1 in splenic lymphocytes exposure to ammonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170699. [PMID: 38325474 DOI: 10.1016/j.scitotenv.2024.170699] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
During feeding process in intensive chicken farms, the prolonged exposure of chickens to elevated level of ammonia leads to substantial economic losses within poultry farming industry. Luteolin (Lut), known as its anti-inflammatory and antioxidant properties, possesses the ability to eliminate free radicals and enhance the activities of antioxidant enzymes, thus rendering it highly esteemed in production. The objective of this study was to examine the effects of Lut on antioxidant and anti-inflammatory responses of chicken splenic lymphocytes exposed to ammonia. In order to achieve this, we have replicated a protective model involving Lut against ammonia exposure in chicken splenic lymphocytes. The findings of the study indicated that Lut mitigated the elevation of lactate dehydrogenase (LDH), malondialdehyde (MDA), and reactive oxygen species (ROS) induced by ammonia poisoning. Additionally, Lut demonstrated an increase in the expression of antioxidant enzymes, namely superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Furthermore, Lut exhibited a protective effect on cell morphology and ultrastructure following exposure to ammonia. Moreover, Lut exhibited a reduction in the expression of heat shock proteins (HSPs) and inflammatory cytokines, which were found to be highly expressed in splenic lymphocytes after ammonia exposure. Additionally, Lut demonstrated the ability to inhibit the overexpression of pyroptosis-related genes and proteins (NLRP3 and Caspase-1) in splenic lymphocytes following ammonia exposure. Lut exerted an antioxidant effect on lymphocytes, counteracting elevated levels of oxidative stress following exposure to ammonia. Additionally, Lut had the potential to modulate the expression of HSPs, suppressed the inflammatory response subsequent to ammonia exposure, and influenced the expression of NLRP3 and Caspase-1, thereby mitigating pyroptosis induced by ammonia exposure. The exploration of this subject matter can elucidate the protective properties of Lut against NH4Cl-induced damage in chicken splenic lymphocytes, while also offer insights and experimental groundwork for the utilization of natural therapeutics in animal husbandry to prevent and treat ammonia-related conditions.
Collapse
Affiliation(s)
- Dechun Chen
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Fanyu Shen
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Liu
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Haojinming Tang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
12
|
Li Y, Zhang X, Tong R, Xu Q, Zhang N, Liao Q, Pan L. Mechanisms of ammonotelism, epithelium damage, cellular apoptosis, and proliferation in gill of Litopenaeus vannamei under NH 4Cl exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15153-15171. [PMID: 38289553 DOI: 10.1007/s11356-024-32111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Excessive ammonia-N in coastal environment and aquaculture threatens the health of marine organisms. To explore the mechanism of gill damage induced by ammonia-N, transcriptome of Litopenaeus vannamei 's gill was carried out under 20 mg/L NH4Cl for 0, 6, and 48 h. K-means clustering analysis suggested that ammonia excretion and metabolism-related genes were elevated. GO and KEGG enrichment analysis suggested that glycosyltransferase activity and amino acid metabolism were affected by ammonia. Moreover, histological observation via three staining methods gave clues on the changes of gill after ammonia-N exposure. Increased mucus, hemocyte infiltration, and lifting of the lamellar epithelium suggested that gill epithelium was suffering damage under ammonia-N stress. Meanwhile, the composition of extracellular matrix (ECM) in connective tissue changed. Based on the findings of transcriptomic and histological analysis, we further investigated the molecular mechanism of gill damage under multiple concentrations of NH4Cl (0, 2, 10, 20 mg/L) for multiple timepoints (0, 3, 6, 12, 24, 48, 72 h). First, ammonia excretion was elevated via ion channel, transporter, and exocytosis pathways, but hemolymph ammonia still kept at a high level under 20 mg/L NH4Cl exposure. Second, we focused on glycosaminoglycan metabolism which was related to the dynamics of ECM. It turned out that the degradation and biosynthesis of chondroitin sulfate (CS) were elevated, suggesting that the structure of CS might be destructed under ammonia-N stress and CS played an important role in maintaining gill structure. It was enlightening that the destructions occurred in extracellular regions were vital to gill damage. Third, ammonia-N stress induced a series of cellular responses including enhanced apoptosis, active inflammation, and inhibited proliferation which were closely linked and jointly led to the impairment of gill. Our results provided some insights into the physiological changes induced by ammonia-N and enriched the understandings of gill damage under environmental stress.
Collapse
Affiliation(s)
- Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Qiuhong Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
13
|
Chen D, Shen F, Liu J, Tang H, Zhang K, Teng X, Yang F. The protective effect of Luteolin on chicken spleen lymphocytes from ammonia poisoning through mitochondria and balancing energy metabolism disorders. Poult Sci 2023; 102:103093. [PMID: 37783192 PMCID: PMC10551554 DOI: 10.1016/j.psj.2023.103093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Ammonia poses a significant challenge in the contemporary intensive breeding industry, resulting in substantial economic losses. Despite this, there is a dearth of research investigating efficacious strategies to prevent ammonia poisoning in poultry. Consequently, the objective of this study was to investigate the molecular mechanisms through which Luteolin (Lut) safeguards mitochondria and restores equilibrium to energy metabolism disorders, thereby shielding chicken spleen lymphocytes from the detrimental effects of ammonia poisoning. Chicken spleen lymphocytes were categorized into 3 distinct groups: the control group, the ammonia group (with the addition of 1 mmol/L of ammonium chloride), and the Lut group (with the treatment of 0.5 μg/mL of Lut for 12 h followed by the addition of 1 mmol/L of ammonium chloride). These groups were then cultured for a duration of 24 h. To investigate the potential protective effect of Lut on lymphocytes exposed to ammonia, various techniques were employed, including CCK-8 analysis, ultrastructural observation, reagent kit methodology, fluorescence microscopy, and quantitative real-time PCR (qRT-PCR). The findings indicate that Lut has the potential to mitigate the morphological damage of mitochondria caused by ammonia poisoning. Additionally, it can counteract the decline in mitochondrial membrane potential, ATP content, and ATPase activities (specifically Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca/Mg2+-ATPase) following exposure to ammonia in lymphocytes. Lut also has the ability to regulate the expression of genes involved in mitochondrial fusion (Opa1, Mfn1, and Mfn2) and division (Drp1 and Mff) in spleen lymphocytes after ammonia exposure. This regulation leads to a balanced energy metabolism (HK1, HK2, LDHA, LDHB, PFK, PK, SDHB, and ACO2) and provides protection against ammonia poisoning.
Collapse
Affiliation(s)
- Dechun Chen
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Fanyu Shen
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Liu
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Haojinming Tang
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Kai Zhang
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
14
|
Zhou M, Qiang J, Gan J, Xu X, Li X, Zhang S, Xu B, Dong Z. Quercetin attenuates environmental Avermectin-induced ROS accumulation and alleviates gill damage in carp through activation of the Nrf2 pathway. Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109744. [PMID: 37704162 DOI: 10.1016/j.cbpc.2023.109744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Avermectin (AVM) is one of the most often used insecticides which is toxic to aquatic organisms, and cause oxidative-induced damages to the fish respiratory organ, the "gills". To better understand the mechanism by which an antioxidant reduces AVM-induced gill damage, we investigated the effects of Quercetin (Que) on AVM induction of oxidative stress to inhibit damages to the gills using common carp as a model organism. The Que is a fruit and vegetable rich flavonoid with antioxidant activity. In this study, four groups were created: the Control group, the Que group (400 mg/kg), the AVM group (2.404 μg/L), and the Que plus AVM group. The analytical methods were pathological structure examination, qPCR, Reactive Oxygen Species (ROS) and Western blot. The results showed that Que alleviated AVM-induced oxidative stress, inflammatory damage and apoptosis in the carp gills by activating the Nrf2 pathway. The mechanism was that Que alleviated the accumulation of ROS, reduced the balance between oxidation and antioxidant disrupted by AVM exposure, lowered the content of lipid peroxidation produced malondialdehyde (MDA), and increased the content of antioxidant enzymes including glutathione (GSH) and catalase (CAT). Nrf2 pathway was activated. Meanwhile, Que inhibited gill apoptosis in carp by decreasing the levels of Bax, Cytochrome C, Caspase9, Cleaved-Caspase3 and reduced Bcl2. This has important implications for future studies on Que and AVM. New suggestions are provided to reduce the threat of aquatic environmental pollution.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingchao Qiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiajie Gan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuhui Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Baoshi Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
15
|
Dong R, Peng K, Shi L, Niu Q, Rafique H, Liu Y, Yuan L, Zou L, Li L, Messia MC, Hu X. Oat bran prevents high-fat-diet induced muscular dysfunction, systemic inflammation and oxidative stress through reconstructing gut microbiome and circulating metabolome. Food Res Int 2023; 172:113127. [PMID: 37689892 DOI: 10.1016/j.foodres.2023.113127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Western-type diet characterized by high fat emerges a promoter of skeletal muscle dysfunctions. Oat bran was typically considered a healthy food of premium quality for its abundant dietary fiber. The present study comprehensively explored the effects of a diet rich in oat bran on skeletal muscle disfunctions in high-fat diet (HFD) fed mice. Dietary-fiber-rich oat bran significantly ameliorated HFD-induced skeletal muscle function abnormalities, as evidenced by a phenotype improvement in mice grip strength and endurance treadmill running distance, accompanied with the regulation of muscle functions related gene expressions, namely Fis1, Cytc, Mhy2 and Mhy4. Oat bran suppressed the production of systemic inflammatory cytokines while promoted superoxide dismutase and glutathione. Furthermore, oat bran significantly impacted gut microbiota composition by promoting short chain fatty acids (SCFAs) producers and certain probiotic genera, along with the enhancement of SCFAs. Oat bran also significantly decreased the circulating levels of inflammation-related metabolites and played roles in MAPK signaling, thereafter influencing skeletal muscle functions. Collectively, benefits from integration of biomedical indicators, microbiomics, and metabolomics demonstrates the benefits of oat bran consumption on prevention of HFD-related muscular dysfunctions via alleviating HFD-induced inflammation, gut dysbiosis, and systemic metabolism, pinpointing a novel mechanism underlying the muscle-promoting property of oat bran.
Collapse
Affiliation(s)
- Rui Dong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Kejie Peng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Qianwen Niu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hamad Rafique
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Liu
- Physical Education School, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Li Yuan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Lu Li
- Guilin Seamild Foods Co., Ltd, Guilin, Guangxi 541004, China
| | - Maria Cristina Messia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
16
|
Tapak M, Sadeghi S, Ghazanfari T, Mosaffa N. Chemical exposure and alveolar macrophages responses: 'the role of pulmonary defense mechanism in inhalation injuries'. BMJ Open Respir Res 2023; 10:e001589. [PMID: 37479504 PMCID: PMC10364189 DOI: 10.1136/bmjresp-2022-001589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/28/2023] [Indexed: 07/23/2023] Open
Abstract
Epidemiological and clinical studies have indicated an association between particulate matter (PM) exposure and acute and chronic pulmonary inflammation, which may be registered as increased mortality and morbidity. Despite the increasing evidence, the pathophysiology mechanism of these PMs is still not fully characterised. Pulmonary alveolar macrophages (PAMs), as a predominant cell in the lung, play a critically important role in these pathological mechanisms. Toxin exposure triggers events associated with macrophage activation, including oxidative stress, acute damage, tissue disruption, remodelling and fibrosis. Targeting macrophage may potentially be employed to treat these types of lung inflammation without affecting the natural immune response to bacterial infections. Biological toxins, their sources of exposure, physical and other properties, and their effects on the individuals are summarised in this article. Inhaled particulates from air pollution and toxic gases containing chemicals can interact with alveolar epithelial cells and immune cells in the airways. PAMs can sense ambient pollutants and be stimulated, triggering cellular signalling pathways. These cells are highly adaptable and can change their function and phenotype in response to inhaled agents. PAMs also have the ability to polarise and undergo plasticity in response to tissue damage, while maintaining resistance to exposure to inhaled agents.
Collapse
Affiliation(s)
- Mahtab Tapak
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Alinasab Hospital, Labratory Department, Iranian Social Security Organization (ISSO), Tabriz, Iran
| | - Somaye Sadeghi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Centre, Shahed University, Tehran, Iran
- Department of Immunology, Shahed University, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Li Y, Cai W, Ai Z, Xue C, Cao R, Dong N. Protective effects of sinomenine hydrochloride on lead-induced oxidative stress, inflammation, and apoptosis in mouse liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7510-7521. [PMID: 36038687 DOI: 10.1007/s11356-022-22386-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Lead, one of the most common heavy metal toxins, seriously affects the health of humans and animals. Sinomenine hydrochloride (SH) shows antioxidative, anti-inflammatory, antiviral, and anticancer properties. Hence, this study investigated the protective effects of SH against Pb-induced liver injury and explored the underlying mechanisms. First, a mouse model of lead acetate (0.5 g/L lead acetate in water, 8 weeks) was established, and SH (100 mg/kg bw in water, 8 weeks) intervention was administered by gavage. Then, the protective effect of SH against lead-induced liver injury was evaluated through serum biochemical analysis, histopathological analysis, and determination of malondialdehyde (MDA) and total antioxidant capacity (T-AOC) levels. The messenger RNA (mRNA) expression levels of the cytokines IL-1β and TNF-α and the apoptosis factors Bax, Bcl-2, and Caspase3 in the liver were detected by quantitative real-time PCR. Then, the expression levels of IL-1β and TNF-α in the liver were detected by ELISA. Immunohistochemical determination of the expression of the apoptosis factors Bax, Bcl-2, and Caspase3 was performed. SH treatment reduced the levels of liver alanine aminotransferase, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and MDA in Pb-treated mice, indicating that SH protected the liver from injury and oxidative stress in Pb-treated mice. SH also increased the liver T-AOC of Pb-treated mice. Quantitative real-time PCR, ELISA, and immunohistochemical analysis showed that SH inhibited apoptosis, as indicated by the regulation of the mRNA expression of Bax and Bcl-2 and the reduced expression of Caspase3 and pro-inflammatory factors (IL-1β and TNF-α) in the livers of Pb-treated mice. These results suggest that SH protects the mouse liver from Pb-induced injury. The underlying mechanism involves antioxidative, anti-inflammatory, and anti-apoptotic processes.
Collapse
Affiliation(s)
- Ying Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Wenjie Cai
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zichun Ai
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Rujing Cao
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
18
|
Deng Y, Peng D, Yang C, Zhao L, Li J, Lu L, Zhu X, Li S, Aschner M, Jiang Y. Preventive treatment with sodium para-aminosalicylic acid inhibits manganese-induced apoptosis and inflammation via the MAPK pathway in rat thalamus. Drug Chem Toxicol 2023; 46:59-68. [PMID: 34875954 DOI: 10.1080/01480545.2021.2008127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Excessive exposure to manganese (Mn) may lead to neurotoxicity, referred to as manganism. In several studies, sodium para-aminosalicylic acid (PAS-Na) has shown efficacy against Mn-induced neurodegeneration by attenuating the neuroinflammatory response. The present study investigated the effect of Mn on inflammation and apoptosis in the rat thalamus, as well as the underlying mechanism of the PAS-Na protective effect. The study consisted of sub-acute (Mn treatment for 4 weeks) and sub-chronic (Mn and PAS-Na treatment for 8 weeks) experiments. In the sub-chronic experiments, pro-inflammatory cytokines, namely tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and cyclooxygenase 2 (COX-2) were significantly increased in the Mn-exposed group compared to the control II. PAS-Na treatment led to a significant reduction in the Mn-induced neuroinflammation by inhibiting IL-1β and COX-2 mRNA expression and reducing IL-1β secretion and JNK/p38 MAPK pathway activity. Furthermore, immunohistochemical analysis showed that the expression of caspase-3 was significantly increased in both the sub-acute and sub-chronic experimental paradigms concomitant with a significant decrease in B-cell lymphoma 2 (Bcl-2) in the thalamus of Mn-treated rats. PAS-Na also decreased the expression levels of several apoptotic markers downstream of the MAPK pathway, including Bcl-2/Bax and caspase-3, while up-regulating anti-apoptotic Bcl-2 proteins. In conclusion, Mn exposure led to inflammation in the rat thalamus concomitant with apoptosis, which was mediated via the MAPK signaling pathway. PAS-Na treatment antagonized effectively Mn-induced neurotoxicity by inhibiting the MAPK activity in the same brain region.
Collapse
Affiliation(s)
- Yue Deng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Dongjie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Chun Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lin Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Junyan Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lili Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Xiaojuan Zhu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | | | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
19
|
Effects of Dietary Supplementation with Vitamin A on Antioxidant and Intestinal Barrier Function of Broilers Co-Infected with Coccidia and Clostridium perfringens. Animals (Basel) 2022; 12:ani12233431. [PMID: 36496951 PMCID: PMC9740507 DOI: 10.3390/ani12233431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Necrotic enteritis (NE) impairs poultry production and causes great economic loss. The nutritional regulation of diets has the potential to alleviate NE. The present study was conducted to investigate the effects of dietary supplementation with vitamin A (VA) on the antioxidant and intestinal barrier function of broilers co-infected with coccidia and C. perfringens (CCP). In a 2 × 2 factorial arrangement, 336 one-day-old Ross 308 broilers were divided into four treatments with two levels of VA (0 or 12,000 IU/kg) and challenged with or without CCP. The animal trial lasted for 42 days. The results showed that dietary supplemental VA improved body weight gain (BWG) and the feed intake (FI), and the FI was negatively affected by CCP. Additionally, the levels of catalase (CAT) in the serum, total superoxide dismutase (T-SOD), and CAT in the jejunum and glutathione peroxidase (GSH-Px) in the liver decreased with the CCP challenge (p < 0.05). The mRNA levels of SOD, CAT, GSH-Px1, and GSH-Px3 in the liver and jejunum were upregulated by the CCP challenge (p < 0.05). In addition, the level of serum diamine oxidase (DAO), and the mRNA level of ZO-1 were also upregulated with the CCP challenge. Dietary supplementation with VA contributed to the intestinal villi height and the mRNA level of Mucin-2 in the jejunum (p < 0.05). Additionally, dietary VA had the ability to alleviate the upregulation of SOD in the liver and SOD, CAT, GSH-Px1, GSH-Px3, ZO-1, and claudin-1 in the jejunum with the CCP challenge (p < 0.05). However, the mRNA level of GSH-Px3 and the levels of SOD in the liver and jejunum were downregulated with the VA supplementation in the diet. In conclusion, dietary VA improved the growth performance and the intestinal barrier function; nonetheless, it failed to alleviate the negative effects of CCP on the antioxidant function in broilers.
Collapse
|
20
|
Tian P, Li H, Qiu Q, Wang Y. Condensed Tannins Improved Immune Functions and Reduced Environmental Pollution of Captive Sichuan Black Goat Kids Under Cadmium Toxicity. Biol Trace Elem Res 2022; 200:4325-4331. [PMID: 34825317 DOI: 10.1007/s12011-021-03044-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023]
Abstract
To investigate the effects of condensed tannins (CT) on immune functions and nitrogen (N) emissions of captive Sichuan black goat kids under cadmium (Cd) toxicity, a total of 18 Sichuan black goat kids (2 months old, 9.6 ± 1.2 kg) were randomly used in this 30-day trial. The dietary treatments were (1) CON group, basic diet; (2) Cd group, basic diet + oral 10 mg Cd/kg·BW; and (3) CT group, Cd group + 400 mg/kg CT. Oral Cd supplementation significantly decreased the Cu and Fe contents in serums and livers of captive Sichuan black goat kids (P < 0.05), but adding CT in the Cd group increased the Fe and Mo contents and decreased the Cd content in serums and livers (P < 0.05). Additional CT supplementation in the Cd group extremely increased the activities of serum SOD, GSH-Px, and CAT (P < 0.05), and greatly decreased the serum MDA content (P < 0.05). The CT supplementation in the Cd group also extremely increased the concentrations of serum IgG, IgM, and IgA (P < 0.05), and greatly decreased the contents of IL-6, IL-1β, and TNF-α in serums (P < 0.05). Adding CT in the Cd group significantly increased the apparent digestibility of CP and EE and decreased the urinary nitrogen (UN) content (P < 0.05, Table 7). In conclusion, the application of additional CT improved antioxidant capacities and immune functions of captive black goats under Cd toxicity, then reduced the oxidative stress and toxic damage of Cd contamination. CT also improved the N digestibility and reduced the N emission, which was helpful to reduce environmental pollution.
Collapse
Affiliation(s)
- Peng Tian
- Guizhou Branch of China National Tobacco Corporation, Guiyang, Guizhou, 550002, China
| | - Haiyan Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Quanyou Qiu
- Zhengyu Feed Co., Ltd, Foshan, 528000, China
| | - Yachao Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
21
|
Girón-Pérez MI, Mary VS, Rubinstein HR, Toledo-Ibarra GA, Theumer MG. Diazinon toxicity in hepatic and spleen mononuclear cells is associated to early induction of oxidative stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2309-2323. [PMID: 34404283 DOI: 10.1080/09603123.2021.1962814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Diazinon is an organophosphorus pesticide, which may have potential toxic effects on the liver and immune system; however, the underlying mechanisms remain mostly unidentified. This work is aimed at evaluating the oxidative stress and cell cycle alterations elicited by low-dose diazinon in a rat liver cell line (BRL-3A) and spleen mononuclear cells (SMC) from Wistar rats. Diazinon (10-50 μM) caused early reactive oxygen species (ROS) generation (from 4 h) as well as increased O2•- level (from 0.5 h), which led to subsequent lipid peroxidation at 24 h, in BRL-3A cells. In SMC, diazinon (20 μM) produced similar increases in ROS levels, at 4 and 24 h, with the highest O2•- level being found at 4 h. Low-dose diazinon induced G1-phase arrest and cell death in hepatic cells and SMC. Therefore, diazinon could affect the liver and the immunological system through the premature oxidative stress induction.Abbreviations: O2•-: superoxide anion radical; ROS: reactive oxygen species; SMC: spleen mononuclear cells; TBARS: thiobarbituric acid reactive substances.
Collapse
Affiliation(s)
- Manuel Iván Girón-Pérez
- Universidad Autónoma de Nayarit,Secretaría de Investigación Y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco S/n, Cd de La Cultura Amado Nervo, C.P, Tepic, Nayarit, Mexico
| | - Verónica S Mary
- Departamento De Bioquímica Clínica, Facultad De Ciencias Químicas, Universidad Nacional De Córdoba (UNC), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Centro de Investigaciones En Bioquímica Clínica E Inmunología (CIBICI), Córdoba, Argentina
| | - Héctor R Rubinstein
- Departamento De Bioquímica Clínica, Facultad De Ciencias Químicas, Universidad Nacional De Córdoba (UNC), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Centro de Investigaciones En Bioquímica Clínica E Inmunología (CIBICI), Córdoba, Argentina
| | - Gladys A Toledo-Ibarra
- Universidad Autónoma de Nayarit,Secretaría de Investigación Y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco S/n, Cd de La Cultura Amado Nervo, C.P, Tepic, Nayarit, Mexico
| | - Martín G Theumer
- Departamento De Bioquímica Clínica, Facultad De Ciencias Químicas, Universidad Nacional De Córdoba (UNC), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Centro de Investigaciones En Bioquímica Clínica E Inmunología (CIBICI), Córdoba, Argentina
| |
Collapse
|
22
|
Wang C, Bing A, Liu H, Wang X, Zhao J, Lin H, Jiao H. High ambient humidity aggravates ammonia-induced respiratory mucosal inflammation by eliciting Th1/Th2 imbalance and NF-κB pathway activation in laying hens. Poult Sci 2022; 101:102028. [PMID: 35882092 PMCID: PMC9326132 DOI: 10.1016/j.psj.2022.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 11/26/2022] Open
Abstract
Ammonia (NH3) is an irritant and harmful gas. Its accumulation in the poultry house poses detrimental effects on the respiratory mucosal system of birds. In this process, the relative humidity of the poultry house also plays an important role in potentiating the adverse effects of NH3 on the respiratory status of birds, causing severe physiological consequences. In this study, the combined effects of NH3 and humidity on the respiratory mucosal barrier of laying hens was studied. The gene expression of tight junction proteins, mucin, inflammatory cytokines secreted by Th1/Th2 cells, and proteins related to the Nuclear factor-κB (NF-κB) signaling pathway were detected by qRT-PCR. In addition, the contents of mucin and secretory immunoglobulin A (SIgA) in bronchoalveolar lavage fluid (BALF) were determined. The results showed that treatment with NH3 alone or NH3 and humidity led to morphological changes in the respiratory tract, decreased the gene expressions of tight junction protein, and increased the expression of mucin. Also, the expression of interleukin-4 (IL-4) and IL-10 were increased, whereas, the expression of interferon-γ (IFN-γ) and IL-2 was decreased in laying hens treated with NH3 and humidity. Furthermore, the activation of inhibitor kappa B kinase β (I-KK-β) and the degradation of inhibitor of NF-κB α (I-κB-α) contributed to the activation of the NF-κB pathway, such that the downstream genes, cycooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS) were significantly increased. In conclusion, NH3 damaged the mucosal barrier and induced an imbalance in the mucosal immunity, leading to respiratory tract inflammation. Thus, the relative humidity of the environment aggravates the adverse effects of NH3 in poultry.
Collapse
Affiliation(s)
- Chen Wang
- Department of Animal Science and Technology, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an City, Shandong Province 271018, China
| | - Aiying Bing
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong Province 250118, China
| | - Hui Liu
- Department of Animal Science and Technology, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an City, Shandong Province 271018, China
| | - Xiaojuan Wang
- Department of Animal Science and Technology, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an City, Shandong Province 271018, China
| | - Jingpeng Zhao
- Department of Animal Science and Technology, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an City, Shandong Province 271018, China
| | - Hai Lin
- Department of Animal Science and Technology, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an City, Shandong Province 271018, China
| | - Hongchao Jiao
- Department of Animal Science and Technology, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
23
|
Zhou S, Zhang X, Fu Q, Cheng Z, Ji W, Liu H. The use of selenomethionine to reduce ammonia toxicity in porcine spleen by inhibiting endoplasmic reticulum stress and autophagy mediated by oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113887. [PMID: 35849905 DOI: 10.1016/j.ecoenv.2022.113887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Ammonia (NH3) is a typical pollutant in the atmosphere and is well known for its harmful effects on plants, animals as well as human health. Previous studies have shown that NH3 exposure can cause damage to immune organs and impaired immune function in animals. Selenomethionine is a kind of organic selenium, which can not only promote the growth and development of the body, but also inhibit the generation of intracellular reactive oxygen species (ROS), and effectively improve the immune function of the body. Therefore, this study evaluated the toxic effect of NH3 exposure on spleen from a new perspective and investigated the protective effect of selenomethionine on ammonia-induced immunotoxicity. Twenty-four Large White*Duroc*Min pigs were randomly assigned to 4 groups: control group, NH3 group, selenium group, and NH3 + selenium group. Our results showed that NH3 inhalation caused autophagy in the pig spleen, a decrease in lymphocytes, and an increase in autophagic vesicles. Also, NH3 exposure led to a decrease in the activity of some antioxidant enzymes (decreased by about 50%) and a significant increase in the expression of genes related to oxidative stress and endoplasmic reticulum stress (ERS). Our results indicated that selenomethionine mitigated ammonia toxicity in pigs (alleviated about 20-55%). In summary, our findings should be of value in providing a theoretical basis for revealing the toxicity of the high-risk gas NH3, and providing a new perspective on the mechanism of Se against toxic substances.
Collapse
Affiliation(s)
- Sitong Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaohong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qin Fu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zheng Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Wenbo Ji
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang 150030, People's Republic of China.
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang 150030, People's Republic of China.
| |
Collapse
|
24
|
Sun Q, Liu Y, Teng X, Luan P, Teng X, Yin X. Immunosuppression participated in complement activation-mediated inflammatory injury caused by 4-octylphenol via TLR7/IκBα/NF-κB pathway in common carp (Cyprinus carpio) gills. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106211. [PMID: 35667248 DOI: 10.1016/j.aquatox.2022.106211] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
4-octylphenol (4-OP), a toxic estrogenic environmental pollutant, can threaten aquatic animal and human health. However, toxic effect of 4-OP on fish has not been reported. To investigate molecular mechanism of gill poisoning caused by 4-OP exposure, a carp 4-OP poisoning model was established, and then blood and gills were collected on day 60. The results demonstrated that gill was a target organ attacked by 4-OP, and exposure to 4-OP caused carp gill inflammatory injury. There were 1605 differentially expressed genes (DEGs, including 898 up-regulated DEGs and 707 down-regulated DEGs). KEGG and GO were used to further analyze obtained 1605 DEGs, indicating that complement activation, immune response, and inflammatory response participated in the mechanism of 4-OP-caused carp gill inflammatory injury. Our data at transcription level further revealed that 4-OP caused complement activation through triggering complement component 3a/complement component 3a receptor (C3a/C3aR) axis and complement component 5a/complement component 5a receptor 1 (C5a/C5aR1) axis, induced immunosuppression through the imbalances of T helper (Th) 1/Th2 cells and regulatory T (Treg)/Th17 cells, as well as caused inflammatory injury via toll like receptor 7/inhibitor kappa B alpha/nuclear factor-kappa B (TLR7/IκBα/NF-κB) pathway. Taken together, immunosuppression participated in complement activation-mediated inflammatory damage in carp gills after 4-OP treatment. The findings of this study will provide pioneering information and theoretical support for the mechanism of 4-OP poisoning, and will provide reference for the assessment of estrogenic environmental pollution risk.
Collapse
Affiliation(s)
- Qi Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojie Teng
- Grassland Station in Heilongjiang Province, Harbin 150067, China
| | - Peng Luan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
25
|
Song Q, Zhou ZJ, Cai S, Chen Y, Chen P. Oxidative stress links the tumour suppressor p53 with cell apoptosis induced by cigarette smoke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1745-1755. [PMID: 33825597 DOI: 10.1080/09603123.2021.1910211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
This study was to investigate the effects of oxidative stress in cigarette smoke (CS)-induced cell apoptosis in mice with emphysema. Thirty-two mice were divided into four groups: the control group, the CS group, the CS + Pifithrin-α group, and the CS + NAC group. Pathological changes and apoptosis in lung tissue of mice were detected. The activity of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC) were measured using spectrophotometer. The proteins expression of p53, Bcl-2, Bax, and caspase-3 were determined by western blot. The results showed that cell apoptosis, lung structural damage, and the activity of MDA, as well as the expression of apoptosis-related proteins Bax, total caspase-3, and cleaved caspase-3 were increased in CS-treated mice. The activity of SOD, CAT, and T-AOC, as well as the expression of anti-apoptosis protein Bcl-2 were decreased in CS-treated mice when compared with the control group. However, Pifithrin-α (p53 inhibitor) and N-Acetylcysteine (NAC) could reduce cell apoptosis, lung structural damage and oxidative stress, accelerate the expression of Bcl-2, while suppressing the expression of Bax, total caspase-3 and cleaved caspase-3. More importantly, the treatment with NAC even inhibited the expression of p53. In conclusions, oxidative stress linking the p53 is involved in cell apoptosis in CS-treated emphysema mice.
Collapse
Affiliation(s)
- Qing Song
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Zi-Jing Zhou
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Shan Cai
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
26
|
Chen H, Zhang S, Yu B, Xu Y, Rappold AG, Diaz-Sanchez D, Samet JM, Tong H. Circulating microRNAs as putative mediators in the association between short-term exposure to ambient air pollution and cardiovascular biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113604. [PMID: 35576800 PMCID: PMC9167781 DOI: 10.1016/j.ecoenv.2022.113604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure to ambient air pollution is associated with increased cardiovascular morbidity and mortality. Circulating microRNAs (miRNAs) may mediate cardiovascular effects of exposure to air pollution. This study aims to investigate whether circulating miRNAs mediate the associations between short-term human exposure to ambient air pollution and cardiovascular biomarkers. METHODS Twenty-four healthy adults residing in the Research Triangle area of North Carolina, USA were enrolled between December 2016 and July 2019. Circulating miRNAs, protein, and lipid biomarkers were assessed repeatedly for 3 sessions separated by at least 7 days. Linear mixed-effects models were used to assess the associations between air pollutant concentrations obtained from nearby air quality monitoring stations and miRNAs controlling for covariates including omega-3 index, relative humidity, and temperature. miRNAs that were significantly altered were then matched with protein or blood lipid biomarkers using either Ingenuity Pathway Analysis or a literature search. A mediation analysis was performed to test the statistical significance of miRNA's mediating effects between exposure to air pollution and cardiovascular biomarkers. RESULTS Short-term exposure to ambient fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) was associated with changes in 11, 9, and 24 circulating miRNAs, respectively. Pathway analysis showed that several miRNAs including miR-125b-5p, miR-144-5p, miR-26a-5p, and miR-34a-5p may mediate the effects of air pollutant exposure on the changes of downstream protein / lipid biomarkers including serum amyloid A (SAA), C-reactive protein (CRP), soluble vascular adhesive molecules 1 (sICAM1), total cholesterol, and high-density lipoproteins (HDL). Mediation analysis showed that only miR-26a-5p significantly mediated air pollutant (PM2.5 and NO2)-induced effects on blood CRP and total cholesterol levels. For example, 34.1% of PM2.5-associated changes in CRP were significantly mediated by miR-26a-5p at lag4 [indirect effects, 0.06 (0.02, 0.10), P = 0.005]. Similarly, the proportions of indirect effects of miR-26a-5p on the association between NO2 exposure and CRP were 46.8% at lag2 [0.06 (0.02, 0.11), P = 0.003], 61.2% at lag3 [0.05 (0.00, 0.09), P = 0.04], and 30.8% at 5-day moving average [0.06 (0.02, 0.10), P = 0.01]. In addition, omega-3 index may be a significant modifying factor of the mediated effects of miRNAs. CONCLUSIONS This study demonstrates that short-term exposure to ambient PM2.5, O3, and NO2 was associated with specific circulating miRNAs, and some of which may mediate their effects on the downstream inflammation and blood lipid markers.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bin Yu
- Department of Surgery, School of Medicine, Duke University, Durham, NC, USA
| | - Yunan Xu
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Feng R, Qin X, Li Q, Olugbenga Adeniran S, Huang F, Li Y, Zhao Q, Zheng P. Progesterone regulates inflammation and receptivity of cells via the NF-κB and LIF/STAT3 pathways. Theriogenology 2022; 186:50-59. [DOI: 10.1016/j.theriogenology.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
28
|
Liu Y, Chen Q, Li Y, Bi L, Lin S, Ji H, Sun D, Jin L, Peng R. Hydrogen sulfide-induced oxidative stress mediated apoptosis via mitochondria pathway in embryo-larval stages of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113666. [PMID: 35605332 DOI: 10.1016/j.ecoenv.2022.113666] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide (H2S), a highly toxic gas, has become a polluting gas that cannot be ignored, while H2S exposure results in acute or chronic poisoning or even death in humans or animals and plants, but the relevant mechanisms remain poorly understood. In this study, 9-day-old zebrafish larvae were exposed continuously to culture medium containing 30 μM survival rate was counted on H2S, and our results indicated that H2S exposure increased intracellular ROS, Ca2+, NO and MDA contents and decreased SOD activity, meaning that H2S caused oxidative stress in embryo-larval stages of zebrafish. Furthermore, we found that transgenic zebrafish (cms Tg/+ AB) displayed a lower fluorescence intensity, and cytochrome c oxidase (COX) activity and JC-1 monomer fluorescence ratio increased under H2S treatment conditions. These findings indicated that H2S caused mitochondrial dysfunction. Moreover, in this experiment, after H2S treatment, the increase of apoptotic cells, activity of caspase 3 and transcription of typical apoptosis-associated genes including BCL2 associated agonist of cell death (Bad), and BCL2 associated X apoptosis (Baxa) and so on were found, which suggested that H2S caused apoptosis in zebrafish larvae. Therefore, our data meant that H2S-traggered oxidative stress mediate mitochondrial dysfunction, thus triggering apoptosis. In conclusion, oxidative stress triggered H2S-induced apoptosis via mitochondria pathway in embryo-larval stages of zebrafish.
Collapse
Affiliation(s)
- Yinai Liu
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qianqian Chen
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaoqi Li
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Sue Lin
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hao Ji
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Da Sun
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Libo Jin
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Renyi Peng
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
29
|
Li Y, He J, Zhang Q, Li L, Wang Y. Nano-Molybdenum and Macleaya cordata Extracts Improved Antioxidant Capacity of Grazing Nanjiang Brown Goats on Copper and Cadmium-Contaminated Prairies. Biol Trace Elem Res 2022; 200:2734-2740. [PMID: 34546490 DOI: 10.1007/s12011-021-02915-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 01/13/2023]
Abstract
To investigate the effects of nano-ammonium octamolybdate (nano-Mo) and Macleaya cordata extracts (MCE) on antioxidant capacity of grazing Nanjiang brown goats on natural prairies under Cu and Cd stress, a 2 × 2 factorial design was adopted in this test, and two factors were nano-Mo (0, 10 mg/kg) and MCE (0, 3000 mg/kg). 24 hm2 polluted grassland was used in this 30-day trial and was equally divided into twelve fenced units. A total of 36 Nanjiang brown goats (1 year old) with an average body weight (BW) of 40.9 ± 2.1 kg were used in this test. The dietary treatments were (1) CON group, basic diet; (2) Nano-Mo group, basic diet + 10 mg/kg added Mo (nano-Mo); (3) MCE group, basic diet + 3000 mg/kg added MCE; and (4) combined group, basic diet + 10 mg/kg added nano-Mo and 3000 mg/kg added MCE. Nano-Mo or combination of nano-Mo and MCE diets significantly decreased the Cu content in serum and the liver of grazing goats (P < 0.05) and increased the Fe and Mo contents in serum and the liver (P < 0.05). The supplementation of nano-Mo, MCE, and combined diets extremely increased the levels of blood Hb, RBC, and PCV (P < 0.05), as well as the activities of serum SOD, GSH-Px, CAT, and Cp (P < 0.05), and greatly decreased the blood WBC content (P < 0.05) and the serum MDA content (P < 0.05). In conclusion, the application of nano-Mo and/or MCE diets on contaminated grasslands changed the contents of mineral elements in serum and the liver of grazing goats, reduced oxidative stress, and improved antioxidant capacity. The combination of nano-Mo and MCE can alleviate the toxic damage of combined heavy metal contaminations.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Swine Research Institute, Tie Qi Li Shi Group Co., Mianyang, 621006, China
| | - Jian He
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qionglian Zhang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lian Li
- Swine Research Institute, Tie Qi Li Shi Group Co., Mianyang, 621006, China
| | - Yachao Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
30
|
Lu C, Zhang L, Cui Y, Jin G, Bao Y, Shi W. Proteome and transcriptome explore the mechanism of Salvia miltiorrhiza polysaccharides to relieve florfenicol-induced kidney injury in broilers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45872-45884. [PMID: 35150422 DOI: 10.1007/s11356-022-19114-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
This experiment explored the mechanism of Salvia miltiorrhiza polysaccharides (SMPs) on florfenicol (FFC)-induced kidney injury in broilers. Ninety healthy 1-day-old Arbor Acres broilers were randomly divided into 3 groups with 6 replicates in each group and 5 chickens in each replicate. The three groups included control group, model group (0.15 g/L FFC), and SMPs group (0.15 g/L FFC + 5.00 g/L SMPs). After 5 days of experimental period, blood was collected, and kidney tissues were extracted. Renal injury was evaluated by serum biochemical indicators and pathological sections. Renal oxidative stress indexes were detected; transcriptomics and proteomics were used to comprehensively analyze the effects of SMPs on broiler kidney injury. The results showed that the model group inhibited average day gain (P < 0.01) and significantly adjusted blood urea nitrogen (BUN), uric acid (UA), and creatinine (Cr) (P < 0.01 or P < 0.05). The histological observation of the kidneys in the model group showed abnormal morphology, and the oxidative stress parameters showed that FFC induced oxidative stress in the kidneys. Comprehensive transcriptome proteomic analysis data showed phosphoribose pyrophosphate synthase 2 (PRPS2), cytochrome 2AC1 (CYP2AC1), cytochrome 2D6 (CYP2D6), glutathione transferase (GST), and sulfotransferase 1B (SULT1B) expression levels changed. It is worth noting that our data showed that supplementation of 5.00 g/L SMPs in drinking water reversed the changes in BUN, Cr, and daily weight gain (P < 0.05) and relieved the abnormal kidney morphology caused by FFC. After SMPs processing, it improved the detoxification process of drug-metabolizing enzymes and improved the oxidative stress state induced by FFC. Therefore, SMPs reduced the nephrotoxicity caused by FFC by promoting drug-metabolizing enzymes and alleviating oxidative stress in the kidneys.
Collapse
Affiliation(s)
- Chunyu Lu
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Lu Zhang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Yuqing Cui
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Guozhong Jin
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China
| |
Collapse
|
31
|
Li Y, Liu H, He J, Shen X, Zhao K, Wang Y. The Effects of Oral Administration of Molybdenum Fertilizers on Immune Function of Nanjiang Brown Goat Grazing on Natural Pastures Contaminated by Mixed Heavy Metal. Biol Trace Elem Res 2022; 200:2750-2757. [PMID: 34482497 DOI: 10.1007/s12011-021-02901-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022]
Abstract
Mineral development and metal smelting seriously polluted the surrounding groundwater and soil, threatening human health through the food chain. To investigate the effects of different sources of molybdenum (Mo) fertilizers on immune function of Nanjiang brown goats grazing on natural pastures under compound pollutions, fertilizing experiment was carried out in Liangshan Yi Nationality Prefecture of the Western Sichuan Plateau, China. Eighteen square hectometers of polluted meadows were fenced and were randomly divided into three groups (3 replications/group and 2 hm2/replication). A total of 54 healthy Nanjiang brown goats with an average BW of 31.6 ± 1.5 kg (1 year old) were used to this 30-day test (18 goats per group). The goats from CON group, AM group, and PM group were orally supplemented with deionized water, 15 mg Mo/BW·d (ammonium molybdate tetrahydrate), and 15 mg Mo/BW·d (potassium molybdate), respectively. Compared to CON group, the serum Fe content of grazing animals from AM group and PM group was 10.05% and 3.45% higher (P < 0.05), and the serum Cu content of grazing animals from AM group and PM group was 69.05% and 67.86% lower, respectively (P < 0.05). Mo fertilization significantly increased the levels of blood Hb, RBC, and PCV, and the activities of serum SOD, GSH-Px, CAT, and Cp of grazing goats (P < 0.05), and also extremely decreased the MDA content of experimental goats fed Mo compared to the control goats (P < 0.05). Compared to CON group, the activities of serum IgG, IgA, IgM, IL-2, and TNF-α of grazing animals from AM group and PM group were significantly increased (P < 0.05), and the levels of serum IL-6 and IL-1β of grazing goats from AM group and PM group were extremely decreased (P < 0.05). In summary, oral Mo fertilizers can alter the contents of serum mineral elements, reduce oxidative stress, improve immune function, and relieve the toxic damage of goats grazing on contaminated natural grasslands.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Swine Research Institute, Tie Qi Li Shi Group Co., Mianyang, 621006, China
| | - Hongwei Liu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jian He
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.
| | - Kui Zhao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, 550025, China
| | - Yachao Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
32
|
A Bayesian network structure learning approach to identify genes associated with stress in spleens of chickens. Sci Rep 2022; 12:7482. [PMID: 35523843 PMCID: PMC9076669 DOI: 10.1038/s41598-022-11633-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/27/2022] [Indexed: 11/08/2022] Open
Abstract
Differences in the expression patterns of genes have been used to measure the effects of non-stress or stress conditions in poultry species. However, the list of genes identified can be extensive and they might be related to several biological systems. Therefore, the aim of this study was to identify a small set of genes closely associated with stress in a poultry animal model, the chicken (Gallus gallus), by reusing and combining data previously published together with bioinformatic analysis and Bayesian networks in a multi-step approach. Two datasets were collected from publicly available repositories and pre-processed. Bioinformatics analyses were performed to identify genes common to both datasets that showed differential expression patterns between non-stress and stress conditions. Bayesian networks were learnt using a Simulated Annealing algorithm implemented in the software Banjo. The structure of the Bayesian network consisted of 16 out of 19 genes together with the stress condition. Network structure showed CARD19 directly connected to the stress condition plus highlighted CYGB, BRAT1, and EPN3 as relevant, suggesting these genes could play a role in stress. The biological functionality of these genes is related to damage, apoptosis, and oxygen provision, and they could potentially be further explored as biomarkers of stress.
Collapse
|
33
|
Xie Y, Chang J, Pan Y, Hao W, Li J. Toxicological effects of acute prothioconazole and prothioconazole-desthio administration on liver in male Chinese lizards (Eremias argus). CHEMOSPHERE 2022; 291:132825. [PMID: 34762875 DOI: 10.1016/j.chemosphere.2021.132825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Prothioconazole (PTC) is a high effective systemic fungicide, and one of its major metabolites is prothioconazole-desthio (PTC-d). Because of its wildly use in the farmland of China, the local eco-toxicological effects of PTC as well as PTC-d are needed to be concerned. This study investigated hepatoxicity of Chinese lizards (Eremias argus), a local non-target organism, after single dose oral treated (100 mg kg-1 BW) through pathological, enzyme activity and gene expression analysis. PTC treatment caused ballooning and PTC-d treatment led to macrovesicular steatosis of hepatocyte. The elevation of serum indexes, including the activities of aspartate aminotransferase (AST), alkaline phosphatase (ALP) and alanine aminotransferase (ALT), further confirmed the hepatic injury. PTC and PTC-d treatments altered oxidative status reflected by the inhibition of superoxide dismutase (SOD) activity , meanwhile, the stimulation of catalase (CAT) activity, glutathione peroxidase (GPx) activity and malondialdehyde (MDA) content. The mRNA expression changes of apoptosis-related factors and cytokines genes, including Bax, Bcl-2, TNF-α, NF-κB, Caspase-3 and Nrf2, deeply uncovered the potential mechanism of hepatotoxicity caused by PTC and PTC-d. In brief, the results indicated that both of these two compounds altered oxidative status, then were likely to trigger caspase-3 by affecting the ratio of pro- and anti-apoptotic factors which belong to intrinsic apoptosis pathway. Specifically, more serious impacts were induced by PTC-d than its parent compound. This study is the first to provide specific insight into potential hepatotoxicity resulted from PTC and PTC-d in male Chinese lizards.
Collapse
Affiliation(s)
- Yun Xie
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| | - Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Yifan Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| |
Collapse
|
34
|
Li B, Wang Y, Zhao H, Yin K, Liu Y, Wang D, Zong H, Xing M. Oxidative stress is involved in the activation of NF-κB signal pathway and immune inflammatory response in grass carp gill induced by cypermethrin and/or sulfamethoxazole. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19594-19607. [PMID: 34718981 DOI: 10.1007/s11356-021-17197-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
At present, the concentration of environmental pollutants, such as pesticides and antibiotics exposed in environment, especially in aquatic environment is increasing. Research on environmental pollutants has exploded in the last few years. However, studies on the combined effects of pesticides and antibiotics on fish are rare, especially the toxic damage to gill tissue is vague. In this paper, cypermethrin (CMN) and sulfamethoxazole (SMZ) were analyzed and found that there was a strong correlation between the pathways affected by the first 30 genes regulated by CMN and SMZ, respectively. Therefore, the toxic effects of CMN (0.651 μg L-1) and/or SMZ (0.3 μg L-1) on grass carp gill were studied in this paper. Histopathology, quantitative real-time PCR, and other methods were used to detect the tissue morphology, oxidative stress level, inflammation, and apoptosis-related indicators of the fish gills after exposure of 42 days. It was found that compared with the single exposure (CMN/SMZ) group, the combined exposure (MIX) group had a more pronounced oxidative stress index imbalance. At the same time, nuclear factor-κB (NF-κB) signal pathway was activated and immuno-inflammatory reaction appeared in MIX group. The expression of tumor necrosis factor (TNF-α) in the rising range is 2.94 times that of the C group, while the expression of interleukin 8 (IL-8) is as high as 32.67 times. This study reveals the harm of CMN and SMZ to fish, and provides a reference and basis for the rational use of pesticides and antibiotics.
Collapse
Affiliation(s)
- Baoying Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hui Zong
- Guangdong Polytechnic of Science and Trade, Guangzhou, 510000, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
35
|
Li Y, Xu M, Zhang Z, Halimu G, Li Y, Li Y, Gu W, Zhang B, Wang X. In vitro study on the toxicity of nanoplastics with different charges to murine splenic lymphocytes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127508. [PMID: 34688005 DOI: 10.1016/j.jhazmat.2021.127508] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Nanoplastics can be ingested by organisms and penetrate biological barriers to affect multiple physiological functions. However, few studies have focused on the effects of nanoplastics on the mammalian immune system. We evaluated the effects and underlying mechanism of nanoplastics of varying particle sizes and surface charges on murine splenic lymphocytes. We found that nanoplastics penetrated into splenic lymphocytes and that nanoplastics of a diameter of 50 nm were absorbed more efficiently by the cells. The nanoplastics decreased cell viability, induce cell apoptosis, up-regulated apoptosis-related protein expression, elicited the production of reactive oxygen species, altered mitochondrial membrane potential, and impaired mitochondrial function. Positively charged nanoplastics exerted the strongest toxicity. Negatively charged and uncharged nanoplastics caused oxidative stress and mitochondrial structural damage in lymphocytes, while positively charged nanoplastics induced endogenous apoptosis directly. Moreover, nanoplastics inhibited the expression of activated T cell markers on the T cell surface, while inhibiting the differentiation of CD8+ T cells and the expression of helper T cell cytokines. In terms of the mechanism, a series of key signaling molecules in the pathways of T cell activation and function were markedly down-regulated after exposure to nanoplastics.
Collapse
Affiliation(s)
- Yuqi Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Pollution Ecology and Environment Engineering, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China.
| | - Zhichun Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Gulinare Halimu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Yansheng Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Wu Gu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Bowen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Xiujuan Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Pollution Ecology and Environment Engineering, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China
| |
Collapse
|
36
|
Xu YC, Liu GH, Xu YH, Zhao T, Zheng H, Tan XY. Physiological and transcriptomic analyses reveal the toxicological mechanism and risk assessment of environmentally-relevant waterborne tetracycline exposure on the gills of tilapia (Oreochromis niloticus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151290. [PMID: 34743874 DOI: 10.1016/j.scitotenv.2021.151290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/06/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
With the increasing application of tetracycline (TC) in medical treatment, animal husbandry and aquaculture in recent decades, high quantities of TC have been frequently detected in the aquatic environment, and accordingly TC-related toxicity and environmental pollution have become a global concern. The present study was performed to explore the toxicological influences of TC exposure at its environmentally relevant concentrations on the gills of tilapia Oreochromis niloticus, based on the alteration in histopathology, oxidative stress, inflammatory response, cell cycle, mitochondrial function, apoptosis, and transcriptomic analysis. Our findings revealed that TC exposure damaged the structure and function, induced oxidative stress, affected inflammatory responses, and reduced Na+/K+-ATPase (NKA) activity in the gills. TC also caused the inhibition in cell cycle, resulted in mitochondrial dysfunction and activated apoptosis. Further transcriptomic analysis indicated the extensive influences of TC exposure on the gill function, and immune system was the main target to waterborne TC exposure. These results elucidated that environmental TC had more complex toxicological effects on gills of fish than previously assessed, and provided novel insight into molecular toxicology of TC on fish and good basis for assessing the environmental risk of TC.
Collapse
Affiliation(s)
- Yi-Chuang Xu
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Guang-Hui Liu
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Huan Xu
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
37
|
Qin W, Shen L, Wang Q, Gao Y, She M, Li X, Tan Z. Chronic exposure to ammonia induces oxidative stress and enhanced glycolysis in lung of piglets. ENVIRONMENTAL TOXICOLOGY 2022; 37:179-191. [PMID: 34806272 DOI: 10.1002/tox.23382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/06/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Ammonia is one of the major environmental pollutants in the pig industry that seriously affects the airway health of pigs. In this study, we aimed to investigate the metabolic profiling changes of piglets' lung tissue after the exposure of 0 ppm (CG), 20 ppm (LG) and 50 ppm (HG) ammonia for 30 days. Compared with the control group, the obvious lung lesions were observed in HG, including interstitial thickening, inflammatory cell infiltration and focal hemorrhage. The significantly increased content of malondialdehyde in HG, combined with the significantly decreased mRNA expression of antioxidase and inflammatory-regulators in exposure groups, implied that ammonia exposure induced oxidative stress and diminished the anti-inflammatory response in lung tissues. Metabolomic analyses of lung tissues revealed 15 significantly altered metabolites among the three groups including multiple amino acids, carbohydrates and lipids. The accumulation of succinic acid, linoleic acid and phosphorylethanolamine and consumption of glucose, quinolinic acid and aspartic acid in ammonia exposure groups, indicated that energy supply from glucose aerobic oxidation was suppressed and the glycolysis and lipolysis were activated in lung tissues induced by chronic ammonia exposure.
Collapse
Affiliation(s)
- Wenhao Qin
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Long Shen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qiankun Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yun Gao
- College of Engineering, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Mengqi She
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Xiaoping Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Zuojun Tan
- College of Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
38
|
Li Y, He J, Luo L, Wang Y. The Combinations of Sulfur and Molybdenum Fertilization Improved Antioxidant Capacity in Grazing Nanjiang Brown Goat. Biol Trace Elem Res 2022; 200:600-608. [PMID: 33851331 DOI: 10.1007/s12011-021-02702-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
To assess the impacts of sulfur (S) and molybdenum (Mo) fertilization on antioxidant capacity of grazing Nanjiang brown goat in copper (Cu)-polluted meadow, and explore the control methods of Cu pollution in natural pasture, fertilizer treatments and grazing experiments were carried out in Garzê Tibetan Autonomous Prefecture of the Western Sichuan Plateau, Sichuan Province, Southwest China. 24 hm2 Cu-polluted meadows were fenced and randomly divided into four groups (3 replications/group, 2 hm2/replication): (1) control group, no fertilizer; (2) treatment groups, applied 1 kg Mo+40 kg S, 2 kg Mo+80 kg S, and 3 kg Mo+120 kg S per hectare for group I, group II, and group III, respectively. Seventy-two healthy Nanjiang brown goats (1 year old, 30.9 ± 1.1 kg) were randomly divided into 4 groups (3 replications/group, 6 goats/replication) and assigned to the tested pastures. The grazing experiment lasted for 60 days. The results showed that the contents of N, S, Mn, Zn, and Mo in herbage in fertilized pastures were higher than those in control group (P < 0.01). The contents of Cu and Se in herbage in fertilized pastures were lower than those in control group (P < 0.01). There were no differences among the fertilized pastures (P > 0.05). The contents of Mn, Zn, Mo, and S in serum and liver in the treatment goats were higher than those in control animals (P < 0.01). The contents of Cu and Se in serum and liver in the treatment goats were lower than those in control animals (P < 0.01). There was no difference in Fe and Co contents in herbage, serum, and liver among the four groups (P > 0.05). The levels of Hb, RBC, and PCV in blood in the treatment goats and the activities of SOD, GSH-Px, T-AOC, CAT, and Cp in serum were higher than those in control goats (P < 0.01). The contents of MDA in the treatment goats were lower than those in control animals (P < 0.01). The contents of serum Cu and Mo, and liver Cu in group III were lower than those in group I and group II (P < 0.01). Taken together, the combinations of S and Mo fertilization did not influence the mineral contents in herbage, serum, and liver, but reduced the toxicity of Cu in Cu-polluted grassland and improved antioxidant capacity in grazing Nanjiang brown goat from fertilized pastures.
Collapse
Affiliation(s)
- Yuanfeng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Swine Research Institute, Tie Qi Li Shi Group Co., Mianyang, 621006, China
| | - Jian He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lan Luo
- Nanjiang Product Quality Supervision and Inspection Institute, Bazhong, 636600, China
| | - Yachao Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
39
|
El-Sabbagh NM, Khalil RH, Khallaf MM, Shakweer MS, Ghetas HA, Atallah MM. Pharmacological and ameliorative effects of Withania somnifera against cadmium chloride-induced oxidative stress and immune suppression in Nile tilapia, Oreochromis niloticus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6777-6792. [PMID: 34458972 DOI: 10.1007/s11356-021-15630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
This study was carried out to evaluate the effects of dietary supplementation of aqueous extract of Withania somnifera (W. somnifera) against cadmium chloride-induced toxicity in the Nile tilapia, Oreochromis niloticus. Five experimental groups were designed: group (I) was free from cadmium chloride and W. somnifera and served as a control, group (II) was exposed to 1.775 mg L-1 of cadmium chloride only (which is equivalent to 1/4 96-h LC50), while groups (III), (IV), and (V) were exposed to 1.775 mg cadmium chloride L-1 with co-supplementation of dietary W. somnifera in doses of 1.0, 2.0, and 3.0 mL kg-1 body weight (bwt), respectively. The experiment lasted for 4 weeks. In the second and fourth weeks of the experiment, the following indicators were evaluated: hematological (hemogram and blood protein profile), biochemical (activities of serum liver enzymes, namely alanine transaminase (ALT) and aspartate transaminase (AST)), immunological (immunoglobulin M (IgM), serum lysozyme), and tissue antioxidant changes (malondialdehyde (MDA) levels and activities of catalase (CAT) and superoxide dismutase (SOD)). Additionally, gene expressions of glutathione-S-transferase (GST) in the liver were assessed. At the end of the experiment, all fish in all groups were experimentally challenged with Aeromonas hydrophila and the relative protection survival (RPS) was demonstrated. The results revealed that groups exposed to cadmium chloride toxicity and co-supplemented with dietary aqueous extract of W. somnifera at high doses showed significant ameliorative effects in hemogram parameters, total protein, globulin, IgM, and lysozyme against cadmium chloride-induced toxicity compared to the control group and the group exposed to a sublethal dose of cadmium chloride without co-suplemntation of W. somnifera. The results showed also that groups supplemented orally with W. somnifera at high doses have higher antioxidant activities of CAT and SOD and reduction of MDA formation. Levels of gene expressions of GST in the liver were higher in W. somnifera extract-supplemented groups more than those in the group exposed to cadmium chloride-induced toxicity without W. somnifera supplementation. In addition, the results revealed improved RPS with the dietary supply of W. somnifera extract in high doses. In conclusion, this study showed that the dietary supplementation of W. somnifera extract to diets of O. niloticus could be suggested as an effective way to overcome cadmium chloride-induced toxicity because it improves blood parameters and antioxidants, and it can be used as an immunostimulant against the invading bacterial pathogens.
Collapse
Affiliation(s)
- Nasser M El-Sabbagh
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| | - Riad H Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohammed M Khallaf
- Department of Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Sadat City University, Sadat, Egypt
| | - Medhat S Shakweer
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hanan A Ghetas
- Department of Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Sadat City University, Sadat, Egypt
| | - Mohamed M Atallah
- Faculty of Aquaculture and Fish Wealth, Alexandria University, Alexandria, Egypt
| |
Collapse
|
40
|
Wang Y, Wang S, Jing H, Zhang T, Song N, Xu S. CircRNA-IGLL1/miR-15a/RNF43 axis mediates ammonia-induced autophagy in broilers jejunum via Wnt/β-catenin pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118332. [PMID: 34637826 DOI: 10.1016/j.envpol.2021.118332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
With the continued increase of global ammonia emission, the damage to human or animal caused by ammonia pollution has attracted wide attention. The noncoding RNAs have been reported to regulate a variety of biological processes under different environmental stimulation via ceRNA (competing endogenous RNA) networks. Autophagy is a hallmark of tissue damage from air pollution. However, the specific role of circular RNAs (circRNAs) in the injury of intestinal tissue caused by autophagy remains unclear. Here, we established 42-days old ammonia-exposed broiler models and observed that autophagy flux in broiler jejunum was activated under ammonia exposure. Meanwhile, a total of eight significantly dysregulated expressed circRNAs were obtained and a circRNAs-miRNAs-genes interaction networks were constructed by bioinformatics analysis. Furthermore, an axis named circRNA-IGLL1/miR-15a/RNF43 was predicted to participate in the excessive autophagy by targeting RNF43. The target relationship was proved by dual-luciferase reporter assay in vitro. Mechanistically, downregulated circRNA-IGLL1 could suppress the expression of RNF43 in ammonia-exposed jejunum and the Wnt/β-catenin pathway was activated. Inhibition of miR-15a reversed autophagy caused by downregulated circRNA-IGLL1. CircRNA-IGLL1 could competitively bind miR-15a to regulate RNF43 expression, thus modulating the occurrence of autophagy. Taken together, our results showed that circRNA-IGLL1/miR-15a/RNF43 axis is involved in ammonia-induced intestinal autophagy in broilers.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongyuan Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tianyi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
41
|
Luan P, Zhang H, Zhang X, Hu G, Zhang Z. Cadmium regulates FKBP5 through miR-9-5p and induces carp lymphocyte apoptosis. FISH & SHELLFISH IMMUNOLOGY 2022; 120:353-359. [PMID: 34896595 DOI: 10.1016/j.fsi.2021.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is an environmental pollutant produced by industrial activities, which has no known physiological benefits to organisms. In our previous study, the transcriptomic profiles of carp head kidney exposed to Cd was analyzed by genomics technique, and confirmed that miRNAs are important in the head kidney injury of carp induced by Cd, but the specific biological mechanism was unclear. In order to further explore the effect of Cd on carp head kidney lymphocyte damage, we established a model of Cd exposure in vitro. The results showed that Cd could increase the expression of Bax (Bcl-2 associated X protein), Caspase9 (Cysteinyl aspartate specific proteinase 9) and Caspase3 (Cysteinyl aspartate specific proteinase 3), inhibit the expression of Bcl-2 (B cell lymphoma/leukemia 2), and induce apoptosis of carp head kidney lymphocytes. In our previous study, we screened the differentially expressed miRNA in Cd-treated lymphocytes by high-throughput sequencing, and found that there was a significant difference in the expression of miR-9-5p. The expression trend of miR-9-5p in the vitro model was the same as that of high-throughput sequencing. We screened the differentially expressed gene FKBP5 (FK506-binding protein 51) in lymphocytes treated with Cd. It was confirmed by double luciferase reporter gene analysis that FKBP5 was the target gene of miR-9-5p. We established the overexpression/knockdown model of miR-9-5p in carp head kidney lymphocyte in vitro. The results showed that miR-9-5p could inhibit the expression of FKBP5, increase the phosphorylation level of Akt, inhibit apoptosis and improve the cell survival rate in carp head kidney lymphocytes. Together, Cd could down-regulate the expression of miR-9-5p, target up-regulate the expression of FKBP5, inhibit the phosphorylation of Akt, and promote the apoptosis of carp head kidney lymphocytes through mitochondrial pathway.
Collapse
Affiliation(s)
- Peixian Luan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaofeng Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, PR China
| | - Guo Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
42
|
Liu Y, Yu M, Cui J, Du Y, Teng X, Zhang Z. Heat shock proteins took part in oxidative stress-mediated inflammatory injury via NF-κB pathway in excess manganese-treated chicken livers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112833. [PMID: 34600291 DOI: 10.1016/j.ecoenv.2021.112833] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Manganese (Mn) is an essential metal in humans and animals. However, excess Mn entered environment due to the wide application of Mn in industry and agriculture, and became an environmental pollutant. Exposure to high doses of Mn is toxic to humans and animals (including chickens). Liver is a target organ of Mn poisoning. Nevertheless, there were few studies on whether Mn poisoning damages chicken livers and poisoning mechanism of Mn in chicken livers. Herein, the aim of this study was to explore if oxidative stress, heat shock proteins (HSPs), and inflammatory response were involved in the mechanism of Mn poisoning-caused damage in chicken livers. A chicken Mn poisoning model was established. One hundred and eighty chickens were randomly divided into one control group (containing 127.88 mg Mn kg-1) and three Mn-treated groups (containing 600, 900, and 1800 mg Mn kg-1, respectively). Histomorphological structure was observed via microstructure and ultrastructure. Spectrophotometry was used to detect total antioxidant capacity (T-AOC) and inducible nitric oxide synthase (iNOS) activity, as well as nitric oxide (NO) content. And qRT-PCR was performed to measure mRNA expression of inflammatory genes (nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and iNOS) and heat shock protein (HSP) genes (HSP27, HSP40, HSP60, HSP70, and HSP90). Multivariate correlation analysis, principal component analysis, and cluster analysis were used to demonstrate the reliability of mechanism of Mn poisoning in our experiment. The results indicated that excess Mn led to inflammatory injury at three contents and three time points. Meanwhile, we found that NO content, iNOS activity, and NF-κB, TNF-α, COX-2, PGE2, and iNOS mRNA expression increased after Mn treatment, meaning that exposure to Mn induced inflammatory response via NF-κB pathway in chicken livers. Moreover, excess Mn decreased T-AOC activity, indicating that Mn exposure caused oxidative stress. Furthermore, mRNA expression of above five HSP genes was up-regulated during Mn exposure. Oxidative stress triggered the increase of HSPs and the increase of HSPs mediated inflammatory response induced by Mn. In addition, there were time- and dose-dependent effects on Mn-caused chicken liver inflammatory injury. Taken together, HSPs participated in oxidative stress-mediated inflammatory damage caused by excess Mn in chicken livers via NF-κB pathway. For the first time, we found that oxidative stress can trigger HSP70 and HSPs can trigger poisoning-caused inflammatory damage, which needs to be further explored. This study provided a new insight into environmental pollutants and a reference for further study on molecular mechanisms of poisoning.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Animal Science, Inner Mongolia Agricultural University, Hohhot City 010018, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Meijin Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ye Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin 132101, PR China.
| | - Zuozhong Zhang
- School of Animal Science, Inner Mongolia Agricultural University, Hohhot City 010018, PR China.
| |
Collapse
|
43
|
Xu Z, Cao J, Qin X, Qiu W, Mei J, Xie J. Toxic Effects on Bioaccumulation, Hematological Parameters, Oxidative Stress, Immune Responses and Tissue Structure in Fish Exposed to Ammonia Nitrogen: A Review. Animals (Basel) 2021; 11:ani11113304. [PMID: 34828036 PMCID: PMC8614401 DOI: 10.3390/ani11113304] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Ammonia nitrogen is a common environmental limiting factor in aquaculture, which can accumulate rapidly in water and reach toxic concentrations. In most aquatic environments, fish are vulnerable to the toxic effects of high levels of ammonia nitrogen exposure. It has been found that the toxic effects of ammonia nitrogen on fish are multi-mechanistic. Therefore, the purpose of this review is to explore the various toxic effects of ammonia nitrogen on fish, including oxidative stress, neurotoxicity, tissue damage and immune response. Abstract Ammonia nitrogen is the major oxygen-consuming pollutant in aquatic environments. Exposure to ammonia nitrogen in the aquatic environment can lead to bioaccumulation in fish, and the ammonia nitrogen concentration is the main determinant of accumulation. In most aquatic environments, fish are at the top of the food chain and are most vulnerable to the toxic effects of high levels of ammonia nitrogen exposure. In fish exposed to toxicants, ammonia-induced toxicity is mainly caused by bioaccumulation in certain tissues. Ammonia nitrogen absorbed in the fish enters the circulatory system and affects hematological properties. Ammonia nitrogen also breaks balance in antioxidant capacity and causes oxidative damage. In addition, ammonia nitrogen affects the immune response and causes neurotoxicity because of the physical and chemical toxicity. Thence, the purpose of this review was to investigate various toxic effects of ammonia nitrogen, including oxidative stress, neurotoxicity and immune response.
Collapse
Affiliation(s)
- Zhenkun Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jie Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.); Tel.: +86-21-61900349 (J.M.); +86-21-61900351 (J.X.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.); Tel.: +86-21-61900349 (J.M.); +86-21-61900351 (J.X.)
| |
Collapse
|
44
|
Bai S, Peng X, Wu C, Cai T, Liu J, Shu G. Effects of dietary inclusion of Radix Bupleuri extract on the growth performance, and ultrastructural changes and apoptosis of lung epithelial cells in broilers exposed to atmospheric ammonia. J Anim Sci 2021; 99:skab313. [PMID: 34718609 PMCID: PMC8599180 DOI: 10.1093/jas/skab313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
To explore whether Radix Bupleuri extract (RBE) could protect lung injury of broilers under ammonia (NH3) exposure, 360 one-d-old male broilers were randomly allocated to four groups of six replicates each in a 2 × 2 factorial design with two diets (the basal diet [control; CON] and the basal diet supplemented with RBE [RB]) and two air conditions (normal condition [<2 ppm of NH3; NOR] and NH3 exposure [70 ppm of NH3; NH70]). The RB diet contained 80 mg saikosaponins/kg diet. On day 7, the lung tissues were collected and the lung epithelial cells (LEC) were isolated. Our experimental results showed that the NH3 exposure decreased body weight gain and feed intake irrespective of dietary treatments during days 1 to 7. However, the RBE addition decreased feed consumption to body weight gain ratio in broilers under NH70 conditions. In the LEC of CON-fed broilers under NH70 conditions, Golgi stacks showed the dilation of cisternaes and reduced secretory vesicles, mitochondria enlarged, the inner membrane of mitochondria became obscure, and the cristae of mitochondria ruptured, whereas only a mild enlargement of Golgi cisternaes and the part rupture of mitochondrial cristaes occurred in the LEC of RB-fed broilers under NH70 conditions. The NH3 exposure increased malondialdehyde (MDA) level, but decreased total antioxidant capacity (T-AOC) in the lungs of CON-fed broilers. However, the RBE addition decreased MDA level and increased T-AOC in the lungs of broilers under NH70 conditions. Simultaneously, the NH3 exposure increased apoptotic rate (AR), mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) level in the isolated LEC of CON-fed broilers. The RBE addition decreased AR, MMP, and ROS in the isolated LEC of broilers under NH70 condition. Besides, the NH3 exposure increased mRNA expression of B-cell lymphoma-2 associated X protein (BAX), caspase-3, and tumor necrosis factor α (TNF-α), but increased interferon γ (IFN-γ) mRNA abundance in the lungs of CON-fed broilers. The RBE supplement decreased mRNA levels of BAX, caspase-3, and TNF-α, but increased IFN-γ, interleukin (IL)-4, and IL-17 mRNA levels in the lungs of broilers under NH70 conditions. These results indicated that dietary RBE addition alleviated NH3 exposure-induced intercellular ultrastructural damage via mitochondrial apoptotic pathway, possibly due to RBE-induced increase of antioxidant capacity and immunomodulatory function in the lungs of broilers under NH3 exposure.
Collapse
Affiliation(s)
- Shiping Bai
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Caimei Wu
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tong Cai
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jiangfeng Liu
- School of Intelligence Technology, Geely University of China, Chengdu 641423, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
45
|
Li Z, Ali Shah SW, Zhou Q, Yin X, Teng X. The contributions of miR-25-3p, oxidative stress, and heat shock protein in a complex mechanism of autophagy caused by pollutant cadmium in common carp (Cyprinus carpio L.) hepatopancreas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117554. [PMID: 34174664 DOI: 10.1016/j.envpol.2021.117554] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that can be discharged into water environment through industrial activities, threatening the health of aquatic organisms and humans. MicroRNA (miRNA) plays an important role in the process of autophagy. The purpose of this experiment was to study the mechanism of Cd-induced autophagy in common carp hepatopancreas. We established a Cd poisoning model of common carp and explored ultrastructure, two oxidation indicators, three antioxidant indicators, miR-25-3p, two heat shock proteins (Hsps), and nine autophagy-related genes. The results confirmed that deleterious effect of Cd caused the injury of hepatopancreas and the appearance of hepatopancreas autophagic cells in common carp. At the same time, Cd exposure increased the contents of hydrogen peroxide (H2O2) and malonaldehyde (MDA), and decreased the activities of catalase (CAT), superoxide dismutase (SOD), and total antioxidative capacity (T-AOC), meaning that Cd caused oxidative stress via the imbalance between peroxide level and antioxidant capacity. Moreover, exposure to Cd increased mRNA expression of microtubule associated protein-1 light chain 3 beta (LC3-II), Dynein, Beclin 1, autophagy-related gene 5 (Atg5), and autophagy-related gene 12 (Atg12); and decreased mRNA expression of mechanistic target of rapamycin kinase (mTOR), indicating that excess Cd caused autophagy, and AMPK/mTOR/ULK1 signaling pathway took part in autophagy induced by Cd in common carp hepatopancreas. Furthermore, Cd down-regulated miR-25-3p and up-regulated its three target genes (AMPK, ULK1 as well as PTEN), suggesting that miR-25-3p mediated autophagy induced by Cd. In addition, we found that Hsps were activated via the up-regulation of Hsp70 and Hsp90. Moreover, oxidative stress mediated autophagy via Hsps in Cd-treated common carp hepatopancreas and Cd-induced autophagy was time dependent. In summary, miR-25-3p, oxidative stress, and Hsps participated in autophagy caused by Cd in common carp hepatopancreas. This study provided a new idea for the mechanism of Cd-induced autophagy in hepatopancreas.
Collapse
Affiliation(s)
- Zhuo Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qin Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China; Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China.
| |
Collapse
|
46
|
Li Y, Wang Y, Shen X, Liu F. The combinations of sulfur and molybdenum fertilizations improved antioxidant capacity of grazing Guizhou semi-fine wool sheep under copper and cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112520. [PMID: 34280842 DOI: 10.1016/j.ecoenv.2021.112520] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Mineral development and metal smelting are the main sources of heavy metal pollution, and copper (Cu) and cadmium (Cd) are the most serious mineral elements in heavy metal pollution. Food chain is the main channel for Cu and Cd to enter human body. Excessive accumulation of Cu and Cd can lead to a variety of diseases and threaten human health. Therefore, it is urgent to repair Cu and Cd-contaminated soil. Previous several studies found that sulfur (S) and molybdenum (Mo) had the effect of alleviating the decrease of antioxidant capacity caused by heavy metal poisoning. To investigate the co-combinations of S and Mo fertilizations on antioxidant capacity of grazing Guizhou semi-fine wool sheep in Cu and Cd-contaminated meadow, and explore the control methods of co-pollutions of Cu and Cd in natural pastures, fertilizing and grazing experiments were carried out in the Wumeng Prairie in the northwest of Guizhou Province, Southwest China. 24 hm2 Cu and Cd-polluted meadows were fenced, and were randomly divided into four groups with 3 replications per group and 2 hm2 per replication. The tested groups included the control group (no fertilizer) and the three treatment groups, applied 40 kg S + 1 kg Mo, 80 kg S + 2 kg Mo, and 120 kg S + 3 kg Mo per hectare for group I, group II, and group III, respectively. 72 healthy Guizhou semi-fine wool sheep (one year old, 33.9 ± 1.2 kg) were randomly assigned to the tested pastures with 18 sheep per group. The grazing experiment lasted for 60 days. The results showed that the contents of Mn, Zn, Mo, and S in herbage in fertilized pastures were higher than that in the control group (P < 0.05). The content of Cu in herbage in fertilized pastures was lower than that in the control group (P < 0.05). The contents of Mn, Zn, Mo, and S in serum of grazing Guizhou semi-fine wool sheep were higher than that in the control group (P < 0.05). The content of Cu in serum of grazing Guizhou semi-fine wool sheep was lower than that in the control group (P < 0.05). The levels of blood Hb, RBC, and PCV, and the activities of serum SOD, GSH-Px, T-AOC, CAT, and Cp in group Ⅲ were higher than that in the control group, group Ⅰ, and group Ⅱ (P < 0.05). The MDA content of sheep in group Ⅲ was lower than that in the other treatment sheep (P < 0.05). In summary, the combinations of S and Mo fertilizers influenced the mineral contents in herbage and serum of grazing Guizhou semi-fine wool sheep. The combinations of 120 kg S + 3 kg Mo fertilizer reduced the toxicity and improved antioxidant capacity of grazing Guizhou semi-fine wool sheep in Cu and Cd-polluted grasslands.
Collapse
Affiliation(s)
- Yuanfeng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China; Swine Research Institute, Tie Qi Li Shi Group Co., Mianyang, China
| | - Yachao Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China; State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China; World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, Guizhou, China.
| | - Fuyuan Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| |
Collapse
|
47
|
Tian H, Ding M, Guo Y, Su A, Zhai M, Tian Y, Li K, Sun G, Jiang R, Han R, Kang X, Yan F. Use of transcriptomic analysis to identify microRNAs related to the effect of stress on thymus immune function in a chicken stress model. Res Vet Sci 2021; 140:233-241. [PMID: 34534905 DOI: 10.1016/j.rvsc.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In modern poultry production, stress-induced immunosuppression leads to serious economic losses and harm to animals, but the molecular mechanisms governing the effects of stress on the chicken thymus have not been elucidated. In this study, we successfully constructed a stress model of 7-day-old Gushi chickens by adding exogenous corticosterone (CORT) to their diet and determined the microRNA (miRNA) expression profile of thymus tissues using RNA-seq technology. The results identified 51 differentially expressed miRNAs (DEMs), including 30 upregulated miRNAs and 21 downregulated miRNAs. A total of 164 target genes of the DEMs were predicted based on bioinformatic analysis methods, and Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of these target genes were performed. The results from the GO enrichment analysis of the target genes identified 349 significantly enriched terms, including terms associated with the stress response and immune function that are primarily involved in the negative regulation of phagocytosis, the response to stress and the cellular response to stimulus. The KEGG pathway analysis indicated that the enriched pathways related to immunity or stress included the MAPK signaling pathway, lysosomes, endocytosis, and the RIG-I-like receptor signaling pathway. Among these pathways, DEMs (such as gga-miR-2954, gga-miR-106-5p, and gga-miR-16-5p) and corresponding target genes (such as IL11Ra, SIKE1, and CX3CL1) might be strongly correlated with thymic immunity in chickens. The results of this study provide a reference for further research on the molecular regulatory mechanisms governing the effect of stress on the immune function of the chicken thymus.
Collapse
Affiliation(s)
- Huihui Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Aru Su
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Minxi Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Kui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
48
|
Shengchen W, Jing L, Yujie Y, Yue W, Shiwen X. Polystyrene microplastics-induced ROS overproduction disrupts the skeletal muscle regeneration by converting myoblasts into adipocytes. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125962. [PMID: 33979708 DOI: 10.1016/j.jhazmat.2021.125962] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 05/23/2023]
Abstract
The environmental problem of Microplastics (MPs) pollution poses a great threat to human and animal health, which has attracted global attention. The physiological integrity of skeletal muscle is extremely important for the survival of animals. Here, we investigated the effect of two size polystyrene microplastics (PS-MPs, 1-10 µm and 50-100 µm) on the growth of anterior tibial (TA) muscle and repair after injury in mice. Results showed that the regeneration of skeletal muscle was delayed by PS-MPs exposure and was negatively correlated with particle size. H&E staining and Oil red O staining showed that PS-MPs exposure reduced the average cross-sectional area (CSA) and diameter of the muscle fibers, increased lipid deposition. Further mechanistic research displayed that though PS-MPs treatment did not affect cell viability of myoblast, it aggravated intracellular ROS generation and oxidative stress, inhibited myogenic differentiation by decreasing the phosphorylation of p38 MAPK, and promote adipogenic differentiation by increasing the expression of NF-κB, which could be alleviated by NAC. In brief, our data demonstrated that the ROS overproduction caused by PS-MPs disturbed the regeneration of skeletal muscle and directed the fate of satellite cells in mice.
Collapse
Affiliation(s)
- Wang Shengchen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Liu Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yao Yujie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wang Yue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Shiwen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
49
|
Gu Y, Li G, Huang C, Liu P, Hu G, Wu C, Xu Z, Guo X, Liu P. Dichlorvos poisoning caused chicken cerebrum tissue damage and related apoptosis-related gene changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147051. [PMID: 34088127 DOI: 10.1016/j.scitotenv.2021.147051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Dichlorvos (DDVP) is an organophosphorus compound with insecticidal effects. Organophosphorus pesticides can easily enter humans or animals through various channels, causing cerebrum nerve cell damage. The purpose of this research was to investigate whether acute dichlorvos poisoning can cause cerebrum neurotoxic injury and change the expression of apoptosis-related genes in broilers, further clarify the neurotoxic mechanism after acute dichlorvos exposure, and provide a research basis for prevention, treatment and gene drug screening in the later stage. In this experiment, healthy yellow-feathered broilers were randomly assigned to the control group, the low-dose group (1.13 mg/kg) and the high-dose group (10.2 mg/kg) for modelling observation, and detection was conducted based on H&E (haematoxylin and eosin) staining, transmission electron microscopy analysis of tissue sections, immunofluorescence techniques and real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that organophosphorus poisoning was accompanied by obvious neurological symptoms such as limb twitching and massive salivation. In addition, we observed that compared with the control group, the number of lysed nuclear neurons, deformed vascular sheaths, and glial cells and the expression of glial fibrillary acidic protein (GFAP) in the poisoned group of broilers increased significantly, and the increase was more obvious in the low-dose group. However, cell apoptosis and mitochondrial structure dissolution were most pronounced in the high-dose group. Moreover, the qRT-PCR results also revealed significant changes in the expression of apoptosis-related genes. The expression levels of ACC, LKB1 and GPAT increased significantly, while the expression of HMGR, PPARα, CPT1 and AMPKα1 decreased significantly. In summary, these results indicated that dichlorvos may cause the lysis of cerebrum nerve cell nuclei, completely destroy the structure of mitochondria, change the expression of related apoptotic genes, enhance cell apoptosis, and cause neurogenic damage to the cerebrum. These research results offer a theoretical foundation for the prevention and treatment of acute organophosphate toxicosis.
Collapse
Affiliation(s)
- Yueming Gu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Cong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, United States of America
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
50
|
Gao Z, Gao X, Fan W, Liu S, Li M, Miao Y, Ding C, Tang Z, Yan L, Liu G, Shi X, Song S. Bisphenol A and genistein have opposite effects on adult chicken ovary by acting on ERα/Nrf2-Keap1-signaling pathway. Chem Biol Interact 2021; 347:109616. [PMID: 34363818 DOI: 10.1016/j.cbi.2021.109616] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 07/13/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022]
Abstract
The reproductive toxicity of endocrine-disrupting chemicals has become a matter of great concern. However, the potential toxicological mechanism of typical environmental estrogens, bisphenol A (BPA) and genistein (GEN), on adult ovary remains ambiguous. In this study, we used laying hens as the experimental model and aimed to clarify the effect of long-term exposure to safe reference doses of BPA and GEN on adult ovary. Results demonstrated that 1/10 no-observable-adverse effect-level dose (1/10 NOAEL, 500 μg/kg body weight [bw]/day) of BPA significantly reduced the production performance and caused the degeneration of follicles and stromal cells and the increase of atretic follicles. Moreover, 1/10 NOAEL dose of BPA undermined the redox homeostasis of the ovary through activating Keap1 and suppressing the Nrf2-signaling pathway (Nrf2, NQO1, and HO-1). On the contrary, GEN (20, 40 mg/kg bw/day) dramatically improved the antioxidant capacity of the ovary by regulating the Nrf2-Keap1 pathway, enhancing the activities of antioxidant-related enzymes (CAT, GSH-Px, and T-SOD), and inhibiting the excessive accumulation of lipid peroxidation products (MDA). Parallel in vitro studies confirmed that the differential role of BPA and GEN on ovarian redox balance was directly mediated by Nrf2-Keap1 antioxidant system. And GEN could ameliorate BPA-induced oxidative stress. Importantly, our research found that exposure to BPA and GEN altered estrogen receptor alpha (ERα) expression in the ovary. And the use of specific ERα agonist/antagonist confirmed that BPA and GEN have opposite regulatory effects on the Nrf2-Keap1 pathway by targeting ERα.
Collapse
Affiliation(s)
- Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xiaona Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Mengcong Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yufan Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|