1
|
Denpetkul T, Srathongneam T, Sittipunsakda O, Tancharoen S, Krabkran P, Mongkolsuk S, Sirikanchana K. Protective masks reduced gastrointestinal risks of antibiotic-resistant E. coli for hospital wastewater treatment plant workers: A quantitative microbial risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126180. [PMID: 40185188 DOI: 10.1016/j.envpol.2025.126180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/12/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Antibiotic-resistant bacteria (ARB) in hospital wastewater present significant but under-researched risks for wastewater treatment plant (WWTP) workers. This study evaluated annual infection risks (Py) from exposure to ESBL-producing Escherichia coli (ESBL E. coli) and the effectiveness of protective masks. Wastewater samples from 25 hospitals in Thailand revealed 88 % of untreated samples were positive for ESBL E. coli (6.25 × 102 to 1.83 × 107 CFU/100 mL, mean 2.22 × 106), while 40 % of treated samples tested positive (1.00 × 102 to 1.97 × 105 CFU/100 mL, mean 2.45 × 104). Using quantitative microbial risk assessment and data from 917 workers, risks were calculated under three scenarios: non-resistant, antibiotic-resistant, and highly virulent E. coli. Ingestion of aerosols and droplets posed a higher infection risk than hand-to-mouth contact, with Py often exceeding the U.S. EPA benchmark of 10-4 per person per year. Mask use, particularly surgical and FFP2 masks, significantly reduced risks, bringing treated wastewater exposure below the benchmark. However, highly virulent E. coli risks remained high across all mask types. These findings highlight the need for effective protective measures and disinfection strategies to safeguard WWTP workers and mitigate ARB dissemination, protecting public health and environmental safety.
Collapse
Affiliation(s)
- Thammanitchpol Denpetkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Thitima Srathongneam
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Oranoot Sittipunsakda
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Sajjamarn Tancharoen
- Bureau of Environmental Health, Department of Health, Ministry of Public Health, Bangkok, 11000, Thailand
| | - Prachote Krabkran
- Bureau of Environmental Health, Department of Health, Ministry of Public Health, Bangkok, 11000, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok, 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Díaz-García C, Sánchez-Osuna M, Serra-Compte A, Karakatsanidou I, Gómez-Sánchez I, Fidalgo B, Barbuzana-Armas C, Fittipaldi M, Rosselli R, Vinyoles J, González S, Pich OQ, Espasa M, Yáñez MA. Mapping antimicrobial resistance landscape at a city scale sewage network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179127. [PMID: 40138908 DOI: 10.1016/j.scitotenv.2025.179127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Wastewater is a valuable source for monitoring contaminants of biotic or abiotic origin. Antimicrobial resistance (AMR) has emerged as a public health threat that consists of the ability of microorganisms to resist the effects of antimicrobial compounds, rendering them very difficult or impossible to eradicate in case of infection. Considering the dissemination of antimicrobial resistance genes (ARGs) to a wide number of ecosystems, there is a need for the identification of hotspots that concentrate antimicrobial resistance determinants. A comprehensive investigation conducted at a city-scale in Sabadell (Barcelona, Spain) has integrated both phenotypic and genotypic methodologies, including metagenomics and culture-based techniques coupled with whole-genome sequencing (WGS), to monitor ARG presence in seven different spots of the sewage system. Metagenomics approach identified 262 ARG variants across analyzed sampling sites, grouped into 15 resistance categories. The most prevalent ARGs were macrolides-lincosamides-class B streptogramins (MLSB) (35.1 %) and beta-lactams (28.7 %), including carbapenems (5.9 %) and cephalosporins (5.3 %). MLSB resistance featured dominant msr(E) and mph(E) genes, the most abundant ARGs in our study. ARGs conferring resistance to beta-lactam were dominated by blaOXA-464, blaOXA-491, and blaNPS. Key genes for carbapenem (blaOXA-372, blaKPC-2) and cephalosporin (blaOXA-10, blaOXA-1) resistance were identified. The hospital sector exhibited the highest relative abundance of ARGs, dominated by beta-lactams, MLSB, and aminoglycosides. Wastewater treatment plant (WWTP) entrance points and residential areas displayed similar ARG profiles, while WWTP effluent and industrial zones had the lowest ARG levels. WWTP significantly reduced ARG presence (93.3 %). The characterization of antibiotic-resistant bacterial isolates found that most abundant ARGs were predominantly plasmid-borne, favoring ARG spread across bacterial genera. This finding confirmed the significant role of plasmids in ARG dissemination, increasing both diversity and prevalence within waterborne bacterial communities. City-scale surveillance programs can play a pivotal role in guiding effective measures to reduce the dissemination of AMR and mitigate their environmental impact.
Collapse
Affiliation(s)
- Clara Díaz-García
- LABAQUA, S.A.U., c/ Dracma, 16-18, Polígono industrial Las Atalayas, 03114 Alicante, Spain
| | - Miquel Sánchez-Osuna
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Serra-Compte
- Cetaqua, Water Technology Centre, Ctra. d'Esplugues, 75, 08940 Cornellà de Llobregat, Barcelona, Spain
| | - Ioanna Karakatsanidou
- Cetaqua, Water Technology Centre, Ctra. d'Esplugues, 75, 08940 Cornellà de Llobregat, Barcelona, Spain
| | - Inmaculada Gómez-Sánchez
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Berta Fidalgo
- Servei de Microbiologia, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - César Barbuzana-Armas
- LABAQUA, S.A.U., c/ Dracma, 16-18, Polígono industrial Las Atalayas, 03114 Alicante, Spain
| | - Mariana Fittipaldi
- LABAQUA, S.A.U., c/ Dracma, 16-18, Polígono industrial Las Atalayas, 03114 Alicante, Spain
| | - Riccardo Rosselli
- LABAQUA, S.A.U., c/ Dracma, 16-18, Polígono industrial Las Atalayas, 03114 Alicante, Spain; Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Jordi Vinyoles
- Aigües Sabadell, C. Concepció, 20, 08202 Sabadell, Spain
| | - Susana González
- Cetaqua, Water Technology Centre, Ctra. d'Esplugues, 75, 08940 Cornellà de Llobregat, Barcelona, Spain
| | - Oscar Q Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mateu Espasa
- Servei de Microbiologia, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain.
| | - M Adela Yáñez
- LABAQUA, S.A.U., c/ Dracma, 16-18, Polígono industrial Las Atalayas, 03114 Alicante, Spain.
| |
Collapse
|
3
|
Hotor P, Kotey FCN, Donkor ES. Antibiotic resistance in hospital wastewater in West Africa: a systematic review and meta-analysis. BMC Public Health 2025; 25:1364. [PMID: 40217451 PMCID: PMC11987346 DOI: 10.1186/s12889-025-22513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The occurrence of antibiotic-resistant bacteria (ARB) has become a global menace and therefore increases morbidity, mortality and healthcare costs. Globally, hospital wastewater (HWW) has been identified as a significant source of antibiotic-resistant elements. OBJECTIVES This review aims to systematically review and to perform meta-analyses from evidence on antibiotic resistance studies in HWW in West Africa. METHODS The review was conducted in compliance with PRISMA and included studies published between 1990 and 2024 in West Africa from the Scopus, PubMed, and Web of Science databases. Eligible studies that characterized resistant bacteria, genes, or antibiotic residues in HWW were included. Meta-analyses for resistant bacteria and genes as well risk of bias using the Newcastle-Ottawa scale were conducted. RESULTS Out of 23 studies reviewed, resistant bacteria were reported in 39% (E. coli), 26% (K. pneumoniae), and 17% (P. aeruginosa), while 17 studies reported ARGs, with blaTEM (29%), blaOXA- 48 (18%), blaSHV (18%), and mecA (18%) being the most common. Only 4% and 9% of studies focused on toxin genes and antibiotic residues, respectively. Meta-analysis showed pooled prevalence rates for resistant bacteria: E. coli 42.6% (95% CI: 26.7%-60.3%) and K. pneumoniae 32.1% (95% Cl: 28.8%- 36.5%), and ARGs: blaTEM 76.0% (95% CI = 64.6%-84.6%) and blaSHV 59.3% (95% CI = 19.5%-89.8%). CONCLUSION This systematic review highlights significant findings of high levels of ARGs and ARBs of public health concern in HWW in West Africa. This highlights the need to improve upon the monitoring of antibiotic resistance and treatment of HWW in West Africa.
Collapse
Affiliation(s)
- Prince Hotor
- Department of Medical Microbiology, University of Ghana Medical School, 00233, Accra, Ghana.
| | - Fleischer C N Kotey
- Department of Medical Microbiology, University of Ghana Medical School, 00233, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, 00233, Accra, Ghana.
| |
Collapse
|
4
|
Bisaccia M, Berini F, Marinelli F, Binda E. Emerging Trends in Antimicrobial Resistance in Polar Aquatic Ecosystems. Antibiotics (Basel) 2025; 14:394. [PMID: 40298543 PMCID: PMC12024378 DOI: 10.3390/antibiotics14040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
The global spread of antimicrobial resistance (AMR) threatens to plummet society back to the pre-antibiotic era through a resurgence of common everyday infections' morbidity. Thus, studies investigating antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in urban, agricultural, and clinical settings, as well as in extreme environments, have become increasingly relevant in the One Health perspective. Since the Antarctic and Arctic regions are considered amongst the few remaining pristine environments on Earth, the characterization of their native resistome appears to be of the utmost importance to understand whether and how it is evolving as a result of anthropogenic activities and climate change. In the present review, we report on the phenotypic (e.g., disk diffusion test) and genotypic (e.g., PCR, metagenomics) approaches used to study AMR in the aquatic environment of polar regions, as water represents one of AMR main dissemination routes in nature. Their advantages and limits are described, and the emerging trends resulting from the analysis of ARB and ARGs diffusion in polar waters discussed. The resistome detected in these extreme environments appears to be mostly comparable to those from more anthropized areas, with the predominance of tetracycline, β-lactam, and sulfonamide resistance (and related ARGs). Indeed, AMR is, in all cases, more consistently highlighted in sites impacted by human and wildlife activities with respect to more pristine ones. Surprisingly, aminoglycoside and fluroquinolone determinants seem to have an even higher incidence in the Antarctic and Arctic aquatic environment compared to that from other areas of the world, corroborating the need for a more thorough AMR surveillance in these regions.
Collapse
Affiliation(s)
- Melissa Bisaccia
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
| | - Francesca Berini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
- Climate Change Research Center (CCRC), University of Insubria, 22100 Como, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
- Climate Change Research Center (CCRC), University of Insubria, 22100 Como, Italy
| | - Elisa Binda
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
| |
Collapse
|
5
|
Knight ME, Farkas K, Kiss A, Jones DL. National-scale insights into AMR transmission along the wastewater-environment continuum. WATER RESEARCH 2025; 282:123603. [PMID: 40345126 DOI: 10.1016/j.watres.2025.123603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 05/11/2025]
Abstract
The circulation of antimicrobial resistance (AMR) bacteria between human populations and the environment is a key driver of the global AMR burden, with wastewater acting as a major route of transmission. In this nationwide study, influent and effluent samples were collected from 47 municipal wastewater treatment plants (WWTPs) across Wales, covering areas of varying sociodemographics and representing approximately 66 % of the population connected to the main sewer network. Additionally, 76 river and estuarine sediment samples were collected upstream and downstream of the WWTPs, as well as from nearby recreational beaches. High-throughput qPCR was used to quantify 76 antimicrobial resistance genes (ARGs), 10 mobile genetic elements and 5 pathogens. Our analyses revealed that the absolute abundance and composition of the influent resistome was influenced by increasing WWTP catchment population size and density. Significant shifts in the resistome were observed following the wastewater treatment process, with the biological treatment stage identified as a critical determinant of AMR removal efficiency. WWTPs using biological filter beds were found to be more effective in reducing ARG relative abundances compared to those employing activated sludge processes. Despite the presence of ARGs in the effluent, the abundance and diversity of the river sediment resistomes did not increase downstream of the WWTPs. However, the presence of a resistome was found in all sediment samples, with varying compositions influenced by WWTP size and sediment source. Altogether, these findings highlight the complex and interconnected factors that shape the resistome across the wastewater-environment continuum, highlighting the need for comprehensive, nationwide surveillance studies to inform targeted interventions and mitigate the spread of AMR.
Collapse
Affiliation(s)
- Margaret E Knight
- School of Environmental & Natural Sciences, Bangor University, Bangor, LL57 2UW, UK.
| | - Kata Farkas
- School of Environmental & Natural Sciences, Bangor University, Bangor, LL57 2UW, UK; Verily Life Sciences LLC., South San Francisco, CA 94080, USA
| | | | - Davey L Jones
- School of Environmental & Natural Sciences, Bangor University, Bangor, LL57 2UW, UK; Verily Life Sciences LLC., South San Francisco, CA 94080, USA
| |
Collapse
|
6
|
Lan L, Wang Y, Chen Y, Wang T, Zhang J, Tan B. A Review on the Prevalence and Treatment of Antibiotic Resistance Genes in Hospital Wastewater. TOXICS 2025; 13:263. [PMID: 40278579 PMCID: PMC12031161 DOI: 10.3390/toxics13040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Antibiotic resistance is a global environmental and health threat. Approximately 4.95 million deaths were associated with antibiotic resistance in 2019, including 1.27 million deaths that were directly attributable to bacterial antimicrobial resistance. Hospital wastewater is one of the key sources for the spread of clinically relevant antibiotic resistance genes (ARGs) into the environment. Understanding the current situation of ARGs in hospital wastewater is of great significance. Here, we review the prevalence of ARGs and antibiotic-resistant bacteria (ARB) in hospital wastewater and wastewater from other places and the treatment methods used. We further discuss the intersection between ARGs and COVID-19 during the pandemic. This review highlights the issues associated with the dissemination of critical ARGs from hospital wastewater into the environment. It is imperative to implement more effective processes for hospital wastewater treatment to eliminate ARGs, particularly during the current long COVID-19 period.
Collapse
Affiliation(s)
- Lihua Lan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Yixin Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Yuxin Chen
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Ting Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Jin Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (Y.W.); (Y.C.); (T.W.)
| | - Biqin Tan
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Pharmacy, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| |
Collapse
|
7
|
Wei L, Qi C, Wang T, Jin X, Zhou X, Luo M, Lu M, Chen H, Guo J, Wang H, Xu D. Prenatal amoxicillin exposure induces depressive-like behavior in offspring via gut microbiota and myristic acid-mediated modulation of the STING pathway. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136750. [PMID: 39672059 DOI: 10.1016/j.jhazmat.2024.136750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/15/2024]
Abstract
Amoxicillin is a widely used antibiotic globally, and its pervasive environmental presence poses significant risks to human health and ecosystems. Notably, prenatal amoxicillin exposure (PAmE) may have long-term neurodevelopmental toxicity for offspring. In this study, we investigated the lasting effects of PAmE on depressive-like behaviors in offspring rats, emphasizing the biological mechanisms mediated by changes in gut microbiota and its metabolite, myristic acid. Our results showed that PAmE significantly disrupted the gut microbiota composition in offspring, particularly through the reduction of Lachnospiraceae, leading to decreased levels of myristic acid. This disruption hindered the N-myristoylation of ADP-ribosylation factor 1 (ARF1), impaired the normal degradation of the stimulator of interferon genes protein, inhibited autophagic processes, and promoted M1 polarization of microglia, ultimately leading to depressive-like behaviors in the offspring. Remarkably, supplementation with Lachnospira or myristic acid effectively reversed the PAmE-induced neurodevelopmental and behavioral abnormalities, alleviating depressive-like symptoms. This study reveals how PAmE affects offspring neurodevelopment and behavior through gut microbiota and myristic acid, highlighting the crucial role of the gut-brain axis in the modulation of depressive symptoms. Supplementing Lachnospira or myristic acid could represent a novel strategy to mitigate PAmE-induced fetal-originated depression, providing new biological evidence and potential therapeutic avenues.
Collapse
Affiliation(s)
- Liyi Wei
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Cuiping Qi
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tingting Wang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiuping Jin
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Mingcui Luo
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mengxi Lu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Huijun Chen
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Juanjuan Guo
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
8
|
Ahmed Y, Dutta KR, Akhtar P, Hossen MA, Alam MJ, Alharbi OA, AlMohamadi H, Mohammad AW. Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:264-285. [PMID: 40041431 PMCID: PMC11878149 DOI: 10.3762/bjnano.16.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025]
Abstract
In the constantly growing field of environmental sustainability, the threat of newly discovered pollutants, particularly antibiotics, has become a crucial concern. The widespread presence of these pharmaceutical substances in water sources presents a complex hazard to human health and ecological balance, requiring immediate and novel intervention techniques. Regarding this, semiconductor-based photocatalysts have appeared as promising candidates, providing a sustainable and efficient way to remove antibiotics from aquatic ecosystems. Nanomaterials can effectively and precisely break down and neutralize antibiotic compounds with high efficiency and selectivity by utilizing a complex interaction between radical reactive oxygen species and non-radical equivalents under light irradiation. Although photocatalysts have certain drawbacks, such as a limited capacity to absorb light and concerns about catalytic stability, photocatalysis outperforms other advanced oxidation processes in multiple aspects. This study focuses on summarizing recent advances in the sustainable removal of antibiotics using semiconductor-based photocatalysts. By reviewing the latest studies and sustainable technologies, this study presents new insights into the complex relationship between contaminants and catalytic degradation processes. Compared to single and binary photocatalysts, modified ternary composites were found to have superior photodegradation performance under visible light exposure. To be specific g-C3N4-based ternary photocatalysts exhibited more than 90% degradation of tetracycline and sulfamethazine antibiotics within one hour of irradiation. This study addresses the antibiotic degradation efficiency during photocatalytic processes and suggests new approaches to improve the performance and scalability for wider use in real-world situations.
Collapse
Affiliation(s)
- Yunus Ahmed
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram-4349, Bangladesh
| | - Keya Rani Dutta
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram-4349, Bangladesh
| | - Parul Akhtar
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram-4349, Bangladesh
| | - Md Arif Hossen
- Institute of River, Harbor and Environmental Science, Chittagong University of Engineering and Technology, Chattogram-4349, Bangladesh
| | - Md Jahangir Alam
- Department of Civil Engineering, Chittagong University of Engineering and Technology, Chattogram-4349, Bangladesh
| | - Obaid A Alharbi
- Water Management & Treatment Technologies Institute, Sustainability & Environment Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Abdul Wahab Mohammad
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
9
|
Tilahun M, Shibabaw A, Adane M. Prevalence and multidrug resistance patterns of bacterial pathogens in wastewater and drinking water systems from hospital and non-hospital environments in Ethiopia: a systematic review and meta-analysis. BMC Infect Dis 2025; 25:250. [PMID: 39987019 PMCID: PMC11847400 DOI: 10.1186/s12879-025-10660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/17/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Wastewater systems worldwide can transport bacterial pathogens alongside antimicrobial resistance genes and pharmaceutical residues. The presence of these pathogens and resistance genes in wastewater systems poses significant public health risks, especially in regions like Ethiopia, where limited wastewater treatment and sanitation infrastructure exist. The spread of infectious diseases and the exacerbation of antimicrobial resistance through wastewater can contribute to the growing global health challenge, with specific implications for local healthcare systems. OBJECTIVE This systematic review and meta-analysis aimed to assess the prevalence of bacterial pathogens and their multidrug resistance patterns within wastewater and drinking water systems in Ethiopia, focusing on both hospital and non-hospital environments. METHODS A comprehensive search was conducted across electronic databases and grey literature using relevant terms and phrases. Studies meeting the eligibility criteria were extracted into MS Excel and analyzed using STATA version 17 software. A random-effects model was employed to estimate the pooled prevalence of bacterial pathogens in hospital and non-hospital wastewater. Heterogeneity was evaluated using the Cochrane Q test and I² statistics, with a significance threshold of p < 0.05. Publication bias was assessed using a funnel plot and Egger's test. A sensitivity analysis was also performed to determine the influence of individual studies on the overall effect size. Studies included in the meta-analysis reported the prevalence of bacterial species and their corresponding multidrug resistance phenotypes. RESULT Out of 472 studies initially identified, 80 met the eligibility criteria for full-text review. Of these, 17 studies were included in the meta-analysis, comprising a total of 848 wastewater and 325 drinking water samples and 2,961 bacterial strains. The most frequently identified bacterium was Pseudomonas aeruginosa (or related species), with an overall prevalence of 41.25% (95% CI: 10.04-81.46%). The pooled prevalence of bacterial pathogens in hospital and non-hospital wastewater systems in Ethiopia was 70.02% (95% CI: 59.90-80.13%), exhibiting substantial heterogeneity (I² = 99.1%, p < 0.001) and the data provides environmental measurements across different categories: wastewater 82.57% (CI: 72.88-92.25%), drinking water 42.18% (CL:10.33, 88.83%). Additionally, the overall prevalence of multidrug-resistant bacterial strains in wastewater was 65.26% (95% CI: 57.23-75.30%), with high heterogeneity (I² = 98.6%, p < 0.001) across different bacterial species and study settings. CONCLUSION This systematic review and meta-analysis reveal high levels of bacterial contamination and multidrug resistance within Ethiopian wastewater systems, with significant variability across studies. The findings highlight the urgent need for enhanced wastewater management and monitoring to tackle these public health issues. Future research should focus on standardizing methodologies and investigating the sources of variability to effectively manage and mitigate the risks associated with wastewater systems.
Collapse
Affiliation(s)
- Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
| | - Agumas Shibabaw
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Metadel Adane
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
10
|
Azizian R, Mamishi S, Jafari E, Mohammadi MR, Heidari Tajabadi F, Pourakbari B. From Conventional Detection to Point-of-care Tests (POCT) Method for Pediatric Respiratory Infections Diagnosis: A Systematic Review. ARCHIVES OF IRANIAN MEDICINE 2025; 28:112-123. [PMID: 40062500 PMCID: PMC11892094 DOI: 10.34172/aim.33505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 11/30/2024] [Accepted: 01/01/2025] [Indexed: 04/18/2025]
Abstract
Bacterial respiratory infections pose significant health risks to children, particularly infants susceptible to upper respiratory tract infections (URTIs). The COVID-19 pandemic has further exacerbated the prevalence of these infections, with pathogens such as Mycoplasma pneumoniae, Streptococcus pneumoniae, Legionella pneumophila, Staphylococcus aureus, Haemophilus influenzae, and Klebsiella species commonly implicated in pediatric cases. The critical need for accurate and timely detection of these bacterial agents has highlighted the importance of advanced diagnostic techniques, including multiplex real-time PCR, in clinical practice. Multiplex real-time polymerase chain reaction (PCR) offers several advantages, including rapid results, high sensitivity, and specificity. By accelerating the diagnostic process, this approach enables early intervention and targeted treatment, ultimately improving patient outcomes. In addition to PCR technologies, rapid and point-of-care testing (POCT) play a crucial role in the prompt diagnosis of bacterial respiratory infections. These tests are designed to be user-friendly, sensitive, and deliver quick results, making them particularly valuable in urgent clinical settings. POCT tests are often categorized into two main groups: those aimed at determining the cause of infection and those focused on confirming the presence of specific pathogens. By utilizing POCT, healthcare providers can make rapid and informed treatment decisions, leading to more effective management of bacterial respiratory infections in children. As the medical community continues to explore innovative diagnostic approaches, the integration of molecular and rapid testing methods offers significant promise in the realm of bacterial respiratory infections. By adopting these cutting-edge technologies, healthcare professionals can enhance their ability to accurately diagnose these infections, tailor treatment strategies, and ultimately improve patient care.
Collapse
Affiliation(s)
- Reza Azizian
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran, Iran
- Biomedical Innovation and Start-up Student Association (Biomino), Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Mamishi
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Erfaneh Jafari
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran, Iran
- Biomedical Innovation and Start-up Student Association (Biomino), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohammadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Babak Pourakbari
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Cook K, Premchand-Branker S, Nieto-Rosado M, Portal EAR, Li M, Rubio CO, Mathias J, Aziz J, Iregbu K, Afegbua SL, Aliyu A, Mohammed Y, Nwafia I, Oduyebo O, Ibrahim A, Tanko Z, Walsh TR, Achi C, Sands K. Flies as carriers of antimicrobial resistant (AMR) bacteria in Nigerian hospitals: A workflow for surveillance of AMR bacteria carried by arthropod pests in hospital settings. ENVIRONMENT INTERNATIONAL 2025; 196:109294. [PMID: 39862724 DOI: 10.1016/j.envint.2025.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The dissemination of antimicrobial resistant (AMR) bacteria by flies in hospitals is concerning as nosocomial AMR infections pose a significant threat to public health. This threat is compounded in low- and middle-income countries (LMICs) by several factors, including limited resources for sufficient infection prevention and control (IPC) practices and high numbers of flies in tropical climates. In this pilot study, 1,396 flies were collected between August and September 2022 from eight tertiary care hospitals in six cities (Abuja, Enugu, Kaduna, Kano, Lagos and Sokoto) in Nigeria. Flies were screened via microbiological culture and bacterial isolates were phenotypically and genetically characterised to determine carriage of clinically important antibiotic resistance genes (ARGs). Several clinically relevant ARGs were found in bacteria isolated from flies across all hospitals. blaNDM was detected in 8% of flies and was predominantly carried by Providencia spp. alongside clinically relevant Enterobacter spp, Escherichia coli and Klebsiella pneumoniae isolates, which all exhibited a multidrug resistant phenotype. mecA was detected at a prevalence of 6.4%, mostly in coagulase-negative Staphylococci (CoNS) as well as some Staphylococcus aureus, of which 86.8% were multidrug resistant. 40% of flies carried bacteria with at least one of the two ESBL genes tested (blaOXA-1 and blaCTX-M-15). This multi-site study emphasised that flies in hospital settings carry bacteria that are resistant to multiple classes of antibiotics, including both routinely used and reserve antibiotics. A greater understanding of the global clinical significance and burden of AMR attributable to insect pests is required.
Collapse
Affiliation(s)
- Kate Cook
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom.
| | - Shonnette Premchand-Branker
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom.
| | - Maria Nieto-Rosado
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Edward A R Portal
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom
| | - Mei Li
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Claudia Orbegozo Rubio
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Jordan Mathias
- Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom
| | - Jawaria Aziz
- Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom
| | - Kenneth Iregbu
- Department of Medical Microbiology, National Hospital Abuja, Nigeria
| | - Seniyat Larai Afegbua
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria; Department of Biotechnology, Nigerian Defence Academy, Kaduna, Nigeria
| | - Aminu Aliyu
- Department of Medical Microbiology, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Yahaya Mohammed
- Department of Medical Microbiology, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria
| | - Ifeyinwa Nwafia
- Department of Medical Microbiology, University of Nigeria Teaching Hospital Ituku-Ozalla, Enugu, Nigeria
| | - Oyinlola Oduyebo
- Department of Medical Microbiology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Abdulrasul Ibrahim
- Department of Medical Microbiology, Ahmadu Bello University, Zaria, Nigeria
| | - Zainab Tanko
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Medicine, Kaduna State University, Kaduna State, Nigeria
| | - Timothy R Walsh
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Chioma Achi
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Kirsty Sands
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
12
|
Feng R, Mao K, Zhang H, Zhu H, Du W, Yang Z, Wang S. Portable microfluidic devices for monitoring antibiotic resistance genes in wastewater. Mikrochim Acta 2024; 192:19. [PMID: 39708170 DOI: 10.1007/s00604-024-06898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Antibiotic resistance genes (ARGs) pose serious threats to environmental and public health, and monitoring ARGs in wastewater is a growing need because wastewater is an important source. Microfluidic devices can integrate basic functional units involved in sample assays on a small chip, through the precise control and manipulation of micro/nanofluids in micro/nanoscale spaces, demonstrating the great potential of ARGs detection in wastewater. Here, we (1) summarize the state of the art in microfluidics for recognizing ARGs, (2) determine the strengths and weaknesses of portable microfluidic chips, and (3) assess the potential of portable microfluidic chips to detect ARGs in wastewater. Isothermal nucleic acid amplification and CRISPR/Cas are two commonly used identification elements for the microfluidic detection of ARGs. The former has better sensitivity due to amplification, but false positives due to inappropriate primer design and contamination; the latter has better specificity. The combination of the two can achieve complementarity to a certain extent. Compared with traditional microfluidic chips, low-cost and biocompatible paper-based microfluidics is a very attractive test for ARGs, whose fluid flow in paper does not require external force, but it is weaker in terms of repeatability and high-throughput detection. Due to that only a handful of portable microfluidics detect ARGs in wastewater, fabricating high-throughput microfluidic chips, developing and optimizing recognition techniques for the highly selective and sensitive identification and quantification of a wide range of ARGs in complex wastewater matrices are needed.
Collapse
Affiliation(s)
- Rida Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hongxiang Zhu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Shuangfei Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China
| |
Collapse
|
13
|
Callejas IA, Kong Y, Osborn K, Hung WC, Cira M, Cason T, Sloane A, Shenkiryk A, Masikip A, Singh A, Jones A, Steele JA, Jay JA. The influence of urbanization and water reclamation plants on fecal indicator bacteria and antibiotic resistance in the Los Angeles River watershed: A case study with complementary monitoring methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177577. [PMID: 39566612 DOI: 10.1016/j.scitotenv.2024.177577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Urban land use and water reclamation plants (WRPs) can impact fecal indicator bacteria (FIB) and antimicrobial resistance (AMR) in coastal watersheds. However, there is a lack of studies exploring these effects on the US West Coast. Additionally, there is limited research using a complementary approach across culture-, qPCR-, and metagenomics-based techniques for characterizing environmental AMR. In this study, sixteen locations were sampled in the Los Angeles River, encompassing both upstream and downstream of three WRPs discharging into the river. Culture-dependent methods quantified Enterococcus, total coliforms, E. coli, and extended spectrum beta-lactamase-producing E. coli as a low-cost screening tool for AMR, while qPCR measured selected antibiotic resistance genes (ARGs): sul1, ermF, tetW, blaSHV, along with intI1 and 16S rRNA genes. Bacteroides HF183 and crAssphage markers were quantified via ddPCR. All samples underwent shotgun sequencing to investigate gene abundance and mobility and an overall risk score for AMR. Results reveal downstream sites contain ARGs at least two orders of magnitude greater than upstream locations. Developed areas had the highest ARG sequence abundances and the most ARG classes as indicated by metagenomic analysis. WRP effluent exhibited elevated ARGs and co-location of ARGs, mobile genetic elements, and pathogens. A culture-based assessment of AR in E. coli and Pseudomonas aeruginosa revealed increased resistance ratios for most antibiotics from upstream to downstream a WRP discharge point. This study highlights the impacts of land use and WRPs on ARGs and FIB, offering a multi-pronged analysis of AMR.
Collapse
Affiliation(s)
- Ileana A Callejas
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Sciences, Biola University, La Mirada, CA, USA.
| | - Yuwei Kong
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katie Osborn
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wei-Cheng Hung
- Department of Chemistry, Southern Oregon University, Ashland, OR, USA
| | - Marisol Cira
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Taylor Cason
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ashlyn Sloane
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexis Shenkiryk
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aaron Masikip
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Akshyae Singh
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adriane Jones
- Department of Biological Sciences, Mount Saint Mary's University, Los Angeles, CA, USA
| | - Joshua A Steele
- Department of Microbiology, Southern California Coastal Water Research Project, Costa Mesa, CA, USA
| | - Jennifer A Jay
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Gentile A, Di Stasio L, Oliva G, Vigliotta G, Cicatelli A, Guarino F, Nissim WG, Labra M, Castiglione S. Antibiotic resistance in urban soils: Dynamics and mitigation strategies. ENVIRONMENTAL RESEARCH 2024; 263:120120. [PMID: 39384008 DOI: 10.1016/j.envres.2024.120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Antibiotic resistance (AR) is a critical global health issue with significant clinical and economic implications. AR occurs when microorganisms develop mechanisms to withstand the effects of antibiotics, reducing treatment efficacy and increasing the risk of mortality and healthcare costs. While the connection between antibiotic use in clinical and agricultural settings and the emergence of AR is well-established, the role of urban soils as reservoirs and spreaders of AR is underexplored. This review examines the complex dynamics of AR in urban soils, highlighting the various sources of antibiotics, including domestic wastewater, industrial effluents, urban agricultural practices, but also microplastics and domestic animal excrements. The selective pressure exerted by these anthropogenic sources promotes the proliferation of antibiotic-resistant bacteria, particularly through horizontal gene transfer, which facilitates the transmission of resistance genes among soil microorganisms in urban environments. About that, the presence of antibiotics in urban soils poses a significant threat to public health by potentially transferring resistance genes to human pathogens through multiple pathways, including direct contact, food consumption, and water ingestion. Furthermore, AR in urban soils disrupts microbial community dynamics, impacting soil fertility, plant growth, and overall environmental quality. Therefore, this review aims to address gaps in understanding AR in urban soils, offering insights into its implications for human health and ecosystem integrity. By identifying these gaps and suggesting evidence-based strategies, this review proposes valid and sustainable solutions to mitigate and counteract the spread of AR in urban environments.
Collapse
Affiliation(s)
- Annamaria Gentile
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy
| | - Luca Di Stasio
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy
| | - Gianmaria Oliva
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy.
| | - Giovanni Vigliotta
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, (MI), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, (MI), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
15
|
Liu Z, Wang G, Xu T, Deng N, Xie H, Zhang X. Visible-light-driven peroxydisulfate activation by biochar-loaded Fe-Cu layered double hydroxide for penicillin G degradation: Performance, mechanism and application potential. ENVIRONMENTAL RESEARCH 2024; 263:120043. [PMID: 39307224 DOI: 10.1016/j.envres.2024.120043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The biochar-loaded Fe-Cu layered double hydroxide (FeCu-LDH@BC) catalyst was synthesized via a simple hydrothermal method and used to activate peroxydisulfate (PDS) for penicillin G (PG) degradation under visible light. The physicochemical properties of FeCu-LDH@BC were characterized using SEM, XPS, UV-DRS, SEM-EDS, HRTEM, XRD, BET, PL spectrum, FT-IR, Raman spectrum, TG-DSC, TPD, and EIS, showing that biochar (BC) enhanced the optical properties of FeCu-LDH. Notably, the FeCu-LDH@BC + PDS + Light system achieved a 98.79% degradation efficiency for PG in just 10 min. Furthermore, FeCu-LDH@BC retained excellent activity after four reuse cycles. LSV results indicated enhanced electron transfer in the FeCu-LDH@BC + PDS + Light system, suggesting a synergistic effect between the photocatalytic and PDS activation systems. The interconversion of h+, SO4·⁻, 1O2, and ·OH species was found to play a key role in PG degradation. Density functional theory was used to identify PG sites susceptible to radical attack, and the possible degradation pathway was proposed based on liquid chromatography-mass spectrometry results. Toxicity evaluation using the TEST software confirmed that the intermediates formed were significantly less toxic than PG. Lastly, the FeCu-LDH@BC + PDS + Light system removed 37.45% of total organic carbon and 63.74% of chemical oxygen demand from real wastewater within 120 min. The type and transformation pathways of organic matter in the wastewater were analyzed using 3D Excitation Emission Matrix spectroscopy to assess the system's application potential.
Collapse
Affiliation(s)
- Zehua Liu
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Guanghui Wang
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, Nanchang, 330013, China.
| | - Tianrui Xu
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Nansheng Deng
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, China
| | - Xuewen Zhang
- Jiangxi Fucheng Ecological Environment Technology Group Co., Ltd., Fuzhou, 344000, China
| |
Collapse
|
16
|
Tanabe M, Denda T, Sugawara Y, Kaji D, Sakaguchi K, Takizawa S, Koide S, Hayashi W, Yu L, Kayama S, Sugai M, Nagano Y, Nagano N. Temporal dynamics of extended-spectrum β-lactamase-producing Escherichia coli and carbapenemase-producing Gram-negative bacteria in hospital wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176901. [PMID: 39437925 DOI: 10.1016/j.scitotenv.2024.176901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Hospital wastewater is a reservoir for the environmental spread of clinically relevant antimicrobial-resistant bacteria and resistance genes. The aim of this study was to quantify total Escherichia coli, extended-spectrum β-lactamase (ESBL)-producing E. coli, and carbapenemase-producing organisms (CPOs) and perform whole-genome sequencing-based characterization of these bacterial isolates in hospital wastewater samples collected bimonthly in Japan from January to November 2021. Total E. coli counts were 8.1 × 103-8.8 × 104 colony-forming units (CFU)/mL. ESBL-producing E. coli were detected in the sampling months of January, March, May, and July, with the ratio of ESBL-producing E. coli to total E. coli being remarkably highest (95 %) in July. In contrast, DHA-1 Ambler class C β-lactamase (AmpC)-producing E. coli was detected in September and November, accounting for 28 % and 3 % of total E. coli counts, respectively. All 140 ESBL-producing E. coli isolates harbored the blaCTX-M genes, with blaCTX-M-14 being the most common genotype (94.3 %), the vast majority of which were associated with the human virulent B2-O25b: H4-ST131-fimH30R/non-Rx. In September, E. coli clade I-O8:H33-ST3910-fimH1074 was primarily associated with blaDHA-1. Among 26 representative CPO isolates, Aeromonas caviae (34.6 %) and A. hydrophila subsp. hydrophila (30.8 %) were dominant. The most frequently detected carbapenemase gene was blaIMP-1 (57.7 %), followed by blaGES-24 (34.6 %) and blaGES-4 (7.7 %). Estimated bacterial counts of CPOs ranged from 4.0 × 10-1 to 4.7 × 103 CFU/mL over the six sampling months. blaIMP-1-positive A. hydrophila subsp. hydrophila ST860, which was repeatedly detected over the five sampling months, accounted for the highest total number of this bacterial clone (79 %). Overall, this study provides insights into the overwhelming presence and persistence of E. coli B2-O25b:H4-ST131-H30R/non-Rx with blaCTX-M-14 and Aeromonas spp. with blaIMP-1 in hospital wastewater, and the change in the dynamics of resistance gene prevalence from blaCTX-M-positive E. coli to blaDHA-1-positive E. coli.
Collapse
Affiliation(s)
- Mizuki Tanabe
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Tomohiro Denda
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| | - Daiki Kaji
- Department of Clinical Laboratory, Kimitsu Chuo Hospital, 1010 Sakurai, Kisarazu, Chiba 292-8535, Japan
| | - Kanae Sakaguchi
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shino Takizawa
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shota Koide
- Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Wataru Hayashi
- Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| | - Yukiko Nagano
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Noriyuki Nagano
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
17
|
Kumar G, Balakrishna K, Mukhopadhyay C, Kalwaje Eshwara V. Characterization and comparative analysis of antimicrobial resistance in Escherichia coli from hospital and municipal wastewater treatment plants. JOURNAL OF WATER AND HEALTH 2024; 22:2276-2288. [PMID: 39733355 DOI: 10.2166/wh.2024.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/11/2024] [Indexed: 12/31/2024]
Abstract
The spread of antimicrobial resistance (AMR) poses global health threats, with wastewater treatment plants (WWTPs) as hotspots for its development. Horizontal gene transfer facilitates acquisition of resistance genes, particularly through integrons in Escherichia coli. Our study investigates E. coli isolates from hospital and municipal WWTPs, focusing on integrons, their temporal correlation and phenotypic and molecular characterization of AMR. Samples from hospital and municipal WWTPs were collected over two seasons, pre-monsoon (March-May) and post-monsoon (December-February). From the hospital (hWWTP) and municipal (mWWTP) influents, 45 and 172 E. coli isolates were obtained, respectively. E. coli from hWWTP exhibited significantly higher resistance rates than mWWTP to most tested antimicrobials except tetracycline. The hWWTP isolates showed a higher prevalence (86.7%) of multidrug resistance (MDR) compared with mWWTP (48.3%). The proportion of MDR isolates from mWWTP nearly doubled in the post-monsoon season. Integron positivity was 17.7% (hWWTP) and 19.7% (mWWTP) with common gene cassettes conferring resistance to trimethoprim and aminoglycosides. Phylogroup analysis showed a predominance of group A in hWWTP and group B1 in mWWTP. The study highlights the role of hospital and municipal wastewater in disseminating AMR, with high rates of MDR E. coli and class 1 integrons detected.
Collapse
Affiliation(s)
- Gauri Kumar
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Keshava Balakrishna
- Department of Civil Engineering, Manipal Institute of Technology, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Center for Emerging and Tropical Diseases (CETD), Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vandana Kalwaje Eshwara
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Center for Antimicrobial Resistance and Education (CARE), Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India E-mail:
| |
Collapse
|
18
|
Li Z, Hou Y, Shen Y, Nie C, Zhang X, Liu F, Tong M. Oxygen vacancy-dependent synergistic disinfection of antibiotic-resistant bacteria by BiOBr nanoflower induced H 2O 2 activation. WATER RESEARCH 2024; 267:122524. [PMID: 39348725 DOI: 10.1016/j.watres.2024.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) pose a significant threat to both ecosystems and human health. Owing to the excellent catalytic activity, eco-safety, and convenience for defect engineering, BiOBr with oxygen vacancies (OVs) of different density thus were fabricated and employed to activate H2O2 for ARB disinfection/ARGs degradation in present study. We found that BiOBr with OVs of appropriate density induced via ethanol reduction (BOB-E) could effectively activate H2O2, achieving excellent ARB disinfection and ARGs degradation efficiency. Moreover, this disinfection system exhibited remarkable tolerance to complex water environments and actual water conditions. In-situ characterization and theoretical calculations revealed that OVs in BOB-E could effectively capture and activate aqueous H2O2 into HO· and O2·-. The generated reactive oxygen species combined with electron transfer could damage the cell membrane system and degrade genetic materials of ARB, leading to effective disinfection. The impressive reusability, high performance achieved in two immobilized reaction systems (packed column and baffled ditch reactor), excellent degradation of emerging organic pollutants supported the feasibility of BOB-E/H2O2 system towards practical water decontamination. Overall, this study not only provides insights into fabrication of bismuth-based catalysts for efficient ARB disinfection/ARGs degradation via OVs regulation, but also paves the way for their practical applications.
Collapse
Affiliation(s)
- Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yutao Shen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiangwei Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Yu P, Guo X, Wang W, Wang L, Zhang H, Deng L, Yang H, He T, Wu P, Zhang Y. Distribution and driving mechanisms of antibiotic resistance genes in urbanized watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176387. [PMID: 39317254 DOI: 10.1016/j.scitotenv.2024.176387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Antibiotic resistance genes (ARGs) have emerged as a global concern, posing significant threats to human health and safety. Understanding the contamination levels and driving mechanisms behind ARG proliferation is urgently needed. Urban watersheds, influenced by human activities, serve as critical reservoirs for ARGs; however, the impact of urbanization on ARG spread of and the underlying driving mechanisms remain unclear. This study evaluates the diversity and abundance of ARGs in water and sediment samples from the Jialing River watershed in Chongqing City, China. The obtained results indicate that aminoglycoside and multidrug ARGs are the primary contributors to ARG presence in both sediments and water. Additionally, the diversity and abundance of ARGs are higher in water than in sediments. ARGs in watershed show a significant positive correlation with mobile genetic elements (MGEs). While environmental factors in urbanized watersheds affect ARG abundance and distribution to some extent, they are not the primary drivers. Urbanization itself emerges as a prominent factor influencing ARG diversity and abundance in river basins. Specifically, livestock, healthcare, and agriculture are identified as the main social factors influencing ARG proliferation in the highly urbanized areas of the Jialing River watershed. Further investigation into other contributing social factors, such as industrial development, is warranted. This study reveals the factors driving ARG distribution in urbanized watersheds, providing a foundation for future efforts to maintain ecological health in these environments.
Collapse
Affiliation(s)
- Ping Yu
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China; Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongwei Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ting He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Peike Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Yunhong Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| |
Collapse
|
20
|
Devianto LA, Amarasiri M, Wang L, Iizuka T, Sano D. Identification of protein biomarkers in wastewater linked to the incidence of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175649. [PMID: 39168326 DOI: 10.1016/j.scitotenv.2024.175649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/19/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Wastewater-based epidemiological (WBE) surveillance is a viable disease surveillance technique capable of monitoring the spread of infectious disease agents in sewershed communities. In addition to detecting viral genomes in wastewater, WBE surveillance can identify other endogenous biomarkers that are significantly elevated and excreted in the saliva, urine, and/or stool of infected individuals. Human protein biomarkers allow the realization of real-time WBE surveillance using highly sensitive biosensors. In this study, we analyzed endogenous protein biomarkers present in wastewater influent through liquid chromatography-tandem mass spectrophotometry and scaffold data-independent acquisition to identify candidate target protein biomarkers for WBE surveillance of SARS-CoV-2. We found that out of the 1382 proteins observed in the wastewater samples, 44 were human proteins associated with infectious diseases. These included immune response substances such as immunoglobulins, cytokine-chemokines, and complements, as well as proteins belonging to antimicrobial and antiviral groups. A significant correlation was observed between the intensity of human infectious disease-related protein biomarkers in wastewater and COVID-19 case numbers. Real-time WBE surveillance using biosensors targeting immune response proteins, such as antibodies or immunoglobulins, in wastewater holds promise for expediting the implementation of relevant policies for the effective prevention of infectious diseases in the near future.
Collapse
Affiliation(s)
- Luhur Akbar Devianto
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; Department of Environmental Engineering, Faculty of Agriculture Technology, Brawijaya University, Malang 65145, Indonesia
| | - Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Luyao Wang
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Takehito Iizuka
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan; Wastewater Information Research Center, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan; New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
21
|
Snell LB, Prossomariti D, Alcolea-Medina A, Sasson M, Dibbens M, Al-Yaakoubi N, Humayun G, Charalampous T, Alder C, Ward D, Maldonado-Barrueco A, Abadioru O, Batra R, Nebbia G, Otter JA, Edgeworth JD, Goldenberg SD. The drainome: longitudinal metagenomic characterization of wastewater from hospital ward sinks to characterize the microbiome and resistome and to assess the effects of decontamination interventions. J Hosp Infect 2024; 153:55-62. [PMID: 38969209 PMCID: PMC11825382 DOI: 10.1016/j.jhin.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Hospital drains and water interfaces are implicated in nosocomial transmission of pathogens. Metagenomics can assess the microbial composition and presence of antimicrobial resistance genes in drains ('the drainome') but studies applying these methods longitudinally and to assess infection control interventions are lacking. AIM To apply long-read metagenomics coupled with microbiological measurements to investigate the drainome and assess the effects of a peracetic-acid-containing decontamination product. METHODS Twelve-week study in three phases: a baseline phase, an intervention phase of enhanced decontamination with peracetic acid, and a post-intervention phase. Five hospital sink drains on an intensive care unit were sampled twice weekly. Each sample had: (1) measurement of total viable count (TVC); (2) metagenomic analyses including (i) taxonomic classification of bacteria and fungi (ii), antibiotic resistance gene detection, (iii) plasmid identification; and (3) immunochromatographic detection of antimicrobial residues. FINDINGS Overall TVCs remain unchanged in the intervention phase (+386 cfu/mL, SE 705, P = 0.59). There was a small but significant increase in the microbial diversity in the intervention phase (-0.07 in Simpson's index, SE 0.03, P = 0.007), which was not sustained post-intervention (-0.05, SE 0.03, P = 0.08). The intervention was associated with increased relative abundance of the Pseudomonas genus (18.3% to 40.5% (+22.2%), SE 5.7%, P < 0.001). Extended spectrum β-lactamases were found in all samples, with NDM-carbapenemase found in three drains in six samples. Antimicrobial residues were detected in a large proportion of samples (31/115, 27%), suggesting use of sinks for non-handwashing activities. CONCLUSION Metagenomics and other measurements can determine the composition of the drainome and assess the effectiveness of decontamination interventions.
Collapse
Affiliation(s)
- L B Snell
- Department of Infectious Diseases, King's College, London, UK; Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - D Prossomariti
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A Alcolea-Medina
- Department of Infectious Diseases, King's College, London, UK; Infection Sciences, Synnovis Analytics LLP, London, UK
| | - M Sasson
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - M Dibbens
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - N Al-Yaakoubi
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - G Humayun
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - T Charalampous
- Department of Infectious Diseases, King's College, London, UK
| | - C Alder
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - D Ward
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - O Abadioru
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - R Batra
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - G Nebbia
- Department of Infectious Diseases, King's College, London, UK; Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - J A Otter
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - J D Edgeworth
- Department of Infectious Diseases, King's College, London, UK; Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - S D Goldenberg
- Department of Infectious Diseases, King's College, London, UK; Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
22
|
Shafiq M, Guo X, Wang M, Bilal H, Xin L, Yuan Y, Yao F, Sheikh TMM, Khan MN, Jiao X. Integrative metagenomic dissection of last-resort antibiotic resistance genes and mobile genetic elements in hospital wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174930. [PMID: 39067608 DOI: 10.1016/j.scitotenv.2024.174930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Hospital wastewater is a critical source of antimicrobial resistance (AMR), which facilitates the proliferation and spread of clinically significant antimicrobial resistance genes (ARGs) and pathogenic bacteria. This study utilized metagenomic approaches, including advanced binning techniques, such as MetaBAT2, MaxBin2, and CONCOCT, which offer significant improvements in accuracy and completeness over traditional binning methods. These methods were used to comprehensively assess the dynamics and composition of resistomes and mobilomes in untreated wastewater samples taken from two general hospitals and one cancer hospital. This study revealed a diverse bacterial landscape, largely consisting of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, with notable variations in microbial composition among hospitals. Analysis of the top 15 genera showed unique microbial pattern distribution in each hospital: Aeromonas was predominant in 1stHWTS (49.39 %), Acidovorax in the CAHWTS at 16.85 %, and Escherichia and Bacteroides in the 2ndHWTS at 11.44 % and 11.33 %, respectively. A total of 114 pathogenic bacteria were identified, with drug-resistant Aeromonas caviae and Escherichia coli being the most prevalent. The study identified 34 types and 1660 subtypes of ARGs, including important last-resort antibiotic resistance genes (LARGs), such as blaNDM, mcr, and tet(X). Using metagenomic binning, this study uncovered distinct patterns of host-resistance associations, particularly with Proteobacteria and Firmicutes. Network analysis highlighted the complex interactions among ARGs, mobile genetic elements (MGEs), and bacterial species, all contributing to the dissemination of AMR. These findings emphasize the intricate nature of AMR in hospital wastewater and the influence of hospital-specific factors on microbial resistance patterns. This study provides support for implementing integrated management strategies, including robust surveillance, advanced wastewater treatment, and strict antibiotic stewardship, to control the dissemination of AMR. Understanding the interplay among bacterial communities, ARGs, and MGEs is important for developing effective public health measures against AMR.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Meimei Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Hazrat Bilal
- Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, Jiangxi 330029, PR China
| | - Li Xin
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Fen Yao
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | | | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
23
|
Shang KM, Elsheikha HM, Ma H, Wei YJ, Zhao JX, Qin Y, Li JM, Zhao ZY, Zhang XX. Metagenomic profiling of cecal microbiota and antibiotic resistome in rodents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117186. [PMID: 39426111 DOI: 10.1016/j.ecoenv.2024.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The rodent gut microbiota is a known reservoir of antimicrobial resistance, yet the distribution of antibiotic resistance genes (ARGs) within rodent cecal microbial communities and the specific bacterial species harboring these ARGs remain largely underexplored. This study employed high-throughput sequencing of 122 samples from five distinct rodent species to comprehensively profile the diversity and distribution of ARGs and to identify the bacterial hosts of these genes. A gene catalog of the rodent cecal microbiome was constructed, comprising 22,757,369 non-redundant genes. Analysis of the microbial composition and diversity revealed that Bacillota and Bacteroidota were the dominant bacterial phyla across different rodent species, with significant variations in species composition among the rodents. In total, 3703 putative antimicrobial resistance protein-coding genes were identified, corresponding to 392 unique ARG types classified into 32 resistance classes. The most enriched ARGs in the rodent cecal microbiome were associated with multidrug resistance, followed by glycopeptide and elfamycin antibiotics. Procrustes analysis demonstrated a correlation between the structure of the microbial community and the resistome. Metagenomic assembly-based host tracking indicated that most ARG-carrying contigs originated from the bacterial family Oscillospiraceae. Additionally, 130 ARGs showed significant correlations with mobile genetic elements. These findings provide new insights into the cecal microbiota and the prevalence of ARGs across five rodent species. Future research on a wider range of wild rodent species carrying ARGs will further elucidate the mechanisms underlying the transmission of antimicrobial resistance.
Collapse
Affiliation(s)
- Kai-Meng Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Yong-Jie Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Ji-Xin Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Ya Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, PR China
| | - Jian-Ming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province, PR China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, Jilin Province, PR China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, Jilin Province, PR China
| | - Zi-Yu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, PR China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China.
| |
Collapse
|
24
|
Rahbé E, Kovacevic A, Opatowski L, Leclerc QJ. Investigating the feasibility and potential of combining industry AMR monitoring systems: a comparison with WHO GLASS. Wellcome Open Res 2024; 9:248. [PMID: 39372841 PMCID: PMC11452768 DOI: 10.12688/wellcomeopenres.21181.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Background Efforts to estimate the global burden of antimicrobial resistance (AMR) have highlighted gaps in existing surveillance systems. Data gathered from hospital networks globally by pharmaceutical industries to monitor antibiotic efficacy in different bacteria represent an underused source of information to complete our knowledge of AMR burden.. We analysed available industry monitoring systems to assess to which extent combining them could help fill the gaps in our current understanding of AMR levels and trends. Methods We analysed six industry monitoring systems (ATLAS, GEARS, SIDERO-WT, KEYSTONE, DREAM, and SOAR) obtained from the Vivli platform and reviewed their respective isolates collection and analysis protocols. Using the R software, we designed a pipeline to harmonise and combine these into a single dataset. We assessed the reliability of resistance estimates from these sources by comparing the combined dataset to the publicly available subset of WHO GLASS for shared bacteria-antibiotic-country-year combinations. Results Combined, the industry monitoring systems cover 18 years (4 years for GLASS), 85 countries (71), 412 bacterial species (8), and 75 antibiotics (25). Although all industry systems followed a similar centralised testing approach, the patient selection protocol and associated sampling period were unclear. Over all reported years and countries, E.coli, K. pneumoniae and S. aureus resistance rates were in >65% of cases within 0.1 of the corresponding estimate in GLASS. We did not identify systemic bias towards resistance in industry systems compared to GLASS. Conclusions High agreement values for available comparisons with GLASS suggest that data for other bacteria-antibiotic-country-year combinations only present in industry systems could complement GLASS; however, for this purpose patient and isolate selection criteria must first be clarified to understand the representativeness of industry systems. This additional source of information on resistance levels could help clinicians and stakeholders prioritize testing and select appropriate antibiotics in settings with limited surveillance data.
Collapse
Affiliation(s)
- Eve Rahbé
- Epidemiology and Modelling of Bacterial Escape to Antimicrobials (EMEA), Institut Pasteur, Université Paris Cité, Paris, Île-de-France, 75015, France
- Team Echappement aux Anti-infectieux et Pharmacoépidémiologie U1018 CESP, INSERM, Université Paris-Saclay, Université de Versailles St-Quentin-en-Yvelines, Versailles, Île-de-France, 78000, France
| | - Aleksandra Kovacevic
- Epidemiology and Modelling of Bacterial Escape to Antimicrobials (EMEA), Institut Pasteur, Université Paris Cité, Paris, Île-de-France, 75015, France
- Team Echappement aux Anti-infectieux et Pharmacoépidémiologie U1018 CESP, INSERM, Université Paris-Saclay, Université de Versailles St-Quentin-en-Yvelines, Versailles, Île-de-France, 78000, France
| | - Lulla Opatowski
- Epidemiology and Modelling of Bacterial Escape to Antimicrobials (EMEA), Institut Pasteur, Université Paris Cité, Paris, Île-de-France, 75015, France
- Team Echappement aux Anti-infectieux et Pharmacoépidémiologie U1018 CESP, INSERM, Université Paris-Saclay, Université de Versailles St-Quentin-en-Yvelines, Versailles, Île-de-France, 78000, France
| | - Quentin J. Leclerc
- Epidemiology and Modelling of Bacterial Escape to Antimicrobials (EMEA), Institut Pasteur, Université Paris Cité, Paris, Île-de-France, 75015, France
- Team Echappement aux Anti-infectieux et Pharmacoépidémiologie U1018 CESP, INSERM, Université Paris-Saclay, Université de Versailles St-Quentin-en-Yvelines, Versailles, Île-de-France, 78000, France
- Laboratoire Modélisation, Epidémiologie et Surveillance des Risques Sanitaires (MESuRS), Conservatoire national des arts et metiers, Paris, Île-de-France, 75003, France
| |
Collapse
|
25
|
Ouyang B, Yang C, Lv Z, Chen B, Tong L, Shi J. Recent advances in environmental antibiotic resistance genes detection and research focus: From genes to ecosystems. ENVIRONMENT INTERNATIONAL 2024; 191:108989. [PMID: 39241334 DOI: 10.1016/j.envint.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance genes (ARGs) persistence and potential harm have become more widely recognized in the environment due to its fast-paced research. However, the bibliometric review on the detection, research hotspot, and development trend of environmental ARGs has not been widely conducted. It is essential to provide a comprehensive overview of the last 30 years of research on environmental ARGs to clarify the changes in the research landscape and ascertain future prospects. This study presents a visualized analysis of data from the Web of Science to enhance our understanding of ARGs. The findings indicate that solid-phase extraction provides a reliable method for extracting ARG. Technological advancements in commercial kits and microfluidics have facilitated the efficacy of ARGs extraction with significantly reducing processing times. PCR and its derivatives, DNA sequencing, and multi-omics technology are the prevalent methodologies for ARGs detection, enabling the expansion of ARG research from individual strains to more intricate microbial communities in the environment. Furthermore, due to the development of combination, hybridization and mass spectrometer technologies, considerable advancements have been achieved in terms of sensitivity and accuracy as well as lowering the cost of ARGs detection. Currently, high-frequency terms such as "Antibiotic Resistance, Antibiotics, and Metagenomics" are the center of attention for study in this area. Prominent topics include the investigation of anthropogenic impacts on environmental resistance, as well as the dynamics of migration, dissemination, and adaptation of environmental ARGs, etc. The research on environmental ARGs has made significant advancements in the fields of "Microbiology" and "Biotechnology Applied Microbiology". Over the past decade, there has been a notable increase in the fields of "Environmental Sciences Ecology" and "Engineering" with a similar growth trend observed in "Water Resources". These three domains are expected to continue driving extensive study within the realm of environmental ARGs.
Collapse
Affiliation(s)
- Bowei Ouyang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Cong Yang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Ziyue Lv
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Lei Tong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China.
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Olanrewaju OS, Molale-Tom LG, Bezuidenhout CC. Genomic diversity, antibiotic resistance, and virulence in South African Enterococcus faecalis and Enterococcus lactis isolates. World J Microbiol Biotechnol 2024; 40:289. [PMID: 39102038 PMCID: PMC11300488 DOI: 10.1007/s11274-024-04098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
This study presents the empirical findings of an in-depth genomic analysis of Enterococcus faecalis and Enterococcus lactis isolates from South Africa. It offers valuable insights into their genetic characteristics and their significant implications for public health. The study uncovers nuanced variations in the gene content of these isolates, despite their similar GC contents, providing a comprehensive view of the evolutionary diversity within the species. Genomic islands are identified, particularly in E. faecalis, emphasizing its propensity for horizontal gene transfer and genetic diversity, especially in terms of antibiotic resistance genes. Pangenome analysis reveals the existence of a core genome, accounting for a modest proportion of the total genes, with 2157 core genes, 1164 shell genes, and 4638 cloud genes out of 7959 genes in 52 South African E. faecalis genomes (2 from this study, 49 south Africa genomes downloaded from NCBI, and E. faecalis reference genome). Detecting large-scale genomic rearrangements, including chromosomal inversions, underscores the dynamic nature of bacterial genomes and their role in generating genetic diversity. The study uncovers an array of antibiotic resistance genes, with trimethoprim, tetracycline, glycopeptide, and multidrug resistance genes prevalent, raising concerns about the effectiveness of antibiotic treatment. Virulence gene profiling unveils a diverse repertoire of factors contributing to pathogenicity, encompassing adhesion, biofilm formation, stress resistance, and tissue damage. These empirical findings provide indispensable insights into these bacteria's genomic dynamics, antibiotic resistance mechanisms, and virulence potential, underlining the pressing need to address antibiotic resistance and implement robust control measures.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Lesego G Molale-Tom
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Cornelius C Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
27
|
O'Ferrall AM, Musaya J, Stothard JR, Roberts AP. Aligning antimicrobial resistance surveillance with schistosomiasis research: an interlinked One Health approach. Trans R Soc Trop Med Hyg 2024; 118:498-504. [PMID: 38842743 PMCID: PMC11299544 DOI: 10.1093/trstmh/trae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
One Health surveillance involves the analysis of human, animal and environmental samples, recognising their interconnectedness in health systems. Such considerations are crucial to investigate the transmission of many pathogens, including drug-resistant bacteria and parasites. The highest rates of antimicrobial resistance (AMR)-associated deaths are observed in sub-Saharan Africa, where concurrently the waterborne parasitic disease schistosomiasis can be highly endemic in both humans and animals. Although there is growing acknowledgment of significant interactions between bacteria and parasites, knowledge of relationships between schistosomes, microbes and AMR remains inadequate. In addition, newly emergent research has revealed the previously underappreciated roles of animals and the environment in both AMR and schistosomiasis transmission. We consider shared environmental drivers and colonisation linkage in this narrative review, with a focus on extended-spectrum beta-lactamase-mediated resistance among bacteria from the Enterobacteriaceae family, which is exceedingly prevalent and responsible for a high burden of AMR-associated deaths. Then we examine novel findings from Malawi, where the landscapes of AMR and schistosomiasis are rapidly evolving, and make comparisons to other geographic areas with similar co-infection epidemiology. We identify several knowledge gaps that could be addressed in future research, including the need to characterise the impact of intestinal schistosomiasis and freshwater contact on intestinal AMR colonisation, before proposing a rationale for connecting AMR surveillance and schistosomiasis research within a One Health framework.
Collapse
Affiliation(s)
- Angus M O'Ferrall
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096 Chichiri, Blantyre 3, Malawi
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
28
|
Azuma T, Usui M, Hasei T, Hayashi T. On-Site Inactivation for Disinfection of Antibiotic-Resistant Bacteria in Hospital Effluent by UV and UV-LED. Antibiotics (Basel) 2024; 13:711. [PMID: 39200012 PMCID: PMC11350808 DOI: 10.3390/antibiotics13080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
The problem of antimicrobial resistance (AMR) is not limited to the medical field but is also becoming prevalent on a global scale in the environmental field. Environmental water pollution caused by the discharge of wastewater into aquatic environments has caused concern in the context of the sustainable development of modern society. However, there have been few studies focused on the treatment of hospital wastewater, and the potential consequences of this remain unknown. This study evaluated the efficacy of the inactivation of antimicrobial-resistant bacteria (AMRB) and antimicrobial resistance genes (AMRGs) in model wastewater treatment plant (WWTP) wastewater and hospital effluent based on direct ultraviolet (UV) light irradiation provided by a conventional mercury lamp with a peak wavelength of 254 nm and an ultraviolet light-emitting diode (UV-LED) with a peak emission of 280 nm under test conditions in which the irradiance of both was adjusted to the same intensity. The overall results indicated that both UV- and UV-LED-mediated disinfection effectively inactivated the AMRB in both wastewater types (>99.9% after 1-3 min of UV and 3 min of UV-LED treatment). Additionally, AMRGs were also removed (0.2-1.4 log10 for UV 254 nm and 0.1-1.3 log10 for UV 280 nm), and notably, there was no statistically significant decrease (p < 0.05) in the AMRGs between the UV and UV-LED treatments. The results of this study highlight the importance of utilizing a local inactivation treatment directly for wastewater generated by a hospital prior to its flow into a WWTP as sewage. Although additional disinfection treatment at the WWTP is likely necessary to remove the entire quantity of AMRB and AMRGs, the present study contributes to a significant reduction in the loads of WWTP and urgent prevention of the spread of infectious diseases, thus alleviating the potential threat to the environment and human health risks associated with AMR problems.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan;
| | - Tomohiro Hasei
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| |
Collapse
|
29
|
Gonçalves DLDR, Chang MR, Nobrega GD, Venancio FA, Higa Júnior MG, Fava WS. Hospital sewage in Brazil: a reservoir of multidrug-resistant carbapenemase-producing Enterobacteriaceae. BRAZ J BIOL 2024; 84:e277750. [PMID: 38985067 DOI: 10.1590/1519-6984.277750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/20/2024] [Indexed: 07/11/2024] Open
Abstract
The One Health concept recognizes that human health is clearly linked to the health of animals and the environment. Infections caused by bacteria resistant to carbapenem antibiotics have become a major challenge in hospitals due to limited therapeutic options and consequent increase in mortality. In this study, we investigated the presence of carbapenem-resistant Enterobacteriaceae in 84 effluent samples (42 from hospital and 42 from non-hospital) from Campo Grande, midwest Brazil. First, sewage samples were inoculated in a selective culture medium. Bacteria with reduced susceptibility to meropenem and ertapenem were then identified and their antimicrobial susceptibility was determined using the Vitek-2 system. The blaKPC genes were detected using PCR and further confirmed by sequencing. Carbapenem-resistant Enterobacteriaceae (CRE) were identified in both hospital (n=32) and non-hospital effluent (n=16), with the most common being Klebsiella pneumoniae and of the Enterobacter cloacae complex species. This is the first study to indicate the presence of the blaKPC-2 gene in carbapenem-resistant Enterobacteriaceae, classified as a critical priority by the WHO, in hospital sewage in this region. The dissemination of carbapenem antibiotic-resistant genes may be associated with clinical pathogens. Under favorable conditions and microbial loads, resistant bacteria and antimicrobial-resistance genes found in hospital sewage can disseminate into the environment, causing health problems. Therefore, sewage treatment regulations should be implemented to minimize the transfer of antimicrobial resistance from hospitals.
Collapse
Affiliation(s)
- D L D R Gonçalves
- Universidade Federal do Mato Grosso do Sul - UFMS, Programa em Saúde e Desenvolvimento na Região Centro Oeste, Campo Grande, MS, Brasil
| | - M R Chang
- Universidade Federal do Mato Grosso do Sul - UFMS, Faculdade de Medicina, Programa de Pós-graduação em Doenças Infecciosas e Parasitárias, Campo Grande, MS, Brasil
- Universidade Federal do Mato Grosso do Sul - UFMS, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Laboratório de Pesquisas Microbiológicas, Campo Grande, MS, Brasil
| | - G D Nobrega
- Universidade Federal do Mato Grosso do Sul - UFMS, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Laboratório de Pesquisas Microbiológicas, Campo Grande, MS, Brasil
| | - F A Venancio
- Universidade Estadual do Mato Grosso do Sul - UEMS, Campo Grande, MS, Brasil
| | - M G Higa Júnior
- Universidade Federal do Mato Grosso do Sul - UFMS, Hospital Universitário Maria Aparecida Pedrossian - EBSERH, Comissão de Controle e Infecção Hospitalar, Campo Grande, MS, Brasil
| | - W S Fava
- Universidade Federal de Mato Grosso do Sul - UFMS, Faculdade de Medicina, Laboratório de Doenças Infecciosas e Parasitárias, Campo Grande, MS, Brasil
| |
Collapse
|
30
|
Paracchini V, Petrillo M, Arcot Rajashekar A, Robuch P, Vincent U, Corbisier P, Tavazzi S, Raffael B, Suffredini E, La Rosa G, Gawlik BM, Marchini A. EU surveys insights: analytical tools, future directions, and the essential requirement for reference materials in wastewater monitoring of SARS-CoV-2, antimicrobial resistance and beyond. Hum Genomics 2024; 18:72. [PMID: 38937848 PMCID: PMC11210120 DOI: 10.1186/s40246-024-00641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Wastewater surveillance (WWS) acts as a vigilant sentinel system for communities, analysing sewage to protect public health by detecting outbreaks and monitoring trends in pathogens and contaminants. To achieve a thorough comprehension of present and upcoming practices and to identify challenges and opportunities for standardisation and improvement in WWS methodologies, two EU surveys were conducted targeting over 750 WWS laboratories across Europe and other regions. The first survey explored a diverse range of activities currently undertaken or planned by laboratories. The second survey specifically targeted methods and quality controls utilised for SARS-CoV-2 surveillance. RESULTS The findings of the two surveys provide a comprehensive insight into the procedures and methodologies applied in WWS. In Europe, WWS primarily focuses on SARS-CoV-2 with 99% of the survey participants dedicated to this virus. However, the responses highlighted a lack of standardisation in the methodologies employed for monitoring SARS-CoV-2. The surveillance of other pathogens, including antimicrobial resistance, is currently fragmented and conducted by only a limited number of laboratories. Notably, these activities are anticipated to expand in the future. Survey replies emphasise the collective recognition of the need to enhance the accuracy of results in WWS practices, reflecting a shared commitment to advancing precision and effectiveness in WWS methodologies. CONCLUSIONS These surveys identified a lack of standardised common procedures in WWS practices and the need for quality standards and reference materials to enhance the accuracy and reliability of WWS methods in the future. In addition, it is important to broaden surveillance efforts beyond SARS-CoV-2 to include other emerging pathogens and antimicrobial resistance to ensure a comprehensive approach to protecting public health.
Collapse
Affiliation(s)
| | | | | | - Piotr Robuch
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Ursula Vincent
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | | - Simona Tavazzi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Barbara Raffael
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Giuseppina La Rosa
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità (ISS), Rome, Italy
| | | | - Antonio Marchini
- European Commission, Joint Research Centre (JRC), Geel, Belgium.
| |
Collapse
|
31
|
Brown CL, Maile-Moskowitz A, Lopatkin AJ, Xia K, Logan LK, Davis BC, Zhang L, Vikesland PJ, Pruden A. Selection and horizontal gene transfer underlie microdiversity-level heterogeneity in resistance gene fate during wastewater treatment. Nat Commun 2024; 15:5412. [PMID: 38926391 PMCID: PMC11208604 DOI: 10.1038/s41467-024-49742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Activated sludge is the centerpiece of biological wastewater treatment, as it facilitates removal of sewage-associated pollutants, fecal bacteria, and pathogens from wastewater through semi-controlled microbial ecology. It has been hypothesized that horizontal gene transfer facilitates the spread of antibiotic resistance genes within the wastewater treatment plant, in part because of the presence of residual antibiotics in sewage. However, there has been surprisingly little evidence to suggest that sewage-associated antibiotics select for resistance at wastewater treatment plants via horizontal gene transfer or otherwise. We addressed the role of sewage-associated antibiotics in promoting antibiotic resistance using lab-scale sequencing batch reactors fed field-collected wastewater, metagenomic sequencing, and our recently developed bioinformatic tool Kairos. Here, we found confirmatory evidence that fluctuating levels of antibiotics in sewage are associated with horizontal gene transfer of antibiotic resistance genes, microbial ecology, and microdiversity-level differences in resistance gene fate in activated sludge.
Collapse
Affiliation(s)
- Connor L Brown
- Dept. of Civil and Environmental Engineering, Virginia Tech, Blacksburg, USA
| | | | | | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, USA
| | | | - Benjamin C Davis
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, USA
| | - Liqing Zhang
- Dept. of Computer Science, Virginia Tech, Blacksburg, USA
| | - Peter J Vikesland
- Dept. of Civil and Environmental Engineering, Virginia Tech, Blacksburg, USA.
| | - Amy Pruden
- Dept. of Civil and Environmental Engineering, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
32
|
Schmiege D, Haselhoff T, Thomas A, Kraiselburd I, Meyer F, Moebus S. Small-scale wastewater-based epidemiology (WBE) for infectious diseases and antibiotic resistance: A scoping review. Int J Hyg Environ Health 2024; 259:114379. [PMID: 38626689 DOI: 10.1016/j.ijheh.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Wastewater analysis can serve as a source of public health information. In recent years, wastewater-based epidemiology (WBE) has emerged and proven useful for the detection of infectious diseases. However, insights from the wastewater treatment plant do not allow for the small-scale differentiation within the sewer system that is needed to analyze the target population under study in more detail. Small-scale WBE offers several advantages, but there has been no systematic overview of its application. The aim of this scoping review is to provide a comprehensive overview of the current state of knowledge on small-scale WBE for infectious diseases, including methodological considerations for its application. A systematic database search was conducted, considering only peer-reviewed articles. Data analyses included quantitative summary and qualitative narrative synthesis. Of 2130 articles, we included 278, most of which were published since 2020. The studies analyzed wastewater at the building level (n = 203), especially healthcare (n = 110) and educational facilities (n = 80), and at the neighborhood scale (n = 86). The main analytical parameters were viruses (n = 178), notably SARS-CoV-2 (n = 161), and antibiotic resistance (ABR) biomarkers (n = 99), often analyzed by polymerase chain reaction (PCR), with DNA sequencing techniques being less common. In terms of sampling techniques, active sampling dominated. The frequent lack of detailed information on the specification of selection criteria and the characterization of the small-scale sampling sites was identified as a concern. In conclusion, based on the large number of studies, we identified several methodological considerations and overarching strategic aspects for small-scale WBE. An enabling environment for small-scale WBE requires inter- and transdisciplinary knowledge sharing across countries. Promoting the adoption of small-scale WBE will benefit from a common international conceptualization of the approach, including standardized and internationally accepted terminology. In particular, the development of good WBE practices for different aspects of small-scale WBE is warranted. This includes the establishment of guidelines for a comprehensive characterization of the local sewer system and its sub-sewersheds, and transparent reporting to ensure comparability of small-scale WBE results.
Collapse
Affiliation(s)
- Dennis Schmiege
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130, Essen, Germany.
| | - Timo Haselhoff
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130, Essen, Germany
| | - Alexander Thomas
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131, Essen, Germany
| | - Ivana Kraiselburd
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131, Essen, Germany
| | - Folker Meyer
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131, Essen, Germany
| | - Susanne Moebus
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130, Essen, Germany
| |
Collapse
|
33
|
Díaz-Torres O, Los Cobos EOVD, Kreft JU, Loge FJ, Díaz-Vázquez D, Mahlknecht J, Gradilla-Hernández MS, Senés-Guerrero C. A metagenomic study of antibiotic resistance genes in a hypereutrophic subtropical lake contaminated by anthropogenic sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172216. [PMID: 38583614 DOI: 10.1016/j.scitotenv.2024.172216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Antibiotic resistance genes (ARGs) are a major threat to human and environmental health. This study investigated the occurrence and distribution of ARGs in Lake Cajititlán, a hypereutrophic subtropical lake in Mexico contaminated by anthropogenic sources (urban wastewater and runoff from crop and livestock production). ARGs (a total of 475 genes) were detected in 22 bacterial genera, with Pseudomonas (144 genes), Stenotrophomonas (88 genes), Mycobacterium (54 genes), and Rhodococcus (27 genes) displaying the highest frequencies of ARGs. Among these, Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed the highest number of ARGs. The results revealed a diverse array of ARGs, including resistance to macrolides (11.55 %), aminoglycosides (8.22 %), glycopeptides (6.22 %), tetracyclines (4 %), sulfonamides (4 %), carbapenems (1.11 %), phenicols (0.88 %), fluoroquinolones (0.44 %), and lincosamides (0.22 %). The most frequently observed ARGs were associated with multidrug resistance (63.33 %), with MexF (42 genes), MexW (36 genes), smeD (31 genes), mtrA (25 genes), and KHM-1 (22 genes) being the most common. Lake Cajititlán is a recreational area for swimming, fishing, and boating, while also supporting irrigation for agriculture and potentially acting as a drinking water source for some communities. This raises concerns about the potential for exposure to antibiotic-resistant bacteria through these activities. The presence of ARGs in Lake Cajititlán poses a significant threat to both human and environmental health. Developing strategies to mitigate the risks of antibiotic resistance, including improving wastewater treatment, and promoting strategic antibiotic use and disposal, is crucial. This study represents a significant advancement in the understanding of antibiotic resistance dynamics in a hypereutrophic subtropical lake in a developing country, providing valuable insights for the scientific community and policymakers.
Collapse
Affiliation(s)
- Osiris Díaz-Torres
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, Nuevo México, Zapopan, CP, 45138 Jalisco, México.
| | - Eric Oswaldo Valencia-de Los Cobos
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, Nuevo México, Zapopan, CP, 45138 Jalisco, México
| | - Jan-Ulrich Kreft
- Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Frank J Loge
- Department of Civil and Environmental Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Sada 2501 Sur, Monterrey, N.L. 64849, Mexico
| | - Diego Díaz-Vázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, Nuevo México, Zapopan, CP, 45138 Jalisco, México
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Sada 2501 Sur, Monterrey, N.L. 64849, Mexico
| | - Misael Sebastián Gradilla-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, Nuevo México, Zapopan, CP, 45138 Jalisco, México.
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, Nuevo México, Zapopan, CP, 45138 Jalisco, México.
| |
Collapse
|
34
|
de Oliveira AR, de Toledo Rós B, Jardim R, Kotowski N, de Barros A, Pereira RHG, Almeida NF, Dávila AMR. A comparative genomics study of the microbiome and freshwater resistome in Southern Pantanal. Front Genet 2024; 15:1352801. [PMID: 38699231 PMCID: PMC11063290 DOI: 10.3389/fgene.2024.1352801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
This study explores the resistome and bacterial diversity of two small lakes in the Southern Pantanal, one in Aquidauana sub-region, close to a farm, and one in Abobral sub-region, an environmentally preserved area. Shotgun metagenomic sequencing data from water column samples collected near and far from the floating macrophyte Eichhornia crassipes were used. The Abobral small lake exhibited the highest diversity and abundance of antibiotic resistance genes (ARGs), antibiotic resistance classes (ARGCs), phylum, and genus. RPOB2 and its resistance class, multidrug resistance, were the most abundant ARG and ARGC, respectively. Pseudomonadota was the dominant phylum across all sites, and Streptomyces was the most abundant genus considering all sites.
Collapse
Affiliation(s)
- André R. de Oliveira
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Rodrigo Jardim
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Nelson Kotowski
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | - Alberto M. R. Dávila
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Li J, Yu L, Liu M, Xie Y, Yu Y. Aeration-driven piezoelectric activation of peroxymonosulfate achieves effective mitigation of antibiotic resistance dissemination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123687. [PMID: 38458515 DOI: 10.1016/j.envpol.2024.123687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
The antibiotic resistance dissemination in water has become a globally concerned issue, and the wastewater discharge, especially medical wastewater, is considered as one of the most important sources for antibiotic resistance genes (ARGs). However, the effectiveness of current disinfection techniques in the ARGs reduction still remains controversial. In this study, a novel aeration-driven piezoelectric peroxymonosulfate (PMS) activation system using oxygen-vacancy engineered BaTiO3 (BTO) was developed to effectively eliminate antibiotic resistant bacteria (ARB) and ARGs from water. The ARB can be completely inactivated and ∼3.0 logs of ARGs can be removed by the PMS/BTO/aeration system within 1 h, and the spent BTO nanoparticles can be facilely reused after simple rinsing. The aeration can not only provide the driving force for the piezocatalytic process but also more dissolved oxygen in water that played an important role in the generation of free radicals. The radical quenching experiments and electron spin-resonance (ESR) confirmed that all the free radicals, including singlet oxygen (1O2), hydroxyl radical (OH•), sulfate radical (SO4•-) and superoxide radical (•O2-), contributed to the ARGs reduction and 1O2 radicals were identified as the dominant active species. This work provides a high-efficiency and energy saving approach for the mitigation of ARGs from water as the universal use of aeration in water treatment processes and the good reusability of BTO nanoparticles.
Collapse
Affiliation(s)
- Jingwen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Ling Yu
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Mengxiao Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Yiqiao Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Yang Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
36
|
Shuai X, Zhou Z, Zhu L, Achi C, Lin Z, Liu Z, Yu X, Zhou J, Lin Y, Chen H. Ranking the risk of antibiotic resistance genes by metagenomic and multifactorial analysis in hospital wastewater systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133790. [PMID: 38368689 DOI: 10.1016/j.jhazmat.2024.133790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Antimicrobial resistance poses a serious threat to human health. Hospital wastewater system (HWS) is an important source of antibiotic resistance genes (ARGs). The risk of ARGs in HWS is still an under-researched area. In this study, we collected publicly metagenomic datasets of 71 hospital wastewater samples from 18 hospitals in 13 cities. A total of 9838 contigs were identified to carry 383 unique ARGs across all samples, of which 2946 contigs were plasmid-like sequences. Concurrently, the primary hosts of ARGs within HWS were found to be Escherichia coli and Klebsiella pneumoniae. To further evaluate the risk of each ARG subtype, we proposed a risk assessment framework based on the importance of corresponding antibiotics as defined by the WHO and three other indicators - ARG abundance (A), mobility (M), and host pathogenicity (P). Ninety ARGs were identified as R1 ARGs having high-risk scores, which meant having a high abundance, high mobility, and carried by pathogens in HWS. Furthermore, 25% to 49% of genomes from critically important pathogens accessed from NCBI carried R1 ARGs. A significantly higher number of R1 ARGs was carried by pathogens in the effluents of municipal wastewater treatment plants from NCBI, highlighting the role of R1 ARGS in accelerating health and environmental risks.
Collapse
Affiliation(s)
- Xinyi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenchao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Chioma Achi
- Ineos Oxford Institute of Antimicrobial Research, Department of Biology, University of Oxford, United Kingdom
| | - Zejun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinyu Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanhan Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
37
|
Amin N, Foster T, Shimki NT, Willetts J. Hospital wastewater (HWW) treatment in low- and middle-income countries: A systematic review of microbial treatment efficacy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170994. [PMID: 38365018 DOI: 10.1016/j.scitotenv.2024.170994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Proper treatment of hospital wastewater (HWW) is crucial to minimize the long-term effects on human health and aquatic ecosystems. However, the majority of HWW generated in low and middle-income countries (LMICs), is discharged without adequate treatment. This systematic review aims to fill the knowledge gap in LMICs by examining the efficacy of HWW treatment and the types of technologies used. METHODS Studies included in the review offered valuable insights into the current state of HWW management in LMICs. Between 2000 and 2022, only 36 research studies focused on hospital-based wastewater treatment within LMICs. Data were extracted on wastewater treatment technologies in hospitals or healthcare settings in LMICs. Data on sampling techniques, effectiveness, microorganisms and risk of bias of included studies were recorded. RESULTS A total of 36 articles met the eligibility criteria: mentioned about 1) hospitals 2) wastewater treatment 3) LMICs and 4) treatment efficacy. Twenty-two studies were conducted in Asia (22/36), 17 were conducted in countries with high Human Development Index. Constructed wetland, and activated sludge process were the most common technologies used in LMICs. A few studies utilized membrane bioreactors and ozone/UV treatment. Fourteen studies reported the concentration reduction to assess the microbial efficacy of the treatment process, 29/36 studies did not meet the national standards for effluent discharge. Reporting on sampling methods, wastewater treatment processes and efficacy of HWW treatment were at high risk of bias. Extreme heterogeneity in study methods and outcomes reporting precluded meta-analysis. CONCLUSIONS The existing evidence indicates inadequate microbial treatment in low- and middle-income country hospitals, with this systematic review emphasizing the need for improvement in healthcare waste management. It underscores the importance of long-term studies using innovative treatment methods to better understand waste removal in LMIC hospitals and calls for further research to develop context-specific healthcare waste treatment approaches in these regions.
Collapse
Affiliation(s)
- Nuhu Amin
- Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St, Ultimo, NSW 2007, Australia; Environmental Health and WASH, Health System and Population Studies Division, icddr,b, Dhaka, Bangladesh.
| | - Tim Foster
- Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St, Ultimo, NSW 2007, Australia
| | - Nafeya Tabassum Shimki
- Environmental Health and WASH, Health System and Population Studies Division, icddr,b, Dhaka, Bangladesh
| | - Juliet Willetts
- Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St, Ultimo, NSW 2007, Australia
| |
Collapse
|
38
|
Daw Elbait G, Daou M, Abuoudah M, Elmekawy A, Hasan SW, Everett DB, Alsafar H, Henschel A, Yousef AF. Comparison of qPCR and metagenomic sequencing methods for quantifying antibiotic resistance genes in wastewater. PLoS One 2024; 19:e0298325. [PMID: 38578803 PMCID: PMC10997137 DOI: 10.1371/journal.pone.0298325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/18/2024] [Indexed: 04/07/2024] Open
Abstract
Surveillance methods of circulating antibiotic resistance genes (ARGs) are of utmost importance in order to tackle what has been described as one of the greatest threats to humanity in the 21st century. In order to be effective, these methods have to be accurate, quickly deployable, and scalable. In this study, we compare metagenomic shotgun sequencing (TruSeq DNA sequencing) of wastewater samples with a state-of-the-art PCR-based method (Resistomap HT-qPCR) on four wastewater samples that were taken from hospital, industrial, urban and rural areas. ARGs that confer resistance to 11 antibiotic classes have been identified in these wastewater samples using both methods, with the most abundant observed classes of ARGs conferring resistance to aminoglycoside, multidrug-resistance (MDR), macrolide-lincosamide-streptogramin B (MLSB), tetracycline and beta-lactams. In comparing the methods, we observed a strong correlation of relative abundance of ARGs obtained by the two tested methods for the majority of antibiotic classes. Finally, we investigated the source of discrepancies in the results obtained by the two methods. This analysis revealed that false negatives were more likely to occur in qPCR due to mutated primer target sites, whereas ARGs with incomplete or low coverage were not detected by the sequencing method due to the parameters set in the bioinformatics pipeline. Indeed, despite the good correlation between the methods, each has its advantages and disadvantages which are also discussed here. By using both methods together, a more robust ARG surveillance program can be established. Overall, the work described here can aid wastewater treatment plants that plan on implementing an ARG surveillance program.
Collapse
Affiliation(s)
- Gihan Daw Elbait
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mariane Daou
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Miral Abuoudah
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed Elmekawy
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dean B. Everett
- Department of Pathology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Emirates Bio-research Center, Ministry of Interior, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Andreas Henschel
- Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed F. Yousef
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
39
|
Cooper AL, Wong A, Tamber S, Blais BW, Carrillo CD. Analysis of Antimicrobial Resistance in Bacterial Pathogens Recovered from Food and Human Sources: Insights from 639,087 Bacterial Whole-Genome Sequences in the NCBI Pathogen Detection Database. Microorganisms 2024; 12:709. [PMID: 38674654 PMCID: PMC11051753 DOI: 10.3390/microorganisms12040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the role of foods in the emergence and spread of antimicrobial resistance necessitates the initial documentation of antibiotic resistance genes within bacterial species found in foods. Here, the NCBI Pathogen Detection database was used to query antimicrobial resistance gene prevalence in foodborne and human clinical bacterial isolates. Of the 1,843,630 sequence entries, 639,087 (34.7%) were assigned to foodborne or human clinical sources with 147,788 (23.14%) from food and 427,614 (76.88%) from humans. The majority of foodborne isolates were either Salmonella (47.88%), Campylobacter (23.03%), Escherichia (11.79%), or Listeria (11.3%), and the remaining 6% belonged to 20 other genera. Most foodborne isolates were from meat/poultry (95,251 or 64.45%), followed by multi-product mixed food sources (29,892 or 20.23%) and fish/seafood (6503 or 4.4%); however, the most prominent isolation source varied depending on the genus/species. Resistance gene carriage also varied depending on isolation source and genus/species. Of note, Klebsiella pneumoniae and Enterobacter spp. carried larger proportions of the quinolone resistance gene qnrS and some clinically relevant beta-lactam resistance genes in comparison to Salmonella and Escherichia coli. The prevalence of mec in S. aureus did not significantly differ between meat/poultry and multi-product sources relative to clinical sources, whereas this resistance was rare in isolates from dairy sources. The proportion of biocide resistance in Bacillus and Escherichia was significantly higher in clinical isolates compared to many foodborne sources but significantly lower in clinical Listeria compared to foodborne Listeria. This work exposes the gaps in current publicly available sequence data repositories, which are largely composed of clinical isolates and are biased towards specific highly abundant pathogenic species. We also highlight the importance of requiring and curating metadata on sequence submission to not only ensure correct information and data interpretation but also foster efficient analysis, sharing, and collaboration. To effectively monitor resistance carriage in food production, additional work on sequencing and characterizing AMR carriage in common commensal foodborne bacteria is critical.
Collapse
Affiliation(s)
- Ashley L. Cooper
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada;
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Sandeep Tamber
- Microbiology Research Division, Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A0K9, Canada;
| | - Burton W. Blais
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Catherine D. Carrillo
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
40
|
Arnal C, Belhadj-Kaabi F, Ingrand V. [Which contribution of wastewater treatment plants in the fight against antimicrobial resistance?]. C R Biol 2024; 346:23-33. [PMID: 37655905 DOI: 10.5802/crbiol.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 09/02/2023]
Abstract
Due to the massive use of antibiotics, antimicrobial resistance (AMR) continues to spread, endangering global disease control and environmental quality. The sources of bacteria or antimicrobial resistance genes are linked to human activities: urban, hospital and industrial discharges, livestock farms). The role of sanitation systems-sewerage, wastewater treatment and sludge treatment (WWTP)-in the problem of AMR has not yet been clearly established by the scientific community. The data available to date show that they eliminate part of the bacteria, genes and antibiotics, although this is not their primary vocation. WWTPs thus play an important filtering role to limit dissemination in the environment. On the other hand, some authors warn against their potential involvement in the selection of new resistant germs, given the conditions conducive to the exchange of genetic material between microbial strains of various types and exposed to selective agents. Today, knowledge of the mechanisms involved in the selection of antibiotic resistance and the fate of bacteria and resistance genes within sanitation systems remains limited. Research is needed to better characterize the contribution of wastewater systems and the performance of wastewater, recycled water, stormwater and sludge treatment processes.
Collapse
|
41
|
Gu D, Wu Y, Chen K, Zhang Y, Ju X, Yan Z, Xie M, Chan EWC, Chen S, Ruan Z, Zhang R, Zhang J. Recovery and genetic characterization of clinically-relevant ST2 carbapenem-resistant Acinetobacter baumannii isolates from untreated hospital sewage in Zhejiang Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170058. [PMID: 38218490 DOI: 10.1016/j.scitotenv.2024.170058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The global transmission of carbapenem-resistant Acinetobacter baumannii (CRAB) poses a significant and grave threat to human health. To investigate the potential relationship between hospital sewage and the transmission of CRAB within healthcare facilities, isolates of Acinetobacter spp. obtained from untreated hospital sewage samples were subjected to antimicrobial susceptibility tests, genome sequencing, and bioinformatic and phylogenetic tree analysis, and that data were matched with those of the clinical isolates. Among the 70 Acinetobacter spp. sewage isolates tested, A. baumannii was the most prevalent and detectable in 5 hospitals, followed by A. nosocomialis and A. gerneri. Worryingly, 57.14 % (40/70) of the isolates were MDR, with 25.71 % (18/70) being resistant to carbapenem. When utilizing the Pasteur scheme, ST2 was the predominant type among these CRAB isolates, with Tn2006 (ΔISAba1-blaOXA-23-ATPase-yeeB-yeeA-ΔISAba1) and Tn2009 (ΔISAba1-blaOXA-23-ATPase-hp-parA-yeeC-hp-yeeB-ΔISAba1) being the key mobile genetic elements that encode carbapenem resistance. Seven A. gerneri isolates which harbored Tn2008 (ISAba1-blaOXA-23 -ATPase) and the blaPER-1 gene were also identified. Besides, an A. soil isolate was found to exhibit high-level of meropenem resistance (MIC ≥128 mg/L) and harbor a blaNDM-1 gene located in a core genetic structure of ISAba125-blaNDM-1-ble-trpF-dsbC-cutA. To investigate the genetic relatedness between isolates recovered from hospital sewage and those collected from ICUs, a phylogenetic tree was constructed for 242 clinical isolates and 9 sewage isolates. The results revealed the presence of two evolutionary clades, each containing isolates from both ICU and sewage water, suggesting that CRAB isolates in untreated sewage water were also the transmission clones or closely related evolutionary isolates recoverable in hospital settings. Findings in this work confirm that hospital sewage is a potential reservoir of CRAB.
Collapse
Affiliation(s)
- Danxia Gu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China; Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Kaichao Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yanyan Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaoyang Ju
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Zelin Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Miaomiao Xie
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
42
|
Pang L, He K, Zhang Y, Li P, Lin Y, Yue J. Predicting environmental risks of pharmaceutical residues by wastewater surveillance: An analysis based on pharmaceutical sales and their excretion data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170204. [PMID: 38262535 DOI: 10.1016/j.scitotenv.2024.170204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/23/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Pharmaceutical residues are increasingly becoming a significant source of environmental water pollution and ecological risk. This study, leveraging official national pharmaceutical sales statistics, predicts the environmental concentrations of 33 typical pharmaceuticals in the Tianjin area. The results show that 52 % of the drugs have a PEC/MEC (Predicted Environmental Concentration/Measured Environmental Concentration) ratio within the acceptable range of 0.5-2, including atenolol (1.21), carbamazepine (1.22), and sulfamethoxazole (0.91). Among the selected drugs, tetracycline, ciprofloxacin, and acetaminophen had the highest predicted concentrations. The EPI (Estimation Programs Interface) biodegradation model, a tool from the US Environmental Protection Agency, is used to predict the removal efficiency of compounds in wastewater treatment plants. The results indicate that the EPI predictions are acceptable for macrolide antibiotics and β-blockers, with removal rates of roxithromycin, spiramycin, acetaminophen, and carbamazepine being 14.1 %, 61.2 %, 75.1 %, and 44.5 %, respectively. However, the model proved to be less effective for fluoroquinolone antibiotics. The ECOSAR (Ecological Structure-Activity Relationships) model was used to supplement the assessment of the potential impacts of drugs on aquatic ecosystems, further refining the analysis of pharmaceutical environmental risks. By combining the concentration and detection frequency of pharmaceutical wastewater, this study identified 9 drugs with significant toxicological risks and marked another 24 drugs as substances of potential concern. Additionally, this study provides data support for addressing pharmaceutical residues of priority concern in subsequent research.
Collapse
Affiliation(s)
- Lihao Pang
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kai He
- College of Civil Engineering, Sun Yat-Sen University, Guangzhou 51000, China.
| | - Yuxuan Zhang
- College of Civil Engineering, Sun Yat-Sen University, Guangzhou 51000, China
| | - Penghui Li
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yingchao Lin
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Junjie Yue
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
43
|
Tanabe M, Denda T, Natori T, Horiuchi K, Sakaguchi K, Koide S, Nagano Y, Nagano N. Commonality of multispecies GES carbapenemase-producing organisms in hospital wastewater with those in previously investigated epidemiologically linked municipal wastewater influents. J Glob Antimicrob Resist 2024; 36:139-141. [PMID: 38154748 DOI: 10.1016/j.jgar.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Affiliation(s)
- Mizuki Tanabe
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Tomohiro Denda
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Tatsuya Natori
- Department of Laboratory Medicine, Shinshu University Hospital, Nagano, Japan
| | - Kazuki Horiuchi
- Department of Laboratory Medicine, Shinshu University Hospital, Nagano, Japan
| | - Kanae Sakaguchi
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Shota Koide
- Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Nagano, Japan
| | - Yukiko Nagano
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Noriyuki Nagano
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Nagano, Japan; Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Nagano, Japan.
| |
Collapse
|
44
|
Deschamps-Biboulet M, Fayolle T, Ziegelmeyer T, Frachet V. [How can nature help us fight bacterial infections?]. Med Sci (Paris) 2024; 40:298-300. [PMID: 38520109 DOI: 10.1051/medsci/2024018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Affiliation(s)
- Maëlan Deschamps-Biboulet
- Master 2 Sciences du vivant, Parcours IMaGHE, Université Paris, Sciences et Lettres (PSL), École Pratique des Hautes Études (EPHE), 75014 Paris, France
| | - Théo Fayolle
- Master 2 Sciences du vivant, Parcours IMaGHE, Université Paris, Sciences et Lettres (PSL), École Pratique des Hautes Études (EPHE), 75014 Paris, France
| | - Théo Ziegelmeyer
- Institut pour l'avancée des Biosciences, Inserm U1209, UMR CNRS 5309, Université Grenoble Alpes, 38700 La Tronche, France
| | - Véronique Frachet
- Institut pour l'avancée des Biosciences, Inserm U1209, UMR CNRS 5309, Université Grenoble Alpes, 38700 La Tronche, France - EPHE, Université PSL, 75014 Paris, France
| |
Collapse
|
45
|
Moradkasani S, Goodarzi F, Beig M, Tadi DA, Sholeh M. Prevalence of Brucella melitensis and Brucella abortus aminoglycoside-resistant isolates: a systematic review and meta-analysis. Braz J Microbiol 2024; 55:429-439. [PMID: 38228936 PMCID: PMC10920566 DOI: 10.1007/s42770-023-01233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024] Open
Abstract
INTRODUCTION Aminoglycosides are vital antibiotics for treating Brucella infections, because they interfere with bacterial protein production and are often combined with other antibiotics. They are cost-effective, have fewer side effects, and can penetrate biofilms. The prevalence of brucellosis has increased in recent years, increasing the need for effective treatments. In addition, the emergence of multidrug-resistant Brucella strains has highlighted the need for an updated and comprehensive understanding of aminoglycoside resistance. This systematic review aimed to provide a comprehensive overview of the global prevalence of aminoglycoside resistance in B. melitensis and B. abortus. METHODS A systematic search of online databases was conducted and eligible studies met certain criteria and were published in English. Quality assessment was performed using the JBI Checklist. A random-effects model was fitted to the data, and meta-regression, subgroup, and outlier/influential analyses were performed. The analysis was performed using R and the metafor package. RESULTS The results of this systematic review and meta-analysis suggested that the average prevalence rates of streptomycin, gentamicin, and amikacin resistance were 0.027 (95% confidence interval [CI], 0.015-0.049), 0.023 (95% CI, 0.017-0.032), and 0.008 (95% CI, 0.002-0.039), respectively. The prevalence of streptomycin resistance was higher in the unidentified Brucella group than in the B. abortus and B. melitensis groups (0.234, 0.046, and 0.017, respectively; p < 0.02). The prevalence of gentamicin resistance increased over time (r = 0.064; 95% CI, 0.018 to 0.111; p = 0.007). The prevalence of resistance did not correlate with the quality score for any antibiotic. Funnel plots showed a potential asymmetry for streptomycin and gentamicin. These results suggest a low prevalence of antibiotic resistance in the studied populations. CONCLUSION The prevalence of aminoglycoside resistance in B. melitensis and B. abortus was low. However, gentamicin resistance has increased in recent years. This review provides a comprehensive and updated understanding of aminoglycoside resistance in B. melitensis and B. abortus.
Collapse
Affiliation(s)
| | - Forough Goodarzi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Danyal Abbasi Tadi
- Department of Veterinary, Azad University of Shahr-E Kord, Shahrekord, Iran.
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
46
|
Li Z, Yang D, Li S, Yang L, Yan W, Xu H. Advances on electrochemical disinfection research: Mechanisms, influencing factors and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169043. [PMID: 38070567 DOI: 10.1016/j.scitotenv.2023.169043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Disinfection, a vital barrier against pathogenic microorganisms, is crucial in halting the spread of waterborne diseases. Electrochemical methods have been extensively researched and implemented for the inactivation of pathogenic microorganisms from water and wastewater, primarily owing to their simplicity, efficiency, and eco-friendliness. This review succinctly outlined the core mechanisms of electrochemical disinfection (ED) and systematically examined the factors influencing its efficacy, including anode materials, system conditions, and target species. Additionally, the practical application of ED in water and wastewater treatment was comprehensively reviewed. Case studies involving various scenarios such as drinking water, hospital wastewater, black water, rainwater, and ballast water provided concrete instances of the expansive utility of ED. Finally, coupling ED with other technologies and the resulting synergies were introduced as pivotal foundations for subsequent engineering advancements.
Collapse
Affiliation(s)
- Zhen Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China.
| |
Collapse
|
47
|
Maddamsetti R, Yao Y, Wang T, Gao J, Huang VT, Hamrick GS, Son HI, You L. Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria. Nat Commun 2024; 15:1449. [PMID: 38365845 PMCID: PMC10873360 DOI: 10.1038/s41467-024-45638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
Horizontal gene transfer (HGT) and gene duplication are often considered as separate mechanisms driving the evolution of new functions. However, the mobile genetic elements (MGEs) implicated in HGT can copy themselves, so positive selection on MGEs could drive gene duplications. Here, we use a combination of modeling and experimental evolution to examine this hypothesis and use long-read genome sequences of tens of thousands of bacterial isolates to examine its generality in nature. Modeling and experiments show that antibiotic selection can drive the evolution of duplicated antibiotic resistance genes (ARGs) through MGE transposition. A key implication is that duplicated ARGs should be enriched in environments associated with antibiotic use. To test this, we examined the distribution of duplicated ARGs in 18,938 complete bacterial genomes with ecological metadata. Duplicated ARGs are highly enriched in bacteria isolated from humans and livestock. Duplicated ARGs are further enriched in an independent set of 321 antibiotic-resistant clinical isolates. Our findings indicate that duplicated genes often encode functions undergoing positive selection and horizontal gene transfer in microbial communities.
Collapse
Affiliation(s)
- Rohan Maddamsetti
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yi Yao
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Teng Wang
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Junheng Gao
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Vincent T Huang
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Grayson S Hamrick
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC, USA
| | - Hye-In Son
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lingchong You
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
48
|
Li S, Duan G, Xi Y, Chu Y, Li F, Ho SH. Insights into the role of extracellular polymeric substances (EPS) in the spread of antibiotic resistance genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123285. [PMID: 38169168 DOI: 10.1016/j.envpol.2023.123285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Antibiotic resistance genes (ARG) are prevalent in aquatic environments. Discharge from wastewater treatment plants is an important point source of ARG release into the environment. It has been reported that biological treatment processes may enhance rather than remove ARG because of their presence in sludge. Attenuation of ARG in biotechnological processes has been studied in depth, showing that many microorganisms can secrete complex extracellular polymeric substances (EPS). These EPS can serve as multifunctional elements of microbial communities, involving aspects, such as protection, structure, recognition, adhesion, and physiology. These aspects can influence the interaction between microbial cells and extracellular ARG, as well as the uptake of extracellular ARG by microbial cells, thus changing the transformative capability of extracellular ARG. However, it remains unclear whether EPS can affect horizontal ARG transfer, which is one of the main processes of ARG dissemination. In light of this knowledge gap, this review provides insight into the role of EPS in the transmission of ARGs; furthermore, the mechanism of ARG spread is analyzed, and the molecular compositions and functional properties of EPS are summarized; also, how EPS influence ARG mitigation is addressed, and factors impacting how EPS facilitate ARG during wastewater treatment are summarized. This review provides comprehensive insights into the role of EPS in controlling the transport and fate of ARG during biodegradation processes at the mechanistic level.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Guoxiang Duan
- Heilongjiang Academy of Chinese Medical Sciences, Harbin, China
| | - Yucan Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
49
|
Feng J, Pan M, Zhuang Y, Luo J, Chen Y, Wu Y, Fei J, Zhu Y, Xu Z, Yuan Z, Chen M. Genetic epidemiology and plasmid-mediated transmission of mcr-1 by Escherichia coli ST155 from wastewater of long-term care facilities. Microbiol Spectr 2024; 12:e0370723. [PMID: 38353552 PMCID: PMC10913736 DOI: 10.1128/spectrum.03707-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 03/07/2024] Open
Abstract
Long-term care facilities (LTCFs) for older people play an important and unique role in multidrug-resistant organism transmission. Herein, we investigated the genetic characteristics of mobile colistin resistance gene (mcr-1)-carrying Escherichia coli strains isolated from wastewater of LTCFs in Shanghai. Antimicrobial susceptibility test was carried out by agar dilution methods. Whole-genome sequencing and plasmid sequencing were conducted, and resistance genes and sequence types of colistin in E. coli isolates were analyzed. Core genome multilocus sequence typing (cgMLST) analysis was performed by the Ridom SeqSphere+ software. Phylogenetic tree through the maximum likelihood method was constructed by MEGA X. Out of 306 isolates, only 1 E. coli named ECSJ33 was found, and the plasmid pECSJ33 from ECSJ33 harbored the mcr-1 gene that was located with 59,080 bp belonging to IncI2 type. The plasmid pECSJ33 was capable of conjugation with an efficiency of 2.9 × 10-2. Bioinformatic analysis indicated pECSJ33 shared backbone with the previously reported mcr-1-harboring pHNGDF93 isolated from fish source. Moreover, the cgMLST analysis revealed that ECSJ33 belongs to different lineages from those reported from previous E. coli strains but shared high similarity to NCTC11129 in cluster 11. The phylogenetic tree revealed MCR-1 of ECSJ33 in this study was mostly of animal food origin and that they were closely related. Our study firstly reports detection of genome sequence of a multidrug-resistant mcr-1-harboring E. coli ST155 from wastewater of LTCF source in China. The data may prove that the plasmid pECSJ33 belongs to food origin and help to understand the antimicrobial resistance mechanisms and genomic features of colistin resistance under One Health approach.IMPORTANCEOne Escherichia coli named ECSJ33 was found from wastewater of a long-term care facility (LTCF) and the plasmid pECSJ33 from ECSJ33 harbored the mobile colistin resistance gene (mcr-1) that was located with 59,080 bp belonging to IncI2 type, which was capable of conjugation with an efficiency of 2.9 × 10-2. This paper firstly reports an mcr-1-carrying E. coli strain ST155 isolated from LTCF in China. Comparative genomics analysis indicated pECSJ33 shared backbone with the previously reported mcr-1-harboring pHNGDF93 isolated from fish source. The phylogenetic tree revealed MCR-1 protein of ECSJ33 in this study was mostly of animal food origin and that they were closely related. Therefore, the pECSJ33 could be considered as food-origin transmission mcr-1-harboring plasmid.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Miao Pan
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yong Chen
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yitong Wu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Jiayi Fei
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yanqi Zhu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Zhen Xu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Zhengan Yuan
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| |
Collapse
|
50
|
Ajayi AO, Odeyemi AT, Akinjogunla OJ, Adeyeye AB, Ayo-ajayi I. Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Infect Ecol Epidemiol 2024; 14:2312953. [PMID: 38371518 PMCID: PMC10868463 DOI: 10.1080/20008686.2024.2312953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Background: The interdisciplinary One Health (OH) approach recognizes that human, animal, and environmental health are all interconnected. Its ultimate goal is to promote optimal health for all through the exploration of these relationships. Antibiotic resistance (AR) is a public health challenge that has been primarily addressed within the context of human health and clinical settings. However, it has become increasingly evident that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) that confer resistance are transmitted and circulated within humans, animals, and the environment. Therefore, to effectively address this issue, antibiotic resistance must also be considered an environmental and livestock/wildlife problem. Objective: This review was carried out to provide a broad overview of the existence of ARB and ARGs in One Health settings. Methods: Relevant studies that placed emphasis on ARB and ARGs were reviewed and key findings were accessed that illustrate the importance of One Health as a measure to tackle growing public and environmental threats. Results: In this review, we delve into the complex interplay of the three components of OH in relation to ARB and ARGs. Antibiotics used in animal husbandry and plants to promote growth, treat, and prevent infectious diseases lead to the development of antibiotic-resistant bacteria in animals. These bacteria are transmitted from animals to humans through food and environmental exposure. The environment plays a critical role in the circulation and persistence of antibiotic-resistant bacteria and genes, posing a significant threat to human and animal health. This article also highlights how ARGs are spread in the environment through the transfer of genetic material between bacteria. This transfer can occur naturally or through human activities such as the use of antibiotics in agriculture and waste management practices. Conclusion: It is important to integrate the One Health approach into the public health system to effectively tackle the emergence and spread of ARB and genes that code for resistance to different antibiotics.
Collapse
Affiliation(s)
| | - Adebowale Toba Odeyemi
- Department of Microbiology, Landmark University SDG Groups 2 and 3, Omu-Aran, Kwara State, Nigeria
| | | | | | - Ibiwumi Ayo-ajayi
- Department of Computer Science, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| |
Collapse
|