1
|
Zhang X, He L, Guo J, Liu F, Tong M. Modification of sand filtration system with biochar/zero valent iron-biochar for the simultaneous removal of algal cells and microcystin-LR. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138068. [PMID: 40157183 DOI: 10.1016/j.jhazmat.2025.138068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
High-density algal cells and the released algal toxins during harmful algal blooms cannot be effectively removed by traditional sand filtration systems. In this study, bare sand filtration columns were modified by different mass ratios of biochar (synthesized at different pyrolysis temperatures) and used to simultaneously capture algal cells and microcystins from water. We found that the addition of 2 wt% biochar synthesized at 700℃ could effectively remove Microcystis aeruginosa and Chlorella vulgaris cells under both slow and fast filtration flow conditions, and remove the released microcystin-LR in suspension. Effective removal performance with the coexistence of natural organic matters, in real water samples, during 3 transport-elution cycles and continuous operation for 50 pore volumes was also achieved by biochar-modified filtration system. The high algal adsorption capacity due to the wrinkled structure and the less negative charge of biochar contributed to the enhanced removal performance. Moreover, using zero valent iron (ZVI) loaded biochar to modify sand columns would effectively inactivate and inhibit the regrowth of retained algal cells. The results showed that as one type of inexpensive and readily available bio-materials, biochar/ZVI-biochar could be used to modify the sand filtration system for the effective removal of algal cells and toxins from water.
Collapse
Affiliation(s)
- Xiangwei Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Lei He
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Jia Guo
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Fuyang Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China.
| |
Collapse
|
2
|
Nagar H, Sharma S. Role of surface functional groups in the adsorption behavior of microcystin-LR on graphene surfaces. CHEMOSPHERE 2025; 374:144169. [PMID: 39922113 DOI: 10.1016/j.chemosphere.2025.144169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 02/10/2025]
Abstract
Biochars are good adsorbents for removing microcystin from water but the molecular interactions responsible for microcystin adsorption are not understood. In this work, adsorption behavior of microcystin-LR (MC-LR) on three model surfaces that mimic biochar (bare graphene, graphene with ammonium, and with phosphate functional groups) is studied using well-tempered metadynamics in atomistic simulations. MC-LR is found to strongly adsorb on all the three surfaces. The adsorption free energy is most favorable for the bare graphene surface. On both bare graphene and the surface with phosphate groups, MC-LR adsorbs with its ring parallel to the surface. On the surface with ammonium groups, MC-LR adsorbs with its ring tilted with respect to the surface because of favorable Coulombic interactions between the ammonium groups and the glutamic acid in the MC-LR ring. On the bare graphene surface, the phenyl ring of the pendant Adda group shows a bimodal distribution with peaks at 0° and 40° with the surface normal, indicating that the phenyl ring forms π-π interactions with graphene in some adsorbed configurations. Such π-π interactions are not observed on the surfaces with ammonium and phosphate groups. Favorable adsorption free energy of MC-LR on the charge-neutral (bare graphene), positively charged (ammonium) and negatively charged (phosphate) surfaces suggest that the adsorption is dominated by van der Waals and hydrophobic interactions. Coulombic and π-π interactions affect the orientation of MC-LR in the adsorbed state.
Collapse
Affiliation(s)
- Hemant Nagar
- 1 Ohio University, 171 Stocker, Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, United States of America
| | - Sumit Sharma
- 1 Ohio University, 171 Stocker, Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, United States of America.
| |
Collapse
|
3
|
Samghouli N, Bencheikh I, Azoulay K, Jansson S, El Hajjaji S. Mechanistic and reactional activation study of carbons destined for emerging pharmaceutical pollutant adsorption. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:259. [PMID: 39928232 PMCID: PMC11811452 DOI: 10.1007/s10661-025-13685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
In this review, several factors have been collected from previous studies on emerging pharmaceutical pollutant adsorption to explain and describe the mechanisms and determine the reactions involved: X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and the Boehm titration are the most used characterization techniques to determine activated carbons' surface functional groups. Some studies have confirmed that the specific surface area and the pore structure are not more important than the functional groups present in the adsorbent surface to explain the amount of adsorption obtained and to describe correctly the interaction between the adsorbent-adsorbate. After the analysis of several studies, we concluded that to have good adsorption, it is necessary to choose the right treatment with the right activating agent to obtain the appropriate functions that will enhance the adsorption process. In addition, the functions that can react with the pharmaceutical pollutants are the oxygenated functions such as hydroxyl function, carboxylic function, and carbonyl function.
Collapse
Affiliation(s)
- Nora Samghouli
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| | - Imane Bencheikh
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| | - Karima Azoulay
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| | - Stina Jansson
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| | - Souad El Hajjaji
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| |
Collapse
|
4
|
Chambers C, Grimes S, Smith RC, Weil A, Reza MT. Investigation of adsorption parameters of saxitoxin onto loblolly pine-derived biochar synthesized at various pyrolysis temperature. CHEMOSPHERE 2025; 370:143965. [PMID: 39694291 DOI: 10.1016/j.chemosphere.2024.143965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
This study highlights the use of loblolly pine derived biochar for the removal of harmful algal bloom toxin, Saxitoxin (STX), from water. Biochar samples were prepared at varying pyrolysis temperatures (400, 600 and 800 °C) for 60 min. As pyrolysis temperature increases, enhancement in surface porosity was observed (SBET = 7.26 ± 0.2 m2/g to 408.15 ± 6.19 m2/g) while a decline in oxygen-containing functional groups was observed (1517.80 ± 14.98 μmol/g to 823.01 ± 7.72 μmol/g). This study aimed to discover the effects of adsorption parameters such as biochar dosage amount, contact time, initial concentration and initial pH on Saxitoxin adsorption. These studies revealed impressive results with >90 % toxin removal with dosage rate of 0.01 g/L, contact time of 30 min, and increasing percent removal with increasing initial STX concentration and initial pH in water. Maximum uptake was calculated for P400 with adsorption capacity of 314.37 μg/g. This showed that surface functionality showed higher affinity for STX uptake, which may be possible due to hydrogen bonding, electrostatic interactions, ion-exchange, and π-π interactions. Applied kinetic models indicated both physisorption and chemisorption interactions with best fit supporting the Elovich models. Complementary, adsorption isotherm analysis confirmed the multilayer adsorption behavior of the Freundlich model. Therefore, these findings support the viable use of biochar material for the remediation of STX waters.
Collapse
Affiliation(s)
- Cadianne Chambers
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA
| | - Savannah Grimes
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA
| | - Russell C Smith
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA
| | - Ayden Weil
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA
| | - M Toufiq Reza
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA.
| |
Collapse
|
5
|
Lin W, Hu F, Zou W, Wang S, Shi P, Li L, Yang J, Yang P. Rice Straw-Derived Biochar Mitigates Microcystin-LR-Induced Hepatic Histopathological Injury and Oxidative Damage in Male Zebrafish via the Nrf2 Signaling Pathway. Toxins (Basel) 2024; 16:549. [PMID: 39728807 PMCID: PMC11679041 DOI: 10.3390/toxins16120549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish (Danio rerio) were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment. After 30 days exposure, our findings suggested that the existence of BC significantly decreased MC-LR bioavailability in liver. Furthermore, histopathological analysis revealed that BC mitigated MC-LR-induced hepatic lesions, which were characterized by mild damage, such as vacuolization, pyknotic nuclei, and swollen mitochondria. Compared to the groups exposed solely to MC-LR, decreased malondialdehyde (MDA) and increased catalase (CAT) and superoxide dismutase (SOD) were noticed in the mixture groups. Concurrently, significant changes in the mRNA expression levels of Nrf2 pathway genes (cat, sod1, gstr, keap1a, nrf2a, and gclc) further proved that BC reduces the oxidative damage induced by MC-LR. These findings demonstrate that BC decreases MC-LR bioavailability in the liver, thereby alleviating MC-LR-induced hepatotoxicity through the Nrf2 signaling pathway in zebrafish. Our results also imply that BC could serve as a potentially environmentally friendly material for mitigating the detrimental effects of MC-LR on fish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (W.L.); (F.H.); (W.Z.); (S.W.); (P.S.)
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Fen Hu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (W.L.); (F.H.); (W.Z.); (S.W.); (P.S.)
| | - Wansheng Zou
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (W.L.); (F.H.); (W.Z.); (S.W.); (P.S.)
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Suqin Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (W.L.); (F.H.); (W.Z.); (S.W.); (P.S.)
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Pengling Shi
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (W.L.); (F.H.); (W.Z.); (S.W.); (P.S.)
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (W.L.); (F.H.); (W.Z.); (S.W.); (P.S.)
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| |
Collapse
|
6
|
Haider MIS, Liu G, Yousaf B, Arif M, Aziz K, Ashraf A, Safeer R, Ijaz S, Pikon K. Synergistic interactions and reaction mechanisms of biochar surface functionalities in antibiotics removal from industrial wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124365. [PMID: 38871166 DOI: 10.1016/j.envpol.2024.124365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Biochar, a carbon-rich material with a unique surface chemistry (high abundance of surface functional groups, large surface area, and well-distributed), has shown great potential as a sustainable solution for industrial wastewater treatment as compared to conventional industrial wastewater treatment techniques demand substantial energy consumption and generate detrimental byproducts. This critical review emphasizes the surface functionalities formation and development in biochar to enhance its physiochemical properties, for utilization in antibiotics removal. Factors affecting the formation of functionalities, including carbonization processes, feedstock materials, operating parameters, and the influence of pre-post treatments, are thoroughly highlighted to understand the crucial role of factors influencing biochar properties for optimal antibiotics removal. Furthermore, the research explores the removal mechanisms and interactions of biochar-based surface functionalities, hydrogen bonding, encompassing electrostatic interactions, hydrophobic interactions, π-π interactions, and electron donor and acceptor interactions, to provide insights into the adsorption/removal behavior of antibiotics on biochar surfaces. The review also explains the mechanism of factors influencing the removal of antibiotics in industrial wastewater treatment, including particle size and pore structure, nature and types of surface functional groups, pH and surface charge, temperature, surface modification strategies, hydrophobicity/hydrophilicity, biochar dose, pollutant concentration, contact time, and the presence of coexisting ions and other substances. Finally, the study offers reusability and regeneration, challenges and future perspectives on the development of biochar-based adsorbents and their applications in addressing antibiotics. It concludes by summarizing the key findings and emphasizing the significance of biochar as a sustainable and effective solution for mitigating antibiotics contamination in industrial wastewater.
Collapse
Affiliation(s)
- Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| | - Muhammad Arif
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Kiran Aziz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Botany, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Krzysztof Pikon
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| |
Collapse
|
7
|
Tang S, Zhang L, Zhu H, Jiang SC. Coupling physiochemical adsorption with biodegradation for enhanced removal of microcystin-LR in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173370. [PMID: 38772489 DOI: 10.1016/j.scitotenv.2024.173370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
To innovate the design of water treatment technology for algal toxin removal, this research investigated the mechanisms of cyanotoxin microcystin-LR (MC-LR) removal by a coupled adsorption-biodegradation. Eight types of woody carbonaceous adsorbents with and without Sphingopyxis sp. m6, a MC-LR degrading bacterium, were tested for MC-LR removal in water. All adsorbents showed good adsorption capability, removing 40 % to almost 100 % of the MC-LR (4.5 mg/L) within 48 h in batch experiments. Adding Sphingopyxis sp. m6 continuously promoted MC-LR biological removal, and successfully broke the barrier of adsorption capacity of tested adsorbents, removing >90 % of the MC-LR in most of the coupled adsorption-biodegradation tests, especially for those adsorbents had low physiochemical adsorption capacity. Variance partitioning analysis indicated that mesopore was the dominant contributor to adsorption capacity of MC-LR in pure adsorption treatments, which acted synergistically with electrical conductivity, polarity and total functional groups on the absorbent. Pore structure was the key factor beneficial for the growth of Sphingopyxis sp. m6 (51% contribution) and subsequent MC-LR biological removal rate (80 % contribution). Overall, pinewood-based carbonaceous adsorbents (especially pinewood activated carbon) exhibited the highest adsorption capacity towards MC-LR and provided the most favorable conditions for biological removal of MC-LR, largely because of their high mesopore volume, total functional groups and electric conductivity. The research outcomes not only deepened the quantitative understanding of mechanisms for MC-LR removal by the coupled process, but also provided theoretical basis for future materials' selection and modification during the practical application of coupled process.
Collapse
Affiliation(s)
- Shengyin Tang
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697, United States; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lixun Zhang
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697, United States; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Haoxin Zhu
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697, United States
| | - Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697, United States.
| |
Collapse
|
8
|
Chambers C, Grimes S, Fire S, Reza MT. Influence of biochar on the removal of Microcystin-LR and Saxitoxin from aqueous solutions. Sci Rep 2024; 14:11058. [PMID: 38745050 PMCID: PMC11094018 DOI: 10.1038/s41598-024-61802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
The present study assessed the effective use of biochar for the adsorption of two potent HAB toxins namely, Microcystin-LR (MCLR) and Saxitoxin (STX) through a combination of dosage, kinetic, equilibrium, initial pH, and competitive adsorption experiments. The adsorption results suggest that biochar has excellent capabilities for removing MCLR and STX, with STX reporting higher adsorption capacities (622.53-3507.46 µg/g). STX removal required a minimal dosage of 0.02 g/L, while MCLR removal needed 0.4 g/L for > 90%. Similarly, a shorter contact time was required for STX removal compared to MCLR for > 90% of toxin removed from water. Initial pH study revealed that for MCLR acidic conditions favored higher uptake while STX favored basic conditions. Kinetic studies revealed that the Elovich model to be most suitable for both toxins, while STX also showed suitable fittings for Pseudo-First Order and Pseudo-Second Order in individual toxin systems. Similarly, for the Elovich model the most suited kinetic model for both toxins in presence of each other. Isotherm studies confirmed the Langmuir-Freundlich model as the best fit for both toxins. These results suggest adsorption mechanisms including pore filling, hydrogen bonding, π-π interactions, hydrophobic interactions, electrostatic attraction, and dispersive interactions.
Collapse
Affiliation(s)
- Cadianne Chambers
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Savannah Grimes
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Spencer Fire
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - M Toufiq Reza
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
9
|
Wu Z, Wu S, Hou Y, Cao H, Cai C. Facilitated transport of toluene and naphthalene with humic acid in high- and low-permeability systems: Role of ionic strength and cationic type. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133487. [PMID: 38219592 DOI: 10.1016/j.jhazmat.2024.133487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The occurrence of colloids on pollutants transport in groundwater has attracted more attention. However, the research on the regulation mechanism of colloids on combined pollutants transport in heterogeneous aquifers is limited. In this study, a series of tank experiments were conducted to systematically investigate the effects of ionic strength, and cation type on humic acid (HA) facilitated transport of toluene (TOL), and naphthalene (NAP) in high- and low-permeability systems. The results showed that HA facilitated pollutants transport in low Na+ solution. In Ca2+ solution, the presence of HA hindered pollutants transport, and the inhibition increased with the increase of ionic strength. Both in Na+ solution and low Ca2+ solution, the influence of heterogeneous structure on pollutant transport played a dominant role, and TOL and NAP had a greater transport potential in the high permeability zone (HPZ) due to the preferential flow. Whereas, deposition of HA aggregates, and electrostatic attractive interaction had negative effects on transport than groundwater flow in high Ca2+ solution. Pollutants were prone to accumulate at the bottom of the HPZ, and the top of the low permeability zone (LPZ). These new findings provide insights into the mechanism of colloids influence on the pollutants transport in heterogenous aquifer.
Collapse
Affiliation(s)
- Zhongran Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Shengyu Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yao Hou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongjian Cao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Chao Cai
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
10
|
Huang Y, Lenhart JJ. The dependence in microcystin removal with powdered activated carbon on variant properties, carbon properties, and dissolved organic matter. CHEMOSPHERE 2024; 351:141205. [PMID: 38219990 DOI: 10.1016/j.chemosphere.2024.141205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Powdered activated carbon (PAC) is commonly used by water treatment plants to remove harmful cyanotoxins such as microcystins (MCs) produced during seasonal harmful algal blooms. MC removal by PAC depends upon the properties of the PAC, the properties of the MC variant, and the presence and properties of dissolved organic matter (DOM). To identify which of these factors has the greatest impact on the removal of MC by PAC, we evaluated the removal of four different MC variants (MC-LR, MC-LA, MC-RR and desmethylated MC-RR) by three different PAC types (wood-based, coal-blend and coal-based). The role of DOM properties was evaluated using DOM isolated from two different sources, a terrestrial source (Suwannee River Fulvic Acid, SRFA) and a microbial source (Grand Lake St Marys DOM, GLSM). The results of adsorption experiments conducted over a period of 72 h demonstrated the wood-based PAC, which had the highest surface area and mesopore volume of the PAC tested, had the highest adsorption rate and capacity for all four MC variants. Of the variants studied, neutrally charged MC-RR was adsorbed more rapidly and to a greater extent on all of the PAC types than were the other variants. Although MC-LA and MC-LR had the greatest hydrophobicity, their negative charges resulted in their being adsorbed the least. As expected, DOM inhibited microcystin adsorption to PAC. The degree of inhibition, however, did not significantly vary for the two DOM types evaluated, indicating the properties of the DOM on MC adsorption to PAC was less important than the PAC properties or MC variant properties. Overall, PAC properties were a more important factor in MC removal than were the MC properties or DOM conditions.
Collapse
Affiliation(s)
- Yuzhou Huang
- Environmental Science Graduate Program, The Ohio State University, USA; Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, USA
| | - John J Lenhart
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, USA.
| |
Collapse
|
11
|
Lin W, Ouyang K, He Y, Yang H, Kuang Y, Li D, Li L. Combined effects of microcystin-LR and rice straw-derived biochar on the hepatic antioxidant capacity of zebrafish: Insights from LC-MS/MS-based metabolomics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166830. [PMID: 37673272 DOI: 10.1016/j.scitotenv.2023.166830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Microcystin-LR (MC-LR) produced by cyanobacteria blooms poses a serious risk to aquatic organisms. Rice straw-derived biochar (BC) is gradually being utilized as an effective adsorbent to remove water pollutants. In the present study, the combined toxicity of MC-LR and BC on hepatic antioxidant capacity and metabolic phenotype of zebrafish (Danio rerio) were conducted due to the increasing concern of eutrophication in aquatic environments. Female zebrafish were exposed to solutions of MC-LR (10 μg/L) and BC (100 μg/L) individually and in combination for 30 days. The results indicated that sub-chronic MC-LR exposure induced oxidative stress and metabolic disorders, with a significant elevation of several amino acids, glucose as well as unsaturated fatty acids. Metabolic pathway analysis showed that the ascorbate and aldarate metabolism and biosynthesis of unsaturated fatty acids were affected under MC-LR stress. Significantly increased MDA levels along with significantly decreased CAT and GPx activities were observed in the MC-LR group. Nevertheless, MDA levels, antioxidant enzyme activities, and the relevant gene expressions (cat1, nrf2a, HO-1, keap1a) returned to baseline in the co-exposure group. These findings revealed that MC-LR resulted in metabolic disorders of protein, sugar, and lipid related to energy production, and BC could relieve MC-LR-induced metabolic disorder and oxidative stress in the liver of zebrafish. However, the potential risk of BC-induced metabolic disorder should not be neglected. Our present results highlight the potential of BC as a tool for mitigating the negative impacts of MC-LR on aquatic organisms in blooms-contaminated water.
Collapse
Affiliation(s)
- Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
12
|
Foong SY, Cheong KY, Kong SH, Yiin CL, Yek PNY, Safdar R, Liew RK, Loh SK, Lam SS. Recent progress in the production and application of biochar and its composite in environmental biodegradation. BIORESOURCE TECHNOLOGY 2023; 387:129592. [PMID: 37549710 DOI: 10.1016/j.biortech.2023.129592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/09/2023]
Abstract
Over the past few decades, extensive research has been conducted to develop cost-effective and high-quality biochar for environmental biodegradation purposes. Pyrolysis has emerged as a promising method for recovering biochar from biomass and waste materials. This study provides an overview of the current state-of-the-art biochar production technology, including the advancements and biochar applications in organic pollutants remediation, particularly wastewater treatment. Substantial progress has been made in biochar production through advanced thermochemical technologies. Moreover, the review underscores the importance of understanding the kinetics of pollutant degradation using biochar to maximize its synergies for potential environmental biodegradation. Finally, the study identifies the technological gaps and outlines future research advancements in biochar production and its applications for environmental biodegradation.
Collapse
Affiliation(s)
- Shin Ying Foong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu, Kuala Nerus, 21030, Malaysia
| | - Kah Yein Cheong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu, Kuala Nerus, 21030, Malaysia; Centre on Technological Readiness and Innovation in Business Technopreneurship (CONTRIBUTE), University of Technology Sarawak, 96000 Sibu, Sarawak, Malaysia
| | - Sieng Huat Kong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu, Kuala Nerus, 21030, Malaysia; Centre on Technological Readiness and Innovation in Business Technopreneurship (CONTRIBUTE), University of Technology Sarawak, 96000 Sibu, Sarawak, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Peter Nai Yuh Yek
- Centre for Research of Innovation and Sustainable Development, University of Technology Sarawak, No.1, Jalan Universiti, Sibu, Sarawak, Malaysia
| | - Rizwan Safdar
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu, Kuala Nerus, 21030, Malaysia; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Rock Keey Liew
- NV WESTERN PLT, No. 208B, Second Floor, Macalister Road, Penang, Georgetown 10400, Malaysia
| | - Soh Kheang Loh
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu, Kuala Nerus, 21030, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
13
|
Zhang L, Tang S, Jiang S. Immobilization of Microcystin by the Hydrogel-Biochar Composite to Enhance Biodegradation during Drinking Water Treatment. ACS ES&T WATER 2023; 3:3044-3056. [PMID: 37705994 PMCID: PMC10496130 DOI: 10.1021/acsestwater.3c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
Microcystin-LR (MC-LR), the most common algal toxin in freshwater, poses an escalating threat to safe drinking water. This study aims to develop an engineered biofiltration system for water treatment, employing a composite of poly(diallyldimethylammonium chloride)-biochar (PDDA-BC) as a filtration medium. The objective is to capture MC-LR selectively and quickly from water, enabling subsequent biodegradation of toxin by bacteria embedded on the composite. The results showed that PDDA-BC exhibited a high selectivity in adsorbing MC-LR, even in the presence of competing natural organic matter and anions. The adsorption kinetics of MC-LR was faster, and capacity was greater compared to traditional adsorbents, achieving a capture rate of 98% for MC-LR (200 μg/L) within minutes to tens of minutes. Notably, the efficient adsorption of MC-LR was also observed in natural lake waters, underscoring the substantial potential of PDDA-BC for immobilizing MC-LR during biofiltration. Density functional theory calculations revealed that the synergetic effects of electrostatic interaction and π-π stacking predominantly contribute to the adsorption selectivity of MC-LR. Furthermore, experimental results validated that the combination of PDDA-BC with MC-degrading bacteria offered a promising and effective approach to achieve a sustainable removal of MC-LR through an "adsorption-biodegradation" process.
Collapse
Affiliation(s)
- Lixun Zhang
- Department of Civil and Environmental
Engineering, University of California, Irvine, California 92697, United States
| | - Shengyin Tang
- Department of Civil and Environmental
Engineering, University of California, Irvine, California 92697, United States
| | - Sunny Jiang
- Department of Civil and Environmental
Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
14
|
Nie Y, Zhao C, Zhou Z, Kong Y, Ma J. Hydrochloric acid-modified fungi-microalgae biochar for adsorption of tetracycline hydrochloride: Performance and mechanism. BIORESOURCE TECHNOLOGY 2023:129224. [PMID: 37244305 DOI: 10.1016/j.biortech.2023.129224] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Novel biochar (BC) was prepared by pyrolysis using Aspergillus oryzae-Microcystis aeruginosa (AOMA) flocs as raw materials. It has been used for tetracycline hydrochloride (TC) adsorption along with acid (HBC) and alkali modification (OHBC). Compared with BC (114.5 m2 g-1) and OHBC (283.9 m2 g-1), HBC had a larger specific surface area (SBET=338.6 m2 g-1). Meanwhile, the Elovich kinetic and Sip isotherm models adequately fit the adsorption data, and intraparticle diffusion is the controlling factor for TC adsorption diffusion on HBC. Furthermore, the thermodynamic data indicated that this adsorption was endothermic and spontaneous. The experimental results demonstrated that there are multiple interactions during the adsorption reaction process, including pore filling, H-bonds, π-π interaction, hydrophobic affinity, and van der Waals forces. In general, biochar prepared from flocs of AOMA can be used to remediate tetracycline-contaminated water, and it is of great significance in improving resource utilization.
Collapse
Affiliation(s)
- Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Changwei Zhao
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Zhengyu Zhou
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China.
| |
Collapse
|
15
|
Wan X, Zhao Y, Xu X, Li Z, Xie L, Wang G, Yang F. Microcystin bound on microplastics in eutrophic waters: A potential threat to zooplankton revealed by adsorption-desorption processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121146. [PMID: 36706860 DOI: 10.1016/j.envpol.2023.121146] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The presence of microplastics (MPs) in eutrophic waters (both freshwaters and coastal waters) is increasingly reported globally, as has the occurrence of cyanotoxins, including microcystins (MCs). MPs have the potential to act as vectors for MCs in freshwater environments, but the transportation mechanisms and associated risks remain poorly understood. In this study, we investigated how aging process and water conditions influenced the adsorption behavior of the microcystin-leucine-arginine (MC-LR) onto polyethylene (PE) and polypropylene (PP). Adsorption kinetics and isotherms showed that the MC-LR sorption capacity in descending order was aged PP > pristine PP > aged PE > pristine PE. The aging process increased the MC-LR sorption amount by 25.1% and 6.5% for PP and PE, respectively. The increase in sorption affinity of aged MPs may be attributed to the significant surface oxidation and the formation of the hydrogen bonding between MPs and MC-LR. Furthermore, MC-LR sorption can be largely influenced by the aqueous conditions. MC-LR preferred to be much adsorbed onto different MPs in brackish water than in freshwater owing to the cation bridging effect and complexation of high levels of cations. The usual alkalescent pH in eutrophic waters did not favor MC-LR sorption to MPs. Finally, based on the desorption results, assuming a worst-case scenario, MC-LR bound on MPs may have a high risk to daphnids. The findings obtained in this study have improved our knowledge in the interaction of MPs with hydrophilic cyanotoxins in aqueous ecosystems, as well as the risks associated with their coexistence.
Collapse
Affiliation(s)
- Xiang Wan
- School of Geography, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Xiaoguang Xu
- School of Geography, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Guoxiang Wang
- School of Geography, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Fei Yang
- School of Geography, School of Environment, Nanjing Normal University, Nanjing, 210023, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China.
| |
Collapse
|
16
|
Guo X, Jiang Q, Li Z, Cheng C, Feng Y, He Y, Zuo L, Ding W, Zhang D, Feng L. Crystal structural analysis and characterization for MlrC enzyme of Sphingomonas sp. ACM-3962 involved in linearized microcystin degradation. CHEMOSPHERE 2023; 317:137866. [PMID: 36642149 DOI: 10.1016/j.chemosphere.2023.137866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Microcystinase C (MlrC), one key hydrolase of the microcystinase family, plays an important role in linearized microsystin (L-MC) degradation. However, the three-dimensional structure and structural features of MlrC are still unclear. This study obtained high specific activity and high purity of MlrC by heterologous expression, and revealed that MlrC derived from Sphingomonas sp. ACM-3962 (ACM-MlrC) can degrade linearized products of MC-LR, MC-RR and MC-YR to product 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (Adda), indicating the degradation function and significance in MC-detoxification. More importantly, this study reported the crystal structure of ACM-MlrC at 2.6 Å resolution for the first time, which provides a basis for further understanding the structural characteristics and functions of MlrC. MlrC had a dual-domain feature, namely N and C terminal domain respectively. The N-terminal domain contained a Glutamate-Aspartate-Histidine-Histidine catalytic quadruplex coordinated with zinc ion in each monomer. The importance of zinc ions and their coordinated residues was analyzed by dialysis and site-directed mutagenesis methods. Moreover, the important influence of the N/C-terminal flexible regions of ACM-MlrC was also analyzed by sequence truncation, and then the higher yield and total activity of variants were obtained, which was beneficial to study the better function and application of MlrC.
Collapse
Affiliation(s)
- Xiaoliang Guo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Qinqin Jiang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zengru Li
- The Institute of Physics, Chinese Academy of Sciences, P.O.Box 603, Beijing, 100190, China
| | - Cai Cheng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yu Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanlin He
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lingzi Zuo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Wei Ding
- The Institute of Physics, Chinese Academy of Sciences, P.O.Box 603, Beijing, 100190, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
17
|
Grimm A, Chen F, Simões dos Reis G, Dinh VM, Khokarale SG, Finell M, Mikkola JP, Hultberg M, Dotto GL, Xiong S. Cellulose Fiber Rejects as Raw Material for Integrated Production of Pleurotus spp. Mushrooms and Activated Biochar for Removal of Emerging Pollutants from Aqueous Media. ACS OMEGA 2023; 8:5361-5376. [PMID: 36816655 PMCID: PMC9933083 DOI: 10.1021/acsomega.2c06453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Cellulose fiber rejects from industrial-scale recycling of waste papers were dried and de-ashed using a combined cyclone-drying and sieving process. The upgraded fiber reject was used as a component of substrates for the cultivation of Pleurotus ostreatus and Pleurotus eryngii mushrooms. Acetic acid (AA) and acid whey (AW) were used to adjust the pH of fiber reject-based substrates. Spent substrate (SMS) was used for the production of activated biochar using H3PO4 and KOH as activating agents and pyrolysis temperatures of 500, 600, and 700 °C. The effectiveness of the biochars in removing pollutants from water was determined using acetaminophen and amoxicillin. By using a feeding rate of 250 kg/h and a drying air temperature of 70 °C, the moisture content of the raw fiber rejects (57.8 wt %) was reduced to 5.4 wt %, and the ash content (39.2 wt %) was reduced to 21.5 wt %. Substrates with 60 and 80 wt % de-ashed cellulose fiber were colonized faster than a birch wood-based control substrate. The adjustment of the pH of these two substrates to approximately 6.5 by using AA led to longer colonization times but biological efficiencies (BEs) that were higher or comparable to that of the control substrate. The contents of ash, crude fiber, crude fat, and crude protein of fruit bodies grown on fiber reject-based substrates were comparable to that of those grown on control substrates, and the contents of toxic heavy metals, that is, As, Pb, Cd, and Hg, were well below the up-limit values for food products set in EC regulations. Activated biochar produced from fiber reject-based SMS at a temperature of 700 °C resulted in a surface area (BET) of 396 m2/g (H3PO4-activated biochar) and 199 m2/g (KOH-activated biochar). For both activated biochars, the kinetics of adsorption of acetaminophen and amoxicillin were better described using the general order model. The isotherms of adsorption were better described by the Freundlich model (H3PO4-activated biochar) and the Langmuir model (KOH-activated biochar).
Collapse
Affiliation(s)
- Alejandro Grimm
- Department
of Forest Biomaterials and Technology, Swedish
University of Agricultural Sciences, UmeåSE-901 83, Sweden
| | - Feng Chen
- Department
of Forest Biomaterials and Technology, Swedish
University of Agricultural Sciences, UmeåSE-901 83, Sweden
| | - Glaydson Simões dos Reis
- Department
of Forest Biomaterials and Technology, Swedish
University of Agricultural Sciences, UmeåSE-901 83, Sweden
| | - Van Minh Dinh
- Technical
Chemistry, Department of Chemistry, Chemical-Biological Centre, Umeå University, UmeåSE-901 87, Sweden
| | - Santosh Govind Khokarale
- Technical
Chemistry, Department of Chemistry, Chemical-Biological Centre, Umeå University, UmeåSE-901 87, Sweden
| | - Michael Finell
- Department
of Forest Biomaterials and Technology, Swedish
University of Agricultural Sciences, UmeåSE-901 83, Sweden
| | - Jyri-Pekka Mikkola
- Technical
Chemistry, Department of Chemistry, Chemical-Biological Centre, Umeå University, UmeåSE-901 87, Sweden
- Industrial
Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry
Centre, Åbo Akademi University, Åbo-TurkuFI-20500, Finland
| | - Malin Hultberg
- Department
of Biosystems and Technology, Swedish University
of Agricultural Sciences, AlnarpSE-230 53, Sweden
| | - Guilherme L. Dotto
- Research
Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, RS,
Santa MariaBR 97105-900, Brazil
| | - Shaojun Xiong
- Department
of Forest Biomaterials and Technology, Swedish
University of Agricultural Sciences, UmeåSE-901 83, Sweden
| |
Collapse
|
18
|
Li F, Li Y, Novoselov KS, Liang F, Meng J, Ho SH, Zhao T, Zhou H, Ahmad A, Zhu Y, Hu L, Ji D, Jia L, Liu R, Ramakrishna S, Zhang X. Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. NANO-MICRO LETTERS 2023; 15:35. [PMID: 36629933 PMCID: PMC9833044 DOI: 10.1007/s40820-022-00993-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
We conceptualize bioresource upgrade for sustainable energy, environment, and biomedicine with a focus on circular economy, sustainability, and carbon neutrality using high availability and low utilization biomass (HALUB). We acme energy-efficient technologies for sustainable energy and material recovery and applications. The technologies of thermochemical conversion (TC), biochemical conversion (BC), electrochemical conversion (EC), and photochemical conversion (PTC) are summarized for HALUB. Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg-1 and total benefit of 749 $/ton biomass via TC. Specific surface area of biochar reached 3000 m2 g-1 via pyrolytic carbonization of waste bean dregs. Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%. Besides, lignocellulosic biomass can contribute to a current density of 672 mA m-2 via EC. Bioresource can be 100% selectively synthesized via electrocatalysis through EC and PTC. Machine learning, techno-economic analysis, and life cycle analysis are essential to various upgrading approaches of HALUB. Sustainable biomaterials, sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis, microfluidic and micro/nanomotors beyond are also highlighted. New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.
Collapse
Affiliation(s)
- Fanghua Li
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Yiwei Li
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China
| | - K S Novoselov
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore
- School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Hui Zhou
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014, Cordoba, Spain
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Liangxing Hu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Dongxiao Ji
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Litao Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
19
|
Mukherjee S, Sarkar B, Aralappanavar VK, Mukhopadhyay R, Basak BB, Srivastava P, Marchut-Mikołajczyk O, Bhatnagar A, Semple KT, Bolan N. Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119609. [PMID: 35700879 DOI: 10.1016/j.envpol.2022.119609] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Numerous harmful chemicals are introduced every year in the environment through anthropogenic and geological activities raising global concerns of their ecotoxicological effects and decontamination strategies. Biochar technology has been recognized as an important pillar for recycling of biomass, contributing to the carbon capture and bioenergy industries, and remediation of contaminated soil, sediments and water. This paper aims to critically review the application potential of biochar with a special focus on the synergistic and antagonistic effects on contaminant-degrading microorganisms in single and mixed-contaminated systems. Owing to the high specific surface area, porous structure, and compatible surface chemistry, biochar can support the proliferation and activity of contaminant-degrading microorganisms. A combination of biochar and microorganisms to remove a variety of contaminants has gained popularity in recent years alongside traditional chemical and physical remediation technologies. The microbial compatibility of biochar can be improved by optimizing the surface parameters so that toxic pollutant release is minimized, biofilm formation is encouraged, and microbial populations are enhanced. Biocompatible biochar thus shows potential in the bioremediation of organic contaminants by harboring microbial populations, releasing contaminant-degrading enzymes, and protecting beneficial microorganisms from immediate toxicity of surrounding contaminants. This review recommends that biochar-microorganism co-deployment holds a great potential for the removal of contaminants thereby reducing the risk of organic contaminants to human and environmental health.
Collapse
Affiliation(s)
- Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | | | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, India
| | - B B Basak
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand 387310, India
| | | | - Olga Marchut-Mikołajczyk
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Ul. Stefanowskiego 2/22, 90-537, Łódź, Poland
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli, FI-50130, Finland
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
20
|
Adsorbents Used for Microcystin Removal from Water Sources: Current Knowledge and Future Prospects. Processes (Basel) 2022. [DOI: 10.3390/pr10071235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The increasing occurrence of toxic cyanobacteria in water sources, driven by climate change and eutrophication, is of great concern worldwide today. Cyanobacterial blooms can negatively affect water bodies and generate harmful secondary metabolites, namely microcystins (MCs), which significantly impair water quality. Various adsorbents used for MC removal from water sources were assessed in this investigation. Activated carbon constitutes the most widely used adsorbent for treating contaminated waters due to its high affinity for adsorbing MCs. Alternative adsorbents have also been proposed and reported to provide higher efficiency, but the studies carried out so far in this regard are still insufficient. The mechanisms implicated in MC adsorption upon different adsorbents should be further detailed for a better optimization of the adsorption process. Certainly, adsorbent characteristics, water pH and temperature are the main factors influencing the adsorption of MCs. In this context, optimization studies must be performed considering the effectiveness, economic aspects associated with each adsorbent. This review provides guidelines for more practical field applications of the adsorption in the treatment of waters actually contaminated with MCs.
Collapse
|
21
|
Liu BL, Li YW, Xie LS, Guo JJ, Xiang L, Mo CH. Sorption of microcystin-RR onto surface soils: Characteristics and influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128571. [PMID: 35278968 DOI: 10.1016/j.jhazmat.2022.128571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Microcystins are frequently detected in cyanobacterial bloom-impacted sites; however, their mobility potential in soils is poorly understood. This study aimed to elucidate the sorption behaviors of microcystin-RR (MC-RR) in heterogeneous soils and evaluate critical affecting factors. MC-RR sorption followed the pseudo-second-order kinetics and Freundlich model. All isotherms (n = 0.83-1.03) had no or minor deviations from linearity. The linear distribution coefficients (Kd) varied from 2.64 to 15.2 across soils, depending mainly on OM and CEC. Stepwise regression analysis indicated that the Kd was predictable by the fitting formula of: Kd = 2.56 + 0.15OM + 0.28CEC (R2 = 0.45). The sorption was an endothermic physisorption process, involving electrostatic forces, cation exchange and bridging, H-bonding, ligand exchange, and van der Waals forces. The sorption of MC-RR (dominantly behaved as electroneutral zwitterions) at pH > 5 was insensitive to pH change, while more MC-RR (anionic species) was adsorbed at lower pH and in the presence of Ca2+. The study provides insights into the sorption of MC-RR across a range of soil properties and water chemistry for the first time, which is of importance for a better understanding of the mobility potential of microcystins in the terrestrial systems.
Collapse
Affiliation(s)
- Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Li-Si Xie
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing-Jie Guo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Liu BL, Li YW, Tu XY, Yu PF, Xiang L, Zhao HM, Feng NX, Li H, Cai QY, Mo CH, Wong MH. Variant-Specific Adsorption, Desorption, and Dissipation of Microcystin Toxins in Surface Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11825-11834. [PMID: 34582220 DOI: 10.1021/acs.jafc.1c03918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microcystins (MCs) are hepatotoxic heptapeptides identified in cyanobacterial bloom-impacted waters and soils. However, their environmental fate in soils is poorly understood, preventing reliable site assessment. This study aims to clarify the variant-specific adsorption, desorption, and dissipation of MC-LR and MC-RR in agricultural soils. Results revealed that their adsorption isotherms followed the Freundlich model (R2 ≥ 0.96), exhibiting a higher nonlinear trend and lower adsorption capacity for MC-LR than for MC-RR. The soils had low desorption rates of 8.14-21.06% and 3.06-34.04%, respectively, following a 24 h desorption cycle. Pairwise comparison indicated that soil pH and clay played key roles in MC-LR adsorption and desorption, while organic matter and cation exchange capacity played key roles in those of MC-RR. MC-LR dissipation half-lives in soils were 27.18-42.52 days, compared with 35.19-43.87 days for MC-RR. Specifically, an appreciable decrease in MC concentration in sterile soils suggested the significant role of abiotic degradation. This study demonstrates that the minor structural changes in MCs might have major effects on their environmental fates in agricultural soil and indicates that the toxic effects of MCs should be of high concern due to high adsorption, low desorption, and slow dissipation.
Collapse
Affiliation(s)
- Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xi-Ying Tu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Ting Kok 999077, Hong Kong, China
| |
Collapse
|
23
|
Liu L, Zhao J, Liu X, Bai S, Lin H, Wang D. Reduction and removal of As(Ⅴ) in aqueous solution by biochar derived from nano zero-valent-iron (nZVI) and sewage sludge. CHEMOSPHERE 2021; 277:130273. [PMID: 33770694 DOI: 10.1016/j.chemosphere.2021.130273] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge (nZVISB) was used to remove As(Ⅴ) from aqueous solution. When the initial pH was 2, the initial As(Ⅴ) concentration was 20 mg L-1, the dose of nZVISB was 10 g L-1, the contact time was 24 h, and the adsorption temperature was 298K, the removal efficiency of As(Ⅴ) was greater than 99%. The isothermal removal of As(Ⅴ) followed the Freundlich model better, and the maximum adsorption capacity of As(Ⅴ) was 60.61 mg g-1. The removal process of As(Ⅴ) could be better described by pseudo-second-order kinetic model, and the rate-controlling step should be liquid film diffusion and chemical reaction. Thermodynamic analysis indicated that the removal of As(Ⅴ) was a spontaneous and endothermic process dominated by chemical adsorption. The characterizations of nZVISB before/after adsorption and the solution after adsorption suggested that the iron-containing substances (Fe0, Fe2+, FeOOH) and organics in the nZVISB had a great effect on the removal of As(Ⅴ), and the As was mainly immobilized on nZVISB by speciation of As-O-Fe.
Collapse
Affiliation(s)
- Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Jirong Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiu Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|