1
|
Fremlin KM, Elliott JE, Gobas FAPC. Guidance for measuring and evaluating biomagnification factors and trophic magnification factors of difficult substances: application to decabromodiphenylethane. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2025; 21:263-278. [PMID: 39886942 PMCID: PMC11844767 DOI: 10.1093/inteam/vjae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 02/01/2025]
Abstract
As field based trophic magnification factors (TMFs) and biomagnification factors (BMFs) become more prominent regulatory metrics used in bioaccumulation assessments of commercial chemicals, there is a need to develop standardized guidelines for conducting field-based bioaccumulation studies and to establish methods using weight of evidence analyses of those studies. Hence, the primary objectives of this study were (1) to compile a set of comprehensive criteria and guidelines for conducting field-based biomagnification studies and (2) to develop a weight of evidence meta-analysis for evaluating field-based biomagnification studies and their reported biomagnification metrics for assessing the biomagnification potential of substances. To test the effectiveness of our proposed guidelines and weight of evidence meta-analysis, we reviewed over 25 field studies investigating the biomagnification of decabromodiphenyl ethane (DBDPE), a substance that is considered super-hydrophobic and difficult to test in bioconcentration tests. Approximately half of the field studies that investigated trophic magnification of DBDPE in food webs or biomagnification of DBDPE in predator-prey interactions were considered of acceptable quality, whereas no studies were of high quality. Quality scores of studies statistically decreased with increasing TMF (r2 = 0.261, p = .035) and/or BMF (r2 = 0.238, p = .0024). The weight of evidence meta-analysis indicated with a high level of confidence that concentrations of DBDPE do not biomagnify in top predators and within food-webs. Given the increasing importance of the TMF and BMF for bioaccumulation assessments and the apparent deficiencies in current biomagnification studies identified in this meta-analysis for DBDPE, there is an urgent need to adopt standardized guidelines and procedures for both conducting and evaluating field-based biomagnification studies.
Collapse
Affiliation(s)
- Kate M Fremlin
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - John E Elliott
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Delta, BC, Canada
| | - Frank A P C Gobas
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- School of Resource and Environmental Management, Faculty of the Environment, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
2
|
Eze OO, Ogbuene EB, Ibraheem O, Küster E, Eze CT. Novel flame retardants (NFRs) in e-waste: Environmental burdens, health implications, and recommendations for safety assessment and sustainable management. Toxicology 2025; 511:154037. [PMID: 39716513 DOI: 10.1016/j.tox.2024.154037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Novel flame retardants (NFRs) have emerged as chemicals of environmental health concern due to their widespread use as an alternative to polybrominated diphenyl ethers (PBDE) in electrical and electronic devices. Humans and ecosystems are under threat because of e-waste recycling procedures that may emit NFRs and other anthropogenic chemicals into the e-waste workplace and the surrounding environment. The individual toxicity of NFRs including novel brominated flame retardants (NBFRs), their combined effects and the underlying mechanisms of toxicity have remained poorly understood. Exposure assessment as well as chemical safety testing should focus on prioritizing N(B)FRs for regulation and management. Here, the occurrence of N(B)FRs in the vicinity and surroundings of e-waste recycling sites are presented. Important knowledge gaps and prospects for a more integrated, harmonized, and mechanistically positioned risk assessment strategy for N(B)FRs as well as possible economically feasible and environmentally sustainable approaches for removing them from complex matrices are highlighted. Overall, data in the ng to µg-ranges of N(B)FR in soil, dust, sediment, water and fish were found. Dust and soil sample concentrations ranged from the low ng to low µg/g range while water concentrations were always in the low ng/L range (∼0.5 to ∼4 ng/L). Concentration in fish was usually in the range of 3- ∼300 ng/g with two substances in the low to medium-high µg/g range (DBDPE, BTBPE). From the 20 N(B)FR analysed in sediment samples only 10 were above detection limit. Most chemicals were found in a low ng/g range.
Collapse
Affiliation(s)
- Obianuju Oluchukwu Eze
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany
| | - Emeka Bright Ogbuene
- Centre for Environmental Management and Control, University of Nigeria, Enugu Campus, Nigeria
| | - Omodele Ibraheem
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Eberhard Küster
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany.
| | - Chukwuebuka ThankGod Eze
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany; Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Yang W, Wang Z, Jiang Y, Cui S, Yang M, Li C, Li YF, Jia H. Bioaccumulation of novel brominated flame retardants in a marine food web: A comprehensive analysis of occurrence, trophic transfer, and interfering factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178428. [PMID: 39799653 DOI: 10.1016/j.scitotenv.2025.178428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Although the concept of bioaccumulation for novel brominated flame retardants (NBFRs) is clear, the process and interfering factors of bioaccumulation are still not fully understood. The present study comprehensively evaluated the occurrence, transfer and interfering factors of NBFRs in a marine food web to provide new thought and perspective for the bioaccumulation of these compounds. The occurrence of 17 NBFRs were determined from 8 water, 8 sediment and 303 organism samples collected from Dalian Bay, China. The trophic magnification factor (TMF), the bioaccumulation factor (BAF) and the biota sediment accumulation factor (BSAF) were calculated in a plankton-mollusk-crustacean-fish based food webs. Results showed that among the 17 target NBFRs, 11 compounds appeared the significant trophic magnification and 2 compounds of decabromodiphenylethane (DBDPE) and octabromotrimethylphenylindane (OBIND) presented the significant trophic dilution. The significant positive correlation was found between the value of BAFs and the trophic level for 15 NBFRs (except DBDPE and OBIND), indicating that the species with high BAFs values were all at high trophic levels. The stable and rapid metabolic rates of DBDPE and OBIND constitute the main reason why they hardly accumulate in high trophic level organisms. The BSAFs of NBFRs in swimming organisms were much higher than that in mollusks and crustaceans, indicating that a large part of NBFRs accumulated from food webs. The significant positive correlation between TMF and BAF was observed in high trophic level organisms, which demonstrates the important role of high trophic level organisms in evaluating the bioaccumulation effect of NBFRs.
Collapse
Affiliation(s)
- Wenchao Yang
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian 116023, PR China
| | - Zhaowei Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Yan Jiang
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Song Cui
- IJRC-PTS, School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, PR China
| | - Meng Yang
- Dalian Ecological Environment Monitoring Center, Liaoning Province, Dalian, PR China
| | - Changhong Li
- Dalian Ecological Environment Monitoring Center, Liaoning Province, Dalian, PR China
| | - Yi-Fan Li
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Hongliang Jia
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China.
| |
Collapse
|
4
|
Wang W, Shi X, Feng J, Le Y, Jin L, Lu D, Zhang Q, Wang C. Perinatal exposure to PBEB aggravates liver injury via macrophage-derived TWEAK in male adult offspring mice under western diet. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135735. [PMID: 39241360 DOI: 10.1016/j.jhazmat.2024.135735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Liver injury and inflammation are the most commonly observed adverse outcomes following exposure to penta-brominated flame retardants (penta-BFRs). However, the role of inflammation in the development of liver injury in their alternatives has not yet been explored. Our study aimed to investigate the effects and the underlying mechanism of perinatal exposure to pentabromoethylbenzene (PBEB), a penta-BDE alternative, on liver injury in adult offspring mice under both chow and western diet in later life. Results showed that perinatal exposure to PBEB at 0.2 mg/kg or above led to liver injury in male offspring upon challenge with a western diet, but not in females. Utilizing the Olink immunology panel, our study specifically revealed an upregulation of tumor necrosis factor-related weak inducer of apoptosis (TWEAK) within the livers of male mice. This cytokine was further demonstrated to derive from the secretion by infiltrating macrophages in livers both in vivo and in vitro, which facilitated a shift towards M1 macrophage polarization. TWEAK further activated the hepatic NF-κB and NLRP3 inflammasome pathways, subsequently leading to hepatic pyroptosis in male mice of maternal PBEB exposure. Inhibition of TWEAK signaling mitigated macrophage polarization and inflammasome induction in a co-culture system of macrophages and liver cells. Our findings revealed that perinatal exposure to PBEB precipitated liver injury, partially through an inflammatory pathway mediated by macrophage-derived TWEAK, in male mice offspring under western diet.
Collapse
Affiliation(s)
- Wanyue Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaoliu Shi
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiafan Feng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Lingbing Jin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
5
|
Zhou S, Qiao Z, Ling S, Fu M, Han Y, Peng C, Zhang W, Lei J. Contamination characteristics and dietary intake risk of brominated flame retardants in fishes around a typical e-waste dismantling site in Southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173991. [PMID: 38901601 DOI: 10.1016/j.scitotenv.2024.173991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their substitutes, novel brominated flame retardants (NBFRs), are ubiquitously present in the aquatic environment of electronic waste (e-waste) dismantling region, leading to their inevitable absorption and accumulation by aquatic organisms, which can be transferred to human via directly aquatic product consumption or through food chain, thereby posing potential health risks. This study focused on fish samples from Guiyu and its surrounding areas, and found the total PBDEs concentrations were 24-7400 ng/g lw (mean: 1800 ng/g lw) and the total NBFRs concentrations were 14 to 2300 ng/g lw (mean: 310 ng/g lw). Significant positive correlations were found among PBDE congeners, among different NBFRs, and between NBFRs and commercial PBDEs that they replace. ΣPBDEs and ΣNBFRs in the intestine were 620-350,000 and 91-81,000 ng/g lw (mean: 83000 and 12,000 ng/g lw, respectively), significantly exceeding those in the gills, where ΣPBDEs and ΣNBFRs were 14-37,000 and 39-45,000 ng/g lw (mean: 9200 and 2400 ng/g lw, respectively). The ΣPBDEs and ΣNBFRs showed no non-carcinogenic risks to the target population through dietary intake. Despite the significantly higher daily intake of decabromodiphenyl ethane (DBDPE) compared to decabromodiphenyl ether (BDE209), the non-carcinogenic risk associated with BDE209 remained higher than that of DBDPE. Our findings can assist researchers in understanding the presence of BFRs in aquatic organisms, inhabiting e-waste dismantling areas, and in evaluating the associated health risks posed to humans through dietary exposure.
Collapse
Affiliation(s)
- Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Juying Lei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Jiang Y, Jia H, Yang W, Wang Z, Cui S, Li YF. Trophic transfer of dechloranes in marine food webs in Dalian Bay, China. CHEMOSPHERE 2024; 364:143087. [PMID: 39154766 DOI: 10.1016/j.chemosphere.2024.143087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/27/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Dechloranes, including dechlorane 602 (Dec 602), dechlorane 603 (Dec 603), dechlorane 604 (Dec 604), dechlorane plus (DP, including syn- and anti-DP) and mirex, were determined in marine food web from Dalian Bay, Northeast China to investigate their occurrence andtrophic transfer. In all organisms, the detection rates were Dec 602 (99%) > mirex (95%) > Dec 603 (92%) > anti-DP (91%) > syn-DP (82%) > Dec 604 (9.6%). The concentrations were 0.92-16 ng/g lipid weight (lw) for mirex, 0.53-2.3 ng/g lw for syn-DP, 1.1-4.5 ng/g lw for anti-DP, 0.19-5.0 ng/g lw for Dec 602, 0.26-1.9 ng/g lw for Dec 603 and 0.020-0.33 ng/g lw for Dec 604. Significant positive relationships (p < 0.0001) were observed between lipid normalized concentrations and trophic levels for mirex (R2 = 0.80) and Dec602 (R2 = 0.82) in food webs, with the calculated TMFs values of 3.09 and 3.39, respectively, indicating the trophic magnification potential of these compounds. For syn-DP, anti-DP, Dec 603 and Dec 604, the similar significant relationships were not found, suggesting that these chemicals do not trophic magnification nor trophic dilution in the food web. With low log KOW values for mirex (7.01) and Dec 602 (8.05), these two compounds have the highest magnifications potentials, while the magnification potential of Dec 603, Dec 604 and DP dramatically decreased because of their extremely big log KOW values (higher than 10). The observed fractional abundance of anti-DP (fanti) ranged of 0.58-0.69, closing to the one in Chinese industrial products, indicating DP isomers had not undergone significant differences of physicochemical or biological process in the studied food web.
Collapse
Affiliation(s)
- Yan Jiang
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, PR China
| | - Hongliang Jia
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, PR China.
| | - Wenchao Yang
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian, 116023, PR China.
| | - Zhaowei Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, PR China
| | - Song Cui
- IJRC-PTS, School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, PR China
| | - Yi-Fan Li
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, PR China; IJRC-PTS, School of Environment, Harbin Institute of Technology, Harbin, PR China
| |
Collapse
|
7
|
Li Y, Zhen X, Liu L, Zhang J, Tang J. Species-specific and habitat-dependent bioaccumulation of halogenated flame retardants in marine organisms from estuary to coastal seas. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134529. [PMID: 38723482 DOI: 10.1016/j.jhazmat.2024.134529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Halogenated flame retardants (HFRs) have attracted global attention owing to their adverse effects on ecosystems and humans. The Shandong Peninsula is the largest manufacturing base for HFRs in East Asia, yet its impacts on marine ecosystems are unclear. Seventeen HFRs were analyzed in organisms captured from the Xiaoqing River estuary, Bohai Sea (BS), Yellow Sea and Northern East China Sea to investigate the distribution and bioaccumulation of HFRs on a broad scale. The results showed a downward trend in ΣHFR concentrations from the estuary (37.7 ng/g lw on average) to Laizhou Bay (192 ng/g lw) and to coastal seas (3.13 ng/g lw). The concentrations of ΣHFRs were significantly higher in demersal fish (0.71-198 ng/g lw) and benthic invertebrates (0.81-3340 ng/g lw) than in pelagic fish (0.30-27.6 ng/g lw), reflecting a habitat dependence. The concentrations of higher-brominated homologs were greater in benthic invertebrates, whereas a greater level of lower-brominated PBDE congeners was observed in fish, suggesting different profiles between species. Furthermore, the analogue composition of HFRs in fish was similar to that in the dissolved phase of seawater, whereas the HFR pattern in benthic invertebrates was consistent with the profile in sediment. The concentrations of HFRs in organisms vary widely depending on emissions from anthropogenic activities, whereas bioaccumulation patterns are strongly influenced by species and habitat.
Collapse
Affiliation(s)
- Yanan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China
| | - Xiaomei Zhen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, Nanjing 210000, China; Research and Development Project of Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing 210000, China
| | - Lin Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266071, China
| | - Jian Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China; Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
8
|
Gao S, Dong T, Chen Y, Ma Y, Cui S, Zhang Z. Spatiotemporal variation, fluxes and risk evaluation of neonicotinoid insecticides within the midsection of Yangtze River, China: An exploration as ecological protection threshold. CHEMOSPHERE 2024; 357:141983. [PMID: 38631501 DOI: 10.1016/j.chemosphere.2024.141983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Neonicotinoid insecticides (NNIs) have attracted global concern due to its extensive use in agricultural activities and their potential risks to the animal and human health, however, there is limited knowledge on the regional traits and ecological risks of NNIs in the aquatic environments. We herein investigated the occurrence of NNIs within the midsection of Yangtze River in China, offering the inaugural comprehensive report on NNIs within this region. In this study, eleven NNIs were analyzed in 108 river water and sediment samples from three seasons (normal, dry and wet season). We detected a minimum of seven NNIs in the water and four NNIs in the sediment, with total concentrations ranging from 12.33 to 100.5 ng/L in water and 0.08-5.68 ng/g in sediment. The levels of NNIs in both river water and sediment were primarily influenced by the extent of agricultural activities. The estimated annual load of NNIs within the midsection of Yangtze River totaled 40.27 tons, April was a critical contamination period. Relative potency factor (RPF) analysis of the human exposure risk revealed that infants faced the greatest exposure risk, with an estimated daily intake of 11.27 ng kg-1∙bw∙d-1. We established the acute and chronic thresholds for aquatic organisms by employing the Species Sensitive Distribution (SSD) method (acute: 384.1 ng/L; chronic: 168.9 ng/L). Based on the findings from this study, 33% of the river water samples exceeded the chronic ecological risks thresholds, indicating the urgent need for intervention programs to guarantee the safety of the river for aquatic life in the Yangtze River Basin.
Collapse
Affiliation(s)
- Shang Gao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Tao Dong
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Song Cui
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
9
|
Xiong S, Fu J, Dong C, Pei Z, Yang R, Li Y, Zhang Q, Jiang G. Bioaccumulation and Trophodynamics of Novel Brominated Flame Retardants (NBFRs) in Marine Food Webs from the Arctic and Antarctic Regions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6804-6813. [PMID: 38512799 DOI: 10.1021/acs.est.3c10982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The pervasive contamination of novel brominated flame retardants (NBFRs) in remote polar ecosystems has attracted great attention in recent research. However, understanding regarding the trophic transfer behavior of NBFRs in the Arctic and Antarctic marine food webs is limited. In this study, we examined the occurrence and trophodynamics of NBFRs in polar benthic marine sediment and food webs collected from areas around the Chinese Arctic Yellow River Station (n = 57) and Antarctic Great Wall Station (n = 94). ∑7NBFR concentrations were in the range of 1.27-7.47 ng/g lipid weight (lw) and 0.09-1.56 ng/g lw in the Arctic and Antarctic marine biota, respectively, among which decabromodiphenyl ethane (DBDPE) was the predominant compound in all sample types. The biota-sediment bioaccumulation factors (g total organic carbon/g lipid) of NBFRs in the Arctic (0.85-3.40) were 4-fold higher than those in the Antarctica (0.13-0.61). Trophic magnification factors (TMFs) and their 95% confidence interval (95% CI) of individual NBFRs ranged from 0.43 (95% CI: 0.32, 0.60) to 1.32 (0.92, 1.89) and from 0.34 (0.24, 0.49) to 0.92 (0.56, 1.51) in the Arctic and Antarctic marine food webs, respectively. The TMFs of most congeners were significantly lower than 1, indicating a trophic dilution potential. This is one of the very few investigations on the trophic transfer of NBFRs in remote Arctic and Antarctic marine ecosystems, which provides a basis for exploring the ecological risks of NBFRs in polar regions.
Collapse
Affiliation(s)
- Siyuan Xiong
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Yin W, Xu R, Zou J, Wang Y, Zhang Y. Single and combined association between brominated flame retardants and cardiovascular disease: a large-scale cross-sectional study. Front Public Health 2024; 12:1357052. [PMID: 38596517 PMCID: PMC11002127 DOI: 10.3389/fpubh.2024.1357052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction The single and combined association between brominated flame retardants (BFRs) and cardiovascular diseases (CVD) has remained unelucidated. This research aimed at exploring the associations between mixture of BFRs and CVD. Methods This research encompassed adult participants from the National Health and Nutrition Examination Survey in 2005-2016. The weighted quantile sum (WQS) model and quantile g-computation (QGC) model were applied to examine the combined effects of BFRs mixture on CVD. Results In this research, overall 7,032 individuals were included. In comparison with the lowest quartile, the highest quartile of PBB153 showed a positive association with CVD, with odds ratio (OR) values and 95% confidence intervals (CI) of 19.2 (10.9, 34.0). Furthermore, the acquired data indicated that PBB153 (OR: 1.23; 95% CI: 1.02, 1.49), PBB99 (OR: 1.29; 95% CI: 1.06, 1.58), and PBB154 (OR: 1.29; 95% CI: 1.02, 1.63) were linked to congestive heart failure. PBB153 was also related to coronary heart disease (OR: 1.29; 95% CI: 1.06, 1.56). Additionally, a positive correlation between the BFRs mixture and CVD (positive model: OR: 1.23; 95% CI: 1.03, 1.47) was observed in the weighted quantile sum (WQS) model and the quantile g-computation (QGC) model. Discussion Therefore, exposure to BFRs has been observed to heighten the risk of cardiovascular disease in US adults, particularly in the case of PBB153. Further investigation is warranted through a large-scale cohort study to validate and strengthen these findings.
Collapse
Affiliation(s)
- Wenhao Yin
- Department of Cardiovascular Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Rui Xu
- Department of Cardiovascular Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jiyu Zou
- Department of Respiratory Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yaqin Wang
- Department of Cardiovascular Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Zhang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
11
|
Wang YY, Luo WK, Tang SX, Xiang J, Dang Y, Tang B, Lu QY, Cai FS, Ren MZ, Yu YJ, Zheng J. Bioaccumulation and biotransformation of 1,2-bis (2,4,6-tribromophenoxyethane) (BTBPE) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH) in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123460. [PMID: 38290655 DOI: 10.1016/j.envpol.2024.123460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Despite the increasing production, use, and ubiquitous occurrence of novel brominated flame retardants (NBFRs), little information is available regarding their fate in aquatic organisms. In this study, the bioaccumulation and biotransformation of two typical NBFRs, i.e., 1,2-bis (2,4,6-tribromophenoxyethane) (BTBPE) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH), were investigated in tissues of zebrafish (Danio rerio) being administrated a dose of target chemicals through their diet. Linear accumulation was observed for both BTBPE and TBECH in the muscle, liver, gonads, and brain of zebrafish, and the elimination of BTBPE and TBECH in all tissues followed pseudo-first-order kinetics, with the fastest depuration rate occurring in the liver. BTBPE and TBECH showed low bioaccumulation potential in zebrafish, with biomagnification factors (BMFs) < 1 in all tissues. Individual tissues' function and lipid content are vital factors affecting the distribution of BTBPE and TBECH. Stereoselective accumulation of TBECH enantiomers was observed in zebrafish tissues, with first-eluting enantiomers, i.e. E1-α-TBECH and E1-β-TBECH, preferentially accumulated. Additionally, the transformation products (TPs) in the zebrafish liver were comprehensively screened and identified using high-resolution mass spectrometry. Twelve TPs of BTBPE and eight TPs of TBECH were identified: biotransformation pathways involving ether cleavage, debromination, hydroxylation, and methoxylation reactions for BTBPE and hydroxylation, debromination, and oxidation processes for TBECH. Biotransformation is also a vital factor affecting the bioaccumulation potential of these two NBFRs, and the environmental impacts of NBFR TPs should be further investigated in future studies. The findings of this study provide a scientific basis for an accurate assessment of the ecological and environmental risks of BTBPE and TBECH.
Collapse
Affiliation(s)
- Yu-Yu Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Wei-Keng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Song-Xiong Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Jun Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China.
| | - Qi-Yuan Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Ming-Zhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| |
Collapse
|
12
|
Wang Z, Jia H, Jiang Y, Cui S, Li YF. Bioaccumulation of novel brominated flame retardants in crucian carp (Carassius auratus): Implications for electronic waste recycling area monitoring. ENVIRONMENTAL RESEARCH 2023; 239:117412. [PMID: 37839535 DOI: 10.1016/j.envres.2023.117412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Bioaccumulation factor (BAF) of pollutants is an important parameter for evaluating their bioaccumulation potential and an important indicator for evaluating their environmental risks. However, little study exits on the BAF of novel brominated flame retardants (NBFRs). The present study determined 17 NBFRs in 24 water samples in dissolved phase and 93 crucian carp samples collected from an electronic waste recycling site in northern China, in order to examine their contamination, distribution and bioaccumulation. The results showed that the targeted NBFRs were widely detectable in the dissolved phase and crucian carps. In dissolved phase, allyl 2,4,6-tribromophenyl ether (ATE) had the highest detectable rate (100%) and concentration (mean: 1.3 ± 0.62 ng/L), but in crucian carp, hexachlorocyclopentenyl-dibromocyclooctane (HCDBCO) was the one with the highest detectable rate (89%) and concentration (mean: 16 ± 9.2 ng/g wet weight (ww)) among all 17 NBFRs. The discharge and water solubility of NBFRs determined their concentration in the dissolved phase, while the concentration of NBFRs in crucian carp was the results of their discharge and food exposure. The estimated BAFs exceeded 5000 L/kg for petabromoethylbenzene (PBEB), pentabromotoluene (PBT), HCDBCO, pentabromobenzyl acrylate (PBBA), 1,2,3,4,5-pentabromobenzene (PBBZ), 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), hexabromobenzene (HBBZ), and α-1,2,5,6-tetrabromocyclooctane (α-TBCO), suggesting that these compounds were above the hazard standard of bioaccumulation. Although the BAFs of 2,3,5,6-tetrabromo-p-xylene (p-TBX), 1,2-bis(2,4,6-tribromophenoxy)-ethane (BTBPE), α-/β-tetrabromoethylcyclohexane (α-/β-TBECH) and ATE were less than 5000, the potential of bioaccumulation cannot be ignored. The log BAF of tested NBFRs showed a pattern of first increasing and then decreasing with the increase of log KOW, the water solubility of NBFRs, the exposure to fish, the uptake and depuration of fish were the key factor to this pattern. To our knowledge, the BAF values of the most of NBFRs calculated in this study were not reported in the published work previously.
Collapse
Affiliation(s)
- Zhaowei Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Hongliang Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China.
| | - Yan Jiang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Song Cui
- IJRC-PTS, School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| |
Collapse
|
13
|
Xie J, Tu S, Hayat K, Lan R, Chen C, Leng T, Zhang H, Lin T, Liu W. Trophodynamics of halogenated organic pollutants (HOPs) in aquatic food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166426. [PMID: 37598971 DOI: 10.1016/j.scitotenv.2023.166426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Halogenated organic pollutants (HOPs) represent hazardous and persistent compounds characterized by their capacity to accumulate within organisms and endure in the environment. These substances are frequently transmitted through aquatic food webs, engendering potential hazards to ecosystems and human well-being. The trophodynamics of HOPs in aquatic food webs has garnered worldwide attention within the scientific community. Despite comprehensive research endeavors, the prevailing trajectory of HOPs, whether inclined toward biomagnification or biodilution within global aquatic food webs, remains unresolved. Furthermore, while numerous studies have probed the variables influencing the trophic magnification factor (TMF), the paramount determinant remains elusive. Collating a compendium of pertinent literature encompassing TMFs from the Web of Science between 1994 and 2023, our analysis underscores the disparities in attention accorded to legacy HOPs compared to emerging counterparts. A discernible pattern of biomagnification characterizes the behavior of HOPs within aquatic food webs. Geographically, the northern hemisphere, including Asia, Europe, and North America, has demonstrated greater biomagnification than its southern hemisphere counterparts. Utilizing a boosted regression tree (BRT) approach, we reveal that the food web length and type emerge as pivotal determinants influencing TMFs. This review provides a valuable basis for gauging ecological and health risks, thereby facilitating the formulation of robust standards for managing aquatic environments.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Shuyi Tu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ruo Lan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Chuchu Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Tiantian Leng
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Hanlin Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Burkhard LP, Lahren TJ, Hanson KB, Kasparek AJ, Mount DR. Dietary Uptake of Highly Hydrophobic Chemicals by Rainbow Trout (Oncorhynchus Mykiss). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:390-403. [PMID: 37910193 PMCID: PMC11382341 DOI: 10.1007/s00244-023-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) was exposed through the diet to a mixture of non-ionic organic chemicals for 28 d, followed by a depuration phase, in accordance with OECD method 305. The mixture included hexachlorobenzene (HCB), 2,2',5,5'-tetrachlorobiphenyl (PCB-52), 2,2',5,5'-hexachlorobiphenyl (PCB-153), decachlorobiphenyl (PCB-209), decabromodiphenyl ether (BDE209), decabromodiphenyl ethane (DBDPE), bis-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), perchloro-p-terphenyl (p-TCP), perchloro-m-terphenyl (m-TCP), and perchloro-p-quaterphenyl (p-QTCP), the latter six of which are considered highly hydrophobic based on n-octanol/water partition coefficients (KOW) greater than 108. All chemicals had first-order uptake and elimination kinetics except p-QTCP, whose kinetics could not be verified due to limitations of analytical detection in the elimination phase. For HCB and PCBs, the growth-corrected elimination rates (k2g), assimilation efficiencies (α), and biomagnification factors (BMFL) corrected for lipid content compared well with literature values. For the highly hydrophobic chemicals, elimination rates were faster than the rates for HCB and PCBs, and α's and BMFLs were much lower than those of HCB and PCBs, i.e., ranging from 0.019 to 2.8%, and from 0.000051 to 0.023 (g-lipid/g-lipid), respectively. As a result, the highly hydrophobic organic chemicals were found be much less bioavailable and bioaccumulative than HCB and PCBs. Based on the current laboratory dietary exposures, none of the highly hydrophobic substances would be expected to biomagnify, but Trophic Magnification Factors (TMFs) > 1 have been reported from field studies for TBPH and DBDPE. Additional research is needed to understand and reconcile the apparent inconsistencies in these two lines of evidence for bioaccumulation assessment.
Collapse
Affiliation(s)
- Lawrence P Burkhard
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - Tylor J Lahren
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Kaila B Hanson
- Located at the Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, Oak Ridge Associated Universities, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - Alex J Kasparek
- Located at the Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, Oak Ridge Associated Universities, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - David R Mount
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| |
Collapse
|
15
|
Berger ML, Shaw SD, Rolsky CB, Chen D, Sun J, Rosing-Asvid A, Granquist SM, Simon M, Bäcklin BM, Roos AM. Alternative and legacy flame retardants in marine mammals from three northern ocean regions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122255. [PMID: 37517638 DOI: 10.1016/j.envpol.2023.122255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Flame retardants are globally distributed contaminants that have been linked to negative health effects in humans and wildlife. As top predators, marine mammals bioaccumulate flame retardants and other contaminants in their tissues which is one of many human-imposed factors threatening population health. While some flame retardants, such as the polybrominated diphenyl ethers (PBDE), have been banned because of known toxicity and environmental persistence, limited data exist on the presence and distribution of current-use alternative flame retardants in marine mammals from many industrialized and remote regions of the world. Therefore, this study measured 44 legacy and alternative flame retardants in nine marine mammal species from three ocean regions: the Northwest Atlantic, the Arctic, and the Baltic allowing for regional, species, age, body condition, temporal, and tissue comparisons to help understand global patterns. PBDE concentrations were 100-1000 times higher than the alternative brominated flame retardants (altBFRs) and Dechloranes. 2,2',4,5,5'-pentabromobiphenyl (BB-101) and hexabromobenzene (HBBZ) were the predominant altBFRs, while Dechlorane-602 was the predominant Dechlorane. This manuscript also reports only the second detection of hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO) in marine mammals. The NW Atlantic had the highest PBDE concentrations followed by the Baltic and Arctic which reflects greater historical use of PBDEs in North America compared to Europe and greater industrialization of North America and Baltic countries compared to the Arctic. Regional patterns for other compounds were more complicated, and there were significant interactions among species, regions, body condition and age class. Lipid-normalized PBDE concentrations in harbor seal liver and blubber were similar, but HBBZ and many Dechloranes had higher concentrations in liver, indicating factors other than lipid dynamics affect the distribution of these compounds. The health implications of contamination by this mixture of compounds are of concern and require further research.
Collapse
Affiliation(s)
- Michelle L Berger
- Shaw Institute, PO Box 1652, 55 Main Street, Blue Hill, ME, 04614, USA.
| | - Susan D Shaw
- Shaw Institute, PO Box 1652, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Charles B Rolsky
- Shaw Institute, PO Box 1652, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China; Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Jiachen Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China; College of Marine Life Science, Ocean University of China, CN-266003, Qingdao, China
| | - Aqqalu Rosing-Asvid
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900, Nuuk, Greenland
| | - Sandra Magdalena Granquist
- Seal Research Department, The Icelandic Seal Center, Höfðabraut 6, 530 Hvammstangi, Iceland; Marine and Freshwater Research Institute, Fornubúðir 5, 220 Hafnarfjörður, Iceland
| | - Malene Simon
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900, Nuuk, Greenland
| | - Britt-Marie Bäcklin
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, PO Box 104 05 Stockholm, Sweden
| | - Anna Maria Roos
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900, Nuuk, Greenland; Department of Environmental Research and Monitoring, Swedish Museum of Natural History, PO Box 104 05 Stockholm, Sweden
| |
Collapse
|
16
|
Zhou S, Fu M, Ling S, Qiao Z, Luo K, Peng C, Zhang W, Lei J, Zhou B. Legacy and novel brominated flame retardants in a lab-constructed freshwater ecosystem: Distribution, bioaccumulation, and trophic transfer. WATER RESEARCH 2023; 242:120176. [PMID: 37301001 DOI: 10.1016/j.watres.2023.120176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The extensive utilization of both legacy and novel brominated flame retardants (BFRs) leads to high environmental concentrations, which would be bioaccumulated by organisms and further transferred through the food webs, causing potential risks to humans. In this study, five BFRs, that showed high detection frequencies and concentrations in sediments from an e-waste dismantling site in Southern China, namely 2,3,4,5,6-pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and decabromodiphenyl ether (BDE209), were selected as target pollutants in the lab-constructed aquatic food web as part of a micro-ecosystem, to investigate their distribution, bioaccumulation, and trophic transfer patterns. The significant correlations between different samples in the food web indicated that the dietary uptake appeared to influence the levels of BFRs in organisms. Significant negative correlations were observed between the trophic level of organisms and the lipid-normalized concentrations of BTBPE and DBDPE, indicating the occurrence of trophic dilution after 5-month exposure. However, the average values of bioaccumulation factors (BAFs) were from 2.49 to 5.17 L/kg, underscoring the importance of continued concern for environmental risks of BFRs. The organisms occupying higher trophic levels with greater bioaccumulation capacities may play a pivotal role in determining the trophic magnification potentials of BFRs. This research provides a helpful reference for studying the impacts of feeding habits on bioaccumulation and biomagnification, as well as for identifying the fate of BFRs in aquatic environment.
Collapse
Affiliation(s)
- Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Juying Lei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
17
|
Xu M, Wang W, Feng J, Ruan Z, Le Y, Liu Y, Zhang Q, Wang C. The mechanism underlying pentabromoethylbenzene-induced adipogenesis and the obesogenic outcome in both cell and mouse model. ENVIRONMENT INTERNATIONAL 2023; 178:108088. [PMID: 37429055 DOI: 10.1016/j.envint.2023.108088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Convergent evidence links traditional brominated flame retardants (BFRs) exposure to weight gain, while the obesogenic potency of new BFRs (NBFRs) remain largely unknown. Aiding by luciferase-reporter gene assay, the present study revealed only pentabromoethylbenzene (PBEB), an alternative for penta-BDEs, binds with retinoid X receptor α (RXRα) but not peroxisomeproliferator receptor γ (PPARγ) among the seven testing NBFRs. An apparent induction of adipogenesis in 3T3-L1 cells was observed at nanomolar of PBEB, much lower than penta-BFRs. Mechanistic research uncovered PBEB initiated the adipogenesis by demethylated CpG sites in the PPARγ promoter region. Specifically, activation RXRα by PBEB strengthened the activity of RXRα/PPARγ heterodimer, tightened the interaction between the heterodimer and PPAR response elements, and further enhanced adipogenesis. RNA sequencing combined with k-means clustering analysis exposed adenosine 5'-monophosphate (AMP)-activated protein kinase and phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signaling as two predominant pathways that enriched in PBEB-induced lipogenesis. The obesogenic outcome was further corroborated in offspring mice when the maternal mice exposed to environmental relevant doses of PBEB. We found the male offspring exhibited adipocyte hypertrophy and increased weight gain in the epididymal white adipose tissue (eWAT). Consistent with in vitro findings, the reduction in protein phosphorylation of both AMPK and PI3K/AKT were observed within eWAT. Thus, we posited PBEB disrupts the pathways controlling adipogenesis and adipose tissue maintenance, supporting its potential as an environmental obesogen.
Collapse
Affiliation(s)
- Mengting Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Wanyue Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Jiafan Feng
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Zheng Ruan
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, Zhejiang, People's Republic of China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Ying Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
18
|
Guo X, Liu B, Liu H, Du X, Chen X, Wang W, Yuan S, Zhang B, Wang Y, Guo H, Zhang H. Research advances in identification procedures of endocrine disrupting chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83113-83137. [PMID: 37347330 DOI: 10.1007/s11356-023-27755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are increasingly concerned substance endangering human health and environment. However, there is no unified standard for identifying chemicals as EDCs, which is also controversial internationally. In this review, the procedures for EDC identification in different organizations/countries were described. Importantly, three aspects to be considered in identifying chemical substances as EDCs were summarized, which were mechanistic data, animal experiments, and epidemiological information. The relationships between them were also discussed. To elaborate more clearly on these three aspects of evidence, scientific data on some chemicals including bisphenol A, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane and perchlorate were collected and evaluated. Altogether, the above three chemicals were assessed for interfering with hormones and elaborated their health hazards from macroscopic to microscopic. This review is helpful for standardizing the identification procedure of EDCs.
Collapse
Affiliation(s)
- Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Bing Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Wenjun Wang
- College of Nursing, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
19
|
Zhang B, Chen F, Xu T, Tian Y, Zhang Y, Cao M, Guo X, Yin D. The crosstalk effects of polybrominated diphenyl ethers on the retinoic acid and thyroid hormone signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163590. [PMID: 37088389 DOI: 10.1016/j.scitotenv.2023.163590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The toxicological and pathological influences of polybrominated diphenyl ethers (PBDEs) on the animal central nervous system have attracted worldwide attention. However, their mechanism of action has not been completely elucidated. Given that retinoic acid (RA) and thyroid hormone (TH) signaling pathway are closely related to neurodevelopment, the crosstalk between the two signaling pathways at the levels of metabolite conversion, gene expression and ligand-receptor interaction after exposure to two representative PBDE congeners (BDE-47 and BDE-209) using zebrafish larvae, dual reporter gene assay, and docking simulation was studied. Our results clarified that BDE-47 could disrupt the transport and metabolism of retinoids, induce changes in expression of key genes, bind with the seven nuclear receptors, and activate RA signaling pathway. BDE-47 exhibited more effects on the indicators of the two signaling pathways than BDE-209. Furthermore, BDE-47 may disrupt TH signaling pathway by disrupting RA signaling pathway, indicating that RA signal is priorly influenced than TH signal. This work offered a new perspective to elucidate TH signal disruption mechanism induced by PBDEs from RA signaling pathway, which is of great significance to elucidate the health effects of PBDEs.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fu Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yijun Tian
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Yajie Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
20
|
Falahudin D, Hukom FD, Arifin Z, Dirhamsyah D, Peristiwady T, Sudaryanto A, Iwata M, Hoang AQ, Watanabe I, Takahashi S. First insight into accumulation of characteristics and tissue distribution of PCBs, PBDEs, and other BFRs in the living Indonesian coelacanth (Latimeria menadoensis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49368-49380. [PMID: 36764992 DOI: 10.1007/s11356-023-25716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/31/2023] [Indexed: 04/16/2023]
Abstract
Persistent organic pollutants, including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and other brominated flame retardants, were detected in the liver, muscle, and ovary tissues of the Indonesian coelacanth (Latimeria menadoensis) incidentally caught around Gangga Island, North Sulawesi Province, Indonesia, on November 5, 2014. Concentrations of total PCBs (209 congeners, 300-2600 ng g-1 lipid weight) in all tissues showed higher than those of PBDEs (41 congeners, 3.9-6.3 ng g-1 lw) and BTBPE (1.1-3.6 ng g-1 lw). The tissue-specific PCB and PBDE profiles were likely due to differences in the lipid composition. Toxic equivalent (TEQ) values of dioxin-like PCBs in coelacanth tissues were lower than the benchmark values for early-life fish. However, compared with the data reported for deep-sea fishes in the Pacific and Indian Oceans, the relatively high concentrations of PCBs detected in this study raise concerns regarding Indonesian coelacanth conservation and habitat conditions.
Collapse
Affiliation(s)
- Dede Falahudin
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Frensly Demianus Hukom
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Zainal Arifin
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Dirham Dirhamsyah
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Teguh Peristiwady
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Agus Sudaryanto
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Building 820 KST BJ. Habibie, Serpong, 15314, Banten, Indonesia
| | - Masamitsu Iwata
- Aquamarine Fukushima, Marine Science Museum, 50 Tatsumi-Cho, Onahama, Iwaki, Fukushima, 971-8101, Japan
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan.
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-Cho, Matsuyama, 790-8577, Japan.
| |
Collapse
|
21
|
Zhao X, Lyu B, Zhang L, Li J, Zhao Y, Wu Y, Shi Z. Legacy and novel brominated flame retardants in animal-derived foods from China Total Diet Study (CTDS): Temporal trends, evidence of substitution, and dietary exposure assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130223. [PMID: 36367471 DOI: 10.1016/j.jhazmat.2022.130223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Based on the 6th China Total Diet Study (CTDS) conducted in 2016-2019, the occurrence of both legacy and novel brominated flame retardants (BFRs) was measured in animal-derived foods collected across China. Most BFRs could be frequently detected in food samples, indicating their ubiquity in the environment. Decabromodiphenyl ethane (DBDPE), a typical novel BFR, presented the highest contamination level, whereas legacy BFRs, including decabrominated diphenyl ether (BDE-209), tetrabromobisphenol A (TBBPA), and hexabromocyclododecane (HBCDD), still presented high detection frequencies and relatively abundant proportions in total BFRs. Compared with previous CTDSs conducted from 2007 to 2011, the levels and estimated dietary intakes (EDIs) of most BFRs showed a significant downtrend, which suggested that flame retardant consumption in China has transferred from legacy BFRs to novel BFRs (mainly DBDPE) and from BFRs to other kinds of flame retardants. Based on probabilistic estimation, the median EDIs of mainly used BFRs for the Chinese population ranged from 41.0 to 1.67 × 103 pg/kg bw/day, and meat consumption was the primary source in dietary BFR intake. By conducting the margin of exposure (MOE) approach or comparing with the reference dose (RfD), it can be concluded that daily dietary intakes of BFRs were still unable to cause significant health risks to the general population in China.
Collapse
Affiliation(s)
- Xuezhen Zhao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Bing Lyu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China.
| | - Lei Zhang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Jingguang Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yunfeng Zhao
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
22
|
Zhuo P, Ding K, Deng B, Lai K, Zhang S, Zhang L, Yang H. The effect of 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) on locomotor behaviour and muscle physiology of the sea cucumber Apostichopus japonicus. MARINE POLLUTION BULLETIN 2022; 185:114198. [PMID: 36274561 DOI: 10.1016/j.marpolbul.2022.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is the predominant congener of polybrominated diphenyl ethers, and it is also a persistent organic pollutant that with a higher detection rate in samples from environment and animals. To date, there have been few studies of the effects of BDE-47 on locomotion in sea cucumbers. In this study, we investigated the influence of different concentrations of BDE-47 (low: 0.1 μg/L; moderate: 1.0 μg/L; high: 10.0 μg/L) on locomotion of Apostichopus japonicus and evaluated changes in their muscle physiology using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The behavioural studies showed that the average and maximum velocity of movement decreased significantly in both the moderate and high BDE-47 groups after 1 day of exposure. In addition, levels of 55 metabolites were identified and characterized in the longitudinal muscle of A. japonicus exposed to BDE-47. The alteration of taurine and norepinephrine levels indicated that BDE-47 had drastic physiological effects on the longitudinal muscle of A. japonicus.
Collapse
Affiliation(s)
- Pengji Zhuo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; North China Sea Bureau of the Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, s, Qingdao 266071, China
| | - Kui Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Beini Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, s, Qingdao 266071, China
| | - Kaiqi Lai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, s, Qingdao 266071, China
| | - Shuangli Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, s, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, s, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| |
Collapse
|
23
|
Liu L, Li X, Wang X, Wang Y, Shao Z, Liu X, Shan D, Liu Z, Dai Y. Metolachlor adsorption using walnut shell biochar modified by soil minerals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119610. [PMID: 35700880 DOI: 10.1016/j.envpol.2022.119610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The removal of pesticide residues in soil is a research hotspot. The metolachlor (MET) adsorption by walnut shell biochar (BC) modified with montmorillonite (MBC), illite (IBC), and kaolinite (KBC), as well as the original BC (OBC) was investigated. The characteristics of samples were studied by scanning electron microscopy and mapping analysis, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, and chemical stability analysis. The effects of the dosage, ionic strength, and pH, and determined the adsorption kinetics and isotherms for MET with the BCs were analyzed. In addition, response surface methodology regression model analysis was conducted and the adsorption mechanisms were investigated. The results showed that the thermal stability and chemical stability of MBC, IBC, and KBC were higher than those of OBC, and MBC had the greatest stability. The MET adsorption rates of OBC, MBC, IBC, and KBC were 62.15%, 92.47%, 87.97%, and 83.31%, respectively. The kinetic fitting results and adsorption mechanisms showed that the modification of BC with minerals enhanced the physical adsorption of MET. The maximum MET adsorption capacities by OBC, MBC, IBC, and KBC were 39.68 mg g-1, 68.49 mg g-1, 65.79 mg g-1, and 65.36 mg g-1, respectively. Hydrogen bonds, π-π bonds, coordination bonds, and hydrophobic interactions were the key adsorption mechanisms. Therefore, the mineral-modified BCs were characterized by high adsorption rates and stability. This approach can make BC more efficient, with higher performance as a low cost soil amendment.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Agricultural Renewable Resource Utilization Technology of Heilongjiang Province, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China; School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China; School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, 150090, China
| | - Xiaohan Li
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Xiaorou Wang
- Environment Research Institute, Shandong University, No.72 Binhai Road, Jimo District, Qingdao, 266237, China
| | - Yuxin Wang
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Ziyi Shao
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Xiao Liu
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Dexin Shan
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, No.319 Honghe Road, Yongchuan District, Chongqing, 402168, China
| | - Zhihua Liu
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Yingjie Dai
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
24
|
Liu Z, Zhang L, Zhang Z, An L, Hough R, Hu P, Li YF, Zhang F, Wang S, Zhao Y, Ke Y, Cui S. A review of spatiotemporal patterns of neonicotinoid insecticides in water, sediment, and soil across China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55336-55347. [PMID: 35665457 DOI: 10.1007/s11356-022-21226-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Neonicotinoid insecticides (NNIs) have been widely used to control insect pests, while their environmental residues and associated hazardous impacts on human and ecosystem health have attracted increasing attention worldwide. In this study, we examined the current levels and associated spatial and temporal patterns of NNIs in multiple environmental media across China. Concentrations of NNIs in surface water, sediment, and soil were in the range of 9.94-755 ng·L-1, 0.07-8.30 ng·g-1 DW, and 0.009-356 ng·g-1 DW, respectively. The high levels of NNIs in surface water, such as in Yangtze River (755 ng·L-1), North River (539 ng·L-1), Nandu River (519 ng·L-1), and Minjiang River (514 ng·L-1), were dominated by imidacloprid, thiamethoxam, and acetamiprid due to their extensive use. The levels of NNIs in sediments were relatively low, and the highest concentration (8.30 ng·g-1 DW) was observed in Dongguan ditch. Sediment-water exchange calculated from fugacity fraction indicated that NNIs in sediment can be released back into the water due to their high solubility and low KOW. Soils from agricultural zones contained the largest residual NNIs, with imidacloprid concentrations in cultivated soil reaching 119 ng·g-1 DW. The calculated leaching potential showed that clothianidin has the highest migration potential to deep soil or groundwater. The monitored data of NNIs presented a decreasing trend from 2016 to 2018, which might be caused by the implementation of relevant control policies for NNI applications. The high levels of NNIs mainly occurred in southern China due to frequent agricultural activities and warm and humid meteorological conditions. The results from this study improve our understanding of the pollution levels and environmental behavior of NNIs in different environmental media across China and provide new knowledge that is needed for making future control policies for NNIs production and application.
Collapse
Affiliation(s)
- Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Lihui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Peng Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yi-Fan Li
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fuxiang Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Shuang Wang
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yunqing Zhao
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yuxin Ke
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
25
|
Liu Z, Yang H, Wang M, Sun Y, Fei Z, Chen S, Luo R, Hu L, Gu C. Enhanced reductive debromination of decabromodiphenyl ether by organic-attapulgite supported Fe/Pd nanoparticles: Synergetic effect and mechanism. J Colloid Interface Sci 2022; 613:337-348. [DOI: 10.1016/j.jcis.2022.01.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
|
26
|
Hou R, Huang Q, Pan Y, Lin L, Liu S, Li H, Xu X. Novel Brominated Flame Retardants (NBFRs) in a Tropical Marine Food Web from the South China Sea: The Influence of Hydrophobicity and Biotransformation on Structure-Related Trophodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3147-3158. [PMID: 35175039 DOI: 10.1021/acs.est.1c08104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing discharge and ubiquitous occurrence of novel brominated flame retardants (NBFRs) in aquatic environments have initiated intense global concerns; however, little information is available regarding their structure-related trophodynamics in marine food webs. In this study, a tropical marine food web including 29 species (18 fish and 11 invertebrate species) was collected from coral reef waters of the Xisha Islands, the South China Sea, for an analysis of 11 representative NBFRs. The mean ∑NBFR concentrations generally increased in the following sequence: sea cucumbers (0.330 ng/g lw) < crabs (0.380 ng/g lw) < shells (2.10 ng/g lw) < herbivorous fishes (2.30 ng/g lw) < carnivorous fishes (4.13 ng/g lw), with decabromodiphenyl ethane (DBDPE) and hexabromobenzene (HBB) as the predominant components. Trophic magnification was observed for all of the investigated NBFRs, with trophic magnification factors (TMFs) ranging from 1.53 (tetrabromobisphenol A bis(dibromopropyl ether)) to 5.32 (HBB). Significant negative correlations were also found between the TMFs and the tested in vitro transformation clearance rates (CLin vitro) for the target NBFRs except for bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (TBPH) (p < 0.05). Multiple linear regression analysis confirmed that the transformation rate is a more powerful predictor for TMFs than the hydrophobicity of NBFRs in this marine food web.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qianyi Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunfeng Pan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
27
|
The brominated flame retardants TBECH and DPTE alter prostate growth, histology and gene expression patterns in the mouse. Reprod Toxicol 2021; 102:43-55. [PMID: 33848595 DOI: 10.1016/j.reprotox.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
The brominated flame retardants (BFRs), 1,2-dibromo-4-(1,2 dibromoethyl)cyclohexane (TBECH) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) bind to the androgen receptor (AR). in vitro bioassays have shown that TBECH is a potent androgen agonist while DPTE is a potent AR antagonist. Both TBECH and DPTE alter gene expression associated with AR regulation. However, it remains to be determined if TBECH and DPTE can affect the prostate. For this reason, we exposed CD1 mice to a 1:1 mixture of TBECH diastereomers α and β, a 1:1 mixture of γ and δ, and to DPTE, and tested their effects on prostate growth, histology and gene expression profiles. Castrated mice were used to study the androgenic effects of TBECHαβ and TBECHγδ while the antagonistic effects of DPTE were studied in non-castrated mice. We observed that testosterone and TBECHγδ increased body and prostate weights while TBECHαβ affected neither of them; and that DPTE had no effect on body weight but reduced prostate weight drastically. Histomorphometric analysis of the prostate revealed epithelial and glandular alterations in the TBECHγδ group comparable to those in testosterone group while alterations in the TBECHαβ group were less pronounced. DPTE displayed androgen antagonist activity reminiscent of castration. The transcription profile of the prostate was altered by castration and exposure to testosterone and to TBECHγδ reversed several of these changes. Testosterone and TBECHγδ also regulated the expression of several androgen responsive genes implicated in prostate growth and cancer. While DPTE resulted in a drastic reduction in prostate weight, it only affected a small number of genes. The results indicate that TBECHγδ and DPTE are of high human health concern as they may contribute to changes in prostate growth, histology and function.
Collapse
|