1
|
Wang C, Li C, Pei Y, Li Y, Chen S, Wang Z. DNA aptasensor based electrochemiluminescence device for visualized detection of trace arsenite in high-salinity water samples. Anal Chim Acta 2025; 1350:343845. [PMID: 40155167 DOI: 10.1016/j.aca.2025.343845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Current available detection methods can not afford the direct and precise detection of trace arsenite (As(III)) in high-salinity water bodies. Therefore, the development of device with low limit of detection (LOD) for the early detection of As(III) in high-salinity water samples is of vital importance to secure environment and food safety. RESULTS Herein, we report a rapid and visualized device for trace As(III) determination in practical water samples by DNA aptasensor based electrochemiluminescence (ECL) method. Specifically, we firstly prepare polymer dots by nanoprecipitation method, followed by surface modification of specific DNA aptamer of As(III). The Pdots can be applied on electrodes to give detection device for trace As(III) detection with a low LOD at 0.24 ng/L with robust selectivity. More importantly, the device can be used for the effective visualized determination of As(III) in practical high-salinity water samples. SIGNIFICANCE This device can be applied to detect visualized detection of trace arsenite in high-salinity water samples, which holds a pivotal role in the realms of environment and food safety research.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Chengqi Li
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yang Pei
- Chinese Cultural Teaching Centre, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yulin Li
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Shaoqing Chen
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China.
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Oyedele GT, Atarase OD, Olaseni AA, Rocha JBT, Adedara IA, Farombi EO. Impact of chronic exposure to ternary metal mixtures on behavioral and cellular responses in Nauphoeta cinerea nymphs. ENVIRONMENTAL ENTOMOLOGY 2025:nvaf023. [PMID: 40257999 DOI: 10.1093/ee/nvaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 02/07/2025] [Indexed: 04/23/2025]
Abstract
There is a growing concern about the impact of environmental contamination by metals on insects owing to their biodiversity and important ecological roles. We investigated the neurobehavioral traits, cellular responses, and levels of metals in tissues of Nauphoeta cinerea nymphs exposed, separately and in ternary mixtures, to arsenic (15 and 7.5 mg/L), copper (15 and 7.5 mg/L), and zinc (100 and 50 µg/L), in drinking water for 35 consecutive days. Results showed that the diminutions in locomotor parameters (maximum speed, motility time, and distance traveled), motor and turning capabilities (path efficiency, turn angle, and body rotation) and the increase in anxiety-like behavior (total time freezing and freezing episodes) were more pronounced in individual metal exposure than triple metal mixtures groups. Barring zinc alone group, acetylcholinesterase activity decreased significantly in all the treatment groups compared to the control. The diminutions in glutathione level and antioxidant enzyme activities were partially attenuated in the fat body, midgut, and head of insects in the triple metal mixtures groups. Further, the levels of nitric oxide, hydrogen peroxide, lipid peroxidation, and reactive oxygen and nitrogen species were higher in individual metal exposed insects than the ternary mixture groups. The concentrations of arsenic, copper, and zinc in the fat body, midgut, and head of insects were significantly higher in individual metal exposure groups than the ternary metal mixtures groups. Collectively, the detrimental effects of elevated ecological concentrations of arsenic, copper, and zinc were more pronounced in insects exposed to individual metal than those in ternary mixtures groups.
Collapse
Affiliation(s)
- Gbemisola T Oyedele
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oyepeju D Atarase
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeboye A Olaseni
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, Santa Maria, RS, Brazil
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Wen J, Xia M, Luo H, Zhu L, Li M, Hou Y. Global, regional, and national burden of liver cancer in adolescents and young adults from 1990 to 2021: an analysis of the global burden of disease study 2021 and forecast to 2040. Front Public Health 2025; 13:1547106. [PMID: 40129589 PMCID: PMC11931027 DOI: 10.3389/fpubh.2025.1547106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Background The global burden of liver cancer among adolescents and young adults (AYAs) has often been underestimated, despite significant shifts in its etiology. This study analyzes the disease burden of liver cancer in AYAs from 1990 to 2021 and forecasts trends up to 2040 using data from the Global Burden of Disease Study 2021. Our goal is to provide insights that can inform resource allocation and policy planning. Methods Incidence, mortality, and disability-adjusted life years (DALYs) data were extracted and estimated annual percentage changes calculated to assess trends. Correlation between age-standardized rates and sociodemographic index (SDI) was analyzed using Spearman correlation, and future trends were predicted using the Bayesian age-period-cohort model. Findings Globally, there were 24,348 new liver cancer cases and 19,270 deaths among AYAs in 2021, with decreases in age-standardized rates for incidence, mortality, and DALYs from 1990 to 2021. East Asia bears the highest burden, with males experiencing significantly higher rates than females. The burden increases with age, peaking at 35-39 years. Higher SDI is associated with lower incidence, mortality, and DALYs. While HBV remains the leading cause, NASH is the fastest-growing contributor to liver cancer incidence and mortality. Projections indicate a continued decline in liver cancer burden among AYAs, though female cases are expected to rise. Interpretation Despite a gradual decline in liver cancer burden among AYAs, NASH is emerging as a significant and rising cause of incidence and mortality. Regional and gender disparities persist, highlighting the need for tailored prevention and healthcare strategies to alleviate the liver cancer AYA's burden globally.
Collapse
Affiliation(s)
- Jingyu Wen
- Department of Medical Insurance, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingge Xia
- State Key Laboratory of Quality Research in Chinese Medicines, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Han Luo
- Department of Hepatobiliary Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Luwei Zhu
- Department of Medical Insurance, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Li
- Department of Medical Insurance, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifu Hou
- Department of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Poudel P, Parajuli DL, Sharma S, Baral J, Pokhrel MR, Poudel BR. Removal of Arsenic(V) from wastewater using calcined eggshells as a cost-effective adsorbent. Heliyon 2025; 11:e42505. [PMID: 40007776 PMCID: PMC11850135 DOI: 10.1016/j.heliyon.2025.e42505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigates calcined eggshells (CES) as an effective adsorbent for the remediation of As(V). Characterization of CES was performed using zeta potential analysis, FTIR, XRD and SEM-EDX. Batch studies were conducted to examine the effects of pH, adsorption kinetics, and adsorption isotherms to assess efficacy. The adsorption of As(V) followed the Langmuir isotherm and pseudo-second-order kinetics, with a maximum capacity of 91.05 mg g⁻1 at pH 6.0 and 298 K. The presence of additional anions such as chloride, sulfate, or nitrate had no significant impact on the biosorption of arsenate. However, the introduction of phosphate ions notably decreased the rate of arsenic adsorption. CES was easily regenerated with an alkaline solution and showed excellent reusability over four cycles. Thermodynamic studies confirmed the spontaneity and feasibility of the biosorption process. This study highlights that CES is a promising adsorbent for As(V) removal from contaminated water.
Collapse
Affiliation(s)
- Pratikshya Poudel
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44600, Nepal
| | - Davi Lal Parajuli
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44600, Nepal
| | - Srijana Sharma
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44600, Nepal
| | - Janaki Baral
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44600, Nepal
| | - Megh Raj Pokhrel
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal
| | - Bhoj Raj Poudel
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44600, Nepal
| |
Collapse
|
5
|
Guevara-Ramírez P, Tamayo-Trujillo R, Cadena-Ullauri S, Ruiz-Pozo V, Paz-Cruz E, Annunziata G, Verde L, Frias-Toral E, Simancas-Racines D, Zambrano AK. Heavy metals in the diet: unraveling the molecular pathways linked to neurodegenerative disease risk. FOOD AGR IMMUNOL 2024; 35. [DOI: 10.1080/09540105.2024.2434457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Giuseppe Annunziata
- Facoltà di Scienze Umane, della Formazione e dello Sport, Università Telematica Pegaso, Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
6
|
Deo L, Osborne JW, Benjamin LK. Harnessing microbes for heavy metal remediation: mechanisms and prospects. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:116. [PMID: 39738768 DOI: 10.1007/s10661-024-13516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025]
Abstract
Contamination by heavy metals (HMs) poses a significant threat to the ecosystem and its associated micro and macroorganisms, leading to ill effects on humans which necessitate the requirement of effective remediation strategies. Microbial remediation leverages the natural metabolic abilities of microbes to overcome heavy metal pollution effectively. Some of the mechanisms that aids in the removal of heavy metals includes bioaccumulation, biosorption, and biomineralization. Metals such as Cd, Pb, As, Hg, and Cr are passively adsorbed by energy independent process onto the surface by exopolysaccharide sequestration or utilizing energy to transfer metals into the cell and interact with the biomolecules to be sequestered, or being converted into its various valencies, thereby reducing the toxicity. Application of hyperaccumulators has shown to be effective in the removal of HMs especially while augmented with microbes to the rhizosphere region. Omics studies which include metabolomics and metagenomics provide significant information about the microbial diversities and metabolic processes involved in heavy metal remediation, allowing the development of more reliable and sustainable bioremediation approaches. This review also summarizes the recent advancements in microbial remediation, including genetic engineering and nanotechnology that has revolutionized and offered an unprecedented control and precision in the removal of HMs. These innovations hold a promising stand for enhancing remediation efficiency, scalability, and cost-effectiveness.
Collapse
Affiliation(s)
- Loknath Deo
- Department of Bio Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India
| | - Jabez William Osborne
- Department of Bio Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India.
| |
Collapse
|
7
|
Oladimeji T, Oyedemi M, Emetere M, Agboola O, Adeoye J, Odunlami O. Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon 2024; 10:e40370. [PMID: 39654720 PMCID: PMC11625160 DOI: 10.1016/j.heliyon.2024.e40370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The incidence of water pollution in developing countries is high due to the lack of regulatory policies and laws that protect water bodies from anthropogenic activities and industrial wastewater. Industrial wastewater contains significant amounts of heavy metals that are detrimental to human health, aquatic organisms, and the ecosystem. The focus of this review was to evaluate the sources and treatment methods of wastewater, with an emphasis on technologies, advantages, disadvantages, and innovation. It was observed that conventional methods of wastewater treatment (such as flotation, coagulation/flocculation, and adsorption) had shown promising results but posed certain limitations, such as the generation of high volumes of sludge, relatively low removal rates, inefficiency in treating low metal concentrations, and sensitivity to varying pH. Recent technologies like nanotechnology, photocatalysis, and electrochemical coagulation have significant advantages over conventional methods for removing heavy metals, including higher removal rates, improved energy efficiency, and greater selectivity for specific contaminants. However, the high costs associated with these advanced methods remain a major drawback. Therefore, we recommend that future developments in wastewater treatment technology focus on reducing both costs and waste generation.
Collapse
Affiliation(s)
- T.E. Oladimeji
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - M. Oyedemi
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - M.E. Emetere
- Department of Physics, Bowen University, Osun State, Nigeria
- Department of Mechanical Engineering Science, University of Johannesburg, South Africa
| | - O. Agboola
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - J.B. Adeoye
- Department of Chemical and Energy Engineering, Curtin University, Malaysia
| | - O.A. Odunlami
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| |
Collapse
|
8
|
Gupta N, Abd EL-Gawaad N, Mallasiy L. Hospital-borne hazardous air pollutants and air cleaning strategies amid the surge of SARS-CoV-2 new variants. Heliyon 2024; 10:e38874. [PMID: 39449698 PMCID: PMC11497388 DOI: 10.1016/j.heliyon.2024.e38874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Indoor air pollutants and airborne contamination removal have been challenging in healthcare facilities. The airborne transmission control and HVAC system may collapse in hospitals due to the highly infectious respiratory disease-associated patient surge, like COVID-19. Common air filtration systems and HVAC systems enhance the patients' comfort and support indoor hygiene, hitherto insufficient to control highly infectious airborne pathogens and hospital-borne pollutants such as radon, PM2.5, patient droplets, VOC, high CO2, and anesthetic gases. This review summarized important air cleaning interventions to enhance HVAC efficiency and indoor safety. We discussed efficient air cleaning and ventilation strategies including air filtration, air ionization, passive removal materials (PRM), and UVGI to minimize cross-contamination in hospital wards.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Research & Development, River Engineering Private Limited, Ecotec-3, Greater Noida, India
| | - N.S. Abd EL-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha, 62529, Saudi Arabia
| | - L.O. Mallasiy
- Department of Home Economics, Faculty of Science and Arts in Tihama, King Khalid University, Muhayil Asir, 61913, Saudi Arabia
| |
Collapse
|
9
|
Timko MT, Woodard TM, Graham AE, Bennett JA, Krueger R, Panahi A, Rahbar N, Walters J, Dunn D. Thinking globally, acting locally in the 21 st century: Bamboo to bioproducts and cleaned mine sites. iScience 2024; 27:110763. [PMID: 39381743 PMCID: PMC11458977 DOI: 10.1016/j.isci.2024.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Current solutions to global challenges place tension between global benefits and local impacts. The result is increasing opposition to implementation of beneficial climate policies. Prioritizing investment in projects with tangible local benefits that also contribute to global climate change can resolve this tension and make local communities' partners instead of antagonists to change; the approach advocated is a new take on "thinking globally, acting locally". This approach is a departure from the usual strategy of focusing resources on solutions perceived to have the largest potential global impact, without regards to local concerns. Reclamation of polluted mine sites by using fast growing bamboo to remove heavy metals provides a case study to show what is possible. Effective implementation of thinking globally while acting locally will require increased coordination between different types of researchers, new educational models, and greater stakeholder participation in problem identification and solution development.
Collapse
Affiliation(s)
- Michael T. Timko
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Timothy M. Woodard
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Aubrey E. Graham
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Chemistry & Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Social Science & Policy Studies, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Julian A. Bennett
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Social Science & Policy Studies, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Robert Krueger
- Department of Social Science & Policy Studies, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Institute of Science & Technology for Development, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Aidin Panahi
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Nima Rahbar
- Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - James Walters
- Avos Bioenergy, 3187 Danmark Dr, West Friendship, MD 21794, USA
| | - Darnell Dunn
- School of Business, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| |
Collapse
|
10
|
Rahman MS, Reza AHMS, Sattar GS, Bakar Siddique MA, Akbor MA, Moniruzzaman M, Uddin MR, Shafiuzzaman SM. Mobilization mechanisms and spatial distribution of arsenic in groundwater of western Bangladesh: Evaluating water quality and health risk using EWQI and Monte Carlo simulation. CHEMOSPHERE 2024; 366:143453. [PMID: 39362382 DOI: 10.1016/j.chemosphere.2024.143453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Arsenic (As) contamination in groundwater is emerging as a significant global concern, posing serious risks to the safety of drinking water and public health. To understand the release mechanisms, mobilization processes, spatial distribution, and probabilistic health risks of As in western Bangladesh, forty-seven samples were collected and analyzed using an atomic absorption spectrometer (AAS). The As concentrations in groundwater ranged from 1.97 to 697.4 μg L⁻1 (mean: 229.9), significantly exceeding recommended levels. The dominant hydrochemistry of As-enriched groundwater was Ca-Mg-HCO₃, with the primary sources of arsenic in groundwater being the dissolution of arsenic-bearing minerals in sediment and the recharge of aquifers from the Ganges River Basin. The assessment using the Entropy Water Quality Index revealed that the groundwater is unsuitable for drinking, with 89.36% (n = 42) of the samples surpassing the WHO's limit for arsenic. Rock-water interactions, including calcite dissolution and silicate weathering within the confined aquifer, predominantly influenced hydrochemical properties. The significant relationships among Fe, Mn, and As indicate that the reductive dissolution of FeOOH and/or MnOOH considerably contributes to the release of As from sediment into groundwater. Geochemical modeling analysis revealed that siderite and rhodochrosite precipitate into aquifer solids, suggesting a weak to moderate relationship among As, Fe, and Mn. The long residence time of groundwater, combined with the presence of a clayey aquitard, likely controls the mobilization of arsenic in the aquifer. For the first time, Monte Carlo simulations have been used in arsenic-prone areas to assess the severity of arsenic contamination in western Bangladesh. The analysis indicates that out of 100,000 people, 10 may develop cancer as a result of drinking arsenic-contaminated water, with children being more susceptible than adults.
Collapse
Affiliation(s)
- Md Shazzadur Rahman
- Department of Geology and Mining, University of Rajshahi, Rajshahi, 6205, Bangladesh; Institute of Environmental Science, University of Rajshahi, Rajshahi, 6205, Bangladesh; Institute of Mining, Mineralogy and Metallurgy (IMMM), Bangladesh Council of Scientific and Industrial Research (BCSIR), Joypurhat, Bangladesh
| | - A H M Selim Reza
- Department of Geology and Mining, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Golam Shabbir Sattar
- Department of Geology and Mining, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Moniruzzaman
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh
| | - Md Ripaj Uddin
- Institute of Mining, Mineralogy and Metallurgy (IMMM), Bangladesh Council of Scientific and Industrial Research (BCSIR), Joypurhat, Bangladesh
| | - S M Shafiuzzaman
- Institute of Environmental Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
11
|
Bai Y, Wang Y, Wu D, Zhu J, Zou B, Ma Z, Xu J, Li L. Identify the seasonal differences in water quality and pollution sources between river-connected and gate-controlled lakes in the Yangtze River basin. MARINE POLLUTION BULLETIN 2024; 206:116760. [PMID: 39079476 DOI: 10.1016/j.marpolbul.2024.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/19/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024]
Abstract
The river-connected Dongting Lake (DT) and Poyang Lake (PY), and the gate-controlled Taihu Lake (TH) and Chaohu Lake (CH) are the four important lakes in the Yangtze River Basin. The comprehensive Water Quality Index (WQI), the Eutrophication Integrated Index (TLI(Σ)), and the Positive Matrix Factorization (PMF) model were employed to evaluate water quality and the contribution of pollution sources for these lakes. The results show that WQI for all lakes indicated generally good water quality, with DT scoring 73.52-86.18, the highest among them. During the wet season, the eutrophication degree of river-connected lake was medium, and that of gate-controlled lakes was high. The surface runoff and agricultural non-point sources are the main pollution sources for both types of lakes, but their impact is more pronounced in gate-controlled lakes during the wet season. The study provides evidence support for scientific understanding of water quality problems and management strategies in these areas.
Collapse
Affiliation(s)
- Yang Bai
- School of Resources & Environment, Nanchang University, Nanchang 330031, PR China
| | - Yinuo Wang
- Information Center of Ministry of Ecology and Environment, Beijing 100029, PR China
| | - Daishe Wu
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337000, PR China
| | - Jie Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Binchun Zou
- School of Resources & Environment, Nanchang University, Nanchang 330031, PR China
| | - Zhifei Ma
- School of Resources & Environment, Nanchang University, Nanchang 330031, PR China.
| | - Jinying Xu
- School of Resources & Environment, Nanchang University, Nanchang 330031, PR China
| | - Liangzhong Li
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| |
Collapse
|
12
|
Khute M, Sharma S, Patel KS, Pandey PK, Allen J, Corns W, Georgieva N, Bozhanina E, Blazhev B, Huber M, Varol S, Martín-Ramos P, Zhu Y. Contamination, speciation, and health risk assessment of arsenic in leafy vegetables in Ambagarh Chowki (India). ANAL SCI 2024; 40:1553-1560. [PMID: 38847963 DOI: 10.1007/s44211-024-00579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/11/2024] [Indexed: 07/26/2024]
Abstract
Green leafy vegetables are essential for a balanced diet, providing vital nutrients for overall well-being. However, concerns arise due to contamination with toxic substances, such as arsenic, posing risks to food safety and human health. This study analyzes inorganic (iAs), monomethyl (MMA), and dimethyl arsenic (DMA) in specific leafy vegetables (Amaranthus tricolor L., Corchorus olitorius L., Cordia myxa L., Hibiscus sabdariffa L., Ipomoea batatas (L.) Lam., Moringa oleifera Lam., and Spinacia oleracea L.) grown in the heavily polluted Ambagarh Chouki region, Chhattisgarh, India. Concentrations of DMA, MMA, and iAs ranged from 0 to 155, 0 to 7, and 131 to 3579 mg·kg-1, respectively. The health quotient (HQ) for iAs ranged between 0.37 and 3.78, with an average value of 2.58 ± 1.08.
Collapse
Affiliation(s)
- Madhuri Khute
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, G. E. Road, Raipur, Chhattisgarh, 492010, India
| | - Saroj Sharma
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, G. E. Road, Raipur, Chhattisgarh, 492010, India
| | - Khageshwar Singh Patel
- Department of Applied Sciences, Amity University, Baloda-Bazar Road, Raipur, Chhattisgarh, 493225, India.
| | - Piyush Kant Pandey
- Department of Applied Sciences, Amity University, Baloda-Bazar Road, Raipur, Chhattisgarh, 493225, India
| | - Jasmina Allen
- Department of Applied Sciences, Amity University, Baloda-Bazar Road, Raipur, Chhattisgarh, 493225, India
| | - Warren Corns
- PS Analytical Ltd, Arthur House, Main Road, Orpington, Kent, BR5 3HP, UK
| | - Nelina Georgieva
- PS Analytical Ltd, Arthur House, Main Road, Orpington, Kent, BR5 3HP, UK
| | - Elena Bozhanina
- Central Laboratory for Chemical Testing and Control /CLCTC/, Bulgarian Food Safety Agency /BFSA/Nikola Mushanov, Blvd. 120, 1330, Sofia, Bulgaria
| | - Borislav Blazhev
- Central Laboratory for Chemical Testing and Control /CLCTC/, Bulgarian Food Safety Agency /BFSA/Nikola Mushanov, Blvd. 120, 1330, Sofia, Bulgaria
| | - Milosz Huber
- Katedra Geologii, Gleboznawstwa I Geoinformacji, Maria Curie -Skłodowska University (UMSC), al. Krasnickie 2d/107, 108, 20-718, Lublin, Poland
| | - Simge Varol
- Department of Geology, Faculty of Engineering, Suleyman Demirel University, Isparta, 32260, Turkey
| | - Pablo Martín-Ramos
- ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004, Palencia, Spain
| | - Yanbei Zhu
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
| |
Collapse
|
13
|
Sadiq M, Eqani SAMAS, Podgorski J, Ilyas S, Abbas SS, Shafqat MN, Nawaz I, Berg M. Geochemical insights of arsenic mobilization into the aquifers of Punjab, Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173452. [PMID: 38782276 DOI: 10.1016/j.scitotenv.2024.173452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
It is well known that groundwater arsenic (As) contamination affects million(s) of people throughout the Indus flood plain, Pakistan. In this study, groundwater (n = 96) and drilled borehole samples (n = 87 sediments of 12 boreholes) were collected to investigate geochemical proxy-indicators for As release into groundwater across floodplains of the Indus Basin. The mean dissolved (μg/L) and sedimentary As concentrations (mg/kg) showed significant association in all studied areas viz.; lower reaches of Indus flood plain area (71 and 12.7), upper flood plain areas (33.7 and 7.2), and Thal desert areas (5.3 and 4.7) and are indicative of Basin-scale geogenic As contamination. As contamination in aquifer sediments is dependent on various geochemical factors including particle size (3-4-fold higher As levels in fine clay particles than in fine-coarse sand), sediment types (3-fold higher As in Holocene sediments of floodplain areas vs Pleistocene/Quaternary sediments in the Thal desert) with varying proportion of Al-Fe-Mn oxides/hydroxides. The total organic carbon (TOC) of cored aquifer sediments yielded low TOC content (mean = 0.13 %), which indicates that organic carbon is not a major driver (with a few exceptions) of As mobilization in the Indus Basin. Alkaline pH, high dissolved sulfate and other water quality parameters indicate pH-induced As leaching and the dominance of oxidizing conditions in the aquifers of upper flood plain areas of Punjab, Pakistan while at the lower reaches of the Indus flood plain and alluvial pockets along the rivers with elevated flood-driven dissolved organic carbon (exhibiting high dissolved Mn and Fe and a wide range of redox conditions). Furthermore, we also identified that paired dissolved AsMn values (instead of AsFe) may serve as a geochemical marker of a range of redox conditions throughout Indus flood plains.
Collapse
Affiliation(s)
- Muhammad Sadiq
- Department of Biosciences, COMSATS University, Park Road, 44000 Islamabad, Pakistan; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Joel Podgorski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Shazia Ilyas
- Department of Environmental Sciences, Forman Christian College (A Chartered University), 54600 Lahore, Pakistan
| | - Syed Sayyam Abbas
- Department of Biosciences, COMSATS University, Park Road, 44000 Islamabad, Pakistan
| | | | - Ismat Nawaz
- Department of Biosciences, COMSATS University, Park Road, 44000 Islamabad, Pakistan
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
14
|
Gilligan G, Panico R, Lazos J, Morelatto R, Belardinelli P, Criscuolo MI, Bolesina N, Molina Ávila I, Pimentel Solá JM, Rivarola E, Morgante MJ, Ingrassia Tonelli ME, Gimenez J, Doratti P, Werner LC, Prado-Ribeiro AC, Brandão TB, Vechiato-Filho AJ, Cuzzullin MC, Saldivia-Siracusa C, Lopes MA, Agostini M, Romañach MJ, Abrahão AC, Fonsêca TC, Kaminagakura E, Anbinder AL, Santos Alves K, de Almeida Lança ML, Sacsaquispe-Contreras S, Rodriguez Ibazetta K, Gerber-Mora R, Aranda Romo S, Tejeda Nava FJ, Cordero-Torres K, Moreno Silva R, Gonzalez-Arriagada W, Toro R, Silveira FM, Gonzalez N, Vargas PA, Santos-Silva AR, Bologna-Molina R, Villarroel-Dorrego M, Martinez B, Piemonte E. Oral squamous cell carcinomas and oral potentially malignant disorders: A Latin American study. Oral Dis 2024; 30:2965-2984. [PMID: 37877476 DOI: 10.1111/odi.14778] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/09/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVE To determine the frequency of oral squamous cell carcinoma (OSCC) associated or not with oral potentially malignant disorders (OPMD), and the epidemiological profile and traditional risk factors in Latin America. METHODS A retrospective observational study was conducted in 17 Latin American centres. There were included cases of OSCC, analysing age, gender, OSCC and their association with previous OPMD. Clinicopathological variables were retrieved. The condition of sequential-OSCC versus OSCC-de novo (OSCC-dn) was analysed concerning the aforementioned variables. Quantitative variables were analysed using Student's t-test, and qualitative variables with chi-square. RESULTS In total, 2705 OSCC were included with a mean age of 62.8 years old. 55.8% were men. 53.75% of the patients were smokers and 38% were common drinkers. The lateral tongue border was the most affected site (24.65%). There were regional variations in OPMD, being leukoplakia the most frequent. Of the overall 2705 OSCC cases, 81.4% corresponded to OSCC-dn, while s-OSCC were 18.6%. Regarding lip vermillion SCC, 35.7% corresponded to de novo lip SCC and 64.3% were associated with previous OPMD. CONCLUSIONS In Latin America, OSCC-dn seems to be more frequent with regional variations of some clinical and histopathological features. Further prospective studies are needed to analyse this phenomenon.
Collapse
Affiliation(s)
- Gerardo Gilligan
- Oral Medicine Department "A", Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - René Panico
- Oral Medicine Department "A", Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jerónimo Lazos
- Oral Medicine Department "A", Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rosana Morelatto
- Oral Medicine Department "B", Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paola Belardinelli
- Oral Medicine Department "B", Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Ines Criscuolo
- Oral Medicine Department "B", Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas Bolesina
- Oral Medicine Department "B", Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | | | | | | - Ana Carolina Prado-Ribeiro
- Dental Oncology Service, Instituto do Câncer do Estado de São Paulo (ICESP), Fundação da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Thais Bianca Brandão
- Dental Oncology Service, Instituto do Câncer do Estado de São Paulo (ICESP), Fundação da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Aljomar Jose Vechiato-Filho
- Dental Oncology Service, Instituto do Câncer do Estado de São Paulo (ICESP), Fundação da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Maria Claudia Cuzzullin
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Marcio Ajudarte Lopes
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Michelle Agostini
- Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mario José Romañach
- Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Corrêa Abrahão
- Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamyres Campos Fonsêca
- Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Estela Kaminagakura
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil
| | - Ana Lia Anbinder
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil
| | - Kamilla Santos Alves
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil
| | - Maria Leticia de Almeida Lança
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil
| | | | | | | | - Saray Aranda Romo
- Facultad de Estomatología, Universidad Autónoma de San Luis de Potosí, San Luis Potosi, Mexico
| | | | | | | | | | - Raiza Toro
- Instituto de Investigaciones Odontológicas, Facultad de Odontología, Universidad Central de Venezuela, Caracas, Venezuela
| | - Felipe Martins Silveira
- Oral Medicine and Oral Pathology Diagnosis Department, Facultad de Odontología, Universidad de la República UDELAR, Montevideo, Uruguay
| | - Natalia Gonzalez
- Oral Medicine and Oral Pathology Diagnosis Department, Facultad de Odontología, Universidad de la República UDELAR, Montevideo, Uruguay
| | - Pablo Agustin Vargas
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Alan Roger Santos-Silva
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Ronell Bologna-Molina
- Oral Medicine and Oral Pathology Diagnosis Department, Facultad de Odontología, Universidad de la República UDELAR, Montevideo, Uruguay
| | - Mariana Villarroel-Dorrego
- Instituto de Investigaciones Odontológicas, Facultad de Odontología, Universidad Central de Venezuela, Caracas, Venezuela
| | - Benjamin Martinez
- Oral Pathology Department, Facultad de Odontología, Universidad Mayor de Chile, Santiago de Chile, Chile
| | - Eduardo Piemonte
- Oral Medicine Department "A", Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
15
|
Cordeiro IF, Lemes CGDC, Sanchez AB, da Silva AK, de Paula CH, de Matos RC, Ribeiro DF, de Matos JP, Garcia CCM, Beirão M, Becker CG, Pires MRS, Moreira LM. Amphibian tolerance to arsenic: microbiome-mediated insights. Sci Rep 2024; 14:10193. [PMID: 38702361 PMCID: PMC11068734 DOI: 10.1038/s41598-024-60879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Amphibians are often recognized as bioindicators of healthy ecosystems. The persistence of amphibian populations in heavily contaminated environments provides an excellent opportunity to investigate rapid vertebrate adaptations to harmful contaminants. Using a combination of culture-based challenge assays and a skin permeability assay, we tested whether the skin-associated microbiota may confer adaptive tolerance to tropical amphibians in regions heavily contaminated with arsenic, thus supporting the adaptive microbiome principle and immune interactions of the amphibian mucus. At lower arsenic concentrations (1 and 5 mM As3+), we found a significantly higher number of bacterial isolates tolerant to arsenic from amphibians sampled at an arsenic contaminated region (TES) than from amphibians sampled at an arsenic free region (JN). Strikingly, none of the bacterial isolates from our arsenic free region tolerated high concentrations of arsenic. In our skin permeability experiment, where we tested whether a subset of arsenic-tolerant bacterial isolates could reduce skin permeability to arsenic, we found that isolates known to tolerate high concentrations of arsenic significantly reduced amphibian skin permeability to this metalloid. This pattern did not hold true for bacterial isolates with low arsenic tolerance. Our results describe a pattern of environmental selection of arsenic-tolerant skin bacteria capable of protecting amphibians from intoxication, which helps explain the persistence of amphibian populations in water bodies heavily contaminated with arsenic.
Collapse
Affiliation(s)
- Isabella Ferreira Cordeiro
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | | | - Angélica Bianchini Sanchez
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Ana Karla da Silva
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Camila Henriques de Paula
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Rosilene Cristina de Matos
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Dilson Fagundes Ribeiro
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Jéssica Pereira de Matos
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
- Laboratório de Genômica e Interação Bactérias-Ambiente, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Marina Beirão
- Departamento de Biodiversidade Evolução e Meio Ambiente, Instituto de Ciências Biológicas, Universidade Federal de Ouro Preto, Belo Horizonte, MG, 31270-901, Brazil
| | - C Guilherme Becker
- Department of Biology, One Health Microbiome Center, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Maria Rita Silvério Pires
- Departamento de Biodiversidade Evolução e Meio Ambiente, Instituto de Ciências Biológicas, Universidade Federal de Ouro Preto, Belo Horizonte, MG, 31270-901, Brazil
| | - Leandro Marcio Moreira
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil.
- Laboratório de Genômica e Interação Bactérias-Ambiente, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil.
| |
Collapse
|
16
|
Ignacio S, Schlotthauer J, Sigrist M, Volpedo AV, Thompson GA. Potentially toxic trace elements in the muscle of coastal South American fish: Implications for human consumption and health risk assessment. MARINE POLLUTION BULLETIN 2024; 202:116384. [PMID: 38643585 DOI: 10.1016/j.marpolbul.2024.116384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/23/2024]
Abstract
Micropogonias furnieri and Urophycis brasiliensis are two coastal demersal fish species distributed in the southwestern Atlantic Ocean. Considering that many coastal areas in the southwestern Atlantic Ocean suffer from anthropogenic pressure, the aim of this study was to assess the level of potentially toxic trace elements (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, Sr, V and Zn) in the muscle of coastal species, and evaluated the human health risk related to the consumption of muscle. Mercury, inorganic As (Asi), V, and Se showed a higher contribution to the total THQ. Considering two possible scenarios, Asi represents 1 % or 5 % of the total As, the total THQ was <1 for general population and of some health concerns for fishermen population (Total THQ > 1; 5 % Asi). Consequently these results show the importance of quantifying As species in muscle to generate more reliable risk estimates for human health.
Collapse
Affiliation(s)
- Sabrina Ignacio
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Buenos Aires, Argentina
| | - Jonatan Schlotthauer
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos -PRINARC- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000 Santa Fe, Argentina
| | - Mirna Sigrist
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos -PRINARC- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000 Santa Fe, Argentina
| | - Alejandra V Volpedo
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Buenos Aires, Argentina
| | - Gustavo A Thompson
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina.
| |
Collapse
|
17
|
Georgaki MN, Mytiglaki C, Tsokkou S, Kantiranis N. Leachability of hexavalent chromium from fly ash-marl mixtures in Sarigiol basin, Western Macedonia, Greece: environmental hazard and potential human health risk. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:161. [PMID: 38592512 PMCID: PMC11003896 DOI: 10.1007/s10653-024-01946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Hexavalent chromium (Cr (VI)) is an environmental contaminant brining high concerns due to its higher toxicity and mobility in comparison with trivalent chromium Cr(III). Cr (VI) has been linked with several adverse health effects, including respiratory diseases, lung cancer, and skin irritation. The primary sources of it in the environment are industrial activities.Most of the time, fly ash made of lignite can release Cr(VI) when it comes into contact with water in an aquatic environment. The objective of this study is the investigation of Cr (VI) concentration in leachates of fly ash and marl mixtures and the determination of its solubility under different pH conditions. Samples of fly ash were collected from the Power Plant of Agios Dimitrios. Additionally, samples of marl were collected from the mine of South Field, and both samples were mixed and prepared in in different proportions (% w.t.). The leaching experiments were carried out according to the EN-12457/1-4 (2003) standard under different pH conditions and chemical analysis of the leachates were performed by spectrophotometry with diphenylcarbazide (DPC). The environmental footprint of Cr (VI) in the study area was significant, especially in mixtures containing higher concentrations of fly ash. A critical pH range between 6 to 12 is observed. At acidic pH values, a high release of Cr (VI) was observed, while at the mentioned critical values (pH 10-12), a gradual decrease in its leachability was noticed. The high concentrations of Cr (VI) in the industrial area studied require immediate actions in terms of managing and limiting the potential hazardous impacts on the environment and by extension on the public health by developing appropriate prevention strategies.
Collapse
Affiliation(s)
- Maria-Nefeli Georgaki
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
- Laboratory of Histology‑Embryology, Department of Medicine, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Christina Mytiglaki
- Department of Mineralogy, Petrology, Economic Geology, School of Geology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Sophia Tsokkou
- Laboratory of Histology‑Embryology, Department of Medicine, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Kantiranis
- Department of Mineralogy, Petrology, Economic Geology, School of Geology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
18
|
Orset C. Air, land, and water pollutants and public health expenditures: Empirical data from selected EU countries in the transport sector. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120534. [PMID: 38531136 DOI: 10.1016/j.jenvman.2024.120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
The increase in economic activity, particularly in transport, leads to a significant increase in emissions of pollutants, such as ammonia, arsenic and cadmium, at the European Union (EU) level. This can seriously impact human health and, consequently, public health spending. Based on data from 15 European Union countries from 1992 to 2020, a panel co-integration approach is used to study these pollutants' short- and long-term co-movements and per capita health expenditure. The results show a long-term relationship between ammonia, arsenic and cadmium emissions and per capita health spending, as they are panel-cointegrated. Ammonia and cadmium emissions exert a statistically significant positive effect on health expenditure in the short run, and arsenic emissions have a statistically significant positive impact in the long run. The forecast assessment of reductions in health spending resulting from policies to reduce emissions of air, land and water pollutants, such as ammonia, arsenic and cadmium, from the transport sector supports investments in its policies that reduce pressure on health spending. The reduction in annual healthcare expenditure is greater when these reductions are made sooner and more severely. Indeed, varying the reduction in emissions for each pollutant by 10% and 100%, respectively, from the first year for all countries over a 3-year period results in an average annual reduction in health spending of 2.05% and 51.02%, respectively. However, if we wait until the third year, the annual reduction is only 0.77% and 17.63% respectively.
Collapse
Affiliation(s)
- Caroline Orset
- Paris-Saclay Applied Economics (PSAE), AgroParistech, INRAe, Université Paris-Saclay, and Climate Economics Chair, Campus Agro Paris-Saclay, 22 Place de L'Agronomie, 91120, Palaiseau, France.
| |
Collapse
|
19
|
Wang W, Root CW, Peel HF, Garza M, Gidley N, Romero-Mariscal G, Morales-Paredes L, Arenazas-Rodríguez A, Ticona-Quea J, Vanneste J, Vanzin GF, Sharp JO. Photosynthetic pretreatment increases membrane-based rejection of boron and arsenic. WATER RESEARCH 2024; 252:121200. [PMID: 38309061 DOI: 10.1016/j.watres.2024.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
The metalloids boron and arsenic are ubiquitous and difficult to remove during water treatment. As chemical pretreatment using strong base and oxidants can increase their rejection during membrane-based nanofiltration (NF), we examined a nature-based pretreatment approach using benthic photosynthetic processes inherent in a unique type of constructed wetland to assess whether analogous gains can be achieved without the need for exogenous chemical dosing. During peak photosynthesis, the pH of the overlying clear water column above a photosynthetic microbial mat (biomat) that naturally colonizes shallow, open water constructed wetlands climbs from circumneutral to approximately 10. This biological increase in pH was reproduced in a laboratory bioreactor and resulted in analogous increases in NF rejection of boron and arsenic that is comparable to chemical dosing. Rejection across the studied pH range was captured using a monoprotic speciation model. In addition to this mechanism, the biomat accelerated the oxidation of introduced arsenite through a combination of abiotic and biotic reactions. This resulted in increases in introduced arsenite rejection that eclipsed those achieved solely by pH. Capital, operation, and maintenance costs were used to benchmark the integration of this constructed wetland against chemical dosing for water pretreatment, manifesting long-term (sub-decadal) economic benefits for the wetland-based strategy in addition to social and environmental benefits. These results suggest that the integration of nature-based pretreatment approaches can increase the sustainability of membrane-based and potentially other engineered treatment approaches for challenging water contaminants.
Collapse
Affiliation(s)
- Weishi Wang
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru
| | - Colin Wilson Root
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru
| | - Henry F Peel
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Maximilian Garza
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Nicholas Gidley
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Giuliana Romero-Mariscal
- Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa. Santa Catalina 117, Arequipa 04001, Peru
| | - Lino Morales-Paredes
- Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa. Santa Catalina 117, Arequipa 04001, Peru
| | - Armando Arenazas-Rodríguez
- Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa. Santa Catalina 117, Arequipa 04001, Peru
| | - Juana Ticona-Quea
- Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa. Santa Catalina 117, Arequipa 04001, Peru
| | - Johan Vanneste
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru
| | - Gary F Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA.
| |
Collapse
|
20
|
Shi X, Ma C, Gustave W, Orr M, Sritongchuay T, Yuan Z, Wang M, Zhang X, Zhou Q, Huang Y, Luo A, Zhu C. Effects of arsenic and selenium pollution on wild bee communities in the agricultural landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168052. [PMID: 37898201 DOI: 10.1016/j.scitotenv.2023.168052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Wild bees play crucial roles in pollinating numerous crops and fruits worldwide. However, these essential insect pollinators are threatened with decline due to a variety of stressors. Among stressors, relatively little work has been done on metalloid pollution. Laboratory experiments have shown that arsenic (As) and selenium (Se) can negatively impact on bees, it is unknown if these effects translate in real-world environments. To address this knowledge gap, wild bee communities were sampled from 18 smallholder farmlands in Kaihua County in Quzhou, Southeast China and As and Se concentrations in three bee species were measured (Xylocopa tranquebarorum, Eucera floralia, and Apis cerana). Analyses revealed that the large carpenter bee, X. tranquebarorum, exhibited significantly lower As and Se concentrations than the other two wild bee species. No significant correlations were found between As and Se concentrations in all three wild bee species. Interestingly, the proportion of semi-natural habitat was found to be significantly related to reduced Se concentration in wild bee bodies, though no such effect was observed for As. As pollution negatively impacted bee diversity but not abundance, whereas Se significantly impacted neither bee diversity nor abundance. Furthermore, both As and Se pollution had no significant effect on the abundance of small-bodied wild bees. Given the essential role of wild bees for pollination services, monitoring of As and Se pollution in wild bee bodies and their food resources (pollen and nectar) is recommended across agricultural and other potentially impacted systems.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changsheng Ma
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, New Providence, Nassau, P.O. Box N-4912, Bahamas
| | - Michael Orr
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Tuanjit Sritongchuay
- Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research-UFZ Leipzig, Leipzig, Germany; Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Zhaofeng Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Mei Wang
- Eurofins Technology Service (Suzhou) Co., Ltd., China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qingsong Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yixin Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences/International College, University of Chinese Academy of Sciences, Beijing, China.
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences/International College, University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Chen Y, Fan Y, Huang Y, Liao X, Xu W, Zhang T. A comprehensive review of toxicity of coal fly ash and its leachate in the ecosystem. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115905. [PMID: 38171230 DOI: 10.1016/j.ecoenv.2023.115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Coal fly ash (CFA), a byproduct of coal combustion, is a hazardous industrial solid waste. Its excessive global production, coupled with improper disposal practices, insufficient utilization and limited awareness of its inherent hazards, poses a significant threat to both ecological environment and human health. Based on the physicochemical properties of CFA and its leachates, we elucidate the forms of CFA and potential pathways for its entry into the human body, as well as the leaching behavior, maximum tolerance and biological half-life of toxic elements present in CFA. Furthermore, we provide an overview of current strategies and methods for mitigating the leaching of these harmful elements from CFA. Moreover, we systemically summarize toxic effect of CFA on organisms across various tiers of complexity, analyze epidemiological findings concerning the human health implications resulting from CFA exposure, and delve into the biotoxicological mechanisms of CFA and its leachates at cellular and molecular levels. This review aims to enhance understanding of the potential toxicity of CFA, thereby promoting increased public awareness regarding the disposal and management of this industrial waste.
Collapse
Affiliation(s)
- Yi Chen
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yingjie Fan
- Chongqing Research Center for Jialing River Development, Institute of Intelligent Manufacturing and Automotive, Chongqing Technology and Business Institute, Chongqing 401520, China
| | - Yu Huang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenfeng Xu
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Tao Zhang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; JINSHAN Science & Technology (Group) Co., Ltd., Chongqing 401120, China.
| |
Collapse
|
22
|
Yao M, Zeng Q, Luo P, Yang G, Li J, Sun B, Liang B, Zhang A. Assessing the health risks of coal-burning arsenic-induced skin damage: A 22-year follow-up study in Guizhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167236. [PMID: 37739080 DOI: 10.1016/j.scitotenv.2023.167236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Risk assessment of arsenic-induced skin damage has always received significant global attention. Theories derived from arsenic exposure in drinking water may not be applicable to the coal-burning type to arsenic-exposed area. Furthermore, very few studies have successfully determined the reference value of cumulative arsenic (CA) exposure that leads to specific skin lesions. In this study, we conducted a 22-year follow-up investigation to assess the risk of skin lesions and cancer resulting from long-term, multi-channel arsenic exposure from hazard identification, dose-response assessment, exposure assessment, and risk characterization. The results show that the arsenic exposure can significantly increase the prevalence of skin lesions. For each interquartile range increase of hair arsenic (HA) and CA, the risk of skin damage increased by 1.91 and 3.90 times, respectively. The lower confidence limit of the benchmark dose of HA of arsenic-induced various skin lesions ranged from 0.07 to 0.12 μg·g-1, and 932.57 to 1368.92 mg for CA. The chronic daily intake, lifetime average daily dose in the arsenic-exposed area after the comprehensive prevention and control measures have decreased significantly, but remained higher than the daily baseline level of 3.0 μg·kg-1·d-1. Even as recently as 2020, the hazard quotients and hazard index still exceeded 1, measuring 155.33 and 55.20, and the lifetime excess risk of skin cancer (2.80 × 10-3) remains significantly higher than the acceptable level of 10-6. Our study underscores the effectiveness of comprehensive prevention and control measures in managing high arsenic exposure in coal-burning arsenic poisoning areas. However, it is crucial to acknowledge that the risk of both non-carcinogenic and carcinogenic effects on the skin remains substantially higher than the acceptable level. We recommend setting reference limits for monitoring skin damage among individuals exposed to arsenic, with a recommended upper limit of 0.07 μg·g-1 for HA and a maximum acceptable level of 935.57 mg for CA.
Collapse
Affiliation(s)
- Maolin Yao
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Qibing Zeng
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Peng Luo
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Guanghong Yang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Jun Li
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Baofei Sun
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Bing Liang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Aihua Zhang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
23
|
Tume P, Melipichún T, Ferraro F, Sepúlveda B, Roca N, Bech J. Contamination of As, Cd, Cr, Hg and Pb in soils in Arica commune (Chile). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9199-9213. [PMID: 37405615 DOI: 10.1007/s10653-023-01636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 05/23/2023] [Indexed: 07/06/2023]
Abstract
The objectives of this study are (a) to determine the background concentration of As, Cd, Cr, Hg and Pb in Arica commune; (b) to determine the degree of soil contamination in Arica city using environmental indices and (c) to evaluate the human health risk of these potentially toxic elements. In the rural area of Arica commune, 169 samples were taken and 283 samples were taken in the urban area of Arica city. Total concentrations of Cd, Pb and Cr were determined by EPA 3052 and EPA 6010 C. Mercury was determined by EPA 7473. Arsenic was determined by EPA 7061A. The available concentrations of As and Cr were determined by dilute hydrochloric acid and EPA 6010C. Environmental indices were applied for pollution and US EPA model was used to evaluate human health risk. Background concentrations were As 18.2, Cd 1.12, Cr 73.2, Hg 0.02 and Pb 11.8 mg kg-1, respectively. Environmental indices show that soil samples are located between slightly contaminated to extremely contaminated. Human health risk analysis shows that children have higher levels of risk than adults. The analysis with available concentrations of As and Cr shows no carcinogenic risk for adults and children, but 81% and 98% of the samples were between 10-6 and 10-4, that means intermediate risk.
Collapse
Affiliation(s)
- Pedro Tume
- Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile.
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de La Santísima Concepción, Concepción, Chile.
| | - Tania Melipichún
- Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | - Francesc Ferraro
- Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | - Bernardo Sepúlveda
- Centro Regional de Investigación yDesarrollo Sustentable de Atacama (CRIDESAT), Universidad de Atacama, Copiapó, Chile
| | - Núria Roca
- Departament de Biologia Evolutiva, Ecologia iCiències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08023, Barcelona, Spain
| | - Jaume Bech
- Departament de Biologia Evolutiva, Ecologia iCiències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08023, Barcelona, Spain
| |
Collapse
|
24
|
Chu F, Lu C, Jiao Z, Yang W, Yang X, Ma H, Yu H, Wang S, Li Y, Sun D, Sun H. Unveiling the LncRNA-miRNA-mRNA Regulatory Network in Arsenic-Induced Nerve Injury in Rats through High-Throughput Sequencing. TOXICS 2023; 11:953. [PMID: 38133354 PMCID: PMC10747658 DOI: 10.3390/toxics11120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Arsenic is a natural toxin which is widely distributed in the environment, incurring diverse toxicities and health problems. Previous studies have shown that long non-coding RNAs (LncRNAs) are also reported to contribute to As-induced adverse effects. LncRNAs are involved in the development of nerve injury, generally acting as sponges for microRNAs (miRNAs). This study aimed to investigate the competitive endogenous RNA (ceRNA) regulatory networks associated with arsenic-induced nerve damage. A total of 40 male Wistar rats were exposed to different doses of arsenic for 12 weeks, and samples were collected for pathological observation and high-throughput sequencing. The ceRNA network was constructed using Cytoscape, and key genes were identified through the PPI network and CytoHubba methods. A real-time quantitative PCR assay was performed to validate gene expression levels. The results showed that subchronic exposure to arsenic in drinking water resulted in pathological and ultrastructural damage to the hippocampal tissue, including changes in neuron morphology, mitochondria, and synapses. Exposure to arsenic results in the dysregulation of LncRNA and mRNA expression in the hippocampal tissues of rats. These molecules participated in multiple ceRNA axes and formed a network of ceRNAs associated with nerve injury. This study also verified key molecules within the ceRNA network and provided preliminary evidence implicating the ENRNOT-00000022622-miR-206-3p-Bdnf axis in the mechanism of neural damage induced by arsenic in rats. These findings provide novel insights into the underlying mechanism of nervous system damage induced by arsenic exposure.
Collapse
Affiliation(s)
- Fang Chu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Chunqing Lu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Zhe Jiao
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Xiyue Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Hao Ma
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Hao Yu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Sheng Wang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Yang Li
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| |
Collapse
|
25
|
Ortiz-Garcia NY, Cipriano Ramírez AI, Juarez K, Brand Galindo J, Briceño G, Calderon Martinez E. Maternal Exposure to Arsenic and Its Impact on Maternal and Fetal Health: A Review. Cureus 2023; 15:e49177. [PMID: 38130554 PMCID: PMC10734558 DOI: 10.7759/cureus.49177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Arsenic exposure is a significant public health issue, with harmful effects caused by its use in commercial products such as car batteries, pesticides, and herbicides. Arsenic has three main compounds: inorganic, organic, and arsine gas. Inorganic arsenic compounds in water are highly toxic. The daily intake of arsenic from food and beverages is between 20 and 300 mcg/day. Arsenic is known for its carcinogenic properties and is classified as a human carcinogen by different institutions. Exposure can lead to oxidative stress, DNA damage, and epigenetic deregulation, which can cause endocrine disorders, altered signal transduction pathways, and cell proliferation. In addition, arsenic can easily cross the placenta, making it a critical concern for maternal and fetal health. Exposure can lead to complications such as gestational diabetes, anemia, low birth weight, miscarriage, and congenital anomalies. Female babies are particularly vulnerable to the negative impact of arsenic exposure, with a higher risk of low weight for gestational age and congenital cardiac anomalies. Therefore, it is crucial to monitor and regulate the levels of arsenic in drinking water and food sources to prevent these adverse health outcomes. Further research is necessary to fully understand the impact of arsenic exposure on human health, especially during pregnancy and infancy, by implementing preventative measures and monitoring the levels of arsenic in the environment.
Collapse
Affiliation(s)
| | | | - Karen Juarez
- Infectious Disease, Universidad Nacional Autónoma de México (UNAM), Mexico City, MEX
| | | | - Gabriela Briceño
- Obstetrics and Gynecology, Universidad de Oriente, Barcelona, VEN
| | | |
Collapse
|
26
|
Khan I, Khan MU, Umar R, Rai N. Occurrence, speciation, and controls on arsenic mobilization in the alluvial aquifer system of the Ghaghara basin, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7933-7956. [PMID: 37505348 DOI: 10.1007/s10653-023-01691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
High concentrations of arsenic (As) in groundwater are among the long-standing environmental problems on the planet. Due to adverse impacts on the human and aquatic system, characterization and quantification of individual inorganic As species are crucial in understanding the occurrence, environmental fate, behaviour, and toxicity in natural waters. This study presents As concentration and its speciation As(III) and As(V) data, including the interrelationship with other major and trace aqueous solutes from parts of the Ghaghara basin, India. More than half (57%) of the groundwater samples exhibited elevated As concentrations (> 10 μg/L), whereas 67.4% of samples have higher As(III) values relative to As(V), signifying a potential risk of As(III) toxicity. The elevated concentration of As was associated with higher Fe, Mn, and HCO3-, especially in samples from shallow well depth. PHREEQC modeling demonstrates the presence of mineral phases such as hematite, goethite, rhodochrosite, etc. Therefore, it is inferred that the release of As from sediment particles into pore water via microbially mediated Fe/Mn oxyhydroxides, and As(V) reduction processes mainly control high As concentrations. The heavy metal pollution indices (HPI) and (HEI) values revealed heavy metal pollution in low-lying areas deposited by relatively younger sediments along the Ghaghara River. Large-scale agricultural practices, overexploitation of groundwater, and indiscriminate sewage disposal, in addition to geogenic factors, cannot be ruled out as potential contributors to As mobilization in the region. This study recommends conducting seasonal hydrogeochemical monitoring and investigating regional natural background levels of As, to precisely understand the controlling mechanistic pathways of As release.
Collapse
Affiliation(s)
- Imran Khan
- Department of Geology, Aligarh Muslim University, Aligarh, UP, 202002, India.
| | - M U Khan
- Department of Earth Sciences, Indian Institute of Technology, Roorkee, Roorkee, 247 667, India
| | - Rashid Umar
- Department of Geology, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Nachiketa Rai
- Department of Earth Sciences, Indian Institute of Technology, Roorkee, Roorkee, 247 667, India
| |
Collapse
|
27
|
Zhang P, Yang M, Lan J, Huang Y, Zhang J, Huang S, Yang Y, Ru J. Water Quality Degradation Due to Heavy Metal Contamination: Health Impacts and Eco-Friendly Approaches for Heavy Metal Remediation. TOXICS 2023; 11:828. [PMID: 37888679 PMCID: PMC10611083 DOI: 10.3390/toxics11100828] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Water quality depends on its physicochemical and biological parameters. Changes in parameters such as pH, temperature, and essential and non-essential trace metals in water can render it unfit for human use. Moreover, the characteristics of the local environment, geological processes, geochemistry, and hydrological properties of water sources also affect water quality. Generally, groundwater is utilized for drinking purposes all over the globe. The surface is also utilized for human use and industrial purposes. There are several natural and anthropogenic activities responsible for the heavy metal contamination of water. Industrial sources, including coal washery, steel industry, food processing industry, plastic processing, metallic work, leather tanning, etc., are responsible for heavy metal contamination in water. Domestic and agricultural waste is also responsible for hazardous metallic contamination in water. Contaminated water with heavy metal ions like Cr (VI), Cd (II), Pb (II), As (V and III), Hg (II), Ni (II), and Cu (II) is responsible for several health issues in humans, like liver failure, kidney damage, gastric and skin cancer, mental disorders and harmful effects on the reproductive system. Hence, the evaluation of heavy metal contamination in water and its removal is needed. There are several physicochemical methods that are available for the removal of heavy metals from water, but these methods are expensive and generate large amounts of secondary pollutants. Biological methods are considered cost-effective and eco-friendly methods for the remediation of metallic contaminants from water. In this review, we focused on water contamination with toxic heavy metals and their toxicity and eco-friendly bioremediation approaches.
Collapse
Affiliation(s)
- Peng Zhang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Mingjie Yang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Jingjing Lan
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Yan Huang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Jinxi Zhang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Shuangshuang Huang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Yashi Yang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Junjie Ru
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| |
Collapse
|
28
|
Calao-Ramos CR, Marrugo Negrete JL, Urango Cárdenas I, Díez S. Genotoxicity and mutagenicity in blood and drinking water induced by arsenic in an impacted gold mining region in Colombia. ENVIRONMENTAL RESEARCH 2023; 233:116229. [PMID: 37236386 DOI: 10.1016/j.envres.2023.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Arsenic (As) is one of the most dangerous substances that can affect human health and long-term exposure to As in drinking water can even cause cancer. The objective of this study was to investigate the concentrations of total As in the blood of inhabitants of a Colombian region impacted by gold mining and to evaluate its genotoxic effect through DNA damage by means of the comet assay. Additionally, the concentration of As in the water consumed by the population as well as the mutagenic activity of drinking water (n = 34) in individuals were determined by hydride generator atomic absorption spectrometry and the Ames test, respectively. In the monitoring, the study population was made up of a group of 112 people, including inhabitants of four municipalities: Guaranda, Sucre, Majagual, and San Marcos from the Mojana region as the exposed group, and Montería as a control group. The results showed DNA damage related to the presence of As in blood (p < 0.05) in the exposed population, and blood As concentrations were above the maximum allowable limit of 1 μg/L established by the ATSDR. A mutagenic activity of the drinking water was observed, and regarding the concentrations of As in water, only one sample exceeded the maximum permissible value of 10 μg/L established by the WHO. The intake of water and/or food containing As is potentially generating DNA damage in the inhabitants of the Mojana region, which requires surveillance and control by health entities to mitigate these effects.
Collapse
Affiliation(s)
- Clelia Rosa Calao-Ramos
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia; Universidad de Córdoba, Carrera 6 No. 76-103, Montería, College of Health Sciences, Bacteriology Department, Córdoba, Colombia
| | - Jose Luis Marrugo Negrete
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia.
| | - Iván Urango Cárdenas
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
29
|
Ghouri F, Shahid MJ, Liu J, Sun L, Riaz M, Imran M, Ali S, Liu X, Shahid MQ. The protective role of tetraploidy and nanoparticles in arsenic-stressed rice: Evidence from RNA sequencing, ultrastructural and physiological studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132019. [PMID: 37437486 DOI: 10.1016/j.jhazmat.2023.132019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Genome doubling in plants induces physiological and molecular changes to withstand environmental stress. Diploid rice (D-2x) and its tetraploid (T-4x) plants were treated with 25 μM Arsenic (As) and 15 mg L-1 TiO2 nanoparticles (NPs), and results indicated decreased growth and photosynthetic activity with high accumulation of reactive oxygen species (ROS) due to the As-toxicity in rice lines, significantly in D-2x rice plants. The treatment of As-contaminated rice with TiO2 NPs resulted in increased root length (8.17%) and chlorophyll AB (13.28%) and decreased electrolyte leakage (21.76%) and H2O2 (17.65%) contents than its counterpart diploid rice. Moreover, TiO2 NPs improved the activity of peroxidase, catalase, glutathione, and superoxide dismutase and reduced lipid peroxidation due to lower ROS production in D-2x and T-4x under As toxicity. Transcriptome analysis revealed abrupt changes in the expression levels of key signaling heat shock proteins, tubulin, aquaporins, As, and metal transporters under As toxicity in T-4x and D-2x lines. The KEGG and GO studies highlighted the striking distinctions between rice lines under As-stress in glutathione metabolism, H2O2 catabolic process, MAPK signaling pathway, and carotenoid biosynthesis terms, revealing consistency between physiological and molecular results. Root cells from D-2x rice were significantly more distorted by As poisoning than those from 4x rice, and cell organelles, such as mitochondria and endoplasmic reticulum, were changed or deformed. These findings proved the superiority of tetraploid rice lines over their diploid counterpart in coping with As-stress.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Munazzam Jawad Shahid
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Wang Y, Cheng H. Environmental fate and ecological impact of the potentially toxic elements from the geothermal springs. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6287-6303. [PMID: 37289258 DOI: 10.1007/s10653-023-01628-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Potentially toxic elements from geothermal springs can cause significant pollution of the surrounding environment and pose potential risk to the ecosystem. The fate of potentially toxic elements in the water-soil-plant system in the Yangbajain geothermal field on the Tibetan Plateau, China was investigated to assess their impact on the eco-environment. The concentrations of Be, F, As, and Tl were highly elevated in the headwaters of the Yangbajain geothermal springs, and their concentrations in the local surface water impacted by the geothermal springs reached 8.1 μg/L (Be), 23.9 mg/L (F), 3.83 mg/L (As), and 8.4 μg/L (Tl), respectively, far exceeding the corresponding thresholds for surface and drinking water. The absence of As-Fe co-precipitation, undersaturated F-, and weak adsorption on minerals at high geothermal spring pH may be responsible for the As- and F-rich drainage, which caused pollution of local river. As concentrations in the leaves of Orinus thoroldii (Stapf ex Hemsl.) Bor were up to 42.7 μg/g (dry weight basis), which is an order of magnitude higher than the allowable limit in animal feeds. The locally farmed yaks are exposed to the excessive amount of F and As with high exposure risk through water-drinking and grass-feeding.
Collapse
Affiliation(s)
- Yafeng Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China.
| |
Collapse
|
31
|
Alam MA, Mukherjee A, Bhattacharya P, Bundschuh J. An appraisal of the principal concerns and controlling factors for Arsenic contamination in Chile. Sci Rep 2023; 13:11168. [PMID: 37429943 DOI: 10.1038/s41598-023-38437-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
Although geogenic Arsenic (As) contamination is well-recognized in northern Chile, it is not restricted to this part of the country, as the geological conditions favoring As release to the human environment exist across the country as well, although not at the same level, based on comparatively fewer studies in central and southern Chile. The present work provides a critical evaluation of As sources, pathways, and controls with reports and case studies from across the country based on an exhaustive bibliographic review of its reported geogenic sources and processes that affect its occurrence, systematization, and critical revision of this information. Arc magmatism and associated geothermal activities, identified as the primary As sources, are present across the Chilean Andes, except for the Pampean Flat Slab and Patagonian Volcanic Gap. Metal sulfide ore zones, extending from the country's far north to the south-central part, are the second most important geogenic As source. While natural leaching of As-rich mineral deposits contaminates the water in contact, associated mining, and metallurgical activities result in additional As release into the human environment through mining waste and tailings. Moreover, crustal thickness has been suggested as a principal controlling factor for As release, whose southward decrease has been correlated with lower As values.
Collapse
Affiliation(s)
- Mohammad Ayaz Alam
- Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, Enrique Kirberg Baltiansky n° 03, Estación Central, Santiago, Región Metropolitana, Chile.
| | - Abhijit Mukherjee
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jochen Bundschuh
- School of Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, Australia
| |
Collapse
|
32
|
Hechavarría-Hernández A, Viana JLM, Barbiero L, Rezende-Filho AT, Montes CR, Melfi AJ, Fostier AH. Spatial and seasonal variation of arsenic speciation in Pantanal soda lakes. CHEMOSPHERE 2023; 329:138672. [PMID: 37060957 DOI: 10.1016/j.chemosphere.2023.138672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
The occurrence of high arsenic concentrations (up to 3000 μg L-1) in water of soda lakes of the Pantanal wetland is a remarkable case of natural arsenic contamination in South America. However, little is known about arsenic speciation in this environment, particularly regarding speciation changes related to lake trophic status and seasonal variations. To fill this gap, arsenic speciation analysis was carried out in surface (SW) and subsurface (SSW) waters sampled in five soda lakes with different eutrophication status, in two dry and one wet season. As(V) was the dominant species in these waters, while As(III), DMA, MMA and likely complex organic species were present in lower amounts. The results allow to conclude that the arsenic speciation in SW and SSW varies seasonally according to the regional wet or dry periods and lake water levels. In eutrophic turbid and in oligotrophic vegetated soda lakes, arsenic speciation was also characterized by spatial differences between edge and center or between the SW and SSW. Cyanobacteria or macrophytes/algae are involved in arsenic biotransformation in soda lakes through its metabolic and detoxification processes. Significant variation in surface water arsenic speciation occurs as a result of seasonal primary production fluctuation or water arsenic concentration changes in the soda lakes, increasing organoarsenics in dry periods, whereas in flood periods, As(V) prevails. Spatial distribution of arsenic species is significantly impacted by biogeochemical conditions at the water/sediment interface in soda lakes.
Collapse
Affiliation(s)
| | | | - Laurent Barbiero
- Université P. Sabatier, IRD, CNRS, OMP, Géoscience Environnement Toulouse (GET), 14 Avenue Edouard Belin, F31400, Toulouse, France
| | - Ary Tavares Rezende-Filho
- Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | | | | | - Anne Helene Fostier
- Institute of Chemistry, University of Campinas, UNICAMP, 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
33
|
Parker KH, Bishop JM, Serieys LEK, Mateo R, Camarero PR, Leighton GRM. A heavy burden: Metal exposure across the land-ocean continuum in an adaptable carnivore. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121585. [PMID: 37040831 DOI: 10.1016/j.envpol.2023.121585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Urbanisation and associated anthropogenic activities release large quantities of toxic metals and metalloids into the environment, where they may bioaccumulate and threaten both wildlife and human health. In highly transformed landscapes, terrestrial carnivores may be at increased risk of exposure through biomagnification. We quantified metallic element and metalloid exposure in blood of caracals (Caracal caracal), an adaptable felid inhabiting the rapidly urbanising, coastal metropole of Cape Town, South Africa. Using redundancy analysis and mixed-effect models, we explored the influence of demography, landscape use, and diet on the concentration of 11 metals and metalloids. Although species-specific toxic thresholds are lacking, arsenic (As) and chromium (Cr) were present at potentially sublethal levels in several individuals. Increased use of human-transformed landscapes, particularly urban areas, roads, and vineyards, was significantly associated with increased exposure to aluminium (Al), cobalt (Co) and lead (Pb). Foraging closer to the coast and within aquatic food webs was associated with increased levels of mercury (Hg), selenium (Se) and arsenic, where regular predation on seabirds and waterbirds likely facilitates transfer of metals from aquatic to terrestrial food webs. Further, several elements were linked to lower haemoglobin levels (chromium, mercury, manganese, and zinc) and elevated levels of infection-fighting cells (mercury and selenium). Our results highlight the importance of anthropogenic activities as major environmental sources of metal contamination in terrestrial wildlife, including exposure across the land-ocean continuum. These findings contribute towards the growing evidence suggesting cities are particularly toxic areas for wildlife. Co-exposure to a suite of metal pollutants may threaten the long-term health and persistence of Cape Town's caracal population in unexpected ways, particularly when interacting with additional known pollutant and pathogen exposure. The caracal is a valuable sentinel for assessing metal exposure and can be used in pollution monitoring programmes to mitigate exposure and promote biodiversity conservation in human-dominated landscapes.
Collapse
Affiliation(s)
- Kim H Parker
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, South Africa
| | - Jacqueline M Bishop
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, South Africa
| | - Laurel E K Serieys
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, South Africa; Panthera, New York, NY, USA; Cape Leopard Trust, Cape Town, South Africa
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Gabriella R M Leighton
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, South Africa; Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa.
| |
Collapse
|
34
|
Mensah MK, Drebenstedt C, Ola IM, Hoth N, Damptey FG, Wiafe ED. Immobilization effects of co-pyrolyzed neem seed mixed with poultry manure on potentially toxic elements in soil and the phytoremediation potentials of native Manihot esculenta and Jatropha curcas in ensuring sustainable land use. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:793. [PMID: 37261537 DOI: 10.1007/s10661-023-11430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
This study evaluated the effects of neem seed biochar, poultry manure, and their combinations at varying rates of 15 and 25% (w/w) on potentially toxic elements (PTEs) in soils. Afterward, the suitability of Manihot esculenta and Jatropha curcas in removing Cd, As, Zn, Pb, and Hg from mine spoils were appraised in a 270-day outdoor pot experiment. Using ICP-Mass Spectrometry, the elemental contents of target PTE in the shoot, root, and soil specimens were determined for each treatment. The obtained average values were further subjected to a nonparametric test of samples using IBM SPSS Statistic 29. The applied organic amendments resulted in significant differences p < 0.05 in PTE availability for plant uptake after the Independent-Samples Kruskal-Wallis Test was made. Nonetheless, applying a 25% (w/w) mixture of neem seed biochar and poultry manure was efficient in immobilizing more PTEs in soils which caused lower PTEs presence in plants. Organic amendments further significantly enhanced the fertility of the mine soils leading to about a 6- 25.00% increase in the biomass yield (p < 0.05) of both plants. No significant difference (p > 0.05) was however observed between the phytoremediation potentials of both plants after the Independent-Sample Mann-Whitney U test. Even that, Manihot esculenta was averagely more efficient in PTE uptake than Jatropha curcas. Larger portions of the bioaccumulated PTEs were stored in the roots of both plants leading to high bioconcentration factors of 1.94- 2.47 mg/kg and 1.27- 4.70 mg/kg, respectively, for Jatropha curcas and Manihot esculenta. A transfer factor < 1 was achieved for all PTEs uptake by both plants and indicated their suitability for phytostabilization. Techniques for easy cultivation of root-storing PTEs are required to enhance their large-scale use as their biomass could further be used in clean energy production.
Collapse
Affiliation(s)
- Martin Kofi Mensah
- Institute of Surface Mining and Special Civil Engineering, Technical University of Mining Freiberg, Gustav-Zeuner Street 1A, 09599, Freiberg, Germany.
| | - Carsten Drebenstedt
- Institute of Surface Mining and Special Civil Engineering, Technical University of Mining Freiberg, Gustav-Zeuner Street 1A, 09599, Freiberg, Germany
| | - Ibukun Momoriola Ola
- Institute of Surface Mining and Special Civil Engineering, Technical University of Mining Freiberg, Gustav-Zeuner Street 1A, 09599, Freiberg, Germany
| | - Nils Hoth
- Institute of Surface Mining and Special Civil Engineering, Technical University of Mining Freiberg, Gustav-Zeuner Street 1A, 09599, Freiberg, Germany
| | | | - Edward Debrah Wiafe
- School of Natural and Environmental Sciences, University of Environment and Sustainable Development, PMB Somanya, Ghana
| |
Collapse
|
35
|
Wang YH, Wang YQ, Yu XG, Lin Y, Liu JX, Wang WY, Yan CH. Chronic environmental inorganic arsenic exposure causes social behavioral changes in juvenile zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161296. [PMID: 36592900 DOI: 10.1016/j.scitotenv.2022.161296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Arsenic (As) is a metalloid commonly found worldwide. Environmental As exposure may cause potential health hazards and behavioral changes in humans and animals. However, the effects of environmental As concentrations on social behavior, especially during the juvenile stage, are unclear. In this study, we observed behavioral changes in juvenile zebrafish after 28 days of exposure to inorganic As (NaAsO2 100 and 500 ppb) in water, especially anxiety and social deficits. Additionally, the level of oxidative stress in the zebrafish brain after As treatment increased, the content of dopamine (DA) decreased, and the transcription level of genes involved in DA metabolism with the activity of monoamine oxidase (MAO) increased. Oxidative stress is a recognized mechanism of nerve damage induced by As exposure. The zebrafish were exposed to N-acetylcysteine (NAC) to reduce As exposure-induced oxidative stress. The results showed improvements in social behavior, DA content, MAO activity, and gene transcription in zebrafish. In conclusion, environmental As exposure can induce behavioral abnormalities, such as anxiety and social deficits in zebrafish, which may be caused by As-induced oxidative stress altering gene transcription levels, causing an increase in MAO activity and a decrease in DA.
Collapse
Affiliation(s)
- Yi-Hong Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ya-Qian Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Gang Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wei-Ye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
36
|
Raturi G, Chaudhary A, Rana V, Mandlik R, Sharma Y, Barvkar V, Salvi P, Tripathi DK, Kaur J, Deshmukh R, Dhar H. Microbial remediation and plant-microbe interaction under arsenic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160972. [PMID: 36566865 DOI: 10.1016/j.scitotenv.2022.160972] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Arsenic contamination in aquatic and terrestrial ecosystem is a serious environmental issue. Both natural and anthropogenic processes can introduce it into the environment. The speciation of the As determine the level of its toxicity. Among the four oxidation states of As (-3, 0, +3, and + 5), As(III) and As(V) are the common species found in the environment, As(III) being the more toxic with adverse impact on the plants and animals including human health. Therefore, it is very necessary to remediate arsenic from the polluted water and soil. Different physicochemical as well as biological strategies can be used for the amelioration of arsenic polluted soil. Among the microbial approaches, oxidation of arsenite, methylation of arsenic, biosorption, bioprecipitation and bioaccumulation are the promising transformation activities in arsenic remediation. The purpose of this review is to discuss the significance of the microorganisms in As toxicity amelioration in soil, factors affecting the microbial remediation, interaction of the plants with As resistant bacteria, and the effect of microorganisms on plant arsenic tolerance mechanism. In addition, the exploration of genetic engineering of the bacteria has a huge importance in bioremediation strategies, as the engineered microbes are more potent in terms of remediation activity along with quick adaptively in As polluted sites.
Collapse
Affiliation(s)
- Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Anchal Chaudhary
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Varnika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Vitthal Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Prafull Salvi
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | | | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Plaksha University, SAS Nagar, Punjab, India; Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India.
| | - Hena Dhar
- National Agri-Food Biotechnology Institute (NABI), Mohali, India.
| |
Collapse
|
37
|
Mukherjee AG, Valsala Gopalakrishnan A. The interplay of arsenic, silymarin, and NF-ĸB pathway in male reproductive toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114614. [PMID: 36753973 DOI: 10.1016/j.ecoenv.2023.114614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Arsenic toxicity is one of the most trending reasons for several malfunctions, particularly reproductive toxicity. The exact mechanism of arsenic poisoning is a big question mark. Exposure to arsenic reduces sperm count, impairs fertilization, and causes inflammation and genotoxicity through interfering with autophagy, epigenetics, ROS generation, downregulation of essential protein expression, metabolite changes, and hampering several signaling cascades, particularly by the alteration of NF-ĸB pathway. This work tries to give a clear idea about the different aspects of arsenic resulting in male reproductive complications, often leading to infertility. The first part of this article explains the implications of arsenic poisoning and the crosstalk of the NF-ĸB pathway in male reproductive toxicity. Silymarin is a bioactive compound that exerts anti-cancer and anti-inflammatory properties and has demonstrated hopeful outcomes in several cancers, including colon cancer, breast cancer, and skin cancer, by downregulating the hyperactive NF-ĸB pathway. The next half of this article thus sheds light on silymarin's therapeutic potential in inhibiting the NF-ĸB signaling cascade, thus offering protection against arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
38
|
Biolé FG, Llamazares Vegh S, de Carvalho BM, Bavio M, Tripodi P, Volpedo AV, Thompson G. Health risk assessment and differential distribution of Arsenic and metals in organs of Urophycis brasiliensis a commercial fish from Southwestern Atlantic coast. MARINE POLLUTION BULLETIN 2023; 187:114499. [PMID: 36584433 DOI: 10.1016/j.marpolbul.2022.114499] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The concentrations of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn were analyzed in muscle, gills, and liver of Urophycis brasiliensis from two Southwestern Atlantic catch areas (Brazil and Argentina). Additionally, the health risk of general and fishermen populations through fish consumption was estimated. The gills showed the highest concentrations of most of the elements, followed by the liver. With the exception of As, the muscle was the organ with the lowest concentrations of most elements. Levels of arsenic in muscle of U. brasiliensis were exceeded the maximum permissible levels for human consumption recommended by local and international guidelines. The target hazard quotients (THQs) and the carcinogenic risk (CR) showed no risk for individual and all elements. These results highlight the importance of arsenic speciation in U. brasiliensis muscle in order to generate more reliable risk estimates.
Collapse
Affiliation(s)
- Fernanda G Biolé
- CONICET - Universidad Nacional de Villa María, Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Av. A. Jauretche 1555 (CP5900), Villa María, Córdoba, Argentina.
| | - Sabina Llamazares Vegh
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina
| | - Barbara Maichak de Carvalho
- Programa de Pós-Graduação em Zoologia, Departamento de Zoologia - UFPR, Centro Politécnico, Bairro Jardim das Américas, CP 19.020, Curitiba, Paraná 81,531-980, Brazil
| | - Marta Bavio
- Instituto de Investigación e Ingeniería Ambiental (3iA), Universidad Nacional de San Martín (UNSAM), Martín de Irigoyen 3100 (1650), San Martín, Buenos Aires, Argentina
| | - Pamela Tripodi
- Instituto de Investigación e Ingeniería Ambiental (3iA), Universidad Nacional de San Martín (UNSAM), Martín de Irigoyen 3100 (1650), San Martín, Buenos Aires, Argentina
| | - Alejandra V Volpedo
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Buenos Aires, Argentina
| | - Gustavo Thompson
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina
| |
Collapse
|
39
|
Mensah MK, Drebenstedt C, Hoth N, Ola IM, Okoroafor PU, Wiafe ED. Artisanal gold mine spoil types within a common geological area and their variations in contaminant loads and human health risks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:312. [PMID: 36658416 PMCID: PMC9852104 DOI: 10.1007/s10661-023-10932-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Abstract
This study answered the question of whether mine spoils occurring in a common geological location had similarities in their contaminant load and associated health risks. Using inductively coupled plasma mass spectrometry, the total contents of Cd, Pb, As, Hg, Zn, Fe, and Al were determined for 110 digested soil samples obtained from underground rock ore (URS), oxide ore (OXS), and alluvial ore (AVS) mine spoils. Independent sample Kruskal-Wallis test and pairwise comparisons of sources were used to ascertain the variation in elemental load between the mine spoil investigated. The results showed that mine spoil contaminations and their ecological and health risk significantly varied (p < 0.01) from each other and fell in the order OXS > URS > AVS > forest soils because of their geochemistry. Determined enrichment and geo-accumulation indices revealed that OXS and URS sites were severely-extremely polluted with Cd, Hg, and As, while AVS mine spoils were only moderately contaminated by Cd and As contents. Children had the highest tendency for developing noncarcinogenic health defects largely due to toxic contents of As, Cd, and Hg in soil materials near them than adult men and women would after obtaining a hazard index of 73.5 and 67.7 (unitless) at both OXS and URS sites. Mine spoils especially where hard rocks and oxide ores were processed are not fit for agricultural use or human habitation. The restriction of human access and sustainable remediation approaches are required to avert health defects. Even so, area-specific potentially toxic elements must be targeted during soil cleaning due to the significant variations in contaminant load between mined sites.
Collapse
Affiliation(s)
- Martin Kofi Mensah
- Institute of Surface Mining and Special Civil Engineering, Freiberg Technical University of Mining, Gustav-Zeuner Street 1A, Freiberg, 09599 Germany
| | - Carsten Drebenstedt
- Institute of Surface Mining and Special Civil Engineering, Freiberg Technical University of Mining, Gustav-Zeuner Street 1A, Freiberg, 09599 Germany
| | - Nils Hoth
- Institute of Surface Mining and Special Civil Engineering, Freiberg Technical University of Mining, Gustav-Zeuner Street 1A, Freiberg, 09599 Germany
| | - Ibukun Momoriola Ola
- Institute of Surface Mining and Special Civil Engineering, Freiberg Technical University of Mining, Gustav-Zeuner Street 1A, Freiberg, 09599 Germany
| | - Precious Uchenna Okoroafor
- Institute of Biosciences/Interdisciplinary Environmental Research Centre, Freiberg Technical University of Mining, Leipziger Street 29, Freiberg, 09599 Germany
| | - Edward Debrah Wiafe
- School of Natural and Environmental Sciences, University of Environment and Sustainable Development, PMB Somanya, Ghana
| |
Collapse
|
40
|
Wang D, Xu H, Fan L, Ruan W, Song Q, Diao H, He R, Jin Y. Hyperphosphorylation of EGFR/ERK signaling facilitates long-term arsenite-induced hepatocytes epithelial-mesenchymal transition and liver fibrosis in sprague-dawley rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114386. [PMID: 36508792 DOI: 10.1016/j.ecoenv.2022.114386] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Arsenic is a well known environmental hazardous material, chronic arsenic exposure results in different types of liver damage. Among them, liver fibrosis has become a research hotspot because of its reversibility, while the underlying mechanism is still unclear. Previous studies revealed that EGFR/ERK signaling appears to play an important role in fibrosis diseases. In this study, sprague-dawley rats were exposed to different doses of arsenite for 36 weeks to investigate the roles of EGFR/ERK signaling on arsenite-induced liver fibrogenesis. Our results showed that long-term arsenite exposure induced liver fibrosis, accompanied by hepatic stellate cells (HSCs) activation, excessive serum secretion of extracellular matrix (ECM), and hepatocytes epithelial-mesenchymal transformation (EMT). In addition, arsenite exposure caused hyperphosphorylation of EGFR/ERK signaling in liver tissue of rats, indicating that EGFR/ERK signaling may be involved in arsenite-induced liver fibrosis. Indeed, erlotinib (a specific phosphorylation inhibitor of EGFR) intervention significantly decreased arsenite induced hyperphosphorylation of EGFR/ERK signaling, thereby suppressed hepatocytes EMT process and alleviated liver fibrogenesis in arsenite exposed rats. In summary, the present study provides evidences showing that hyperphosphorylation of EGFR/ERK signaling facilitates long-term arsenite-induced hepatocytes EMT and liver fibrosis in rats, which brings new insights into the pathogenesis of arsenic-induced liver injury.
Collapse
Affiliation(s)
- Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Huifen Xu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Wenli Ruan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China; Tongren Center for Disease Control and Prevention, Tongren 554300, Guizhou, China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| |
Collapse
|
41
|
Fang Y, Cui Y, Mou X, Lu L, Shentu J, Zhu M. In Vitro Bioaccessibility and Health Risk Assessment of Arsenic and Zinc Contaminated Soil Stabilized by Ferrous Sulfate: Effect of Different Dietary Components. TOXICS 2022; 11:23. [PMID: 36668749 PMCID: PMC9863096 DOI: 10.3390/toxics11010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Iron-based materials have good stability in reducing the mobility and toxicity of heavy metals, but the behavior and human health risks of heavy metals could be affected by dietary components. This study investigated the effect of typical diets (lettuce, cooked rice and apples) on the bioaccessibility and morphological changes of arsenic (As) and zinc (Zn) in contaminated site after stabilization by ferrous sulfate (FeSO4). The results showed that the bioaccessibility of As and Zn were increased in a co-digestion system of food. The augmented effect on As bioaccessibility mainly occurred in the gastric phase: apple > lettuce > cooked rice (p < 0.05), while the augmented effect on Zn bioaccessibility mainly occurred in the intestinal phase: lettuce > apple > cooked rice (p < 0.05). FeSO4 weakened the dissolution effect of dietary components on As bioaccessibility, and reduced As bioaccessibility in the gastric and intestinal phases by 34.0% and 37.9% (p < 0.05), respectively. Dietary components and Fe fractions influenced the speciation and distribution of As and Zn. FeSO4 reduced the hazard quotient (HQ) and carcinogenic risk (CR) values of the contaminated soil by 33.97% and 33.59%, respectively. This study provides a reference for a better understanding of more realistic strategies to modulate exposure risks of heavy metal-contaminated sites.
Collapse
Affiliation(s)
- Yi Fang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuxue Cui
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiaoli Mou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|
42
|
Chris DI, Anyanwu BO. Pollution and Potential Ecological Risk Evaluation Associated with Toxic Metals in an Impacted Mangrove Swamp in Niger Delta, Nigeria. TOXICS 2022; 11:6. [PMID: 36668732 PMCID: PMC9866853 DOI: 10.3390/toxics11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic activities along coastal areas have contributed to the unwarranted discharge of toxic metals into mangrove swamps, posing risks to marine deposits and ecological environments. In this research, we studied the Isaka−Bundu tidal swamp area in the Niger Delta, which is an impacted mangrove creek located along the Bonny river, exposed to pollution pressures. The ecological risks (Er) of toxic metals in the sediments and water of the Isaka−Bundu tidal mangrove swamp followed a decreasing order (Cu > Zn > Cd > Cu > Pb > As), according to our results, while the potential ecological risk index (PERI) of the toxic metals in the sediments and water of the Isaka−Bundu tidal mangrove swamp can be said to have a very high ecological risk (PERI ≥ 600). The sediment pollution load index (PLI) was higher than 1 in all three analyzed stations, suggesting extremely toxic pollution. The enrichment evaluation shows that the studied stations have a moderate potential ecological risk of Cd, with the enrichment value for Pb showing low potential ecological risk. Our study shows that the Isaka−Bundu tidal mangrove swamp has a significant level of toxic metal pollution, which is evidence of the illegal activities performed in the Niger Delta.
Collapse
Affiliation(s)
- Davies Ibienebo Chris
- Department of Fisheries, Faculty of Agriculture, University of Port Harcourt, Port Harcourt P.M.B. 5323, Rivers State, Nigeria
| | - Brilliance Onyinyechi Anyanwu
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
43
|
Bia G, García MG, Cosentino NJ, Borgnino L. Dispersion of arsenic species from highly explosive historical volcanic eruptions in Patagonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158389. [PMID: 36055506 DOI: 10.1016/j.scitotenv.2022.158389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Andean volcanic rocks typically have low to moderate arsenic (As) concentrations. However, elevated levels of As in groundwaters of southern South America have been reported as a consequence of weathering of volcanic glass. This study discusses the abundance, speciation and dispersion of As species in fresh volcanic ash from highly explosive (Volcanic Explosivity Index: 4-5) Patagonian eruptions, as well as the potential of As release to aqueous reservoirs. Synchrotron-based X-ray absorption and micro-focused X-ray photoelectron spectroscopies were used to evaluate As solid speciation. Batch experiments at different pH conditions were performed with the aim of understanding the controls on As release to aqueous reservoirs. Bulk chemical and mineralogical characterizations were performed by inductively coupled plasma optical emission spectroscopy, X-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy. Finally, to understand how As-bearing phases are spatially distributed after eruptions, simulations of volcanic ash emission, transport and deposition were performed. Results indicate that the concentration, speciation, and mobility of As in fresh Patagonian volcanic ash depend on the silica content of source magmas. Although the main As host in volcanic ash is Al-silicate glass, this phase is stable at neutral pH characteristic of most aqueous reservoirs. Higher contributions of As to water are associated with the more mobile As species that concentrate onto the surface of Al-silicate glass. Atmospheric dispersion simulations revealed that primary fallout of As-bearing ash has affected large areas in Patagonia, but also reached the Chaco-Pampean plain, where the presence of As-rich groundwater has been widely documented.
Collapse
Affiliation(s)
- Gonzalo Bia
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET -UNC, Argentina; FCEFyN Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - M Gabriela García
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET -UNC, Argentina; FCEFyN Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás J Cosentino
- Instituto de Geografía, Facultad de Historia, Geografía y Ciencia Política, Pontificia Universidad Católica de Chile, Macul, Chile
| | - Laura Borgnino
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET -UNC, Argentina; FCEFyN Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
44
|
Kumari B, Bharti VK. Recent advancements in toxicology, modern technology for detection, and remedial measures for arsenic exposure: review. Biotechnol Genet Eng Rev 2022:1-43. [PMID: 36411979 DOI: 10.1080/02648725.2022.2147664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022]
Abstract
Arsenic toxicity has become a major global health concern for humans and animals due to extensive environmental and occupational exposure to arsenic-contaminated water, air, soil, and plant and animal origin food. It has a wide range of detrimental effects on animals, humans, and the environment. As a result, various experimental and clinical studies were undertaken and are undergoing to understand its source of exposures, pathogenesis, identify key biomarkers, the medical and economic impact on affected populations and ecosystems, and their timely detection and control measures. Despite these extensive studies, no conclusive information for the prevention and control of arsenic toxicity is available, owing to complex epidemiology and pathogenesis, including an imprecise approach and repetitive work. As a result, there is a need for literature that focuses on recent studies on the epidemiology, pathogenesis, detection, and ameliorative measures of arsenic toxicity to assist researchers and policymakers in the practical future planning of research and community control programs. According to the preceding viewpoint, this review article provides an extensive analysis of the recent progress on arsenic exposure to humans through the environment, livestock, and fish, arsenic toxicopathology, nano-biotechnology-based detection, and current remedial measures for the benefit of researchers, academicians, and policymakers in controlling arsenic eco-toxicology and directing future research. Arsenic epidemiology should therefore place the greatest emphasis on the prevalence of different direct and indirect sources in the afflicted areas, followed by control strategies.
Collapse
Affiliation(s)
- Bibha Kumari
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, UT Ladakh, India
| |
Collapse
|
45
|
Ligate F, Lucca E, Ijumulana J, Irunde R, Kimambo V, Mtamba J, Ahmad A, Hamisi R, Maity JP, Mtalo F, Bhattacharya P. Geogenic contaminants and groundwater quality around Lake Victoria goldfields in northwestern Tanzania. CHEMOSPHERE 2022; 307:135732. [PMID: 35872057 DOI: 10.1016/j.chemosphere.2022.135732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Geogenic contamination of groundwater is frequently associated with gold mining activities and related to drinking water quality problems worldwide. In Tanzania, elevated levels of trace elements (TEs) have been reported in drinking water sources within the Lake Victoria Basin, posing a serious health risk to communities. The present study aims to assess the groundwater quality with a focus on the concentration levels of geogenic contaminants in groundwater around the Lake Victoria goldfields in Geita and Mara districts. The water samples were collected from community drinking water sources and were analysed for physiochemical parameters (pH, EC, Eh), major ions, and trace elements. The analysed major ions included Na+, K+, Ca2+, Mg2+, SO42-, HCO3- and Cl- whereas the trace elements were As, Al, Li, Ba, B, Ti, V, U, Zr, Sr, Si, Mn Mo, Fe, Ni, Zn, Cr, Pb, Cd, and V. The present study revealed that the concentration levels of the major ions were mostly within the World Health Organization (WHO) drinking water standards in the following order of their relative abundance; for cations, Ca2+∼Na+>Mg2+>K+ and for anions was HCO3- > SO42- > NO3-, Cl- > PO43-. Statistical and geochemical modelling software such as 'R Studio', IBM SPSS, geochemical workbench, visual MINTEQ were used to understand the groundwater chemistry and evaluate its suitability for drinking purpose. The concentration of As in groundwater sources varies between below detection limit (bdl) and 300 μg/L, with highest levels in streams followed by shallow wells and boreholes. In approximately 48% of the analysed samples, As concentration exceeded the WHO drinking water guideline and Tanzania Bureau of Standards (TBS) guideline for drinking water value of 10 μg/L. The concentration of the analyzed TEs and mean values of physicochemical parameters were below the guideline limits based on WHO and TBS standards. The Canadian Council of Ministries of the Environment Water Quality Index (CCME WQI) shows that the overall water quality is acceptable with minimum threats of deviation from natural conditions. We recommend further geochemical exploration and the periodic risk assessment of groundwater in mining areas where high levels of As were recorded.
Collapse
Affiliation(s)
- Fanuel Ligate
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTHRoyal Institute of Technology, Teknikringen 10B, Stockholm, SE-100 44, Sweden; DAFWAT Research Group, Department of Water Resources Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania; Department of Chemistry, Mkwawa University College of Education, University of Dar Es Salaam, 2513, Iringa, Tanzania.
| | - Enrico Lucca
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, The University of Florence, Cascine, Florence, 18 50144, Italy
| | - Julian Ijumulana
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTHRoyal Institute of Technology, Teknikringen 10B, Stockholm, SE-100 44, Sweden; DAFWAT Research Group, Department of Water Resources Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Regina Irunde
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTHRoyal Institute of Technology, Teknikringen 10B, Stockholm, SE-100 44, Sweden; DAFWAT Research Group, Department of Water Resources Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Vivian Kimambo
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTHRoyal Institute of Technology, Teknikringen 10B, Stockholm, SE-100 44, Sweden; DAFWAT Research Group, Department of Water Resources Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania; Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, Tanzania
| | - Joseph Mtamba
- DAFWAT Research Group, Department of Water Resources Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Arslan Ahmad
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands; SIBELCO Ankerpoort NV, Op de Bos 300, 6223 EP Maastricht, the Netherlands; Department of Environmental Technology, Wageningen University and Research (WUR), Droevendaalsesteeg 4, 6708, PB Wageningen, the Netherlands
| | - Rajabu Hamisi
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTHRoyal Institute of Technology, Teknikringen 10B, Stockholm, SE-100 44, Sweden
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Felix Mtalo
- DAFWAT Research Group, Department of Water Resources Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTHRoyal Institute of Technology, Teknikringen 10B, Stockholm, SE-100 44, Sweden; KWR Water Cycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| |
Collapse
|
46
|
Wen C, Zhu S, Li N, Luo X. Source apportionment and risk assessment of metal pollution in natural biofilms and surface water along the Lancang River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156977. [PMID: 35772562 DOI: 10.1016/j.scitotenv.2022.156977] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Herein, surface water and periphytic biofilm samples were collected from 16 sites along the Lancang River, China, to assess the spatial distribution, enrichment factor (EF), potential ecological risk index (RI), and associated source-oriented health risks of heavy metal elements (As, Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) in the samples. Results showed that the levels of heavy metals were significantly lower in the surface water samples than in the biofilm samples (one-way analysis of variance, p < 0.001). Moreover, 37.50 % of the biofilm samples were significantly polluted by these heavy metals with a mean EF of >5. As and V were the highest polluting metals, and the enrichment of Co and Ni were attributed to natural sources. RI assessment results showed a consistent ecological risk of As. Based on principal component analysis with multiple linear regression (PCA-MLR) and positive matrix factorization (PMF) models, the presence of heavy metal ions in the biofilm samples was largely attributed to industrial activities (PCA-MLR: 68.89 %; PMF: 76.39 %), followed by a mixed source of natural and agricultural activities (PCA-MLR: 18.12 %; PMF: 13.56 %), and traffic emissions (PCA-MLR: 12.99 %; PMF: 10.05 %). Both carcinogenic and noncarcinogenic risks for adults were negligible even though adults tended to be exposed to greater risk through ingestion. Source-specific risk evaluations indicated that industrial pollution was the most important source of health risks. Our findings highlight the potential threat of biofilms to the ecological and human health.
Collapse
Affiliation(s)
- Chen Wen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Shijun Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Nihong Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
| |
Collapse
|
47
|
AlMulla AA, Dahlawi S, Randhawa MA, Zaman QU, Chen Y, Faraj TK. Toxic Metals and Metalloids in Hassawi Brown Rice: Fate during Cooking and Associated Health Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12125. [PMID: 36231427 PMCID: PMC9566630 DOI: 10.3390/ijerph191912125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Rice has been a dietary staple for centuries, providing vital nutrients to the human body. Brown rice is well known for its nutrient-dense food profile. However, owing to multiple causes (anthropogenic and non-anthropogenic), it can also be a potential source of toxic heavy metals in the diet. Brown Hassawi rice samples were collected from the Al-Ahsa region and analyzed for its content of toxic metals. The results reveal that all the tested metals varied significantly in the brown rice samples, while As and Pb in all three samples exceeded their respective maximum allowable limits (MALs), followed by Cd, which nearly approached the MAL in two samples out of three. Brown rice samples were cooked in rice:water systems, viz., low rice:water ratios (1:2.5, 1:3.5) and high rice:water ratios (1:5, 1:6), along with soaking as a pre-treatment. Soaking was unproductive in removing the heavy metals from the rice, whereas cooking dissipated all metals from the rice, except for Cd, which was statistically non-significant. The high-water cooking of the rice was more effective in the dissipation of metals from the rice as compared to low-water cooking conditions. Through the consumption of rice, the estimated daily intake (EDI) of heavy metals is 162 g per person per day for As, which is above the provisional maximum tolerable daily intake (PMTDI) regardless of cooking circumstances. The hazard risk index (HRI) also highlighted the fact that As can be a potential health hazard to rice consumers in the Al-Ahsa region of Saudi Arabia. These results indicate the potential health risks caused by the consumption of this rice by humans. Regular monitoring is recommended to manage and control elevated concentrations and related health hazards as a result of the use of Hassawi rice contaminated by the accumulation of metals and metalloids.
Collapse
Affiliation(s)
- Abdulaziz Abdulrahman AlMulla
- Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Saad Dahlawi
- Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Muhammad Atif Randhawa
- Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Qamar uz Zaman
- Department of Environmental Sciences, The University of Lahore, Punjab 54590, Pakistan
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Turki Kh. Faraj
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 145111, Riyadh 11362, Saudi Arabia
| |
Collapse
|
48
|
Proshad R, Uddin M, Idris AM, Al MA. Receptor model-oriented sources and risks evaluation of metals in sediments of an industrial affected riverine system in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156029. [PMID: 35595137 DOI: 10.1016/j.scitotenv.2022.156029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Toxic metals in river sediments may represent significant ecological concerns, although there has been limited research on the source-oriented ecological hazards of metals in sediments. Surface sediments from an industrial affected Rupsa River were utilized in this study to conduct a complete investigation of toxic metals with source-specific ecological risk assessment. The findings indicated that the average concentration of Ni, Cr, Cd, Zn, As, Cu, Mn and Pb were 50.60 ± 10.97, 53.41 ± 7.76, 3.25 ± 1.73, 147.76 ± 36.78, 6.41 ± 1.85, 59.78 ± 17.77, 832.43 ± 71.56 and 25.64 ± 7.98 mg/kg, respectively and Cd, Ni, Cu, Pb and Zn concentration were higher than average shale value. Based on sediment quality guidelines, the mean effective range median (ERM) quotient (1.29) and Mean probable effect level (PEL) quotient (2.18) showed medium-high contamination in sediment. Ecological indexes like toxic risk index (20.73), Nemerow integrated risk index (427.59) and potential ecological risk index (610.66) posed very high sediment pollution. The absolute principle component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) model indicated that Zn (64.21%), Cd (51.58%), Cu (67.32%) and Ni (58.49%) in APCS-MLR model whereas Zn (49.5%), Cd (52.7%), Cu (57.4%) and Ni (44.6%) in PMF model were derived from traffic emission, agricultural activities, industrial source and mixed sources. PMF model-based Nemerow integrated risk index (NIRI) reported that industrial emission posed considerable and high risks for 87.27% and 12.72% of sediment samples. This work will provide a model-based guidelines for identifying and assessing metal sources which would be suitable for mitigating future pollution hazards in Riverine sediments in Bangladesh.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Minhaz Uddin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia.
| | - Mamun Abdullah Al
- University of Chinese Academy of Sciences, Beijing 100049, China; Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
49
|
Anetor GO, Nwobi NL, Igharo GO, Sonuga OO, Anetor JI. Environmental Pollutants and Oxidative Stress in Terrestrial and Aquatic Organisms: Examination of the Total Picture and Implications for Human Health. Front Physiol 2022; 13:931386. [PMID: 35936919 PMCID: PMC9353710 DOI: 10.3389/fphys.2022.931386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
There is current great international concern about the contribution of environmental pollution to the global burden of disease particularly in the developing, low- and medium-income countries. Industrial activities, urbanization, developmental projects as well as various increased anthropogenic activities involving the improper generation, management and disposal of pollutants have rendered today's environment highly polluted with various pollutants. These pollutants include toxic metals (lead, cadmium, mercury, arsenic), polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides and diesel exhaust particles most of which appear to be ubiquitous as well as have long-term environmental persistence with a wide range of toxicities such as oxidative stress among others. Oxidative stress, which may arise from increased production of damaging free radicals emanating from increased pollutant burden and depressed bioavailability of antioxidant defenses causes altered biochemical and physiological mechanisms and has been implicated in all known human pathologies most of which are chronic. Oxidative stress also affects both flora and fauna and plants are very important components of the terrestrial environment and significant contributors of nutrients for both man and animals. It is also remarkable that the aquatic environment in which sea animals and creatures are resident is also highly polluted, leading to aquatic stress that may affect the survival of the aquatic animals, sharing in the oxidative stress. These altered terrestrial and aquatic environments have an overarching effect on human health. Antioxidants neutralize the damaging free radicals thus, they play important protective roles in the onset, progression and severity of the unmitigated generation of pollutants that ultimately manifest as oxidative stress. Consequently, human health as well as that of aquatic and terrestrial organisms may be protected from environmental pollution by mitigating oxidative stress and employing the principles of nutritional medicine, essentially based on antioxidants derived mainly from plants, which serve as the panacea of the vicious state of environmental pollutants consequently, the health of the population. Understanding the total picture of oxidative stress and integrating the terrestrial and aquatic effects of environmental pollutants are central to sustainable health of the population and appear to require multi-sectoral collaborations from diverse disciplinary perspectives; basically the environmental, agricultural and health sectors.
Collapse
Affiliation(s)
- Gloria Oiyahumen Anetor
- Department of Human Kinetics and Health Education, National Open University of Nigeria, Abuja, Nigeria
| | - Nnenna Linda Nwobi
- Department of Chemical Pathology, BenCarson School of Medicine, Babcock University, Ilishan, Nigeria
| | - Godwin Osaretin Igharo
- Department of Medical Laboratory Science, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin, Nigeria
| | | | - John Ibhagbemien Anetor
- Department of Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
50
|
Parnell J. Vanadium for Green Energy: Increasing Demand but With Health Implications in Volcanic Terrains. GEOHEALTH 2022; 6:e2021GH000579. [PMID: 35799914 PMCID: PMC9250111 DOI: 10.1029/2021gh000579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The transition to a clean energy future may require a very substantial increase in resources of vanadium. This trend brings into focus the potential health issues related to vanadium in the environment. Most vanadium enters the Earth's crust through volcanic rocks; hence, vanadium levels in groundwaters in volcanic aquifers are higher than in other aquifers and can exceed local guidance limits. The biggest accumulation of volcanogenic sediment on the planet is downwind of the Andes and makes up much of Argentina. Consequently, groundwaters in Argentina have the highest vanadium contents and constitute a global vanadium anomaly. The high vanadium contents have given rise to health concerns. Vanadium could be extracted during remediation of domestic and other groundwater, and although the resultant resource is limited, it would be gained using low-energy technology.
Collapse
Affiliation(s)
- John Parnell
- School of GeosciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|