1
|
Agrahari S, Singh N, Bharti B, Kumar S. Medicinal plant ashwagandha in hydroponics: Pioneering greywater remediation using response surface methodology along with plants' physiological and phytochemical attributes for sustainable resource recovery. CHEMOSPHERE 2025; 376:144260. [PMID: 40081028 DOI: 10.1016/j.chemosphere.2025.144260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
This study aimed to investigate greywater treatment through hydroponically growing ashwagandha, often referred to as "Indian Ginseng," which is rich in secondary metabolites and bioactive compounds that enhance its medicinal properties. The research examines the effect of input parameters, such as initial chemical oxygen demand (300-1500 mg/L), phosphate (0-120 mg/L), and nitrate (15-75 mg/L) and their optimization utilizing response surface methodology (RSM) with central composite design (CCD). The interactive effects are analysed with model fit through analysis of variance. The optimized parameters are investigated as 600 mg/L chemical oxygen demand (COD), 37 mg/L phosphate, and 35 mg/L nitrate, with maximum removal efficiencies of 97.74% COD, 93.62% total phosphorus, and 89.68% nitrate-nitrogen while preserving ashwagandha's medicinal qualities. The study assesses growth improvements through physiological traits, showing increase of 72.2% in wet biomass, 20% in plant height, 60% in leaf number, and total chlorophyll content of 45.45 μmol m-2. It also examines phytochemical characteristics, including fourier transform infrared spectroscopy analysis (-OH peaks within 3500-3000 cm-1) and total phenolic content of leaf and root extracts, measuring 7.14 mg gallic acid equivalents for leaves and 2.155 mg GAE for roots. Additionally, the extracts demonstrated radical scavenging activities of 73.26% for leaves and 83.74% for roots after treatment, highlighting ashwagandha's adaptability and resilience in greywater conditions. Lastly, scanning electron microscopy analysis to assess the impact of wastewater on the root structure. This research presents significant economic potential of the greywater treatment within 6 days by cultivating ashwagandha with the preservation of its medicinal properties.
Collapse
Affiliation(s)
- Sakshi Agrahari
- Chemical Engineering Department, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India
| | - Neetu Singh
- Chemical Engineering Department, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India
| | - Bhawana Bharti
- Chemical Engineering Department, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India
| | - Sushil Kumar
- Chemical Engineering Department, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India.
| |
Collapse
|
2
|
Mravcová L, Jašek V, Hamplová M, Navrkalová J, Amrichová A, Zlámalová Gargošová H, Fučík J. Assessing Lettuce Exposure to a Multipharmaceutical Mixture under Hydroponic Conditions: Findings through LC-ESI-TQ Analysis and Ecotoxicological Assessments. ACS OMEGA 2024; 9:49707-49718. [PMID: 39713641 PMCID: PMC11656385 DOI: 10.1021/acsomega.4c08013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The escalating global water scarcity demands innovative solutions, one of which is hydroponic vegetable cultivation systems that increasingly use reclaimed wastewater. Nevertheless, even treated wastewater may still harbor various emerging organic contaminants, including pharmaceuticals. This study aimed to comprehensively assess the impact of pharmaceuticals, focusing on bioconcentration factors (BCFs), translocation factors (TFs), pharmaceutical persistence in aqueous environment, ecotoxicological end points, and associated environmental and health risks. Lettuce (Lactuca sativa) was cultivated hydroponically throughout its entire growth cycle, exposed to seven distinct concentration levels of contaminants ranging from 0 to 500 μg·L-1 over a 35-day period. The findings revealed a diverse range of BCFs (2.3 to 880 L·kg-1) and TFs (0.019-1.48), suggesting a high potential of pharmaceutical uptake and translocation by L. sativa. The degradation of 20 pharmaceuticals within the water-lettuce system followed first-order degradation kinetics. Substantial ecotoxicological effects on L. sativa were observed, including increased mortality, alterations in root morphology and length, and changes in biomass weight (p < 0.05). Furthermore, the estimated daily intake of pharmaceuticals through L. sativa consumption suggested considerable health risks, even if lettuce would be one of the many vegetables consumed. It is hypothetical, as the values were calculated. Moreover, this study assessed the environmental risk associated with the emergence of antimicrobial resistance (AMR) in aquatic environments, revealing a significantly high risk of AMR emergence. In conclusion, these findings emphasize the multifaceted challenges posed by pharmaceutical contamination in aquatic environments and the necessity of proactive measures to mitigate associated risks to both environmental and human health.
Collapse
Affiliation(s)
- Ludmila Mravcová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Vojtěch Jašek
- Institute
of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Marie Hamplová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jitka Navrkalová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Anna Amrichová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jan Fučík
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
3
|
Wiegmann ME, Zhao K, Hube S, Ge L, Lisak G, Wu B. Integrating gravity-driven ceramic membrane filtration with hydroponic system for nutrient recovery from primary municipal wastewater. J Environ Sci (China) 2024; 146:91-102. [PMID: 38969465 DOI: 10.1016/j.jes.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2024]
Abstract
In this study, a gravity-driven membrane (GDM) filtration system and hydroponic system (cultivating basil and lettuce) were combined for nutrient recovery from primary municipal wastewater. The GDM system was optimized by increasing the periodic air sparging flow rate from 1 to 2 L/min (∼15 hr per 3-4 days), resulting in a ∼52% reduction of irreversible fouling. However, the total fouling was not alleviated, and the water productivity remained comparable. The GDM-filtrated water was then delivered to hydroponic systems, and the effects of hydroponic operation conditions on plant growth and heavy metal uptake were evaluated, with fertilizer- and tap water-based hydroponic systems and soil cultivation system (with tap water) for comparison. It was found that (i) the hydroponic system under batch mode facilitated to promote vegetable growth with higher nutrient uptake rates compared to that under flow-through feed mode; (ii) a shift in nutrient levels in the hydroponic system could impact plant growth (such as plant height and leaf length), especially in the early stages. Nevertheless, the plants cultivated with the GDM-treated water had comparable growth profiles to those with commercial fertilizer or in soils. Furthermore, the targeted hazard quotient levels of all heavy metals for the plants in the hydroponic system with the treated water were greatly lower than those with the commercial fertilizer. Especially, compared to the lettuce, the basil had a lower heavy metal uptake capability and displayed a negligible impact on long-term human health risk, when the treated water was employed for the hydroponic system.
Collapse
Affiliation(s)
- Megan Elizabeth Wiegmann
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Ke Zhao
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland.
| |
Collapse
|
4
|
Alayande AB, Qi W, Karthikeyan R, Popat SC, Ladner DA, Amy G. Use of reclaimed municipal wastewater in agriculture: Comparison of present practice versus an emerging paradigm of anaerobic membrane bioreactor treatment coupled with hydroponic controlled environment agriculture. WATER RESEARCH 2024; 265:122197. [PMID: 39137457 DOI: 10.1016/j.watres.2024.122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/06/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Advancements in anaerobic membrane bioreactor (AnMBR) technology have opened up exciting possibilities for sustaining precise water quality control in wastewater treatment and reuse. This approach not only presents an opportunity for energy generation and recovery but also produces an effluent that can serve as a valuable nutrient source for crop cultivation in hydroponic controlled environment agriculture (CEA). In this perspective article, we undertake a comparative analysis of two approaches to municipal wastewater utilization in agriculture. The conventional method, rooted in established practices of conventional activated sludge (CAS) wastewater treatment for soil/land-based agriculture, is contrasted with a new paradigm that integrates AnMBR technology with hydroponic (soilless) CEA. This work encompasses various facets, including wastewater treatment efficiency, effluent quality, resource recovery, and sustainability metrics. By juxtaposing the established methodologies with this emerging synergistic model, this work aims to shed light on the transformative potential of the integration of AnMBR and hydroponic-CEA for enhanced agricultural sustainability and resource utilization.
Collapse
Affiliation(s)
- Abayomi Babatunde Alayande
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States.
| | - Weiming Qi
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States
| | | | - Sudeep C Popat
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States
| | - David A Ladner
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States
| | - Gary Amy
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States
| |
Collapse
|
5
|
Mohamed A, El-Shatoury S, Aboulfotoh A, Abd El-Rahem KA, El Shahawy A. Synergistic effects (adsorption and biodegradation) of Streptomyces hydrogenans immobilization on nano-reed biochar for further application in upflow anaerobic sludge blanket. RSC Adv 2024; 14:22828-22846. [PMID: 39035718 PMCID: PMC11258616 DOI: 10.1039/d4ra02864c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
Water pollution due to wastewater is a serious issue that needs to be studied as many organic compounds are released from wastewater, affecting the ecosystem. Therefore, appropriate treatment methods should be used to prevent these effects. Phragmites australis biochar immobilized with bacteria was prepared in this study for use as an adsorbent in a pilot-scale up-flow anaerobic sludge blanket (UASB) to remove organic matter from wastewater in a buffalo farm. Combining reed biochar and immobilized Streptomyces hydrogenans introduces a synergistic effect: reed biochar serves as a substrate for microbial colonization and provides a conducive environment for microbial growth while Streptomyces hydrogenans, immobilized on the biochar, enhances the degradation of organic matter through its metabolic activities. Suitable techniques were employed, including infrared spectroscopy (FTIR) to determine the functional groups before and after adsorption, scanning electron microscopy (SEM) to determine the morphology of the composite before and after adsorption, X-ray diffraction (XRD) to examine the mineralogical changes through reflectometry, high-resolution diffraction and Brunauer-Emmett-Teller (BET) analyses to determine the surface area that always carried out by nitrogen adsorption/desorption technique based on the BET isotherm. Two-level factorial design experiments optimized using biochar, immobilized with bacteria, were employed to enhance the UASB performance. Chemical oxygen demand (COD) removal and biogas production were studied as a function of four experimental parameters: biochar dose, buffalo sludge dose, pH, and bacteria type. The buffalo sludge (manure) dose negatively affected the model's performance. The results showed better COD removal with Streptomyces hydrogenans S11 inoculation. The optimum biochar dose, buffalo sludge dose, and pH were 20 g L-1, 0%, and 7.5, respectively. The COD removal efficiency under these experimental conditions reached 92.70% with a biogas production of 5.0 mL. The experimental results of a validated point from the model were 90.80% for COD removal ratio and 4.80 mL for biogas production at 2 g L-1 biochar dose, 0% buffalo sludge dose, and pH 7.5 using Streptomyces hydrogenans S11 bacteria. A buffalo wastewater (BWW) anaerobic digestion experimental model was best fitted to the data under optimal conditions. This study aligns with the United Nations Sustainable Development Goals (SDGs), specifically SDG 6 (clean water and sanitation) and SDG 12 (responsible consumption and production). The implications of our work extend to large-scale applications, promising a greener and more sustainable future for wastewater treatment.
Collapse
Affiliation(s)
- Aya Mohamed
- Department of Civil Engineering, Faculty of Engineering, Suez Canal University P.O. Box 41522 Ismailia Egypt
| | - Sahar El-Shatoury
- Botany and Microbiology Dept, Faculty of Science, Suez Canal University Box 41522 Ismailia Egypt
| | - Ahmed Aboulfotoh
- Environmental Engineering Department, Faculty of Engineering, Zagazig University Box Number 44519 Egypt
| | - Khaled A Abd El-Rahem
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut Branch P.O. Box 71524 Egypt
| | - Abeer El Shahawy
- Department of Civil Engineering, Faculty of Engineering, Suez Canal University P.O. Box 41522 Ismailia Egypt
| |
Collapse
|
6
|
Ali SS, Hassan LHS, El-Sheekh M. Microalgae-mediated bioremediation: current trends and opportunities-a review. Arch Microbiol 2024; 206:343. [PMID: 38967670 DOI: 10.1007/s00203-024-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
Environmental pollution poses a critical global challenge, and traditional wastewater treatment methods often prove inadequate in addressing the complexity and scale of this issue. On the other hand, microalgae exhibit diverse metabolic capabilities that enable them to remediate a wide range of pollutants, including heavy metals, organic contaminants, and excess nutrients. By leveraging the unique metabolic pathways of microalgae, innovative strategies can be developed to effectively remediate polluted environments. Therefore, this review paper highlights the potential of microalgae-mediated bioremediation as a sustainable and cost-effective alternative to conventional methods. It also highlights the advantages of utilizing microalgae and algae-bacteria co-cultures for large-scale bioremediation applications, demonstrating impressive biomass production rates and enhanced pollutant removal efficiency. The promising potential of microalgae-mediated bioremediation is emphasized, presenting a viable and innovative alternative to traditional treatment methods in addressing the global challenge of environmental pollution. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the potential of microalgae-based technology wastewater treatment.
Collapse
Affiliation(s)
- Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Lamiaa H S Hassan
- Faculty of Science, Menoufia University, Shebin El-kom, 32511, Egypt
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
7
|
Yu J, Chen J, Li Q, Ren P, Tang Y, Huang R, Lu Y, Chen K. Toxicity and fate of cadmium in hydroponically cultivated lettuce (Lactuca sativa L.) influenced by microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116422. [PMID: 38705040 DOI: 10.1016/j.ecoenv.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Although more attention has been paid to microplastics (MPs) pollution in environment, research on the synthetic influence of microplastic and heavy metals remains limited. To help fill this information gap, we investigated the adsorption behavior of virgin polyvinyl chloride microplastics (PVCMPs) (≤450 µm white spherical powder) on cadmium (II). The effects on seed germination, seedling growth, photosynthetic system, oxidative stress indicators of lettuce, and changes in Cd bioavailability were evaluated under Cd2+ (25 μmol/L), PVCMPs (200 mg/L), and PVCMP-Cd combined (200 mg/L + 25 μmol/L) exposures in hydroponic system. The results demonstrated that the PVCMPs effectively adsorbed Cd ions, which validated by the pseudo-second-order kinetic and the Langmuir isotherm models, indicating the sorption of Cd2+ on the PVCMPs was primary chemisorption and approximates monomolecular layer sorption. Compared to MPs, Cd significantly inhibits plant seed germination and seedling growth and development. However, Surprising improvement in seed germination under PVCMPs-Cd exposure was observed. Moreover, Cd2+ and MPs alone or combined stress caused oxidative stress with reactive oxygen species (ROS) including H2O2, O2- and Malondialdehyde (MDA) accumulation in plants, and substantially damaged to photosynthesis. With the addition of PVCMPs, the content of Cd in the leaves significantly (P<0.01) decreased by 1.76-fold, and the translocation factor and Cd2+removal rate in the water substantially (P<0.01) decreased by 6.73-fold and 1.67-fold, respectively in contrast to Cd2+ stress alone. Therefore, it is concluded the PVCMP was capable of reducing Cd contents in leaves, alleviating Cd toxicity in lettuce. Notably, this study provides a scientific foundation and reference for comprehending the toxicological interactions between microplastics and heavy metals in the environment.
Collapse
Affiliation(s)
- Jiadie Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Juelin Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Qiong Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Yunlai Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Renhua Huang
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei 448000, PR China
| | - Yunmei Lu
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei 448000, PR China.
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
8
|
Huang Y, Chang Y, Ni Z, Wang L. Environmental parameters factors exploration on lettuce seed germination with hydrogel. FRONTIERS IN PLANT SCIENCE 2024; 15:1308553. [PMID: 38516663 PMCID: PMC10955070 DOI: 10.3389/fpls.2024.1308553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/22/2024] [Indexed: 03/23/2024]
Abstract
Lettuce (Lactuca sativa) germination is sensitive to environmental conditions. Recently, hydrogel has received increased attention as an alternative media to soil for seed germination. Compared to soil seeding, hydrogel-aided germination provides more controlled seeding environments. However, there are still challenges preventing hydrogel-aided seed germination from being widely used in industry production or academic studies, such as hydrogel formulation variations, seeding operation standardization, and germination evaluation. In this study, we tested how the combination of multiple environmental conditions affect lettuce seed germination time, which is measured as the time needed for the first pair of leaves to appear (leaf emergence) or, alternatively, the third leaf to appear (leaf development). We found that germination time and success rate of two lettuce varieties (Iceberg A and Butter Crunch) showed different sensitivities to pH, Hoagland formulations and concentrations, light intensity, and hydrogel content. We have conducted statistical analysis on the correlation between germination time and these environmental conditions.
Collapse
Affiliation(s)
- Yanhua Huang
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA, United States
| | - Yanbin Chang
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK, United States
| | - Zheng Ni
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK, United States
| | - Lizhi Wang
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
9
|
Goren AY, Eskisoy DN, Genisoglu S, Okten HE. Microbial desalination cell treated spent geothermal brine as a nutrient medium in hydroponic lettuce cultivation: Health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167778. [PMID: 37863224 DOI: 10.1016/j.scitotenv.2023.167778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
The scarcity and contamination of freshwater resources are extremely critical issues today, and the expansion of water reuse has been considered as an option to decrease its impact. Therefore, the reuse of microbial desalination (MDC)-treated spent geothermal brine for agricultural purposes arises as a good solution to prevent water contamination and provide sustainable water usage. In this study, the potential of treated spent geothermal water from MDC system as a nutrient solution for the hydroponic cultivation of lettuce was evaluated. The effects of different water samples (Hoagland solution (R1) as a control, MDC-treated water (R2), 1:1, v/v mixture of MDC-treated water and Hoagland solution (R3), 4:1, v/v mixture of MDC-treated water and Hoagland solution (R4), and tap water (R5)) on lettuce growth were considered. The application of R3 and R4 samples for hydroponic lettuce cultivation was promising since the lettuce plants uptake sufficient nutrients for their growth and productivity with low toxic metal concentrations. In addition, the chlorophyll-a, chlorophyll-b, and carotene contents of lettuce were in the range of 1.045-2.391 mg/g, 0.761-1.986 mg/g, and 0.296-0.423 mg/g in different water samples, respectively. The content of chlorophyll-a was highest in R1 (2.391 mg/g), followed by R3 (2.371 mg/g). Furthermore, the health risk assessment of heavy metal accumulations in the lettuce plants cultivated in the various water samples was determined. Results showed that heavy metal exposure via lettuce consumption is unlikely to suffer noticeable adverse health problems with values below the permissible limit value.
Collapse
Affiliation(s)
- A Y Goren
- Izmir Institute of Technology, Department of Environmental Engineering, İzmir, Turkey
| | - D N Eskisoy
- Izmir Institute of Technology, Department of Bioengineering, İzmir, Turkey
| | - S Genisoglu
- Izmir Institute of Technology, Department of Environmental Engineering, İzmir, Turkey
| | - H E Okten
- Izmir Institute of Technology, Department of Environmental Engineering, İzmir, Turkey; Environmental Development Application and Research Center, İzmir, Turkey.
| |
Collapse
|
10
|
Zhu Z, Yogev U, Keesman KJ, Rachmilevitch S, Gross A. Integrated hydroponics systems with anaerobic supernatant and aquaculture effluent in desert regions: Nutrient recovery and benefit analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166867. [PMID: 37678536 DOI: 10.1016/j.scitotenv.2023.166867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Hydroponics is a resource-efficient system that increases food production and enhances the overall sustainability of agricultural systems, particularly in arid zones with prevalent water scarcity and limited areas of arable land. This study investigated zero-waste hydroponics systems fed by agricultural waste streams as nutrient sources under desert conditions. Three pilot-scale systems were tested and compared. The first hydroponics system ("HPAP") received its nutrient source internally from an aquaponic system, including supernatant from the anaerobic digestion of fish sludge. The second system ("HPAD") was sourced by the supernatant of plant waste anaerobic digestion, and the third served as a control that was fed by commercial Hoagland solution ("HPHS"). Fresh weight production was similar in all treatments, ranging from 488 to 539 g per shoot, corresponding to 5.7 to 6.0 kg total wet weight per m2. The recovery of N and P from wastes and their subsequent uptake by plants was highly efficient, with rates of 77 % for N and 65 % for P. Plants that were fed using supernatants demonstrated slightly higher plant quality compared with those grown in Hoagland solution. Over the duration of the full study (3 months), water was only used to compensate for evapotranspiration, corresponding to ~10 L per kg of lettuce. The potential health risk for heavy metals was negligible, as assessed using the health-risk index (HRI < 1) and targeted hazardous quotient (THQ < 1). The results of this study demonstrate that careful management can significantly reduce pollution, increase the recovery of nutrients and water, and improve hydroponics production.
Collapse
Affiliation(s)
- Ze Zhu
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker Campus, Midreshet Ben Gurion 84990, Israel; Mathematical and Statistical Methods - Biometris, Wageningen University and Research, P.O. Box 16, 6700 Wageningen, Netherlands
| | - Uri Yogev
- National Center for Mariculture, Israel Oceanographic and Limnological Research Institute, Eilat 88112, Israel
| | - Karel J Keesman
- Mathematical and Statistical Methods - Biometris, Wageningen University and Research, P.O. Box 16, 6700 Wageningen, Netherlands
| | - Shimon Rachmilevitch
- French Associates Institute for Agriculture and Biotechnology for Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, Midreshet Ben Gurion 84990, Israel
| | - Amit Gross
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker Campus, Midreshet Ben Gurion 84990, Israel.
| |
Collapse
|
11
|
Ceci L, Cavalera MA, Serrapica F, Di Francia A, Masucci F, Carelli G. Use of reclaimed urban wastewater for the production of hydroponic barley forage: water characteristics, feed quality and effects on health status and production of lactating cows. Front Vet Sci 2023; 10:1274466. [PMID: 38046569 PMCID: PMC10690813 DOI: 10.3389/fvets.2023.1274466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
The safety of reclaimed urban wastewater (RUW) for the production of hydroponic barley forage (HBF) was evaluated in terms of effluent and forage characteristics, as well as the health and performance of lactating cows. The study was conducted on a dairy farm equipped with two hydroponic chambers producing approximately 620 kg/d of HBF as fed. For experimental purposes, HBF was produced using RUW collected from an aqueduct plant processing urban wastewater in a membrane bioreactor treatment chain. A feeding trial was carried out with HBF derived from RUW. Sixty lactating cows were randomly assigned to two balanced groups fed a standard total mixed ration (TMR) or a TMR in which 10 kg of HBF replaced 1 kg of oat hay and 0.5 kg of maize. The experimental period lasted 7 weeks, including a 2-week adaptation period, during which each cow underwent a physical examination, BCS scoring, blood sampling for a complete blood count and biochemical panel, recording of body weight and milk yield and quality, including fatty acid composition and heavy metal content. Ruminal pH was continuously monitored by reticulorumen boluses, and nutrient digestibility and N balance were determined at week 7. RUW showed an acceptable microbial load and an overall good quality as irrigation water, even though the supply of N and P did not influence the yield and quality of HBF. The characteristics of HBF reflected the quality of RUW supplied to the hydroponic chambers and no anomalous components (i.e., high ion concentration) were found. Feeding RW-derived HBF to lactating cows had no major positive or negative effects on animal health and production, including milk quality, ruminal pH, in vivo digestibility, and N balance. The use of RUW under the conditions tested appears to be safe for the health status of lactating cows and the quality of the milk obtained. Overall, the results do not reveal any major limitations for the use of tertiary wastewater as irrigation water for the hydroponic production of forage barley, so that a wider use of wastewater in hydroponic systems seems realistic.
Collapse
Affiliation(s)
- Luigi Ceci
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | - Francesco Serrapica
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Di Francia
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Felicia Masucci
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Grazia Carelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| |
Collapse
|
12
|
Rout PR, Goel M, Pandey DS, Briggs C, Sundramurthy VP, Halder N, Mohanty A, Mukherjee S, Varjani S. Technological advancements in valorisation of industrial effluents employing hydrothermal liquefaction of biomass: Strategic innovations, barriers and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120667. [PMID: 36395914 DOI: 10.1016/j.envpol.2022.120667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/26/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Hydrothermal liquefaction (HTL) is identified as a promising thermochemical technique to recover biofuels and bioenergy from waste biomass containing low energy and high moisture content. The wastewater generated during the HTL process (HTWW) are rich in nutrients and organics. The release of the nutrients and organics enriched HTWW would not only contaminate the water bodies but also lead to the loss of valued bioenergy sources, especially in the present time of the energy crisis. Thus, biotechnological as well as physicochemical treatment of HTWW for simultaneous extraction of valuable resources along with reduction in polluting substances has gained significant attention in recent times. Therefore, the treatment of wastewater generated during the HTL of biomass for reduced environmental emission and possible bioenergy recovery is highlighted in this paper. Various technologies for treatment and valorisation of HTWW are reviewed, including anaerobic digestion, microbial fuel cells (MFC), microbial electrolysis cell (MEC), and supercritical water gasification (SCWG). This review paper illustrates that the characteristics of biomass play a pivotal role in the selection process of appropriate technology for the treatment of HTWW. Several HTWW treatment technologies are weighed in terms of their benefits and drawbacks and are thoroughly examined. The integration of these technologies is also discussed. Overall, this study suggests that integrating different methods, techno-economic analysis, and nutrient recovery approaches would be advantageous to researchers in finding way for maximising HTWW valorisation along with reduced environmental pollution.
Collapse
Affiliation(s)
- Prangya Ranjan Rout
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Mukesh Goel
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
| | - Daya Shankar Pandey
- Center for Rural Development and Innovative Sustainable Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Caitlin Briggs
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
| | | | - Nirmalya Halder
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Anee Mohanty
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India.
| |
Collapse
|
13
|
Abstract
In recent years, anaerobic membrane bioreactor (AnMBRs) technology, a combination of a biological reactor and a selective membrane process, has received increasing attention from both industrialists and researchers. Undoubtedly, this is due to the fact that AnMBRs demonstrate several unique advantages. Firstly, this paper addresses fundamentals of the AnMBRs technology and subsequently provides an overview of the current state-of-the art in the municipal and domestic wastewaters treatment by AnMBRs. Since the operating conditions play a key role in further AnMBRs development, the impact of temperature and hydraulic retention time (HRT) on the AnMBRs performance in terms of organic matters removal is presented in detail. Although membrane technologies for wastewaters treatment are known as costly in operation, it was clearly demonstrated that the energy demand of AnMBRs may be lower than that of typical wastewater treatment plants (WWTPs). Moreover, it was indicated that AnMBRs have the potential to be a net energy producer. Consequently, this work builds on a growing body of evidence linking wastewaters treatment with the energy-efficient AnMBRs technology. Finally, the challenges and perspectives related to the full-scale implementation of AnMBRs are highlighted.
Collapse
|
14
|
Mohanty A, Mankoti M, Rout PR, Meena SS, Dewan S, Kalia B, Varjani S, Wong JW, Banu JR. Sustainable utilization of food waste for bioenergy production: A step towards circular bioeconomy. Int J Food Microbiol 2022; 365:109538. [DOI: 10.1016/j.ijfoodmicro.2022.109538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/10/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
|
15
|
Rout PR, Shahid MK, Dash RR, Bhunia P, Liu D, Varjani S, Zhang TC, Surampalli RY. Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113246. [PMID: 34271353 DOI: 10.1016/j.jenvman.2021.113246] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/13/2021] [Accepted: 07/07/2021] [Indexed: 05/06/2023]
Abstract
Nitrogen and phosphorous are indispensable for growth and vitality of living beings, hence termed as nutrients. However, discharge of nutrient rich waste streams to aquatic ecosystems results in eutrophication. Therefore, nutrient removal from wastewater is crucial to meet the strict nutrient discharge standards. Similarly, nutrient recovery from waste streams is vital for the realization of a circular economy by avoiding the depletion of finite resources. This manuscript presents analysis of existing information on different conventional as well as advanced treatment technologies that are commonly practiced for the removal of nutrient from domestic wastewater. First, the information pertaining to the biological nutrient removal technologies are discussed. Second, onsite passive nutrient removal technologies are reviewed comprehensively. Third, advanced nutrient removal technologies are summarized briefly. The mechanisms, advantages, and disadvantages of these technologies along with their efficiencies and limitations are discussed. An integrated approach for simultaneous nutrient removal and recovery is recommended. The fifth section of the review highlights bottlenecks and potential solutions for successful implementation of the nutrient removal technologies. It is anticipated that the review will offer an instructive overview of the progress in nutrient removal and recovery technologies and will illustrate necessity of further investigations for development of efficient nutrient removal and recovery processes.
Collapse
Affiliation(s)
- Prangya Ranjan Rout
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Muhammad Kashif Shahid
- Department of Environmental Engineering, Chungnam National University, Republic of Korea
| | - Rajesh Roshan Dash
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, India
| | - Puspendu Bhunia
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, India
| | - Dezhao Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India.
| | - Tian C Zhang
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Omaha, NE, 68182, USA
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, Kansas, USA
| |
Collapse
|