1
|
Holatko J, Kucerik J, Mustafa A, Lonova K, Siddiqui MH, Naveed M, Hammerschmiedt T, Kintl A, Malicek O, Chorazy T, Baltazar T, Brtnicky M. Influence of biochar feedstock blends on soil enzyme activity, nutrient cycling, lettuce biomass accumulation and photosynthesis. BMC PLANT BIOLOGY 2025; 25:323. [PMID: 40075264 PMCID: PMC11905522 DOI: 10.1186/s12870-025-06352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
The thermal conversion of municipal sewage sludge (MSS) offers significant potential for sustainable waste management, particularly through the production of biochar. This study investigates the properties and soil application effects of three biochar types produced via pyrolysis: (i) pure sewage sludge (100%), (ii) sewage sludge blended with sawdust (50%+50%), and (iii) sewage sludge combined with sawdust and zeolite (50%+45%+5%). These biochars were applied at rates of 2.5% and 7.5% (w/w) to arable soil and assessed in an 8-week greenhouse experiment using lettuce (Lactuca sativa L. var. Brilant) as a model crop. The sewage sludge biochar was characterized by high nitrogen, phosphorus, and water-extractable calcium but exhibited low organic matter and organic carbon content. It enhanced soil enzyme activities related to carbon and nitrogen mineralization without affecting microbial respiration. However, at 7.5% application rate, this biochar caused the highest chlorophyll b content in lettuce, despite acidifying the soil. Adding sawdust to the pyrolysis feedstock significantly increased organic matter, organic carbon (with reduced recalcitrance), and the C: N ratio of biochar. This biochar formulation promoted microbial activity (as indicated by changes in soil respiration) and nutrient cycling, particularly through increased glucosidase activity. Conversely, addition of zeolite to the pyrolysis feedstock reduced the organic matter and organic carbon content while increasing biochar recalcitrance and nutrient immobilization, particularly of sulfur, ammonium, phosphorus, and calcium. At the 7.5% dose, the sawdust + zeolite-enriched biochar improved soil pH and potentially enhanced nutrient retention. However, it did not stimulate microbial enzyme activity or respiration, leading to lower photosynthetic pigment levels and reduced biomassin lettuce, especially at higher application rate. For short-term soil applications under the conditions of this pot trial, the sewage sludge-sawdust biochar demonstrated the most beneficial effects, rapidly stimulating microbial activity and nutrient transformation. In contrast, the sewage sludge-sawdust-zeolite biochar limited nutrient availability and plant growth, suggesting it may be less suitable for immediate soil and plant nutrition. Long-term studies are needed to fully assess the implications of these biochar types for sustainable agriculture. This study highlights the importance of feedstock composition and selection in tailoring biochar properties to meet specific soil and crop requirements.
Collapse
Affiliation(s)
- Jiri Holatko
- Department of Agrochemistry, SoilScience, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, 613 00, Czech Republic
- Agrovyzkum Rapotin, Ltd, Vyzkumniku 863, Rapotin, 788 13, Czech Republic
| | - Jiri Kucerik
- Department of Agrochemistry, SoilScience, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, 613 00, Czech Republic
| | - Adnan Mustafa
- Department of Agrochemistry, SoilScience, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, 613 00, Czech Republic.
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Kamila Lonova
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Brno, 61300, Czech Republic
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, SoilScience, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, 613 00, Czech Republic
| | - Antonin Kintl
- Department of Agrochemistry, SoilScience, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, 613 00, Czech Republic
- Agricultural Research, Ltd, Troubsko, 664 41, Czech Republic
| | - Ondrej Malicek
- Department of Agrochemistry, SoilScience, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, 613 00, Czech Republic
| | - Tomas Chorazy
- AdMaS Research Centre, Faculty of Civil Engineering, Brno University of Technology, Purkynova 651/139, Brno, 61200, Czech Republic
| | - Tivadar Baltazar
- Department of Agrochemistry, SoilScience, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, 613 00, Czech Republic
| | - Martin Brtnicky
- Department of Agrochemistry, SoilScience, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, 613 00, Czech Republic.
- Department of Landscape Ecology, Landscape Research Institute, Lidicka 25/27, Brno, 60200, Czech Republic.
| |
Collapse
|
2
|
Li H, Yang L, Luo C, Liu L, Li C, Wang J, Qiao W, Zhong H. Soil aggregation alterations under soil microplastic and biochar addition and aging process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125655. [PMID: 39778733 DOI: 10.1016/j.envpol.2025.125655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Soil microplastics (MPs) are a substantial threat to soil health, particularly by disrupting soil aggregation. Additionally, MPs undergo aging processes in the soil, which may significantly alter their long-term impacts on soil structure. To investigate these effects, we conducted an eight-month soil incubation experiment, examining the influence of MPs and their aging on soil aggregation. The experiment utilized a factorial design with various combinations of MPs and biochar additions: 1% by weight of 1000-mesh polyethylene and polypropylene MPs, and 5-mm biochar, resulting in six treatment groups: [CK], [PE], [PP], [Biochar], [PE + biochar], and [PP + biochar]. Our findings revealed that both MPs and biochar underwent aging throughout the incubation, evidenced by the formation of oxygen-containing functional groups on their surfaces. Microplastics, particularly polyethylene, primarily affected the 0.5-1 mm and >2 mm aggregate fractions, with average reductions of 21% and 77%, respectively. These adverse effects intensified with the aging of MPs. Contrary to expectations, the addition of biochar was found to exacerbate the negative impacts of MPs on the 0.25-0.5 mm aggregates, with a decrease of 11% associated with PE MPs. The influence of biochar on mitigating the damage caused by MPs to soil aggregation is dependent on aggregate size.
Collapse
Affiliation(s)
- Haixiao Li
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Longyuan Yang
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Chenghui Luo
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Le Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Cheng Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ji Wang
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Wei Qiao
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Hua Zhong
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Fan Q, Li N, Geng Y, Dong Y, Zhang C. Variation in soil enzyme activity with amendments of biochar and polyacrylamide in coal gangue soils. Sci Rep 2025; 15:4596. [PMID: 39920149 PMCID: PMC11805984 DOI: 10.1038/s41598-025-87920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
Coal gangue is a prevalent solid waste material, and its utilization presents an urgent challenge. This study investigates the impact of incorporating biochar (BC) and polyacrylamide (PAM) into a composite matrix of coal gangue soil (CGS). We conducted incubation experiments to evaluate the physicochemical properties and enzyme activity of CGS with different ratios of BC (1%, 2%, and 5% designated as B1, B2, and B5) and PAM (0.02%, 0.05%, and 0.10% designated as P2, P5, and P10), compared to a control (CK) with no amendments. The results indicate that (1) the lowest bulk density was observed in the B5P10 treatment. The organic carbon content in B5P10 increased by 57.98% compared to the CK. (2) The activities of α-glucosidase, N-acetyl-glucosidase, and alkaline phosphatase in the B5P10 treatment increased by 112.34%, 110.77%, and 52.40%, respectively. The geometric mean values of enzyme activities showed no significant differences among the treatments B2P5, B2P10, B5P2, B5P5, and B5P10, but these were significantly higher than those in the CK. (3) The parameters of pH, active carbon, field capacity, and available phosphorus were identified as the main factors affecting enzyme activity. CGS incorporating 2% BC and 0.05% PAM is recommended for soil reconstruction in mining regions.
Collapse
Affiliation(s)
- Qiuyun Fan
- College of Forestry, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 35 Qinghua East Road, Beijing, 100083, China
| | - Na Li
- College of Forestry, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 35 Qinghua East Road, Beijing, 100083, China
| | - Yuqing Geng
- College of Forestry, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 35 Qinghua East Road, Beijing, 100083, China.
| | - Ying Dong
- College of Forestry, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 35 Qinghua East Road, Beijing, 100083, China
| | - ChaoYing Zhang
- College of Forestry, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
4
|
Liu B, Jia P, Zou J, Ren H, Xi M, Jiang Z. Improving soil properties and Sesbania growth through combined organic amendment strategies in a coastal saline-alkali soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124041. [PMID: 39778349 DOI: 10.1016/j.jenvman.2025.124041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Improving the quality of degraded coastal saline-alkali soil and promoting plant growth are key challenges in the restoration of ecological functions in coastal regions. Organic ameliorants such as effective microbial (EM) agent, biochar, and organic compost have been proposed as sustainable solutions, but limited research has explored the combined effects of these amendments. This study investigates five organic improvement strategies: individual applications of EM, corn straw biochar (CSB), and sewage sludge-reed straw compost (COM), along with combined treatments of CSB + EM and COM + EM, on Sesbania growth in a pot experiment. The results demonstrated that, compared to the separate applications, the combined strategies (CSB + EM and COM + EM) exhibited a greater improvement in Sesbania growth; for instance, the plant dry weight was 4.61-12.1 times that of the control. The improved plant growth was linked to enhanced nutrient uptake and changes in soil properties. The combined strategies, particularly COM + EM, resulted in greater decreases in soil pH (decreased by 2.79%-3.49% compared to the control) and better improvements in soil nutrient content, quantity and quality of dissolved organic matter, microbial community diversity, and the abundance of plant growth-promoting rhizobacteria (PGPR), e.g., Bacillus. Spearman correlation and structural equation modeling confirmed that these soil improvements directly contributed to enhanced plant nutrient uptake. Overall, these findings suggest that combined strategies of COM + EM and CSB + EM, particularly the former, are highly effective for the remediation of coastal saline-alkali soils, offering a promising approach for improving soil fertility and plant productivity in degraded coastal ecosystems.
Collapse
Affiliation(s)
- Bin Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Peiyin Jia
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Jiasheng Zou
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Haixi Ren
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Min Xi
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Zhixiang Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| |
Collapse
|
5
|
Zhou Z, Zhong K, Gu X, Jiang L, Lu D, Ling C, Zhang C. Role of key microbial modules for soil carbon sequestration effects in biochar-based remediation of cadmium-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122964. [PMID: 39490021 DOI: 10.1016/j.jenvman.2024.122964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
How changes in soil properties and heavy metal toxicity induced during biochar remediation of cadmium (Cd) contaminated soils induce changes in microbial communities, and further, how this process affects the soil carbon sequestration capacity by microorganisms, has not been explored. We prepared virgin biochar (named BC400 and BC600) using rice straw at 400 °C and 600 °C and modified biochar (named MNT-BC400 and MNT-BC600) using co-pyrolysis of montmorillonite and rice straw at the same two temperatures, in an attempt to create different CO2 emission backgrounds during the remediation of cadmium contamination in soil, and to explore the mechanism of soil carbon sequestration capacity during remediation. The results showed that MNT-BC600 was effective in reducing the soil available Cd during incubation without increasing soil carbon emission, whereas soil carbon emission was elevated by 83.10%, 50.19%, and 21.53% in BC400, MNT-BC400, and MNT-BC600 treatments compared to the control group (CK). Microbial carbon use efficiency (CUE) was increased by 20.68%, 18.78%, and 12.73% in BC400, BC600, and MNT-BC600 treatments, respectively. We found that the bacterial module (Bmod#2), dominated by the eutrophic bacteria Proteobacteria and Actinobacteriota, controlled the increase of soil carbon emissions; the bacterial module (Bmod#3) composed of both oligotrophic and eutrophic flora were closely related to soil CUE after remediation; the bacterial module (Bmod#4) consisting of oligotrophic and eutrophic bacteria alone was easily replaced by eutrophic bacteria module (Bmod#2) under eutrophic conditions and had a negative linear relationship with soil CO2 emission, while the switch in Cd form was more likely to affect the community structure of modules containing eutrophic bacteria. These findings provide new insights into the use of biochar for soil remediation and balancing soil carbon sequestration.
Collapse
Affiliation(s)
- Zirui Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China
| | - Kai Zhong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China
| | - Xinyi Gu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China
| | - Linjiang Jiang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China
| | - Dingtian Lu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China
| | - Caiyuan Ling
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China
| | - Chaolan Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
6
|
Zeng L, Ma J, Yang J, Yang J, Zeng X, Zhou Y. Ball milling nano-sized biochar: bibliometrics, preparation, and environmental application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52724-52739. [PMID: 39190254 DOI: 10.1007/s11356-024-34777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Nano-sized biochar, which is a small structure prepared from biochar by grinding, has surpassed traditional biochar in performance, showing enhanced effects and potential for a wide range of environmental applications. Firstly, this paper visualizes and analyzes the literature in this field by CiteSpace to clarify the development trend of nano-sized biochar. The review intuitively shows the most influential countries, the most productive institutions, and the most concerned hot spots in the field of nano-sized biochar. Secondly, these hotspots in environment management are summarized by keywords and clustering: (1) The application of ball milling is a modification scheme that researchers have paid attention to, and it is also a key method for preparing biochar nanomaterials. It has a more dispersed structure and can support more modified materials. (2) Nano-sized biochar in the comprehensive utilization of water, soil, and plants was discussed and is a small range of application modification methods. (3) The bidirectional effects of nano-sized biochar on plants were analyzed, and the challenges in its application were listed. Finally, the economic management of nano-sized biochar and the relationship between microorganisms are the focus of the next research.
Collapse
Affiliation(s)
- Lingfeng Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiezhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha City, 410013, Hunan Province, China
| | - Jie Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xiangzhou Zeng
- Huaihua Ecological Environment Bureau, Huaihua, 418000, Hunan Province, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
7
|
He Y, Mi B, Luo C, Zhao W, Zhu Y, Chen L, Tu N, Wu F. Mechanisms insights into Cd passivation in soil by lignin biochar: Transition from flooding to natural air-drying. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134565. [PMID: 38743974 DOI: 10.1016/j.jhazmat.2024.134565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Biochar shows great potential in soil cadmium pollution treatment, however, the effect and mechanisms of biochar on cadmium passivation (CP) during the long-term process of soil from flooding to natural air-drying are not clear. In this study, a 300-day experiment was conducted to keep the flooded water level constant for the first 100 days and then dried naturally. Mechanisms of CP by lignin biochar (LBC) were analyzed through chemical analysis, FTIR-2D-COS, EEMs-PARAFAC, ultraviolet spectroscopy characterizations, and microbial community distribution of soil. Results showed that application of LBC results in rapid CP ratio in soil within 35 days, mainly in the residual and Fe-Mn bound states (total 72.80%). CP ratio further increased to 90.89% with water evaporation. The CP mechanisms include precipitation, electrostatic effect, humus complexation, and microbial remediation by promoting the propagation of fungi such as Penicillium and Trichoderma. Evaporation of water promoted the colonization of aerobic microorganisms and then increased the degree of soil humification and aromatization, thereby enhancing the cadmium passivation. Simultaneously, the biochar could reduce the relative abundance of plant pathogens in soil from 1.8% to 0.03% and the freshness index (β/α) from 0.64 to 0.16, favoring crop growth and promoting carbon sequestration and emission reduction.
Collapse
Affiliation(s)
- Yanying He
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Baobin Mi
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Research Institute of Vegetables, Hunan Academy of Agriculture Sciences, Changsha 410125, China.
| | - Cheng Luo
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenjie Zhao
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yule Zhu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Long Chen
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Naimei Tu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Fangfang Wu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
8
|
Ma Y, Xie W, Yao R, Feng Y, Wang X, Xie H, Feng Y, Yang J. Biochar and hydrochar application influence soil ammonia volatilization and the dissolved organic matter in salt-affected soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171845. [PMID: 38521269 DOI: 10.1016/j.scitotenv.2024.171845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Biochar, which including pyrochar (PBC) and hydrochar (HBC), has been tested as a soil enhancer to improve saline soils. However, the effects of PBC and HBC application on ammonia (NH3) volatilization and dissolved organic matter (DOM) in saline paddy soils are poorly understood. In this research, marsh moss-derived PBC and HBC biochar types were applied to paddy saline soils at 0.5 % (w/w) and 1.5 % (w/w) rates to assess their impact on soil NH3 volatilization and DOM using a soil column experiment. The results revealed that soil NH3 volatilization significantly increased by 56.1 % in the treatment with 1.5 % (w/w) HBC compared to the control without PBC or HBC. Conversely, PBC and the lower application rate of HBC led to decrease in NH3 volatilization ranging from 2.4 % to 12.1 %. Floodwater EC is a dominant factor in NH3 emission. Furthermore, the fluorescence intensities of the four fractions (all humic substances) were found to be significantly higher in the 1.5 % (w/w) HBC treatment applied compared to the other treatments, as indicated by parallel factor analysis modeling. This study highlights the potential for soil NH3 losses and DOM leaching in saline paddy soils due to the high application rate of HBC. These findings offer valuable insights into the effects of PBC and HBC on rice paddy saline soil ecosystems.
Collapse
Affiliation(s)
- Yaxin Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenping Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, CAS, Nanjing 210008, China.
| | - Rongjiang Yao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, CAS, Nanjing 210008, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiangping Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, CAS, Nanjing 210008, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuanyuan Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jingsong Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, CAS, Nanjing 210008, China
| |
Collapse
|
9
|
Tang S, Gong J, Song B, Li J, Cao W, Zhao J. Co-influence of biochar-supported effective microorganisms and seasonal changes on dissolved organic matter and microbial activity in eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171476. [PMID: 38458471 DOI: 10.1016/j.scitotenv.2024.171476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
DOM (dissolved organic matter) play a crucial role in lakes' geochemical and carbon cycles. Eutrophication evolution would influence nutrient status of waters and investigating the DOM variation helps a better understanding of bioremediation on environmental behavior of DOM in eutrophic lakes. In our study, the contents, compositions and characteristics of systematic DOM&SOM (sediment organic matter) were greatly influenced by seasonal changes. But the effective bioremediations obviously reduced the DOM concentration and thus mitigated the eutrophication outbreak risks in water bodies due to the increased MBC (microbial biomass carbon), microbial activity and metabolism. In early summer, the overall DOM in each treatment were readily low levels and derived from both autochthonous and exogenous origins, dominated by fulvic acid-like. In midsummer, the DOM contents and characteristics in each treatment increased significantly as phytoplankton activity improved, and the majority of DOM were humic acid-like and mainly of biological origin. The greatest differences of enzymes, MBC, microbial metabolism and DOM&SOM removal among different treatments were observed in summer months. In autumn, the systematic DOM&SOM slightly reduced due to the deceased microbial activity, in which the microbial humic acids were main component and derived from endogenous sources. Additionally, the gradually decreased SOM with cultivated time in each treatment was a result of microbiological conversion of SOM into DOM. For various treatments, BE, BE.A, BE.C and BE.E increased the MBC, enzymatic and microbial activities due to the application of biochar-supported EMs. Among these, BE and BE.A, especially BE.A with oxygen supplement, achieved the most desirable effect on reducing systematic DOM&SOM levels and increasing enzymatic and microbial activities. The group of EM also reduced the levels of DOM&SOM as improved degradation of EMs for DOM. However, BC, BE.C and BE.E finally did not achieved the desirable effect on reducing DOM&SOM due to the suppression of microbial activities, respectively, from high dose of biochar, weakening of dominant species and additional introduction of EMs in low liveness.
Collapse
Affiliation(s)
- Siqun Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Jun Zhao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| |
Collapse
|
10
|
Liu X, Wei L, Jiang J, He C, Sun X, Song H. New insights into the effect of pyrolysis temperature on the spectroscopy properties of dissolved organic matter in manure-based biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18527-18539. [PMID: 38347358 DOI: 10.1007/s11356-024-32240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
Dissolved organic matter (DOM) derived from biochar takes a crucial role in transport and bioavailability toward contaminants; hence, it is undeniable that a thorough analysis of its properties is important. So far, the effect of pyrolysis temperature on the functional groups, components, and evolutionary sequence of manure-based biochar DOM has not been adequately investigated. Here, DOM was released from two typical livestock manures (cow and pig) at five pyrolysis temperatures (300 ~ 700°C), and it was explored in depth with the aid of moving window 2D correlation spectroscopy (MW-2D-COS) and heterogeneous 2D correlation spectroscopy (hetero-2D-COS). The results demonstrated that the concentration, aromaticity, and hydrophobicity of DOM were greater at high temperatures, and more DOM was liberated from cow manure-based biochar at identical temperature. Protein-like compounds dominated at high temperatures. The pyrolysis temperatures of final configuration transformation points of the fulvic acid-like component and the aromatic ring C=C in DOM were 400°C and 500°C, respectively. Moreover, Fourier transform infrared spectroscopy combined with two-dimensional correlation analysis indicated that the functional group evolution of DOM depends on the pyrolysis temperature and feedstock type. The study provides a new perspective on manure management and environmental applications of biochar.
Collapse
Affiliation(s)
- Xinran Liu
- College of Energy and Environment, Shenyang Aerospace University, No.37 Daoyi Southstreet, Shenbei New District, Shenyang, 110122, China
| | - Lihong Wei
- College of Energy and Environment, Shenyang Aerospace University, No.37 Daoyi Southstreet, Shenbei New District, Shenyang, 110122, China.
| | - Jinyuan Jiang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, No. 8 An Wai Da Yang Fang, Chaoyang District, Beijing, 100012, China
| | - Changjun He
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, No. 8 An Wai Da Yang Fang, Chaoyang District, Beijing, 100012, China
| | - Xun Sun
- College of Energy and Environment, Shenyang Aerospace University, No.37 Daoyi Southstreet, Shenbei New District, Shenyang, 110122, China
| | - Haoyang Song
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, No. 8 An Wai Da Yang Fang, Chaoyang District, Beijing, 100012, China
| |
Collapse
|
11
|
Jiang S, Dai G, Rashid MS, Zhang J, Lin H, Shu Y. Effects of BC on metal uptake by crops (availability) and the vertical migration behavior in soil: A 3-year field experiments of crop rotation. CHEMOSPHERE 2024; 350:141075. [PMID: 38176590 DOI: 10.1016/j.chemosphere.2023.141075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Biochar (BC) has been substantiated to effectively reduce the available content of heavy metals (HMs) in soil-plant system; however, the risk of biochar (BC)derived dissolved organic matter (DOM) induced metal vertical migration has not been well documented, especially in the long-term field conditions. Therefore, this study investigated HM vertical migration ecological risks and the long-term effectiveness of the amendment of biochar in the three successive years of field trials during the rotation system. The results revealed that biochar application could increase soil pH and DOM with a decrease in soil CaCl2 extractable pool for Pb, Cu, and Cd. Furthermore, the results indicated a significant decrease in acid phosphatase activities and an increase in urease and catalase activities in the soil. Cucumber was shown to be safe during a three-year rotation system in the field. These results suggest that BC has the potential to enhance soil environment and crop yields. BC derived DOM-specific substances were identified using parallel factor analysis of excitation-emission matrix in deep soil (0-60 cm). The study incorporated HM concentration fluctuations in deep soils, providing an additional interpretation of DOM and co-migration of HMs.The environmental risk associated with the increase in DOM hydrophobicity should not be ignored by employing BC for soil HM remediation applications. The study enhances understanding of biochar-derived DOM's migration and stabilization mechanisms on heavy metals, providing guidelines for its use as a soil amendment.
Collapse
Affiliation(s)
- Shaojun Jiang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Guangling Dai
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Muhammad Saqib Rashid
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junhao Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, China
| | - Hai Lin
- Guangzhou Marine Geological Survey, Guangzhou, 510760, China
| | - Yuehong Shu
- School of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
He M, Dai P, Lu J, Kang Y, Zhang J, Wu H, Hu Z, Guo Z. Releasing and Assessing the Toxicity of Polycyclic Aromatic Hydrocarbons from Biochar Loaded with Iron. ACS OMEGA 2023; 8:48104-48112. [PMID: 38144079 PMCID: PMC10734020 DOI: 10.1021/acsomega.3c06950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023]
Abstract
Iron (Fe)-loaded biochar has garnered attention for its potential applications in recent years. However, the pyrolysis process of Fe-loaded biochar generates polycyclic aromatic hydrocarbons (PAHs), which can have adverse effects on both human health and the environment. This study explored the correlation between Fe loading and PAH production in Fe-loaded biochar. The results indicate that increasing Fe loading in biochar reduces the PAH concentration, with the most significant decrease observed in naphthalene (0.02-0.08 mg/kg). This reduction can be attributed to the decrease in precursor compounds (e.g., C2H2), substitution of the C=O bond by Fe-O, and a decrease in the dissolved organic matter concentration (3.19-10.76 mg/L) with Fe loading. When Fe loading increased from 0 to 10%, the ecological toxicity of biochar increased by 33.48% due to an elevated production of dibenzo[a,h]anthracene, which poses a significant risk to human health. Therefore, it is imperative to take into consideration the ecological risk of PAHs prior to the application of Fe-loaded biochar. This study presents a comprehensive risk assessment of Fe-loaded biochar and provides valuable insights into the optimization of its production and safe application.
Collapse
Affiliation(s)
- Mingyu He
- Key
Laboratory of Ecological Impacts of Hydraulic-projects and Restoration
of Aquatic Ecosystem of Ministry of Water Resources, Wuhan 430079, China
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Peng Dai
- Department
of Civil & Environmental Engineering, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Jiaxing Lu
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yan Kang
- College
of Environment and Safety Engineering, Qingdao
University of Science and Technology, Qingdao 266042, China
| | - Jian Zhang
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiming Wu
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zizhang Guo
- Key
Laboratory of Ecological Impacts of Hydraulic-projects and Restoration
of Aquatic Ecosystem of Ministry of Water Resources, Wuhan 430079, China
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
13
|
Fregolente LG, Rodrigues MT, Oliveira NC, Araújo BS, Nascimento ÍV, Souza Filho AG, Paula AJ, Costa MCG, Mota JCA, Ferreira OP. Effects of chemical aging on carbonaceous materials: Stability of water-dispersible colloids and their influence on the aggregation of natural-soil colloid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166835. [PMID: 37678531 DOI: 10.1016/j.scitotenv.2023.166835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Although hydrochar and biochar have been used as soil conditioners, there is not a clear understanding of how their properties changes due to aging impacts their colloidal particles behavior on the soil system. From this premise, we produced hydrochar and biochar from the same feedstock (cashew bagasse) and aged with different chemical methods: (i) using hydrogen peroxide, (ii) a mixture of nitric and sulfuric acids, and (iii) hot water. It was analyzed the effects of aging on the stability of the carbonaceous materials (CMs) colloids in aqueous medium with different ionic strength (single systems), as well as the stability of the natural-soil colloid when interacting with biochar and hydrochar colloids (binary systems). A chemical composition (C, H, N, and O content) change in CMs due to the chemically induced aging was observed along with minor structural modifications. Chemical aging could increase the amount of oxygen functional groups for both biochar and hydrochar, though in a different level depending on the methodology applied. In this sense, hydrochar was more susceptive to chemical oxidation than biochar. The effectiveness of chemical aging treatments for biochar increased in the order of water < acid < hydrogen peroxide, whereas for hydrochar the order was water < hydrogen peroxide < acid. While the increase in surface oxidation improved the biochar colloidal stability in water medium at different ionic strengths (single systems), the stability and critical coagulation concentration (CCC) slightly changed for hydrochar. Natural-soil clay (NSC) interactions with oxidized carbonaceous material colloids (binary systems) enhanced NSC stability, which is less likely to aggregate. Therefore, the aging of carbonaceous materials modifies the interaction and dynamics of soil small particles, requiring far more attention to the environmental risks due to their application over time.
Collapse
Affiliation(s)
- Laís G Fregolente
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil.
| | - Maria T Rodrigues
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Naiara C Oliveira
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Bruno Sousa Araújo
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Ícaro V Nascimento
- Soil Science Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Antonio G Souza Filho
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Amauri J Paula
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil; Ilum School of Science, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo State, Brazil
| | - Mirian C G Costa
- Soil Science Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Jaedson C A Mota
- Soil Science Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Odair P Ferreira
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil; Laboratório de Materiais Funcionais Avançados (LaMFA), Chemistry Department, Universidade Estadual de Londrina, Londrina, Paraná State postcode 86057-970, Brazil
| |
Collapse
|
14
|
Wang X, Li Z, Cheng Y, Yao H, Li H, You X, Zhang C, Li Y. Wheat straw hydrochar induced negative priming effect on carbon decomposition in a coastal soil. IMETA 2023; 2:e134. [PMID: 38868226 PMCID: PMC10989761 DOI: 10.1002/imt2.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 06/14/2024]
Abstract
The mechanisms underlying hydrochar-regulated soil organic carbon (SOC) decomposition in the coastal salt-affected soils were first investigated. Straw-derived hydrochar (SHC)-induced C-transformation bacterial modulation and soil aggregation enhancement primarily accounted for negative priming effects. Modification of soil properties (e.g., decreased pH and increased C/N ratios) by straw-derived pyrochar (SPC) was responsible for decreased SOC decomposition.
Collapse
Affiliation(s)
- Xiao Wang
- Marine Agriculture Research Center, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandDongyingChina
- Qingdao Key Laboratory of Coastal Saline‐alkali Land Resources Mining and Biological BreedingTobacco Research InstituteQingdaoChina
| | - Zhen Li
- Marine Agriculture Research Center, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandDongyingChina
- Qingdao Key Laboratory of Coastal Saline‐alkali Land Resources Mining and Biological BreedingTobacco Research InstituteQingdaoChina
| | - Hui Yao
- Marine Agriculture Research Center, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandDongyingChina
- Qingdao Key Laboratory of Coastal Saline‐alkali Land Resources Mining and Biological BreedingTobacco Research InstituteQingdaoChina
| | - Hui Li
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandDongyingChina
- Qingdao Key Laboratory of Coastal Saline‐alkali Land Resources Mining and Biological BreedingTobacco Research InstituteQingdaoChina
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandDongyingChina
- Qingdao Key Laboratory of Coastal Saline‐alkali Land Resources Mining and Biological BreedingTobacco Research InstituteQingdaoChina
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandDongyingChina
- Qingdao Key Laboratory of Coastal Saline‐alkali Land Resources Mining and Biological BreedingTobacco Research InstituteQingdaoChina
| |
Collapse
|
15
|
Zhang H, Ni J, Wei R, Chen W. Water-soluble organic carbon (WSOC) from vegetation fire and its differences from WSOC in natural media: Spectral comparison and self-organizing maps (SOM) classification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165180. [PMID: 37385508 DOI: 10.1016/j.scitotenv.2023.165180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Vegetation fire frequently occurs globally and produces two types of water-soluble organic carbon (WSOC) including black carbon WSOC (BC-WSOC) and smoke-WSOC, they will eventually enter the surface environment (soil and water) and participate in the eco-environmental processes on the earth surface. Exploring the unique features of BC-WSOC and smoke-WSOC is critical and fundamental for understanding their eco-environmental effects. Presently, their differences from the natural WSOC of soil and water remain unknown. This study produced various BC-WSOC and smoke-WSOC by simulating vegetation fire and used UV-vis, fluorescent EEM-PARAFAC, and fluorescent EEM-SOM to analyze their different features from natural WSOC of soil and water. The results showed that the maximum yield of smoke-WSOC reached about 6600 folds that of BC-WSOC after a vegetation fire event. The increasing burning temperature decreased the yield, molecular weight, polarity, and protein-like matters abundance of BC-WSOC and increased the aromaticity of BC-WSOC, but presented a negligible effect on the features of smoke-WSOC. Furthermore, compared with natural WSOC, BC-WSOC had a greater aromaticity, smaller molecular weight, and more humic-like matters, while smoke-WSOC had a lower aromaticity, smaller molecular size, higher polarity, and more protein-like matters. EEM-SOM analysis indicated that the ratio between the fluorescence intensity at Ex/Em: 275 nm/320 nm and the sum fluorescence intensity at Ex/Em: 275 nm/412 nm and Ex/Em: 310 nm/420 nm could effectively differentiate WSOC of different sources, following the order of smoke-WSOC (0.64-11.38) > water-WSOC and soil-WSOC (0.06-0.76) > BC-WSOC (0.0016-0.04). Hence, BC-WSOC and smoke-WSOC possibly directly alter the quantity, properties, and organic compositions of WSOC in soil and water. Owing to smoke-WSOC having far greater yield and bigger difference from natural WSOC than BC-WSOC, the eco-environmental effect of smoke-WSOC deposition should be given more attention after a vegetation fire.
Collapse
Affiliation(s)
- Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
16
|
Wang H, Zhu J, He Y, Wang J, Zeng N, Zhan X. Photoaging process and mechanism of four commonly commercial microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131151. [PMID: 36889070 DOI: 10.1016/j.jhazmat.2023.131151] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are the widespread emerging pollutants in the terrestrial systems, and photo-oxidation is an effective process for aging MPs on land. Here, four common commercial MPs were exposed to ultraviolet (UV) light to simulate the photo-aging of MPs on soil, and the changes in surface properties and eluates of photoaging MPs were studied. Results revealed that polyvinyl chloride (PVC) and polystyrene (PS) exhibited more pronounced physicochemical changes than polypropylene (PP) and polyethylene (PE) during photoaging on the simulated topsoil, due to the dechlorination of PVC and the debenzene ring of PS. Oxygenated groups accumulated in aged MPs were strongly correlated with dissolved organic matters (DOMs) leaching. Through analysis of the eluate, we found that photoaging altered the molecular weight and aromaticity of DOMs. PS-DOMs showed the greatest increase in humic-like substances after aging, whereas PVC-DOMs exhibited the highest amount of additive leaching. The chemical properties of additives explained their differences in photodegradation responses, which also accounted for the greater importance of chemical structure of MPs to their structural stability. These findings demonstrate that the extensive presence of cracks in aged MPs facilitates DOMs formation and the complexity of DOMs composition poses a potential threat to soil and groundwater safety.
Collapse
Affiliation(s)
- Huiqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Yuan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Nengde Zeng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| |
Collapse
|
17
|
Yue Y, Xu L, Li G, Gao X, Ma H. Characterization of Dissolved Organic Matter Released from Aged Biochar: A Comparative Study of Two Feedstocks and Multiple Aging Approaches. Molecules 2023; 28:molecules28114558. [PMID: 37299032 DOI: 10.3390/molecules28114558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Dissolved organic matter (DOM) plays important roles in environmental ecosystems. While many studies have explored the characteristics of aged biochar, limited information is available about the properties of DOM derived from aged biochar. In this study, biochar obtained from maize stalk and soybean straw were aged using farmland or vegetable-soil solution, as well as soil solution containing hydrogen peroxide (H2O2). Chemical composition of the extracted DOM from the aged biochar was analyzed via excitation-emission matrix coupled with fluorescence regional integration (FRI) and parallel factor analysis (PARAFAC). Obtained results showed that biochar aged with H2O2-enriched soil solution had higher water-soluble organic carbon, ranging from 147.26-734.13% higher than the controls. FRI analysis revealed fulvic and humic-like organics as the key components, with a considerable increase of 57.48-235.96% in the humic-like component, especially in soybean-straw-aged biochar. PARAFAC identified four humic-like substance components. Concurrently, the aromaticity and humification of the aged-biochar-derived DOM increased, while the molecular weight decreased. These findings suggest that DOM derived from aged biochar, with a high content of humic-like organics, might impact the mobility and toxicity of pollutants in soil.
Collapse
Affiliation(s)
- Yan Yue
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Leqi Xu
- Yantai Research Institute, China Agricultural University, Yantai 264670, China
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guitong Li
- Yantai Research Institute, China Agricultural University, Yantai 264670, China
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiang Gao
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongfang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
18
|
Shang Q, Chi J. Impact of biochar coexistence with polar/nonpolar microplastics on phenanthrene sorption in soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130761. [PMID: 36638674 DOI: 10.1016/j.jhazmat.2023.130761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Microplastics and biochar normally coexist in soil. In this study, two microplastics of different polarities (nonpolar polyethylene (PE) and polar polybutylene adipate-co-terephthalate (PBAT)) and two wheat straw biochars produced at 400 (W4) and 700 °C (W7) were selected to investigate the sorption behaviors of phenanthrene in soil where microplastics and biochar coexisted. The results showed that the presence of PE more significantly weakened the adhesion of soil particles onto biochar than the presence of PBAT. Meanwhile, the presence of biochar enhanced the soil particle attachment on the microplastic surface. As a result, the sorption behavior of phenanthrene was significantly different in soil where biochar coexisted with microplastics of different polarities. The Koc values of PE-biochar-soil mixtures at Ce= 0.005 Cs were up to 42 % lower than those of PBAT-biochar-soil mixtures, which is related to lower micropore area of particles isolated from the former. However, at Ce = 0.05 Cs and 0.5 Cs, the Koc values of PE-biochar-soil mixtures were up to 1.4 times higher than those of PBAT-biochar-soil mixtures because of a more significant reduction in biochar surface polarity when it coexisted with nonpolar PE.
Collapse
Affiliation(s)
- Qiongqiong Shang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
19
|
Tian Y, Chen N, Yang X, Li C, He W, Ren N, Liu G, Yang W. Migration electric-field assisted electrocoagulation with sponge biochar capacitive electrode for advanced wastewater phosphorus removal. WATER RESEARCH 2023; 231:119645. [PMID: 36702022 DOI: 10.1016/j.watres.2023.119645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Migrating electric field-assisted electrocoagulation (MEAEC) is a three-electrode electrochemical system, including waste flour-derived sponge biochar (SBC) as an adsorption electrode for efficient phosphorus removal from wastewater. The SBC was applied in the MEAEC system as a pseudo capacitance electrode with low energy consumption and reached an excellent effluent level (0.12 mg/L) with a 200-s treatment time in 1 mg/L phosphate synthetic wastewater. The SBC adsorption electrode had a total charge capacitance of 1.14 F/g with abundant micropores. Continuous charging and discharging at a constant voltage over 100 cycles demonstrated the excellent durability of the biochar electrodes. The energy demand of SBC-MEAEC was only 0.0058 kWh/m3 for 90% phosphate removal, which was 65% less than that of the control. The use of SBC in the MEAEC system greatly enhanced phosphate removal at low concentrations. In the SBC-MEAEC system, the electro-desorption synchronous electrocoagulation process demonstrated efficient concentration and release of ions after electro-adsorption. These results indicate that MEAEC with an SBC electrode could achieve a high level of phosphate removal with a much lower energy consumption than in previous studies. The recovered concentrated phosphorus flocs also contained fewer metal impurities than those in previous electrochemical approaches. The proposed desorption synchronous electrocoagulation utilizing waste-derived SBC electrodes provides a cost-effective pathway to treat low phosphorous-containing wastewater.
Collapse
Affiliation(s)
- Yushi Tian
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Nangang District, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Nianhua Chen
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Nangang District, Harbin 150090, China
| | - Xu Yang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Nangang District, Harbin 150090, China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Nangang District, Harbin 150090, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, China.
| | - Wulin Yang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Ye Y, Wang Z, Liu L, Qi K, Xie X. Novel insights into the temporal molecular fractionation of dissolved black carbon at the iron oxyhydroxide - water interface. WATER RESEARCH 2023; 229:119410. [PMID: 36462262 DOI: 10.1016/j.watres.2022.119410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As the most reactive and mobile fraction of black carbon, dissolved black carbon (DBC) inexorably interacts with minerals in the biosphere. Nevertheless, the research on the mechanisms and compositions of DBC assembly at the mineral-water interface remains limited. In this study, we revealed the "kinetic architecture" of DBC on iron oxyhydroxide at novel insights based on quantitative and qualitative approaches. The results indicated that high molecular weight, highly unsaturated, oxygen-rich (such as carboxyl-rich fraction, phenolics), aliphatics, and long C chains compounds were preferentially adsorbed on the iron oxyhydroxide. 2D-COS analyses directly disclosed the sequential fractionation: aromatic and phenolic groups > aliphatic groups, and few aromatics were continuously adsorbed after the rapid adsorption. Quantitative determinations identified that aromatic and phenolic components were adsorbed rapidly over the first 60 min, while aromatics achieved the dynamic equilibrium until ∼300 min, which was consistent with the 2D-COS observations. Our findings supported the hypothesis that "mineral-OM" and "OM-OM" interactions worked simultaneously, and the adsorption might be co-driven by ligand exchange, hydrophobic interactions, and other mechanisms. This work provided the theoretical basis for organic carbon storage and turnover, and it was valuable for predicting the behaviors and fates of contaminants at the soil-water interface and surface water.
Collapse
Affiliation(s)
- Yuping Ye
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China
| | - Zhaowei Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China.
| | - Lijuan Liu
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China
| | - Kemin Qi
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China
| | - Xiaoyun Xie
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China.
| |
Collapse
|
21
|
Qiu H, Liu J, Boorboori MR, Li D, Chen S, Ma X, Cheng P, Zhang H. Effect of biochar application rate on changes in soil labile organic carbon fractions and the association between bacterial community assembly and carbon metabolism with time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158876. [PMID: 36152866 DOI: 10.1016/j.scitotenv.2022.158876] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Biochar aging affects the stability of soil carbon. Analyzing the effect of biochar on soil organic carbon (SOC) forms and their relations with microbial community assembly and carbon metabolism with time is helpful for soil carbon sequestration (by adapting the farm management approach). Four treatments with no, low, medium, and high biochar application rates (0 %, 1 %, 2 %, and 4 % of the total dry weight of topsoil before winter wheat planting, abbreviated as control, LB, MB, and HB, respectively) were conducted in the field. The SOC and particulate organic carbon positively correlated with the biochar application rate. Biochar decreased readily oxidizable carbon (P < 0.05) after 8 months of application compared to the control; however, the difference disappeared with time. Biochar increased dissolved organic carbon (DOC) but had no effect on water- soluble organic carbon (WSOC); DOC and WSOC decreased with time. Furthermore, LB and HB stabilized the bacterial alpha diversities with time. Based on high-throughput sequencing, HB reduced the relative abundance of Actinobacteriota but increased that of Acidobacteria (P < 0.05) after 12 months of biochar application. Time-wise, the bacterial community assembly was determined by deterministic processes that were significantly affected by the available nitrogen, DOC, or WSOC. Compared with the control, biochar decreased bacterial links and improved bacterial metabolism of phenolic acids and polymers with time, as evidenced by Biolog EcoPlates. Structural equation modeling revealed that the contribution of bacterial assembly processes to carbon metabolism changed with time. Microbial carbon metabolism was most positively influenced by differences in the composition of bacterial specialists. These findings reinforced that changes in soil labile organic carbon were time-dependent but not necessarilty affected by the biochar application rate.
Collapse
Affiliation(s)
- Husen Qiu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou 234000, China; Research Center of Non-point Source Pollution Control and Ecological Remediation of Tuohe River Basin, Suzhou University, Suzhou 234000, China
| | - Jieyun Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou 234000, China; Research Center of Non-point Source Pollution Control and Ecological Remediation of Tuohe River Basin, Suzhou University, Suzhou 234000, China.
| | - Mohammad Reza Boorboori
- School of Environment and Surveying Engineering, Suzhou University, Suzhou 234000, China; Research Center of Non-point Source Pollution Control and Ecological Remediation of Tuohe River Basin, Suzhou University, Suzhou 234000, China
| | - De Li
- Suzhou Meteorological Bureau of Anhui, Suzhou 234000, China
| | - Sheng Chen
- School of Environment and Surveying Engineering, Suzhou University, Suzhou 234000, China
| | - Xun Ma
- School of Environment and Surveying Engineering, Suzhou University, Suzhou 234000, China
| | - Peng Cheng
- School of Environment and Surveying Engineering, Suzhou University, Suzhou 234000, China
| | - Haiyang Zhang
- School of Environment and Surveying Engineering, Suzhou University, Suzhou 234000, China; Research Center of Non-point Source Pollution Control and Ecological Remediation of Tuohe River Basin, Suzhou University, Suzhou 234000, China
| |
Collapse
|
22
|
Tian YX, Guo X, Ma J, Liu QY, Li SJ, Wu YH, Zhao WH, Ma SY, Chen HY, Guo F. Characterization of biochar-derived organic matter extracted with solvents of differing polarity via ultrahigh-resolution mass spectrometry. CHEMOSPHERE 2022; 307:135785. [PMID: 35870614 DOI: 10.1016/j.chemosphere.2022.135785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/10/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
In recent years, biochar, a porous carbon-based material, has gained attention for its application prospects in contaminated soil remediation and soil improvement. Biochar-derived organic matter has a key role in influencing the migration and transformation of soil elements and pollutants. However, existing research concerning the molecular characteristics of biochar-derived organic matter is limited. Here, we used four polar solvents - dichloromethane (CH2Cl2), acetone (CH3COCH3), methanol (CH3OH), and distilled water (H2O) - to extract organic matter from soybean straw biochar and wheat straw biochar by accelerated solvent extraction (ASE). We characterized the extracts using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). We found considerable differences in organic matter according to the extraction solvents; such differences were related to the polarity of the solvent, as well as intermolecular forces between the solvent and organic matter. CH3OH extracted the most biochar-extractable organic matter components because CH3OH can weaken or destroy oxygen bridge bonds in biochar and form hydrogen bonds with small-molecule organic compounds. CH3OH and H2O have strong extraction capacity for compounds containing heteroatoms. CH2Cl2-extractable organic matter is relatively labile and bioavailable, while CH3OH- and H2O-extractable organic matters are relatively stable. In addition, the binding capacity of biochar-derived organic matter for minerals and pollutants differed among fractions, in part because of differences in molecular weight, atomic O/C and H/C ratios, heteroatom distribution, and biomolecular compounds present in biochar-derived organic matter. The findings in this study help to select appropriate extractants to analyze biochar-derived organic matter for various research purposes, and provides a theoretical basis for biochar-based remediation of contaminated soil.
Collapse
Affiliation(s)
- Y X Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - X Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental, Liaoning University, Shenyang, 110036, China
| | - J Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Q Y Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Earth Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - S J Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental, Liaoning University, Shenyang, 110036, China
| | - Y H Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - W H Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - S Y Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental and Resource Sciences, Shan Xi University, Shan Xi, 030006, China
| | - H Y Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - F Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
23
|
Yang Y, Sun K, Liu J, Chen Y, Han L. Changes in soil properties and CO 2 emissions after biochar addition: Role of pyrolysis temperature and aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156333. [PMID: 35640750 DOI: 10.1016/j.scitotenv.2022.156333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Biochar has been regarded as an effective amendment for soil carbon sequestration and soil quality improvement. However, it remains unclear how pyrolysis temperature and biochar aging impact the responses of soil properties and CO2 emissions to biochar addition. Here, we investigated the effect of biochar on soil properties and CO2 emissions in a laboratory incubation using soils amended with/without fresh biochar produced at 300 (BC300), 450 (BC450), and 600 °C (BC600) and their corresponding naturally aged samples (aged in soil for 360 days). The results showed that biochar significantly increased soil total nitrogen (by 8-36%), available phosphorus (by 19-69%) and available potassium (by 1.5-4.2-fold) throughout the incubation. Both fresh and aged biochar promoted the formation of soil macroaggregate at the end of the incubation. Moreover, fresh and aged BC300 increased the soil dissolved organic matter (DOM) content, whereas for BC450 and BC600, at the beginning, the content of soil DOM was reduced, but the effects finally became insignificant. Generally, fresh biochar had no significant effect on soil enzyme activities and soil bacterial richness and diversity, but an inhibitory effect occurred in the aged samples. Both fresh and aged BC300 increased soil CO2 emissions, which was due to the biochar-induced increase in soil DOM content and enrichment of copiotrophic bacteria (Proteobacteria) as well as the decline of oligotrophic bacteria (Acidobacteriota). A significant decrease in soil CO2 emissions was observed after fresh BC450 and BC600 addition, owing to the biochar-induced decline in soil DOM content, while an opposite trend was found in aged samples, which could be attributed to the shift of the dominant soil phylum from Acidobacteriota to Proteobacteria. These findings enhance our understanding of biochar's potential to improve soil quality and sequester soil carbon.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Jie Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yalan Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
24
|
Zhang S, Wang M, Liu J, Tian S, Yang X, Xiao G, Xu G, Jiang T, Wang D. Biochar affects methylmercury production and bioaccumulation in paddy soils: Insights from soil-derived dissolved organic matter. J Environ Sci (China) 2022; 119:68-77. [PMID: 35934467 DOI: 10.1016/j.jes.2022.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Biochar has been used increasingly as a soil additive to control mercury (Hg) pollution in paddy rice fields. As the most active component of soil organic matter, soil dissolved organic matter (DOM) plays a vital role in the environmental fate of contaminants. However, there are very few studies to determine the impact of biochar on the Hg cycle in rice paddies using insights from DOM. This study used original and modified biochar to investigate their effect on DOM dynamics and their potential impact on methylmercury (MeHg) production and bioaccumulation in rice plants. Porewater DOM was collected to analyze the variations in soil-derived DOM in paddy soils. The results showed that the addition of biochar, whether in original or modified form, significantly reduced the bioaccumulation of MeHg in rice plants, especially in hulls and grains (p<0.05). However, MeHg production in soils was only inhibited by the modified biochar. Biochar addition induced a significant increase in DOM's aromaticity and molecular weight (p<0.05), which decreased Hg bioavailability. Furthermore, enhanced microbial activity was also observed in DOM (p<0.05), further increasing MeHg production in the soil. Thus, the effect of biochar on the fate of Hg cycle involves competition between the two different roles of DOM. This study identified a specific mechanism by which biochar affects Hg behavior in rice paddy soil and contributes to understanding the more general influence of biochar in agriculture and contaminant remediation.
Collapse
Affiliation(s)
- Siqi Zhang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mingxing Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Shanyi Tian
- Soil Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueling Yang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Guangquan Xiao
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Guomin Xu
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China; Guizhou Material Industrial Technology Institute, Guiyang 550014, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Dingyong Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
25
|
Qu J, Zhang X, Guan Q, Kong L, Yang R, Ma X. Effects of biochar underwent different aging processes on soil properties and Cd passivation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57885-57895. [PMID: 35359207 DOI: 10.1007/s11356-022-19867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
This study aims to determine the efficacy of biochar underwent different aging process including freeze-thaw cycling aging (FB), acidified aging (AB), and microbial aging (MB) on soil physicochemical properties and Cd passivation. The Cd-contaminated soil (3 mg·kg-1) amended with the three kinds of aging biochar (at 4% w:w) were subjected to 56-day incubation. The application of FB and MB in soil increased the soil pH (0.82-1.04, 0.27-9.36), CEC (1.06-2.53 cmol·kg-1, 1.66-2.59 cmol·kg-1), and organic matter content (2.28-4.67 g·kg-1, 3.70-5.48 g·kg-1). FB performed best in stabilizing Cd (17.06-23.65%). On the contrary, AB decreased the soil pH and CEC by 0.82-1.04 and 1.32-2.40 cmol·kg-1 and activated Cd by 11.6-19.24%. In conclusion, the efficacy of biochar on soil remediation and Cd passivation varied with aging method and cycle, and freeze-thaw treatment is an effective approach to improve the performance of biochar.
Collapse
Affiliation(s)
- Juanjuan Qu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Utilization and Protection of Black Soil in Cold Region, Harbin, 150030, China
| | - Xu Zhang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qingkai Guan
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Linghui Kong
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Rui Yang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xianfa Ma
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
26
|
Cheng H, Xing D, Lin S, Deng Z, Wang X, Ning W, Hill PW, Chadwick DR, Jones DL. Iron-Modified Biochar Strengthens Simazine Adsorption and Decreases Simazine Decomposition in the Soil. Front Microbiol 2022; 13:901658. [PMID: 35847072 PMCID: PMC9283092 DOI: 10.3389/fmicb.2022.901658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, modified biochar has been successfully used in the remediation of soil polluted with heavy metals. However, the effects of the modified biochar on pesticides (such as simazine) are still unclear. Herein, the environmental fate of simazine, such as decomposition, leaching, and adsorption in unamended soil, in the soil amended with unmodified and modified biochar (biochar + FeCl3, biochar + FeOS, biochar + Fe) were evaluated. In addition, an incubation experiment was also performed to observe the influence of modified biochar on the microbial community and diversity in the soil. The results showed that modified biochar significantly decreased the decomposition of simazine in the soil compared to its counterpart. Modified biochar also reduced the concentration of simazine in the leachate. Compared with the control, soil microbial biomass in the soil amended with unmodified biochar, biochar + FeCl3, biochar + Fe, and biochar + FeOS was decreased by 5.3%, 18.8%, 8.7%, and 18.1%, respectively. Furthermore, modified biochar changed the structure of the microbial community. This shows that modified biochar could increase the soil adsorption capacity for simazine and change the amount and microbial community that regulates the fate of simazine in the soil. This study concludes that iron-modified biochar has positive and negative effects on the soil. Therefore, its advantages and side effects should be considered before applying it to the soil.
Collapse
Affiliation(s)
- Hongguang Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- School of Natural Science, Bangor University, Bangor, United Kingdom
- *Correspondence: Hongguang Cheng,
| | - Dan Xing
- Institute of Pepper Guiyang, Guizhou Academy of Agricultural Science, Guiyang, China
| | - Shan Lin
- School of Natural Science, Bangor University, Bangor, United Kingdom
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), College of Resources and Environment, Huazhong Agricultural University, Ministry of Agriculture, Wuhan, China
| | - Zhaoxia Deng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- College of Resources and Environment Engineering, Guizhou University, Guiyang, China
| | - Xi Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), College of Resources and Environment, Huazhong Agricultural University, Ministry of Agriculture, Wuhan, China
| | - Wenjing Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Paul W. Hill
- School of Natural Science, Bangor University, Bangor, United Kingdom
| | - David R. Chadwick
- School of Natural Science, Bangor University, Bangor, United Kingdom
| | - Davey L. Jones
- School of Natural Science, Bangor University, Bangor, United Kingdom
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
27
|
Liu Y, Deng S, Chen L, Zhang A, Suttiruengwong S, Sun Z. Spectroscopic characterization of soil dissolved organic matter during dielectric barrier discharge (DBD) plasma treatment: Effects of discharge power, atmosphere and soil moisture content. CHEMOSPHERE 2022; 297:134145. [PMID: 35240150 DOI: 10.1016/j.chemosphere.2022.134145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Non-thermal plasma (NTP) technology is an emerging advanced oxidation process, which has shown excellent performances in soil organic pollution remediation. Dissolved organic matter (DOM) is one of the most important components in soil, however, investigations on the structural and compositional changes of DOM during NTP process are lacking. Therefore, in the present study, we systematically investigated the soil DOM changes under different discharge voltages, atmospheres or soils with different moisture contents. The results indicated that after NTP treatment, substantial soil organic matters were released and dissolved in water. For instance, the DOC value of DOM increased dramatically from 21.1 to 197.3 mg L-1 after being discharged for 120 min under the discharge voltage of 80 V. The UV-Vis characterization results indicated the significant increase of hydrophilicity, and decreases of aromaticity and molecular weight for soil DOM during the initial discharge period. However, long time discharge resulted in slight recovery of aromaticity and hydrophobicity, possibly due to the dehydration and re-condensation of small molecules. EEM-FRI results indicated that the total fluorescence intensity of DOM decreased obviously, indicating the destruction of fluorescent dissolved organic matter (FDOM). While the proportions of humic-like and microbial byproduct-like substances increased, indicating that those substances were more recalcitrant under NTP treatment compared with fulvic acid-like and aromatic protein-like substances. Four fluorescence components were identified by PARAFAC, and microbial and terrestrial humic-like substances were more difficult to degrade compared to other humic-like substances and fulvic acid-like substances. Additionally, discharge voltage and atmosphere had great influences on DOM changes, while the impact of soil moisture content was not significant. Overall, this study provided insights into the DOM changes during NTP process, which is valuable for more comprehensive evaluation of the NTP technique application in practical soil remediation.
Collapse
Affiliation(s)
- Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Siyu Deng
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lulu Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Supakij Suttiruengwong
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Zhuyu Sun
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
28
|
Rombolà AG, Torri C, Vassura I, Venturini E, Reggiani R, Fabbri D. Effect of biochar amendment on organic matter and dissolved organic matter composition of agricultural soils from a two-year field experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151422. [PMID: 34742976 DOI: 10.1016/j.scitotenv.2021.151422] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/08/2021] [Accepted: 10/31/2021] [Indexed: 05/16/2023]
Abstract
Dissolved organic matter (DOM) is an important organic matter fraction that plays a key role in many biological and chemical processes in soil. The effect of biochar addition on the content and composition of soil organic matter (SOM) and DOM in an agricultural soil in Italy was investigated within a two-year period. UV-Vis spectroscopy and analytical pyrolysis have been applied to study complex components in DOM soil samples. Additionally, analytical pyrolysis was used to provide qualitative information of SOM at molecular level and the properties of biochar before and one year after amendment. A method was developed to quantify biochar levels by thermogravimetric analysis that enabled to identify deviations from the amendment rate. The water-soluble organic carbon (WSOC) concentrations in the amended soils were significantly lower than those in the control soils, indicating that biochar decreased the leaching of DOM. DOM in treated soils was characterized by a higher aromatic character according to analytical pyrolysis and UV-Vis spectroscopy. Moreover, a relatively high abundance of compounds with N was observed in pyrolysates of treated soils, suggesting that biochar increased the proportion of microbial DOM. The results from thermal and spectroscopy techniques are consistent in highlighting significant changes in DOM levels and composition due to biochar application with important effects on soil carbon storage and cycling.
Collapse
Affiliation(s)
- Alessandro G Rombolà
- Department of Chemistry "Giacomo Ciamician" and C.I.R.I. MAM Tecnopolo di Rimini, University of Bologna, Via Dario Campana 71, 47192 Rimini, Italy.
| | - Cristian Torri
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Campus di Ravenna, via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Ivano Vassura
- Department of Industrial Chemistry "Toso-Montanari" and C.I.R.I. FRAME, University of Bologna, Campus di Rimini, via Dario Campana 71, 47922 Rimini, Italy
| | - Elisa Venturini
- Department of Industrial Chemistry "Toso-Montanari" and C.I.R.I. FRAME, University of Bologna, Campus di Rimini, via Dario Campana 71, 47922 Rimini, Italy
| | - Roberto Reggiani
- Experimental Farm Stuard SCRL, Strada Madonna dell'Aiuto 7/a, 43126 San Pancrazio, Parma, Italy
| | - Daniele Fabbri
- Department of Chemistry "Giacomo Ciamician" and C.I.R.I. MAM Tecnopolo di Rimini, University of Bologna, Via Dario Campana 71, 47192 Rimini, Italy
| |
Collapse
|
29
|
Ma ZP, Zhang L, Ma X, Zhang YH, Shi FN. Design of Z-scheme g-C 3N 4/BC/Bi 25FeO 40 photocatalyst with unique electron transfer channels for efficient degradation of tetracycline hydrochloride waste. CHEMOSPHERE 2022; 289:133262. [PMID: 34906528 DOI: 10.1016/j.chemosphere.2021.133262] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/28/2021] [Accepted: 12/10/2021] [Indexed: 05/27/2023]
Abstract
High electron transfer rates and a higher number of electron transfer active sites play important roles in inhibiting the recombination of photogenerated electron-hole pairs. In the experiments described in this article, the g-C3N4/BC/Bi25FeO40 composite material was prepared to use biochar (BC) as the conductive channel. The presence of BC significantly increases the electron transfer rate due to its excellent electrical conductivity and can provide more electron transfer active sites. At the same time, BC provides a larger surface area and has a loose porous structure, which lead to excellent adsorption performance. Based on various characterization results, it was confirmed that the Z-scheme heterojunction was successfully constructed between g-C3N4 and Bi25FeO40. The photocatalytic experiment results showed that the degradation efficiency of g-C3N4/BC/Bi25FeO40 on the tetracycline hydrochloride (TCH) could reach 92.2% within 60 min. Parameters such as circulation stability, pH value of the solution and the amount of composite materials were studied. The synthesized composite material has good reusability and high efficiency in a wide pH range of 3-11. Its excellent photocatalytic activity is attributed to the formation of an effective Z-scheme heterostructure, as well as the rapid photoelectron transfer and excellent adsorption capacity of BC. This work provides a way to design new photocatalysts using semiconductor composite materials and BC materials.
Collapse
Affiliation(s)
- Zhi-Peng Ma
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Linnan Zhang
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Xue Ma
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yu-Hang Zhang
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Fa-Nian Shi
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| |
Collapse
|
30
|
Ji M, Wang X, Usman M, Liu F, Dan Y, Zhou L, Campanaro S, Luo G, Sang W. Effects of different feedstocks-based biochar on soil remediation: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118655. [PMID: 34896220 DOI: 10.1016/j.envpol.2021.118655] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/19/2021] [Accepted: 12/05/2021] [Indexed: 05/22/2023]
Abstract
As a promising amendment, biochar has excellent characteristics and can be used as a remediation agent for diverse types of soil pollution. Biochar is mostly made from agricultural wastes, forestry wastes, and biosolids (eg, sewage sludge), but not all the biochar has the same performance in the improvement of soil quality. There is a lack of guidelines devoted to the selection of biochar to be used for different types of soil pollution, and this can undermine the remediation efficiency. To shed light on this sensitive issue, this review focus on the following aspects, (i) how feedstocks affect biochar properties, (ii) the effects of biochar on heavy metals and organic pollutants in soil, and (iii) the impact on greenhouse gas emissions from soil. Generally, the biochars produced from crop residue and woody biomass which are composed of lignin, cellulose, and hemicellulose are more suitable for organic pollution remediation and greenhouse gas emission reduction, while biochar with high ash content are more suitable for cationic organic pollutant and heavy metal pollution (manure and sludge, etc.). Additionally, the effect of biochar on soil microorganisms shows that gram-negative bacteria in soil tend to use WB biochar with high lignin content, while biochar from OW (rich in P, K, Mg, and other nutrients) is more able to promote enzyme activity. Finally, our recommendations on feedstocks selection are presented in the form of a flow diagram, which is precisely intended to be used as a support for decisions on the crucial proportioning conditions to be selected for the preparation of biochar having specific properties and to maximize its efficiency in pollution control.
Collapse
Affiliation(s)
- Mengyuan Ji
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Department of Biology, University of Padua, 35131, Padova, Italy
| | - Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Muhammad Usman
- Bioproducts Science & Engineering Laboratory (BSEL), Department of Biological Systems Engineering, Washington State University (WSU), Richland, WA, USA; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yitong Dan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lei Zhou
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | | | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|