1
|
Ranade AK, Yamaguchi A, Miyauchi M, Ramaswami S, Yoshimura C. Interface dependent electron shunting in graphene-integrated intimately coupled photocatalytic biodegradation. WATER RESEARCH 2025; 273:123064. [PMID: 39798386 DOI: 10.1016/j.watres.2024.123064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/14/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Intimately coupled photocatalytic biodegradation (ICPB) has been recently developed as an efficient wastewater treatment technique, particularly for removing persistent organic pollutants. However, photocatalyst/biofilm interaction in terms of photoelectron transfer and its effect on the overall performance of ICPB has not been explored. To investigate these points, interface-engineered composites of bismuth vanadate and reduced graphene oxide with low degree (BiVO4/rGO-LC) and high degree of their contact (BiVO4/rGO-HC) were fabricated and applied for ICPB. As a result, the composites displayed interface-dependent optical, structural and charge carrier separation properties. The photoelectrochemical measurements confirmed the presence of photoelectron shunting between photocatalyst and biofilm, while the current density was higher (smaller Nyquist arc) for BiVO4/rGO-HC than BiVO4/rGO-LC and BiVO4 in ICPB protocol, confirming the crucial role of intimate interfacial contact for photoelectron shunting from BiVO4 to biofilm. Consequently, the presence of graphene and its interfacial quality dictated the photoelectron shunting between photocatalyst and biofilm, enhancing photoelectron-holes separation and achieving superior degradation rate of tetracycline hydrochloride for BiVO4/rGO-HC (0.035 h-1) compared to BiVO4/rGO-LC (0.0128 h-1) and BiVO4 (0.011 h-1) in ICPB protocol. The electrical energy per order required for removal of tetracycline hydrochloride in the ICPB protocol exhibited the lowest value for BiVO4/rGO-HC among the tested materials and treatment protocols. These results highlight the importance of photoelectron shunting in enhancing efficiency of ICPB by engineering graphene at the interface of photocatalyst and biofilm. This unveiled mechanism may serve as an excellent potential in designing energy-efficient ICPB systems targeting wastewater matrices.
Collapse
Affiliation(s)
- Ajinkya Kishor Ranade
- JSPS International Research Fellow, Department of Civil and Environmental Engineering, Institute of Science Tokyo, 2-12-1, Meguro- Ku, Tokyo, 152-8552, Japan.
| | - Akira Yamaguchi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1, Meguro- Ku, Tokyo, 152-8552, Japan
| | - Masahiro Miyauchi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1, Meguro- Ku, Tokyo, 152-8552, Japan
| | - Sreenivasan Ramaswami
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, 560054, India
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Institute of Science Tokyo, 2-12-1, Meguro- Ku, Tokyo, 152-8552, Japan.
| |
Collapse
|
2
|
Duong LTK, Nguyen TTT, Tran TV. Combined pollution of tetracyclines and microplastics in the aquatic environment: Insights into the occurrence, interaction mechanisms and effects. ENVIRONMENTAL RESEARCH 2024; 263:120223. [PMID: 39448014 DOI: 10.1016/j.envres.2024.120223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Tetracyclines, a widely used class of antibiotics, and synthetic plastic products are both prevalent in the environment. When released into water bodies, these pollutants can pose significant risks due to their daily influx into aquatic ecosystems. Microplastics can adsorb tetracyclines, acting as a transport vector that enhances their impact on aquatic species. Understanding the co-exposure effects of microplastics and tetracyclines is crucial. This review comprehensively examines the occurrence and distribution of microplastics and tetracyclines across various environmental contexts. The interactions between these two contaminants are primarily driven by electrostatic interactions, hydrophobic effects, hydrogen bonding, π-π interactions, and others. Factors such as the presence of heavy metals, ions, and dissolved organic matter can influence the adsorption and desorption of tetracyclines onto microplastics. The stability of microplastic-tetracycline complexes is highly dependent on pH conditions. The combined pollution tetracyclines and microplastics leads to negative impacts on marine species. Future research should focus on understanding the adsorption behavior of tetracyclines on microplastics and developing effective treatment techniques for these contaminants in aquatic environments.
Collapse
Affiliation(s)
- Loan Thi Kim Duong
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Nong Lam University Ho Chi Minh City, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Nong Lam University Ho Chi Minh City, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
3
|
Zhang CM, Yuan QQ, Li YQ, Liu A. Characteristics of heterotrophic endophytic bacteria in four kinds of edible raw vegetables: species distribution, antibiotic resistance, and related genes. Lett Appl Microbiol 2024; 77:ovae120. [PMID: 39611313 DOI: 10.1093/lambio/ovae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 11/30/2024]
Abstract
This study aimed to explore antibiotic resistance characteristics and species of heterotrophic endophytic bacteria (HEB) in four kinds of edible raw vegetables, including radishes, lettuces, onions, and tomatoes. A total of 144 HEB were isolated and tested for resistance to sulfamethoxazole (SMZ), tetracycline (TET), cefotaxime (CTX), and ciprofloxacin (CIP), and their species were identified by 16S rRNA gene sequencing. Antibiotic resistance genes (ARGs) and class I integron in antibiotic-resistant isolates were analyzed by polymerase chain reaction. The results showed radishes had the highest, while tomatoes had the lowest concentration of antibiotic-resistant HEB. SMZ and CTX were predominant antibiotic-resistant phenotypes in HEB. The multi-resistant phenotypes, the combinations SMZ-TET-CTX and SMZ-TET-CIP, accounted for 9.34% of all antibiotic-resistant phenotypes, mainly in radishes and lettuces. Bacillus, Pseudomonas, Staphylococcus, and Stenotrophomonas showed resistance to two antibiotics and existed in more than one kind of vegetable, and were the main carriers of sul1, sul2, blaTEM, and intI1 genes. Therefore, these four genera were considered potential hosts of ARGs in edible raw vegetables. The study provides an early warning regarding health risks associated with ingesting antibiotic-resistant bacteria through raw vegetable consumption.
Collapse
Affiliation(s)
- Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao-Qiao Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - An Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Wang S, Fang L, Sun X, Lu W. Occurrence and distribution of antibiotic resistance genes in urban rivers with black-odor water of Harbin, China. ENVIRONMENTAL RESEARCH 2024; 259:119497. [PMID: 38944102 DOI: 10.1016/j.envres.2024.119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Antibiotic resistance gene contamination in polluted rivers remains a widely acknowledged environmental issue. This study focused on investigating the contamination conditions of antibiotic resistance genes (ARGs) in Harbin's urban black-odor rivers, specifically Dongfeng Ditch and Hejia Ditch. The research employed a SmartChip Real-Time PCR System to explore the types, abundance, and distribution of ARGs in diverse habitats, such as surface water and sediment. Additionally, the study examined the correlation of ARGs with mobile genetic elements (MGEs) and various environmental factors. It was found that antibiotic resistance genes were prevalent in both water and sediment within the black-odor ditches. The dominant types of ARGs identified included aminoglycoside, sulfonamide, multidrug-resistant, and β-lactam ARGs. Notably, the top four ARGs, in terms of relative abundance, were sul1, fox5, qacEdelta1-01 and aadA1. Most categories of ARGs have significant positive connections with MGEs, indicating that the enrichment and spreading of ARGs in rivers are closely related to MGEs. Based on the correlation analysis, it is found that environmental factors such as dissolved oxygen (DO), ammonia nitrogen (NH4-N), and phosphate (PO4-P) played a substantial role in influencing the variations observed in ARGs. By employing a risk assessment framework based on the human association, host pathogenicity, and mobility of ARGs, the identification of seven high-risk ARGs was achieved. In addition, it is important to assess the environmental risk of ARGs from multiple perspectives (abundance,detection rateand mobility). This study provides a significant reference regarding the presence of ARGs contamination in urban inland black-odor rivers, essential for assessing the health risks associated with ARGs and devising strategies to mitigate the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Shuangshuang Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Lanjin Fang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xingbin Sun
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Weimin Lu
- Heilongjiang Province Light Industrial Science Research Institute, Harbin, Heilongjiang, 150010, China
| |
Collapse
|
5
|
Toyting J, Supha N, Thongpanich Y, Thapa J, Nakajima C, Suzuki Y, Utrarachkij F. Wide distribution of plasmid mediated quinolone resistance gene, qnrS, among Salmonella spp. isolated from canal water in Thailand. J Appl Microbiol 2024; 135:lxae134. [PMID: 38908908 DOI: 10.1093/jambio/lxae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
AIMS This research focused on assessing the prevalence of plasmid-mediated quinolone resistance (PMQR) determinants and antimicrobial susceptibility in Salmonella strains isolated from Thai canal water. METHODS AND RESULTS From 2016 to 2020, 333 water samples were collected from six canals across Bangkok, Thailand. Salmonella spp. was isolated, PMQR genes were detected through polymerase chain reactions, and the antimicrobial susceptibility was examined using the disk diffusion method. The results indicated a 92.2% prevalence of Salmonella spp. in canal water, being serogroups B and C the most frequently detected. Overall, 35.3% of isolates harbored PMQR genes, being qnrS the most prevalent gene (97.2%, n = 137/141). Other PMQR genes, including qnrB, qnrD, oqxAB, and aac(6')-Ib-cr, were detected. Notably, six isolates harbored multiple PMQR genes. Furthermore, 9.3% and 3.8% of the overall isolates were resistant to nalidixic acid (NAL) and ciprofloxacin (CIP), respectively. PMQR-positive isolates showed higher rates of non-susceptibility to both NAL (48.2%, n = 68/141) and CIP (92.2%, n = 130/141) compared to PMQR-negative isolates (NAL: 8.9%, n = 23/258; CIP: 11.2%, n = 30/258). CONCLUSIONS The high prevalence of Salmonella spp., significant PMQR-positive, and reduced susceptibility isolates in canal water is of public health concern in Bangkok.
Collapse
Affiliation(s)
- Jirachaya Toyting
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Neunghatai Supha
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Yuwanda Thongpanich
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Division of Research Support, Hokkaido University Institute for Vaccine Research & Development, Sapporo 001-0020, Japan
| | - Fuangfa Utrarachkij
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Li X, Chen T, Ren Q, Lu J, Cao S, Liu C, Li Y. Phages in sludge from the A/O wastewater treatment process play an important role in the transmission of ARGs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172111. [PMID: 38565354 DOI: 10.1016/j.scitotenv.2024.172111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Phages can influence the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) through transduction, but their profiles and effects on the transmission of ARGs are unclear, especially in complex swine sludge. In this study, we investigated the characterization of phage and ARG profiles in sludge generated from anoxic/oxic (A/O) wastewater treatment processes on swine farms using metagenomes and viromes. The results demonstrated that 205-221 subtypes of ARGs could be identified in swine sludge, among which sul1, tet(M), and floR were the dominant ARGs, indicating that sludge is an important reservoir of ARGs, especially in sludge (S) tanks. The greater abundance of mobile genetic elements (MGEs) in the S tank could significantly contribute to the greater abundance of ARGs there compared to the anoxic (A) and oxic (O) tanks (P < 0.05). However, when we compared the abundances of ARGs and MGEs in the A and O tanks, we observed opposite significant differences (P < 0.05), suggesting that MGEs are not the only factor influencing the abundance of ARGs. The high proportion of lysogenic phages in sludge from the S tank can also have a major impact on the ARG profile. Siphoviridae, Myoviridae, and Podoviridae were the dominant phage families in sludge, and a network diagram of bacteria-ARG-phages revealed that dominant phages and bacteria acted simultaneously as potential hosts for ARGs, which may have led to phage-mediated HGT of ARGs. Therefore, the risk of phage-mediated HGT of ARGs cannot be overlooked.
Collapse
Affiliation(s)
- Xiaoting Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Tao Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qinghai Ren
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jianbiao Lu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Shengliang Cao
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Cheng Liu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
7
|
Gama GSP, Pimenta AS, Feijó FMC, de Azevedo TKB, de Melo RR, de Andrade GS. The Potential of Wood Vinegar to Replace Antimicrobials Used in Animal Husbandry-A Review. Animals (Basel) 2024; 14:381. [PMID: 38338024 PMCID: PMC10854697 DOI: 10.3390/ani14030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024] Open
Abstract
The indiscriminate use of antimicrobials in animal husbandry can result in various types of environmental contamination. Part of the dose of these products is excreted, still active, in the animals' feces and urine. These excreta are widely used as organic fertilizers, which results in contamination with antimicrobial molecules. The impacts can occur in several compartments, such as soil, groundwater, and surface watercourses. Also, contamination by antimicrobials fed or administrated to pigs, chickens, and cattle can reach the meat, milk, and other animal products, which calls into question the sustainability of using these products as part of eco-friendly practices. Therefore, a search for alternative natural products is required to replace the conventional antimicrobials currently used in animal husbandry, aiming to mitigate environmental contamination. We thus carried out a review addressing this issue, highlighting wood vinegar (WV), also known as pyroligneous acid, as an alternative antimicrobial with good potential to replace conventional products. In this regard, many studies have demonstrated that WV is a promising product. WV is a nontoxic additive widely employed in the food industry to impart a smoked flavor to foods. Studies have shown that, depending on the WV concentration, good results can be achieved using it as an antimicrobial against pathogenic bacteria and fungi and a valuable growth promoter for poultry and pigs.
Collapse
Affiliation(s)
- Gil Sander Próspero Gama
- Graduate Program in Forest Sciences, Forest Engineering, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba CEP 59.280-000, Brazil; (G.S.P.G.); (A.S.P.); (T.K.B.d.A.); (G.S.d.A.)
| | - Alexandre Santos Pimenta
- Graduate Program in Forest Sciences, Forest Engineering, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba CEP 59.280-000, Brazil; (G.S.P.G.); (A.S.P.); (T.K.B.d.A.); (G.S.d.A.)
| | - Francisco Marlon Carneiro Feijó
- Graduate Program in Environment, Technology, and Society—PPGATS, Laboratory of Veterinary Microbiology and Laboratory of Wood Technology, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró CEP 59.625-900, Brazil;
| | - Tatiane Kelly Barbosa de Azevedo
- Graduate Program in Forest Sciences, Forest Engineering, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba CEP 59.280-000, Brazil; (G.S.P.G.); (A.S.P.); (T.K.B.d.A.); (G.S.d.A.)
| | - Rafael Rodolfo de Melo
- Graduate Program in Environment, Technology, and Society—PPGATS, Laboratory of Veterinary Microbiology and Laboratory of Wood Technology, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró CEP 59.625-900, Brazil;
| | - Gabriel Siqueira de Andrade
- Graduate Program in Forest Sciences, Forest Engineering, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba CEP 59.280-000, Brazil; (G.S.P.G.); (A.S.P.); (T.K.B.d.A.); (G.S.d.A.)
| |
Collapse
|
8
|
Srathongneam T, Sresung M, Paisantham P, Ruksakul P, Singer AC, Sukchawalit R, Satayavivad J, Mongkolsuk S, Sirikanchana K. High throughput qPCR unveils shared antibiotic resistance genes in tropical wastewater and river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167867. [PMID: 37879484 DOI: 10.1016/j.scitotenv.2023.167867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
The global challenge posed by rising antimicrobial resistance, and the adoption of a One Health approach, has led to the prioritisation of surveillance for antibiotic resistance genes (ARGs) in various environments. Herein lies an information gap, particularly in the context of Thailand, where there is scarce data on ARG prevalence across diverse environmental matrices and throughout different seasons. This study aimed to fill this void, analysing ARG prevalence by high-throughput qPCR in influent (n = 12) and effluent wastewater (n = 12) and river water (n = 12). The study reveals a substantial and largely uniform presence of ARGs across all water sample types (87 % similarity). Intriguingly, no ARGs were exclusive to specific water types, indicating an extensive circulation of resistance determinants across the aquatic environment. The genes intI1, tnpA, and intI3, part of the integrons and mobile genetic elements group, were detected in high relative abundance in both wastewater and river water samples, suggesting widespread pollution of rivers with wastewater. Additional high-prevalence ARGs across all water types included qepA, aadA2, merA, sul1, qacF/H, sul2, aadB, and ereA. More alarmingly, several ARGs (e.g., blaVIM, intI3, mcr-1, mexB, qepA, vanA, and vanB) showed higher relative abundance in effluent and river water than in influents, which suggests malfunctioning or inadequate wastewater treatment works and implicates this as a possible mechanism for environmental contamination. Nine genes (i.e., blaCTX-M, blaVIM, emrD, ermX, intI1, mphA, qepA, vanA, and vanB) were recovered in greater relative abundance during the dry season in river water samples as compared to the wet season, suggesting there are seasonal impacts on the efficacy of wastewater treatment practices and pollution patterns into receiving waters. This study highlights the urgency for more effective measures to reduce antibiotic resistance dissemination in water systems.
Collapse
Affiliation(s)
- Thitima Srathongneam
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Phongsawat Paisantham
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Pacharaporn Ruksakul
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Andrew C Singer
- U.K. Centre for Ecology & Hydrology, Benson Lane, Wallingford, United Kingdom
| | - Rojana Sukchawalit
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Jutamaad Satayavivad
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand; Research Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Program in Environmental Toxicology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
9
|
Hanamoto S, Minami Y, Hnin SST, Yao D. Localized pollution of veterinary antibiotics in watersheds receiving treated effluents from swine farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166211. [PMID: 37567304 DOI: 10.1016/j.scitotenv.2023.166211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Swine excrement is discharged into surface waters mainly as effluent in Asian countries. As swine production consumes more antibiotics and less water than humans, a mismatch of the size of swine farms and that of the rivers receiving their effluent could create severe pollution by antibiotics. However, little is known about the occurrence of antibiotics in such rivers. We therefore monitored seven veterinary drugs, six human drugs (including a metabolite), three drugs for both use (including a metabolite), and major water qualities at 30 sites in Japanese watersheds where swine outnumber humans and where their excrement is largely treated on-site by aerobic biological wastewater processes. The compositions of veterinary drugs differed substantially among sites, unlike human drugs, indicating various patterns of use among swine farms. Median concentrations at the 30 sites were <1 ng/L for seven out of the ten drugs used in livestock, whereas maximum concentrations were >1000 ng/L for three and 100-1000 ng/L for four of them, giving median-maximum among the sites of >3 log for two and 2-3 log for six of them. The spatial distribution ranges of concentrations of veterinary drugs were wider than those of human drugs (mostly <1.5 log) and other analytes (mostly <1 log), despite the correlation between those of total veterinary drugs and nitrogen, attributable to fewer swine farms than households, the intensive animal husbandry, and the various drug-use patterns among the farms. The range of maximum concentrations of veterinary drugs in the watersheds was comparable to those reported in other Asian watersheds with less strict management of swine excrement, attributable to their slow decay in conventional wastewater treatment on swine farms. Thus, attention should be paid to hot-spot pollution of antibiotics on large Asian swine farms adjacent to streams with limited dilution capacity.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Yuki Minami
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Su Su Thet Hnin
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Dingwen Yao
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
10
|
Shindoh S, Kadoya A, Kanechi R, Watanabe K, Suzuki S. Marine bacteria harbor the sulfonamide resistance gene sul4 without mobile genetic elements. Front Microbiol 2023; 14:1230548. [PMID: 37779713 PMCID: PMC10539471 DOI: 10.3389/fmicb.2023.1230548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Marine bacteria are possible reservoirs of antibiotic-resistance genes (ARGs) originating not only from clinical and terrestrial hot spots but also from the marine environment. We report here for the first time a higher rate of the sulfonamide-resistance gene sul4 in marine bacterial isolates compared with other sul genes. Among four sulfonamide-resistance genes (sul1, sul2, sul3, and sul4), sul4 was most abundant (45%) in 74 sulfonamide-resistant marine isolates by PCR screening. The order of abundance was sul4 (33 isolates) >sul2 (6 isolates) >sul3 (5 isolates) >sul1 (1 isolate). Whole-genome sequencing of 23 isolates of sul4-expressing α- and γ-proteobacteria and bacilli revealed that sul4 was not accompanied by known mobile genetic elements. This suggests that sul4 in these marine isolates is clonally transferred and not horizontally transferable. Folate metabolism genes formed a cluster with sul4, suggesting that the cluster area plays a role in folate metabolism, at which sul4 functions as a dihydropteroate synthase. Thus, sul4 might be expressed in marine species and function in folate synthesis, but it is not a transferable ARG.
Collapse
Affiliation(s)
- Suzune Shindoh
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Aya Kadoya
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Reo Kanechi
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Satoru Suzuki
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
11
|
Hu J, Li S, Zhang W, Helbling DE, Xu N, Sun W, Ni J. Animal production predominantly contributes to antibiotic profiles in the Yangtze River. WATER RESEARCH 2023; 242:120214. [PMID: 37329718 DOI: 10.1016/j.watres.2023.120214] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Human-induced antibiotic pollution in the world's large rivers poses significant risk to riverine ecosystems, water quality, and human health. This study identified geophysical and socioeconomic factors driving antibiotic pollution in the Yangtze River by quantifying 83 target antibiotics in water and sediment samples collected in its 6300-km-long reach, followed by source apportionment and statistical modeling. Total antibiotic concentrations ranged between 2.05-111 ng/L in water samples and 0.57-57.9 ng/g in sediment samples, contributed predominantly by veterinary antibiotics, sulfonamides and tetracyclines, respectively. Antibiotic compositions were clustered according to three landform regions (plateau, mountain-basin-foothill, and plains), resulting from varying animal production practices (cattle, sheep, pig, poultry, and aquaculture) in the sub-basins. Population density, animal production, total nitrogen concentration, and river water temperature are directly associated with antibiotic concentrations in the water samples. This study revealed that the species and production of food animals are key determinants of the geographic distribution pattern of antibiotics in the Yangtze River. Therefore, effective strategies to mitigate antibiotic pollution in the Yangtze River should include proper management of antibiotic use and waste treatment in animal production.
Collapse
Affiliation(s)
- Jingrun Hu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences; Environmental Science, and Policy Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Jinren Ni
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| |
Collapse
|
12
|
Abramova A, Berendonk TU, Bengtsson-Palme J. A global baseline for qPCR-determined antimicrobial resistance gene prevalence across environments. ENVIRONMENT INTERNATIONAL 2023; 178:108084. [PMID: 37421899 DOI: 10.1016/j.envint.2023.108084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
The environment is an important component in the emergence and transmission of antimicrobial resistance (AMR). Despite that, little effort has been made to monitor AMR outside of clinical and veterinary settings. Partially, this is caused by a lack of comprehensive reference data for the vast majority of environments. To enable monitoring to detect deviations from the normal background resistance levels in the environment, it is necessary to establish a baseline of AMR in a variety of settings. In an attempt to establish this baseline level, we here performed a comprehensive literature survey, identifying 150 scientific papers containing relevant qPCR data on antimicrobial resistance genes (ARGs) in environments associated with potential routes for AMR dissemination. The collected data included 1594 samples distributed across 30 different countries and 12 sample types, in a time span from 2001 to 2020. We found that for most ARGs, the typically reported abundances in human impacted environments fell in an interval from 10-5 to 10-3 copies per 16S rRNA, roughly corresponding to one ARG copy in a thousand bacteria. Altogether these data represent a comprehensive overview of the occurrence and levels of ARGs in different environments, providing background data for risk assessment models within current and future AMR monitoring frameworks.
Collapse
Affiliation(s)
- Anna Abramova
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance research (CARe) in Gothenburg, Sweden; Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Thomas U Berendonk
- Institute for Hydrobiology, Technische Universität Dresden, Dresden 01062, Germany
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance research (CARe) in Gothenburg, Sweden; Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
13
|
Chen CH, Chiou YC, Yang CL, Wang JH, Chen WR, Whang LM. Biosorption and biotransformation behaviours of veterinary antibiotics under aerobic livestock wastewater treatment processes. CHEMOSPHERE 2023:139034. [PMID: 37277000 DOI: 10.1016/j.chemosphere.2023.139034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
To study the fate of veterinary antibiotics released from swine wastewater treatment plants (SWTP), 10 antibiotics were investigated in each unit of a local SWTP periodically. Over a 14-month period of field investigation into target antibiotics, it was confirmed that tetracycline, chlortetracycline, sulfathiazole, and lincomycin were used in this SWTP, with their presence observed in raw manure. Most of these antibiotics could be effectively treated by aerobic activated sludge, except for lincomycin, which was still detected in the effluent, with a maximum concentration of 1506 μg/L. In addition, the potential for removing antibiotics was evaluated using lab-scale aerobic sequencing batch reactors (SBRs) that were dosed with high concentrations of antibiotics. The SBR results, however, showed that both sulfonamides and macrolides, as well as lincomycin, can achieve 100% removal in lab-scale aerobic SBRs within 7 days. This reveals that the potential removal of those antibiotics in field aeration tanks can be facilitated by providing suitable conditions, such as adequate dissolved oxygen, pH, and retention time. Furthermore, the biosorption of target antibiotics was also confirmed in the abiotic sorption batch tests. Biotransformation and hydrolysis were identified as the dominant mechanism for removing negatively charged sulfonamides and positively charged antibiotics (macrolides and lincomycin) in SBRs. This is due to their relatively low sorption affinity (resulting in negligible to 20% removal) onto activated sludge in abiotic sorption tests. On the other hand, tetracyclines exhibited significant sorption behavior both onto activated sludge and onto soluble organic matters in swine wastewater supernatant, accounting for 70%-91% and 21%-94% of removal within 24 h, respectively. S-shape sorption isotherms with saturation were observed when high amounts of tetracyclines were spiked into sludge, with equilibrium concentrations ranging from 0.4 to 65 mg/L. Therefore, the sorption of tetracyclines onto activated sludge was governed by electrostatic interaction rather than hydrophobic partition. This resulted in a saturated sorption capacity (Qmax) of 17,263 mg/g, 1637 mg/g, and 641.7 mg/g for OTC, TC, and CTC, respectively.
Collapse
Affiliation(s)
- Chih-Hung Chen
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan; Tainan Hydraulics Laboratory (THL), National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Yi-Chu Chiou
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Chao-Lung Yang
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Jen-Hung Wang
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Wan-Ru Chen
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan.
| |
Collapse
|
14
|
de Melo MC, Fernandes LFS, Pissarra TCT, Valera CA, da Costa AM, Pacheco FAL. The COP27 screened through the lens of global water security. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162303. [PMID: 36805064 DOI: 10.1016/j.scitotenv.2023.162303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Water security is an expression of resilience. In the recent past, scientists and public organizations have built considerable work around this concept launched in 2013 by the United Nations as "the capacity of a population to safeguard sustainable access to adequate quantities of acceptable quality water for sustaining livelihoods, human well-being, and socio-economic development, for ensuring protection against water-borne pollution and water-related disasters, and for preserving ecosystems in a climate of peace and political stability". In the 27th Conference of the Parties (COP27), held in Sharm El-Sheikh (Egypt) in last November, water security was considered a priority in the climate agenda, especially in the adaption and loss and damage axes. This discussion paper represents the authors' opinion about how the conference coped with water security and what challenges remain to attend. As discussion paper, it had the purpose to stimulate further discussion in a broader scientific forum.
Collapse
Affiliation(s)
- Marília Carvalho de Melo
- Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável, Cidade Administrativa do Estado de Minas Gerais, Rodovia João Paulo II, 4143, Bairro Serra Verde, Belo Horizonte, Minas Gerais, Brazil; Universidade Vale do Rio Verde (UNINCOR), Av. Castelo Branco, 82 - Chácara das Rosas, Três Corações, MG 37417-150, Brazil.
| | - Luís Filipe Sanches Fernandes
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Ap. 1013, 5001-801 Vila Real, Portugal.
| | - Teresa Cristina Tarlé Pissarra
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Carlos Alberto Valera
- Coordenadoria Regional das Promotorias de Justiça do Meio Ambiente das Bacias dos Rios Paranaíba e Baixo Rio Grande, Rua Coronel Antônio Rios, 951, Uberaba, MG 38061-150, Brazil.
| | - Adriana Monteiro da Costa
- Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6620, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Fernando António Leal Pacheco
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil; Centro de Química de Vila Real (CQVR), Universidade de Trás-os-Montes e Alto Douro (UTAD), Ap. 1013, 5001-801 Vila Real, Portugal.
| |
Collapse
|
15
|
Sun R, Liu Y, Li T, Qian ZJ, Zhou C, Hong P, Sun S, Li C. Plastic wastes and surface antibiotic resistance genes pollution in mangrove environments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:634. [PMID: 37133617 DOI: 10.1007/s10661-023-11312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023]
Abstract
Mangroves are located at the intersection of land and sea and are also heavily affected by plastic wastes. Biofilms of plastic wastes in mangroves are reservoirs for antibiotic resistance genes (ARGs). In this study, plastic wastes and ARG pollution were investigated from three typical mangrove areas in Zhanjiang, South China. Transparent was the dominant colors of plastic wastes in three mangroves. Fragment and film shape accounted for 57.73-88.23% of plastic waste samples in mangroves. In addition, 39.50% of plastic wastes in protected area mangroves are PS. The metagenomic results shows that the 175 ARGs were found on plastic wastes of the three mangroves, the abundance accounting for 91.11% of the total ARGs. The abundance of Vibrio accounted for 2.31% of the total bacteria genera in aquaculture pond area mangrove. Correlation analysis shows that a microbe can carry multiple ARGs that may improve resistance to antibiotics. Microbes are the potential hosts of most ARGs, suggesting that ARGs can be transmitted by microbes. Because the mangroves are closely related to human activities and the high abundance of ARGs on plastic increases the ecological risks, people should improve plastic waste management and prevent the spread of ARGs by reducing plastic pollution.
Collapse
Affiliation(s)
- Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yu Liu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ting Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
| | - Chunxia Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Pengzhi Hong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China.
| |
Collapse
|
16
|
Yang C, Wu T. A comprehensive review on quinolone contamination in environments: current research progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48778-48792. [PMID: 36879093 DOI: 10.1007/s11356-023-26263-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/27/2023] [Indexed: 04/16/2023]
Abstract
Quinolone (QN) antibiotics are a kind of broad-spectrum antibiotics commonly used in the treatment of human and animal diseases. They have the characteristics of strong antibacterial activity, stable metabolism, low production cost, and no cross-resistance with other antibacterial drugs. They are widely used in the world. QN antibiotics cannot be completely digested and absorbed in organisms and are often excreted in urine and feces in the form of original drugs or metabolites, which are widely occurring in surface water, groundwater, aquaculture wastewater, sewage treatment plants, sediments, and soil environment, thus causing environmental pollution. In this paper, the pollution status, biological toxicity, and removal methods of QN antibiotics at home and abroad were reviewed. Literature data showed that QNs and its metabolites had serious ecotoxicity. Meanwhile, the spread of drug resistance induced by continuous emission of QNs should not be ignored. In addition, adsorption, chemical oxidation, photocatalysis, and microbial removal of QNs are often affected by a variety of experimental conditions, and the removal is not complete, so it is necessary to combine a variety of processes to efficiently remove QNs in the future.
Collapse
Affiliation(s)
- Chendong Yang
- Water Source Exploration Team, Guizhou Bureau of Coal Geological Exploration, Guiyang, 550000, China
- Guizhou Coal Mine Geological Engineering Consultant and Geological Environmental Monitoring Center, Guiyang, 550000, China
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Tianyu Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| |
Collapse
|
17
|
Gros M, Mas-Pla J, Sànchez-Melsió A, Čelić M, Castaño M, Rodríguez-Mozaz S, Borrego CM, Balcázar JL, Petrović M. Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159202. [PMID: 36208750 DOI: 10.1016/j.scitotenv.2022.159202] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This study investigates the occurrence, transport, and risks associated to antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic resistant Escherichia coli (AR-E. coli) in eleven natural springs in an agroecosystem environment with intense livestock production, where groundwater nitrate concentration usually sets above 50 mg L-1. Out of 23 multiple-class antibiotics monitored, tetracycline and sulfonamide residues were the most ubiquitous, and they were detected at concentrations ranging from ng L-1 to μg L-1. Five ARGs were monitored, conferring resistance to the antibiotic classes of major use in livestock production. Thus, genes conferring resistance to sulfonamides (sul1 and sul2) and tetracyclines (tetW) as well as a gene proxy for anthropogenic pollution (intI1) were present in most springs. sul1 was the most abundant, with absolute concentrations ranging from 4 × 102 to 5.6 × 106 gene copies L-1 water. AR-E. coli showing resistance to sulfonamides and tetracyclines was also detected, with a prevalence up to approximately 40 % in some sites but with poor correlations with the concentration of antibiotic residues and ARGs. The occurrence of antibiotics, ARGs and AR-E. coli was characterized by large seasonal variations which were mostly associated to both hydrological factors and reactive transport processes. Finally, a risk assessment approach pointed out towards low risk for both the groundwater environment and human health, when spring water is used for direct human consumption, associated with the occurrence of antibiotics, ARGs and AR-E. coli. However, long-term effects cannot be neglected, and proper actions must be taken to preserve groundwater quality.
Collapse
Affiliation(s)
- Meritxell Gros
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain.
| | - Josep Mas-Pla
- Catalan Institute for Water Research (ICRA), Spain; Grup de Recerca GAiA-Geocamb, Department of Environmental Sciences, University of Girona, Spain
| | | | - Mira Čelić
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Marc Castaño
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Spain; Catalan Institution for Research and Advanced Studies (ICREA), Spain
| |
Collapse
|
18
|
Chen J, Chen H, Liu C, Huan H, Teng Y. Evaluation of FEAST for metagenomics-based source tracking of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130116. [PMID: 36209606 DOI: 10.1016/j.jhazmat.2022.130116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
A metagenomics-based technological framework has been proposed for evaluating the potential and utility of FEAST as an ARG profile-based source apportionment tool. To this end, a large panel of metagenomic data sets was analyzed, associating with eight source types of ARGs in environments. Totally, 1089 different ARGs were found in the 604 source metagenomes, and 396 ARG indicators were identified as the source-specific fingerprints to characterize each of the source types. With the source fingerprints, predictive performance of FEAST was checked using "leave-one-out" cross-validation strategy. Furthermore, artificial sink communities were simulated to evaluate the FEAST for source apportionment of ARGs. The prediction of FEAST showed high accuracy values (0.933 ± 0.046) and specificity values (0.959 ± 0.041), confirming its suitability to discriminate samples from different source types. The apportionment results reflected well the expected output of artificial communities which were generated with different ratios of source types to simulate various contamination levels. Finally, the validated FEAST was applied to track the sources of ARGs in river sediments. Results showed STP effluents were the main contributor of ARGs, with an average contribution of 76 %, followed by sludge (10 %) and aquaculture effluent (2.7 %), which were basically consistent with the actual environment in the area.
Collapse
Affiliation(s)
- Jinping Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Chang Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huan Huan
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100012, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| |
Collapse
|
19
|
Hoa TTT, Huyen HM, Nakayama T, Minh DTN, Hoang ON, Le Thi H, Thanh PN, Hoai PH, Yamaguchi T, Jinnai M, Do PN, Van CD, Kumeda Y, Hase A. Frequent contamination of edible freshwater fish with colistin-resistant Escherichia coli harbouring the plasmid-mediated mcr-1 gene. MARINE POLLUTION BULLETIN 2022; 184:114108. [PMID: 36166861 DOI: 10.1016/j.marpolbul.2022.114108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/09/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
The threat of antimicrobial resistance is increasing. Microbial food contamination poses a serious public health risk; however, there are only a few studies on the prevalence of colistin-resistant Escherichia coli (COL-E) contamination in freshwater fish. This study aimed to characterise the antibiotic resistance genes and antibiotic susceptibility profiles of COL-E in freshwater fish in Vietnam. In total, 103 fish were collected and 63 COL-E were isolated. COL-E was investigated by genotyping mcr and AmpC/extended-spectrum β-lactamase (ESBL)-related genes. The results show that COL-E and AmpC/ESBL-producing COL-E were confirmed in 24.3 % and 14.6 % of the fish, respectively. Multiplex PCR for mcr-1-9 showed that all 63 COL-E harboured mcr-1, while mcr-3 was detected in 7.9 % of COL-E. The minimum inhibitory concentration of colistin ranged from 2 to 256 μg/mL. Meanwhile, antibiotic susceptibility results show that all COL-E were resistant to ampicillin, streptomycin, and chloramphenicol.
Collapse
Affiliation(s)
| | | | - Tatsuya Nakayama
- Graduate School of Integrated Sciences for Life, Hiroshima University.
| | | | | | - Hien Le Thi
- Institute of Public Health, Ho Chi Minh City, Viet Nam
| | | | | | | | - Michio Jinnai
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Japan
| | | | | | - Yuko Kumeda
- Research Center for Microorganism Control, Osaka Prefecture University, Japan
| | - Atsushi Hase
- Faculty of Contemporary Human Life Science, Tezukayama University, Japan
| |
Collapse
|
20
|
Wang N, Shen W, Zhang S, Cheng J, Qi D, Hua J, Kang G, Qiu H. Occurrence and distribution of antibiotics in coastal water of the Taizhou Bay, China: impacts of industrial activities and marine aquaculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81670-81684. [PMID: 35737266 DOI: 10.1007/s11356-022-21412-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The occurrence, spatial distribution, and source analysis of antibiotics in global coastal waters and estuaries are not well documented or understood. Therefore, the distribution of 14 antibiotics in inflowing river and bay water of Taizhou Bay, East China Sea, was studied. Thirteen antibiotics, excluding roxithromycin (ROM), were all detected in inflowing river and bay water. The total antibiotic concentrations in bay water ranged from 3126.62 to 26,531.48 ng/L, which were significantly higher than those in the inflowing river (17.20-25,090.25 ng/L). Macrolides (MAs) and sulfonamides (SAs) were dominant in inflowing river (accounting for 24.40% and 74.9% of the total antibiotic concentrations, respectively), while SAs in bay water (93.6% of the total concentrations). Among them, clindamycin (CLI) (concentration range: ND-8414 ng/L, mean 1437.59 ng/L) and sulfadimidine (SMX) (ND-25,184.00 ng/L, mean concentrations: 9107.88 ng/L) were the highest in those surface water samples. Source analysis showed that MAs and SAs in the inflowing river mainly came from the wastewater discharge of the surrounding residents and pharmaceutical companies, while SAs in the bay water mainly came from surrounding industrial activities and mariculture. However, the contribution of the inflowing river to the bay water cannot be ignored. The risk assessment showed that SMX and ofloxacin (OFX) have potential ecological risks. These data will support the various sectors of the environment in developing management strategies and to prevent antibiotic pollution.
Collapse
Affiliation(s)
- Ning Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Weitao Shen
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - ShengHu Zhang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China.
| | - Jie Cheng
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Dan Qi
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Jing Hua
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Guodong Kang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Hui Qiu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| |
Collapse
|
21
|
Degradation of tetracycline in tropical river ecosystems: generation and dissipation of metabolites; kinetic and thermodynamic parameters. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Macrolide resistance genes and mobile genetic elements in waterways from pig farms to the sea in Taiwan. J Glob Antimicrob Resist 2022; 29:360-370. [DOI: 10.1016/j.jgar.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
|