1
|
Yu H, Liu Z, Song M, Liu L, Liu Z. Soil flushing for remediation of landfill leachate-contaminated soil: A comprehensive evaluation of optimal flushing agents and influencing factors. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 200:114771. [PMID: 40174495 DOI: 10.1016/j.wasman.2025.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Screening the appropriate agent is essential to enhancing the effectiveness of soil flushing techniques in remediating landfill leachate contaminated soil. To identify effective flushing agents for leachate-contaminated soil and determine optimal conditions for their use, this study evaluated five surfactants and three chelating agents. These agents were analyzed through batch experiments and one-dimensional column tests to assess the effects of pH, temperature, solid-liquid ratio, and injection conditions on their efficacy. The findings revealed that saponin, known for its high degradability, was most effective in extracting heavy metals (total Cr and Cr (VI)), total nitrogen, ammonia nitrogen, and organic compounds. Notably, the removal efficiency of these contaminants by saponin increased with higher concentrations. Conversely, higher pH levels reduced the effectiveness of polysorbate 80 (Tween 80), rhamnolipid (RL), and saponin in removing chromium but improved ammonia nitrogen extraction. Alternatively, the remediation outcomes are also subject to a tight control of temperature and solid-liquid ratios, which is reflected in the strengthening efficiency along with rising temperatures and the amount of flushing agents applied. The study further examined the impact of different injection methods on the remediation process. Continuous injection was most effective for soils primarily contaminated with chromium, whereas a step-gradient mode yielded better results for nitrogen compounds. For soils with a high concentration of organic pollutants, a multi-pulse injection mode was optimal. These insights provide a solid foundation for developing targeted soil flushing strategies aimed at enhancing the remediation of soils contaminated by landfill leachate.
Collapse
Affiliation(s)
- Haitao Yu
- Jiangsu Key Laboratory of Low Carbon and Green Geotechnical Engineering, Southeast University, Nanjing 211189 Jiangsu Province, China
| | - Zhibin Liu
- Jiangsu Key Laboratory of Low Carbon and Green Geotechnical Engineering, Southeast University, Nanjing 211189 Jiangsu Province, China.
| | - Min Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, China
| | - Luqi Liu
- Sumec Complete Equipment and Engineering Co., Ltd, Nanjing 210018 Jiangsu Province, China
| | - Zhu Liu
- Sumec Complete Equipment and Engineering Co., Ltd, Nanjing 210018 Jiangsu Province, China
| |
Collapse
|
2
|
Liu Z, Fu Q, Wang J, Liang X, Yang F, Liu X, Wang D. Role of initial pH in modulating sulfur cycle dynamics in sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2025; 423:132222. [PMID: 39956515 DOI: 10.1016/j.biortech.2025.132222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
The initial pH plays a crucial role in sludge anaerobic fermentation (AF), which affects short-chain fatty acids production. However, its effect on toxic hydrogen sulfide (H2S) gas has been neglected. The results show that when the initial pH changes from 7 to 4 (9), the cumulative H2S production increases (decreases) by 142 % (45.4 %). The initial acidic pH and alkaline pH both promoted sludge disintegration, directly increased dissolved sulfide and organic sulfurs release. The acidic initial pH further decreased the ratio of α-helix/(β-fold + random coil) and destroyed the released organic sulfurs structure, which was conducive to H2S production. However, the initial acidic pH damaged cell membranes integrity and inhibited H2S producer activity. Moreover, the initial acidic pH changes the sulfide balance and promotes H2S gas release, while the initial alkaline pH promotes metal sulfide formation. These deepen the understanding of the link between pH and the anaerobic sulfur cycle.
Collapse
Affiliation(s)
- Zirui Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jiyong Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xianghui Liang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Fan Yang
- RIOH High Science and Technology Group, Beijing 100088, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
3
|
Lv X, Zhang S, Guo S, Hu X, Chen H, Qiu Z, Gao Y, Qu A. Interactions between SDBS and Hydrilla verticillata - epiphytic biofilm in wetland receiving STPs effluents: Nutrients removal and epiphytic microbial assembly. BIORESOURCE TECHNOLOGY 2025; 416:131750. [PMID: 39505283 DOI: 10.1016/j.biortech.2024.131750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
The fate and effects of sodium dodecyl benzene sulfonate (SDBS) in sewage treatment plants effluents on nutrients and submerged macrophytes are far from clear in wetlands. This study conducted a 24-day experiment to investigate changes in nutrients and epiphytic biofilm of Hydrilla verticillata in wetlands receiving effluents with 0.5, 2 and 5 mg L-1 SDBS. The decrease of SDBS in overlying water followed pseudo-first-order kinetic equation, with over 80 % of SDBS removal achieved. 2 and 5 mg L-1 SDBS decreased nutrient removal efficiency, induced oxidative stress response and damaged cells of H. verticillata. SDBS altered bacterial and eukaryotic community diversity. 0.5 mg L-1 SDBS can promote carbon fixation and methane oxidation of microorganisms. Network analysis revealed that 0.5 mg L-1 SDBS decreased the stability of epiphytic ecosystems. Mantel tests indicated significant influences of SDBS, temperature, and total nitrogen on epiphytic microbial communities.
Collapse
Affiliation(s)
- Xin Lv
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Shaozhuang Guo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiuren Hu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hezhou Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zheng Qiu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yuexiang Gao
- College of Environment, Hohai University, Nanjing 210098, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, N0.8, Jiangwangmiao Street, Nanjing City, Jiangsu Province, China
| | - Aiyu Qu
- Chinese Academy of Environmental Planning, Beijing 100041, China.
| |
Collapse
|
4
|
Tian K, Zhang J, Liu H, Wang R, Zhang Z. Mechanism of carbonized humic acid and magnesium aluminum-layered double hydroxide promoting biohydrogen generation. BIORESOURCE TECHNOLOGY 2024; 413:131563. [PMID: 39362343 DOI: 10.1016/j.biortech.2024.131563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Dark fermentation (DF) is prone to low hydrogen (H2) yield. In this work, magnesium aluminum-layered double hydroxide and carbonized humic acid (MgAl-LDH/CHA) was synthesized by co-precipitation to reveal the mechanism in rising bioH2 generation. The results indicated that MgAl-LDH released Mg and Al ions slowly in DF system, improving the activity of H2-producing microbes (HPM) for more H2. The H2 yield increased from 169.3 mL/g glucose to 244.9 mL/g glucose, which was 44.7 % higher than that for the control yield. MgAl-LDH/CHA increased Proteobacteria content from 30.9 % to 43.7 %, making it form a complex microbial community and participate in DF metabolism with Firmicutes and other microbes together. Besides, MgAl-LDH/CHA could serve as an electron shuttle that likely effectively promotes electron transfer in DF, significantly reduced the energy requirements of HPM, thus raising metabolic activity. It provides direction for the multi-element composite applied in DF system.
Collapse
Affiliation(s)
- Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Hui Liu
- Shandong Institute of Geophysical &Geochemical Exploration, Jinan 250013, China.
| | - Ruixi Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zhengyi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
5
|
Lan R, Liu L, Feng H, Chen BY, Shi X, Hong J. Boron-doped reduced graphene oxide as an efficient cathode in microbial fuel cells for biological toxicity detection. BIORESOURCE TECHNOLOGY 2024; 403:130883. [PMID: 38788807 DOI: 10.1016/j.biortech.2024.130883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Electrodes with superior stability and sensitivity are highly desirable in advancing the toxicity detection efficiency of microbial fuel cells (MFCs). Herein, boron-doped reduced graphene oxide (B-rGO) was synthesized and utilized as an efficient cathode candidate in an MFCs system for sensitive sodium dodecylbenzene sulfonate (SDBS) detection. Boron doping introduces additional defects and improves the dispersibility and oxygen permeability, thereby enhancing the oxygen reduction reaction (ORR) efficiency. The B-rGO-based cathode has demonstrated significantly improved output voltage and power density, marking improvements of 75 % and 58 % over their undoped counterparts, respectively. Furthermore, it also exhibited remarkable linear sensitivity to SDBS concentrations across a broad range (0.2-15 mg/L). Notably, the cathode maintained excellent stability within the test range and showed significant reversibility for SDBS concentrations between 0.2 and 3 mg/L. The highly sensitive and stable B-rGO-based cathode is inspiring for developing more practical and cost-effective toxicant sensing devices.
Collapse
Affiliation(s)
- Ruisong Lan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Lihua Liu
- Fujian Xiamen Environmental Monitoring Central Station, Xiamen 361102, China
| | - Han Feng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan, 26047, Taiwan
| | - Xiuding Shi
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Junming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
6
|
Yi Y, Jin X, Chen M, Coldea TE, Zhao H. Surfactant-mediated bio-manufacture: A unique strategy for promoting microbial biochemicals production. Biotechnol Adv 2024; 73:108373. [PMID: 38704106 DOI: 10.1016/j.biotechadv.2024.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Biochemicals are widely used in the medicine and food industries and are more efficient and safer than synthetic chemicals. The amphipathic surfactants can interact with the microorganisms and embed the extracellular metabolites, which induce microbial metabolites secretion and biosynthesis, performing an attractive prospect of promoting the biochemical production. However, the commonness and differences of surfactant-mediated bio-manufacture in various fields are largely unexplored. Accordingly, this review comprehensively summarized the properties of surfactants, different application scenarios of surfactant-meditated bio-manufacture, and the mechanism of surfactants increasing metabolites production. Various biochemical productions such as pigments, amino acids, and alcohols could be enhanced using the cloud point and the micelles of surfactants. Besides, the amphiphilicity of surfactants also promoted the utilization of fermentation substrates, especially lignocellulose and waste sludge, by microorganisms, indirectly increasing the metabolites production. The increase in target metabolites production was attributed to the surfactants changing the permeability and composition of the cell membrane, hence improving the secretion ability of microorganisms. Moreover, surfactants could regulate the energy metabolism, the redox state and metabolic flow in microorganisms, which induced target metabolites synthesis. This review aimed to broaden the application fields of surfactants and provide novel insights into the production of microbial biochemicals.
Collapse
Affiliation(s)
- Yunxin Yi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
7
|
Mikušová P, Toušová Z, Sehnal L, Kuta J, Grabicová K, Fedorova G, Marek M, Grabic R, Hilscherová K. Identification of new endocrine disruptive transthyretin ligands in polluted waters using pull-down assay coupled to non-target mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134240. [PMID: 38678700 DOI: 10.1016/j.jhazmat.2024.134240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Surface and treated wastewater are contaminated with highly complex mixtures of micropollutants, which may cause numerous adverse effects, often mediated by endocrine disruption. However, there is limited knowledge regarding some important modes of action, such as interference with thyroid hormone (TH) regulation, and the compounds driving these effects. This study describes an effective approach for the identification of compounds with the potential to bind to transthyretin (TTR; protein distributing TH to target tissues), based on their specific separation in a pull-down assay followed by non-target analysis (NTA). The method was optimized with known TTR ligands and applied to complex water samples. The specific separation of TTR ligands provided a substantial reduction of chromatographic features from the original samples. The applied NTA workflow resulted in the identification of 34 structures. Twelve compounds with available standards were quantified in the original extracts and their TH-displacement potency was confirmed. Eleven compounds were discovered as TTR binders for the first time and linear alkylbenzene sulfonates (LAS) were highlighted as contaminants of concern. Pull-down assay combined with NTA proved to be a well-functioning approach for the identification of unknown bioactive compounds in complex mixtures with great application potential across various biological targets and environmental compartments.
Collapse
Affiliation(s)
- P Mikušová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Z Toušová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - L Sehnal
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - J Kuta
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - K Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - G Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - M Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno 601 77, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 601 77, Czech Republic
| | - R Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - K Hilscherová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
8
|
Fu Q, Li C, Liu Z, Ma X, Xu Y, Wang Y, Liu X, Wang D. The Impact of Bisphenol A on the Anaerobic Sulfur Transformation: Promoting Sulfur Flow and Toxic H 2S Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8043-8052. [PMID: 38648493 DOI: 10.1021/acs.est.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA), as a typical leachable additive from microplastics and one of the most productive bulk chemicals, is widely distributed in sediments, sewers, and wastewater treatment plants, where active sulfur cycling takes place. However, the effect of BPA on sulfur transformation, particularly toxic H2S production, has been previously overlooked. This work found that BPA at environmentally relevant levels (i.e., 50-200 mg/kg total suspended solids, TSS) promoted the release of soluble sulfur compounds and increased H2S gas production by 14.3-31.9%. The tryptophan-like proteins of microbe extracellular polymeric substances (EPSs) can spontaneously adsorb BPA, which is an enthalpy-driven reaction (ΔH = -513.5 kJ mol-1, ΔS = -1.60 kJ mol-1K -1, and ΔG = -19.52 kJ mol-1 at 35 °C). This binding changed the composition and structure of EPSs, which improved the direct electron transfer capacity of EPSs, thereby promoting the bioprocesses of organic sulfur hydrolysis and sulfate reduction. In addition, BPA presence enriched the functional microbes (e.g., Desulfovibrio and Desulfuromonas) responsible for organic sulfur mineralization and inorganic sulfate reduction and increased the abundance of related genes involved in ATP-binding cassette transporters and sulfur metabolism (e.g., Sat and AspB), which promoted anaerobic sulfur transformation. This work deepens our understanding of the interaction between BPA and sulfur transformation occurring in anaerobic environments.
Collapse
Affiliation(s)
- Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Chenxi Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zirui Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xingyu Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
9
|
Shovon SM, Akash FA, Rahman W, Rahman MA, Chakraborty P, Hossain HZ, Monir MU. Strategies of managing solid waste and energy recovery for a developing country - A review. Heliyon 2024; 10:e24736. [PMID: 38312703 PMCID: PMC10835228 DOI: 10.1016/j.heliyon.2024.e24736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Solid waste is considered one of the major pollutants of both water and surface worldwide. The growing global population, urban expansion, and industrial growth are the main reasons for solid waste generation. This has become a major challenge with both regional and worldwide consequences. The yearly generation of municipal solid wastes around the world is 2.01 BT (billion tons) among which about 33 % are not ecologically handled. To address this, proper solid waste management, especially recycling waste products, is crucial to achieving sustainability. High-income countries are able to recycle 51 % of their waste, while low-income countries only recycle 16 % of their waste. Inadequate solid waste management practices can only compound environmental and social problems. To handle these issues thermochemical and biochemical methods are used to convert solid waste to energy. Thermochemical method is suitable for developing countries though it is energy extensive. This review provides a detailed analysis of developing countries' solid waste management and energy recovery. It explores energy recovery technologies, including thermochemical and biochemical waste conversion processes.
Collapse
Affiliation(s)
- Shaik Muntasir Shovon
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Energy Conversion Laboratory, Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Faysal Ahamed Akash
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Energy Conversion Laboratory, Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Wahida Rahman
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Abdur Rahman
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Prosenjeet Chakraborty
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - H.M. Zakir Hossain
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Minhaj Uddin Monir
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Energy Conversion Laboratory, Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
10
|
Geng H, Xu Y, Liu R, Yang D, Dai X. Cation exchange resins enhance anaerobic digestion of sewage sludge: Roles in sequential recovery of hydrogen and methane. WATER RESEARCH 2024; 248:120897. [PMID: 38007883 DOI: 10.1016/j.watres.2023.120897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
The recovery of renewable bioenergy from anaerobic digestion (AD) of sludge is a promising method to alleviate the energy problem. Although methane can be effectively recovered through sludge pretreatment by cation exchange resin (CER), the simultaneous enhancement of hydrogen and methane generation from AD using CER has not been extensively investigated. Herein, the effect of CER on the sequential recovery of hydrogen and methane and the corresponding mechanisms were investigated. When CER is introduced, the maximum increases for the hydrogen and methane production are 104.7 % and 35.3 %, respectively, confirming the sequential enhancement effects of CER on the hydrogen and methane production. Analyses of the variations in the main biochemical components with and without the effect of CER demonstrate that CER promotes sludge organic solubilisation, hydrolysis, and acidification in both hydrogen- and methane-production stages. Moreover, investigations of variations in the solid-liquid interfacial thermodynamics and removal rates of main multivalent metals of sludge reveal that the ion exchange reactions between the CER and sludge in the hydrogen-production stage provide the direct driving force of effective contact between bacteria and organic particulates. Additionally, the residual effect of the CER during methane production reduces the energy barrier for mass transfer and provides a driving force for this transfer. Further analyses of the microbial community structure and metagenomics indicate that CER directly drives the enrichment of hydrogen-producing bacteria (+ 15.1 %) and key genes encoding enzymes in the hydrogen-production stage. Moreover, CER indirectly induces the enrichment of methane-producing anaerobes (e.g. Methanosaeta: + 16.7 %, Methanosarcina: + 316.5 %); enhances the bioconversion of different substrates into methyl-coenzyme M; and promotes the metabolism pathway of acetoclastic process and CO2 reduction in the methane-production stage. This study can provide valuable insights for simultaneously enhancing the production of hydrogen and methane from AD through sequential recovery.
Collapse
Affiliation(s)
- Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
11
|
Yang S, Fan W, Wang X, Kou Y, Tan H, Yang F. Fluorescent and visual sensing of sodium dodecylbenzene sulfonate with an aminosilane self-condensation promoting and electrostatic attraction effect-based ratiometric probe. Anal Chim Acta 2023; 1284:341997. [PMID: 37996152 DOI: 10.1016/j.aca.2023.341997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Increasing attention has been paid to sodium dodecylbenzene sulfonate (SDBS) detection because it could cause damage to human body and environmental water. For example, SDBS must not be detected on tableware surface according to national standard of China (GB 14934-2016). However, there is no report heretofore addressing SDBS sensing on surfaces. More importantly, the interferents often affect the sensing performance of analytical approaches. Hence, there is an urgent need to establish a method with good anti-interference ability for SDBS detection both on tableware surfaces and in water. RESULTS Inspired by a finding that SDBS could cause the generation of white turbidity in (3-aminopropyl)trimethoxysilane (APTMS, an aminosilane) aqueous solution, APTMS modified Mn doped ZnS quantum dots (QDs) and fluorescent (FL) whitening agent (FWA) were constructed as a ratiometric probe for FL and visual sensing of SDBS. The modified QDs aggregated and settled in presence of SDBS, which was likely to be connected to the stimulatory effect of SDBS on the APTMS self-condensation and the electrostatic attraction. The FL emission from the QDs at 605 nm then decreased dramatically, whereas that at 425 nm was virtually constant owing to FWA. SDBS sensing could be achieved by calculating the ratio change of their FL intensities. The detection limits of FL and visual methods were found to be 0.011 and 10 μg/L, respectively, making it one of the most sensitive approaches in literature. Finally, it was successfully utilized for SDBS detection on tableware surfaces and in water. SIGNIFICANCE Herein, the specific interaction between SDBS and APTMS was reported and the reaction mechanisms were explored for the first time. The proposed probe based on the effect described above provided a promising potential for SDBS analysis owing to high sensitivity, selectivity, anti-interference ability, and stability (in 20 days).
Collapse
Affiliation(s)
- Shiwei Yang
- School of Civil Engineering and Architecture, Nanyang Normal University, Nanyang, Henan, 473061, China.
| | - Wanli Fan
- School of Civil Engineering and Architecture, Nanyang Normal University, Nanyang, Henan, 473061, China.
| | - Xiao Wang
- School of Civil Engineering and Architecture, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Yan Kou
- School of Civil Engineering and Architecture, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Huijing Tan
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610031, China
| | - Fan Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
12
|
Tian K, Zhang J, Zhou C, Liu H, Pei Y, Zhang X, Yan X. Revealing the roles of carbonized humic acid in biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 386:129506. [PMID: 37468005 DOI: 10.1016/j.biortech.2023.129506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
For low yield in dark fermentation (DF), in this study, the carbonized humic acid (CHA) was produced and added to DF for enhancing biohydrogen (bioH2) yield at mesophilic condition. The highest bioH2 yield was 151.08 mL/g glucose with the addition of CHA at 80 mg/L, which was 35.27% and 16.53% higher than those of 0 mg/L CHA and 80 mg/L mineral humic acid (MHA) groups, respectively. Electrons preferentially conducted via the butyrate pathway due to CHA amendments, which corresponded to the prediction of relevant functional genes. Furthermore, CHA possessed distinctive advantages over MHA, which acted as an electron shuttle to facilitate electron transfer, released metal ions as an essential signal mediator and favored the reduction of ferredoxin, obtaining more H2. The use of CHA in the field of H2-DF depicted the high-value utilization and industrial chain extension of MHA.
Collapse
Affiliation(s)
- Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hui Liu
- Shandong Institute of Geophysical & Geochemical Exploration, Jinan 250013, China
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoying Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiao Yan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
13
|
Li X, Fu Q, Wang W, Liu X, He D, Jiang X, Yang Q, Wang D. Surfactant enhances anaerobic fermentative hydrogen sulfide production: Changes in sulfur-containing organics structure and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163025. [PMID: 36966824 DOI: 10.1016/j.scitotenv.2023.163025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 03/19/2023] [Indexed: 05/27/2023]
Abstract
The presence of surfactants in waste activated sludge (WAS) system is generally regarded as beneficial to sludge treatment such as enhancing sludge dewatering and improving value-added fermentation products generation. However, in this study, it was firstly found that sodium dodecylbenzene sulfonate (SDBS, a typical surfactant) obviously increased toxic hydrogen sulfide (H2S) gas production from WAS anaerobic fermentation at environmentally relevant concentrations. Experimental results showed that H2S production from WAS significantly increased from 53.24 × 10-3 to 111.25 × 10-3 mg/g volatile suspended solids (VSS) when SDBS level increased from 0 to 30 mg/g total suspended solid (TSS). It was found that SDBS presence destroyed WAS structure and enhanced sulfur containing organics release. SDBS reduced the proportion of α-helix structure, damaged disulfide bridges and protein conformation, and effectively destroyed protein structure. SDBS promoted sulfur containing organics degradation and provided more readily hydrolyzed micro-molecule organics for sulfide production. Microbial analysis showed that SDBS addition enhanced the abundance of functional genes encoding protease, ATP-binding cassette transporters, and amino acids lyase, enhanced the activities and abundance of hydrolytic microbes, thus increased sulfide production from the hydrolysis of sulfur containing organics. Compared with the control, 30 mg/g TSS SDBS increased organic sulfurs hydrolysis and amino acids degradation by 47.1 % and 63.5 %, respectively. Key genes analysis further showed that SDBS addition promoted sulfate transport system and dissimilatory sulfate reduction. SDBS presence also lowered fermentation pH, promoted the chemical equilibrium transformation of sulfide, thus increased H2S gas release.
Collapse
Affiliation(s)
- Xuemei Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410082, PR China.
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xiaomei Jiang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410082, PR China
| | - Qiliang Yang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
14
|
Pei Y, Zhang J, Zhou C, Tian K, Zhang X, Yan X. Hydrothermal carbon microspheres and their iron salt modification for enhancing biohydrogen production. BIORESOURCE TECHNOLOGY 2023:129371. [PMID: 37348568 DOI: 10.1016/j.biortech.2023.129371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Dark fermentation (DF) for hydrogen (H2) evolution is often limited to industrial application due to its low H2 yield. In this work, hydrothermal carbon microspheres (HCM) and iron modified HCM (Fe-HCM) were prepared by hydrothermal process using waste corn cob. Subsequently, HCM and Fe-HCM were used in DF for more H2. The highest H2 yields amended with HCM and Fe-HCM at 600 mg/L were achieved to be 119 and 154 mL/g glucose (0.87 and 1.2 mol H2/mol glucose), respectively, being 24% and 59% higher than that of control yield. Soluble metabolites revealed HCM and Fe-HCM promoted butyric acid-based DF. Microbial composition depicted that HCM and Fe-HCM improved the abundance level of Firmicutes from 35% to 41% and 56%, while the abundance level of Clostridium_sensu_stricto_1 rose from 25% to 38% and 51%, respectively. This provides valuable guidance for hydrothermal carbon used in biofuel production.
Collapse
Affiliation(s)
- Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiaoying Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiao Yan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
15
|
Fu Q, Long S, Xu Y, Wang Y, Yang B, He D, Li X, Liu X, Lu Q, Wang D. Revealing an unrecognized role of free ammonia in sulfur transformation during sludge anaerobic treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131305. [PMID: 37002999 DOI: 10.1016/j.jhazmat.2023.131305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Free ammonia (FA), the unionized form of ammonium, is presented in anaerobic fermentation of waste activated sludge (WAS) at high levels. However, its potential role in sulfur transformation, especially H2S production, during WAS anaerobic fermentation process was unrecognized previously. This work aims to unveil how FA affects anaerobic sulfur transformation in WAS anaerobic fermentation. It was found that FA significantly inhibited H2S production. With an increase of FA from 0.04 to 159 mg/L, H2S production reduced by 69.9%. FA firstly attacked tyrosine-like proteins and aromatic-like proteins in sludge EPSs, with CO groups being responded first, which decreased the percentage of α-helix/(β-sheet + random coil) and destroyed hydrogen bonding networks. Cell membrane potential and physiological status analysis showed that FA destroyed membrane integrity and increased the ratio of apoptotic and necrotic cells. These destroyed sludge EPSs structure and caused cell lysis, thus strongly inhibited the activities of hydrolytic microorganisms and sulfate reducing bacteria. Microbial analysis showed that FA reduced the abundance of functional microbes (e.g., Desulfobulbus and Desulfovibrio) and genes (e.g., MPST, CysP, and CysN) involved in organic sulfur hydrolysis and inorganic sulfate reduction. These findings unveil an actually existed but previously overlooked contributor to H2S inhibition in WAS anaerobic fermentation.
Collapse
Affiliation(s)
- Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Sha Long
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Bentao Yang
- Zhongye Changtian International Engineering Co., Ltd., Changsha 410205, PR China
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuemei Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
16
|
Shao Q, Fang S, Fang X, Zhang M, Huang W, Wang F, Duan X, Wu Y, Luo J. Boosting short-chain fatty acids production from co-fermentation of orange peel waste and waste activated sludge: Critical role of pH on fermentation steps and microbial function traits. BIORESOURCE TECHNOLOGY 2023; 380:129128. [PMID: 37137449 DOI: 10.1016/j.biortech.2023.129128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
The anaerobic co-fermentation of orange peel waste (OPW) and waste activated sludge (WAS) for useful short-chain fatty acids (SCFAs) generation presents an environmentally friendly and efficient method for their disposal. This study amied to investigate the effects of pH regulation on OPW/WAS co-fermentation, and found that the alkaline pH regulation (pH 9) significantly enhanced the promotion of SCFAs (11843 ± 424 mg COD/L), with a high proportion of acetate (51%). Further analysis revealed that alkaline pH regulation facilitated solubilization, hydrolysis, and acidification while simultaneously inhibiting methanogenesis. Furthermore, the functional anaerobes, as well as the expressions of corresponding gene involved in SCFAs biosynthesis, were generally improved under alkaline pH regulation. Alkaline treatment might played a critical role in alleviating the toxicity of OPW, resulting in improving microbial metabolic activity. This work provided an effective strategy to recover biomass waste as high-value products, and insightful understanding of microbial traits during OPW/WAS co-fermentation.
Collapse
Affiliation(s)
- Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xinyang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Minghong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
17
|
Zhao P, Du Z, Fu Q, Ai J, Hu A, Wang D, Zhang W. Molecular composition and chemodiversity of dissolved organic matter in wastewater sludge via Fourier transform ion cyclotron resonance mass spectrometry: Effects of extraction methods and electrospray ionization modes. WATER RESEARCH 2023; 232:119687. [PMID: 36758353 DOI: 10.1016/j.watres.2023.119687] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
High-resolution mass spectrometry was extensively applied in molecular composition and transformation pathways of dissolved organic matter (DOM) in wastewater sludge treatments. Sample pretreatment methods and electrospray ionization (ESI) modes significant affect the accuracy of molecular characterization for DOM. This study investigated the effects of pretreatment methods (styrene divinyl benzene polymer (PPL), octadecyl (C18), and electrodialysis (ED)) on molecular characteristics of DOM in two typical wastewater sludges (waste activated sludge (WAS) and anaerobic digestion sludge (ADS)) analyzed by FT-ICR MS in both positive ESI (ESI (+)) and negative ESI (ESI (-)) modes. The results indicated that ED pretreatment exhibited the highest recovery rate of 70% ‒ 95% for sludge-derived DOM. ED and PPL performed well in recovering the different sludge-derived DOM with a high similarity of molecular characteristics (e.g., lipids, proteins/aliphatic, and lignins/CRAM-like), and the C18 method was ineffective in extracting carbohydrates, unsaturated hydrocarbons, and amino sugars. In addition, compared with single ESI (-) analysis mode, the molecular number identified by ESI (+) analysis mode was increased by 200%, especially, more unsaturated hydrocarbons and N-containing compounds were detected. Except for biogenic DOM, plenty of emerging containments (ECs) in sludge-derived DOM were identified; ESI (-) mode was more effectively in recognizing the alkyl benzene sulfonic acids (e.g., anionic surfactants); and ESI (+) mode was more effectively for plasticizers identification, for example, dioctyl terephthalate and dibutyl phthalate. This study illustrated that ED pretreatment coupled with FT-ICR MS in dual ESI modes could give more insights in complexed molecular information for DOM in wastewater sludge, and provides a theoretical basis for subsequent sludge treatments and disposals.
Collapse
Affiliation(s)
- Peipei Zhao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Zhengliang Du
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qinglong Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China.
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Aibin Hu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Laboratory of High Concentration Refractory Organic Wastewater Treatment Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
18
|
Wang X, Jiang C, Wang H, Xu S, Zhuang X. Strategies for energy conversion from sludge to methane through pretreatment coupled anaerobic digestion: Potential energy loss or gain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117033. [PMID: 36603247 DOI: 10.1016/j.jenvman.2022.117033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) of wasted activated sludge from wastewater plants is recognized as an effective method to reclaim energy in the form of methane. AD performance has been enhanced by coupling various pretreatments that impact energy conversion from sludge. This paper mainly reviewed the development of pretreatments based on different technologies reported in recent years and evaluated their energy benefit. Significant increases in methane yield are generally obtained in AD with pretreatments demanding energy input, including thermal- and ultrasound-based methods. However, these energy-intense pretreatments usually gained negative energy benefit that the increase in methane yield consumed extra energy input. The unbalanced relationship counts against the goal of energy reclamation from sludge. Combined pretreatment consisting of multiple technologies normally outcompetes the single pretreatment, and the combination of energy-intense methods and chemicals potentially reduces energy input and simultaneously ensure high methane yield. For determining whether the energy reclamation from sludge via AD contribute to mitigating global warming, integrating greenhouse gas emission into the evaluation system of pretreated AD is further warranted.
Collapse
Affiliation(s)
- Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huacai Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; The Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
19
|
Wu L, Zhu R, Han X, Chen Y, Long Z, Dong H, Chen X, Wu Y, Su Y, Zhang Z, Luo J. Sulfite altered permanganate effects on acetate-enriched short-chain fatty acids production during sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2023; 371:128589. [PMID: 36627086 DOI: 10.1016/j.biortech.2023.128589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Anaerobic fermentation is a promising method for waste activated sludge (WAS) treatment, but ineffective solubilization and hydrolysis limit its application. The current study examined the function of sodium sulfite (SDS) in potassium permanganate (PP)-conditioned WAS fermentation for short-chain fatty acids (SCFAs) biosynthesis. The presence of SDS in the PP system (PP/SDS) reduced the positive effects of PP on total SCFAs yield (2755 versus 3471 mg COD/L), while effectively increasing the proportion of acetate (from 41 to 81 %). Not only did SDS decrease the promoting effects of PP on WAS solubilization and hydrolysis efficiency by 5-42 %, it also shifted microbial metabolic pathways to favor acetate production. In addition, the amino acid metabolism with acetate as end product was enhanced. Moreover, PP/SDS inhibited methanogenesis, resulting in an accumulation of acetate in high quantities. Thus, the current study a provided insight and direction for effective WAS treatment with acetate-enriched SCFAs production.
Collapse
Affiliation(s)
- Lijuan Wu
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Rui Zhu
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Xiaoxia Han
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Yan Chen
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Zhen Long
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Hao Dong
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Xiaojiang Chen
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengyong Zhang
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China.
| | - Jingyang Luo
- College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
20
|
Zhao J, Zhang H, Guan D, Wang Y, Fu Z, Sun Y, Wang D, Zhang H. New insights into mechanism of emerging pollutant polybrominated diphenyl ether inhibiting sludge dark fermentation. BIORESOURCE TECHNOLOGY 2023; 368:128358. [PMID: 36414141 DOI: 10.1016/j.biortech.2022.128358] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), derived from electronics, furniture, etc., are detected with high level in excess sludge (ES). In this work, the influence of PBDEs on ES dark fermentation (ESDF) hydrogen production and the related key mechanisms were explored. The result shows PBDEs exposure reduced hydrogen production, and hydrogen accumulation decreased from 17.6 mL/g in blank to 12.3 mL/g with 12.0 mg/Kg PBDEs. PBDEs induced the reactive oxygen species production, which directly led to cell inactivation and reduced hydrogen production. Furthermore, PBDEs decreased ES disintegration, hydrolysis, acidification and homoacetogenic processes and inhibited the activities of enzymes related to hydrogen production. PBDEs also affected the diversity and richness of microbial communities in dark fermentation systems, especially high doses of PBDEs reduced the relative abundance of microorganisms associated with hydrogen production. In conclusion, PBDEs reduce hydrogen generation from ES.
Collapse
Affiliation(s)
- Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Hongying Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Huawei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| |
Collapse
|
21
|
Li C, Liu X, Du M, Yang J, Lu Q, Fu Q, He D, Zhao J, Wang D. Peracetic acid promotes biohydrogen production from anaerobic dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156991. [PMID: 35772535 DOI: 10.1016/j.scitotenv.2022.156991] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA), a widely used organic peroxide with strong disinfection and oxidizing effect, has recently attracted research interest in waste activated sludge (WAS) treatment to achieve sludge reduction and resource utilization. However, its impact on hydrogen accumulation from WAS dark fermentation has not been documented. This study therefore is intended to fill in this knowledge gap and clarify the underlying mechanism of PAA-promoted hydrogen generation. Batch experiments revealed that when raised PAA dosage from 0 to 8 mg/g TSS (total suspended solids), cumulative hydrogen production within 168 h fermentation increased from 1.3 to 14.2 mL/g VSS (volatile suspended solids), however, further increase PAA dosage to 10 mg/g TSS resulted in a slight decrease in hydrogen yield. Mechanism studies revealed that PAA was beneficial to sludge disintegration (10 mg/g TSS PAA increased SCOD (soluble chemical oxygen demand) by 254 %). Although PAA inhibited the activity of all microorganism involved in dark fermentation, the inhibitory effect on hydrogen consumers were much more serious than that on hydrogen producers (-45.8 % versus -5.1 % and - 7.3 %). The fermentation was found to shift from propionate type to acetate and butyrate type, favoring hydrogen production. Moreover, the methane production process was effectively inhibited by PAA, which meant less hydrogen consumption. Microbial community analysis results unveiled that PAA increased the abundances of hydrolytic bacteria (e.g., norank_f__Saprospiraceae) and hydrogen producers (e.g., Clostridium_sensu_stricto_10). These findings obtained in this work provide new insights into oxidants-involved sludge treatment process and might have important implication for WAS treatment and bioenergy production in the future.
Collapse
Affiliation(s)
- Chenxi Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| | - Xuran Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Mingting Du
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Jingnan Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qi Lu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qizi Fu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Dandan He
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|
22
|
Zhang J, Zhang H, Zhang J, Zhou C, Pei Y, Zang L. Improved biohydrogen evolution through calcium ferrite nanoparticles assisted dark fermentation. BIORESOURCE TECHNOLOGY 2022; 361:127676. [PMID: 35872267 DOI: 10.1016/j.biortech.2022.127676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Dark fermentation (DF) is a green hydrogen (H2) production process, but it is far below the theoretical H2 yield. In this study, calcium ferrite nanoparticles (CaFe2O4 NPs) were produced to augment H2 yield via DF. The highest H2 yield of 250.1 ± 6.5 mL/g glucose was achieved at 100 mg/L CaFe2O4 NPs. Furtherincreasein CaFe2O4 NPs above 100 mg/L, such as 600 mg/L, would slightly lower H2 yield to 208.6 ± 2.6 mL/g glucose. The CaFe2O4 NPs in DF system released calcium and iron ions, promoting granular sludge formation andDF microbial activity. Soluble metabolites revealed that butyric acid was raised by CaFe2O4 NPs, which indicated the improved metabolic pathway for more H2. Microbial structure composition further illustrated that CaFe2O4 NPs could increase the abundance of dominant microbial populations, with the supremacy of Firmicutes up to 71.22 % in the bioH2 evolution group augmented with 100 mg/L CaFe2O4 NPs.
Collapse
Affiliation(s)
- Junchu Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huiwen Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
23
|
Luo J, Cao W, Guo W, Fang S, Huang W, Wang F, Cheng X, Du W, Cao J, Feng Q, Wu Y. Antagonistic effects of surfactants and CeO 2 nanoparticles co-occurrence on the sludge fermentation process: Novel insights of interaction mechanisms and microbial networks. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129556. [PMID: 35999746 DOI: 10.1016/j.jhazmat.2022.129556] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Various pollutants commonly co-exist in the waste active sludge (WAS), but the interactive effects and mechanisms of co-occurrence pollutants on the WAS treatment remain unclear. This work mainly investigated the impacts of different surfactants (i.e., HTAB and SDBS) and CeO2 nanoparticles (NPs) co-occurrence on the WAS fermentation for short-chain fatty acids (SCFAs) production, and found that the CeO2 NPs coexisting with surfactants caused antagonistic effects on the SCFAs generation (10.7% and 33.9% inhibition by HTAB and SDBS, respectively). The surfactants and CeO2 NPs co-occurrence restrained the solubilization, hydrolysis, and acidification steps simultaneously. Moreover, the functional hydrolytic-acidogenic bacterial (e.g., Haliangium and Bacteroidetes sp.) and the microbial metabolic networks involved in extracellular hydrolysis (e.g., pepd and NEU1), substrate metabolism (e.g., ALDO and asdA), and fatty acid biosynthesis (e.g., aarC and pct) were all downregulated by 4.3-53.8% in the reactors with surfactants and CeO2 NPs co-occurrence. The presence of surfactants enhanced the dispersibility and stability of CeO2 NPs and the Ce dissolution (1.5-3.0 times higher). Also, surfactants contributed to the WAS disintegration, which could improve the interactive chances of microorganisms entrapped in WAS and CeO2 NPs by promoting the transportation channels, and therefore aggravated the toxicity towards anaerobic species.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wangbei Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wen Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China; Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing 210024, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
24
|
Fu Q, Liu X, He D, Li X, Li C, Du M, Wang Y, Long S, Wang D. Rhamnolipid increases H 2S generation from waste activated sludge anaerobic fermentation: An overlooked concern. WATER RESEARCH 2022; 221:118742. [PMID: 35752095 DOI: 10.1016/j.watres.2022.118742] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Rhamnolipid (RL), one representative biosurfactant, is widely regarded as an economically feasible and environmentally beneficial additive to improve fermentation efficiency and resource recovery from waste activated sludge (WAS). However, its potentially detrimental impact on WAS fermentation such as H2S generation was overlooked previously. This study therefore aims to fill the gap through exploring whether and how the presence of RL affects H2S generation from WAS anaerobic fermentation. Experimental results showed that when RL increased from 0 to 40 mg/g total suspended solids (TSS), the cumulative H2S yield enhanced from 323.6 × 10-4 to 620.3 × 10-4 mg/g volatile suspended solids (VSS). Mechanism analysis showed that RL reduced WAS surface tension, which benefited transformations of organic sulfurs (e.g., aliphatic-S and sulfoxide) and inorganic sulfate from solid to liquid phase. The presence of RL not only reduced the ratio of α-helix/(β-sheet + random coil) and damaged the hydrogen bonding networks of organic sulfurs but also promoted substrate surface charges and cell membrane permeability. These facilitated the contact between hydrolase and organic sulfurs, thereby increasing sulfide production from organic sulfurs hydrolysis. Further investigations showed that RL promoted the expression of key genes (e.g., aprA/B and dsrA/B) involved in the dissimilatory sulfate reduction, which accelerated the reaction of adenosine 5'-phosphosulfate (APS)→ sulfite→ sulfide. Meanwhile, RL inhibited the corresponding key genes such as CysH, and Sir, responsible for assimilatory sulfate reduction (APS→3'-phosphoadenosine-5'phosphosulfate→organosulfur), which reduced substrate competition in favor of H2S production from dissimilatory sulfate reduction. Besides, RL decreased the fermentation pH, which benefited the transformation of HS- to H2S.
Collapse
Affiliation(s)
- Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dandan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuemei Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenxi Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mingting Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Sha Long
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
25
|
Jin HY, He ZW, Ren YX, Yang WJ, Tang CC, Chen F, Zhou AJ, Liu W, Liang B, Wang A. Role and significance of water and acid washing on biochar for regulating methane production from waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152950. [PMID: 35007606 DOI: 10.1016/j.scitotenv.2022.152950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Methane recovered from anaerobic digestion of waste activated sludge (WAS) can be used as the energy supplement of the wastewater treatment plant, benefiting to its carbon-neutral operation. In order to enhance methane production, biochar (BC) has been widely selected as conductive material to build direct interspecies electron transfer (DIET) in anaerobic digestion of WAS. However, the role and significance of washing strategies, including water and acid washing, on BCs for regulating methane production have not been reported. This study selected the frequently used woody- (W) and straw (S)-BCs as mode. Compared to raw W-BC, water and acid washing W-BC increased the methane yields by 19.1% and 15.7%, respectively. Differently, the methane yields among raw, water and acid washing S-BCs were similar. Mechanism study showed that both the two washing strategies optimized the properties of raw W-BC for promoting methane production. Water and acid washing W-BCs increased the electron transfer functional groups, such as ketones and quinones, which were not observed in S-BCs. Moreover, the electron-active microorganisms were enriched with the presence of water and acid washing W-BCs, and the predominant pathway for methane production shifted from hydrogentrophic to acetotrophic and DIET methanogenesis, while the microbial communities, including bacteria and archaea, were similar with the presence of raw, water and acid washing S-BCs. These findings of this work provide some new insights for production improvement regulation of methane from anaerobic digestion of wastes induced by BCs.
Collapse
Affiliation(s)
- Hong-Yu Jin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen-Jing Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
26
|
Luo J, Li Y, Li Y, Li H, Fang X, Li Y, Huang W, Cao J, Wu Y. Waste-to-energy: Cellulase induced waste activated sludge and paper waste co-fermentation for efficient volatile fatty acids production and underlying mechanisms. BIORESOURCE TECHNOLOGY 2021; 341:125771. [PMID: 34411945 DOI: 10.1016/j.biortech.2021.125771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
This study mainly investigated the feasibility of utilizing cellulase to enhance waste activated sludge (WAS) and paper waste (PW) co-fermentation for the generation of volatile fatty acids (VFAs). The introduction of cellulase effectively enhanced the co-fermentation efficiency, and the maximum VFAs generation reached 3014 mg COD/L with 60 mg cellulase/g TSS while it was 1512 mg COD/L in the control reactor. The presence of cellulase evidently improved the concentration of soluble bioavailable substrates (e.g., carbohydrates and proteins) via inducing the EPS disintegration and PW disruption. More importantly, the functional anaerobes (i.e., Macellibacteroides and Bacteroides) and the microbial activities (i.e., ATP, key acid-forming enzymes, and genetic expressions) that related with the VFAs biosynthesis were enriched and enhanced due to the stimulation of cellulase, contributing to the ultimate VFAs promotion. This study provided a novel strategy to recover valuable products from waste biomass with constructive mechanistic exploration.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yibing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xinyang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yuxiao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|