1
|
Zeng Z, Chen L, Li R, Tan Y, Liu X, Long C, Zhang P, Qing T, Feng B. Toxic effects of polystyrene microplastics on atrazine in zebrafish: Exogenous toxicity and endogenous mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126519. [PMID: 40414410 DOI: 10.1016/j.envpol.2025.126519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 05/10/2025] [Accepted: 05/23/2025] [Indexed: 05/27/2025]
Abstract
The ubiquitous presence of microplastics and other contaminants in the environment poses a potential threat to organisms, yet the mode of action and mechanisms of toxicity when they are co-exposed remain underexplored. In this work, we investigated the combined effects of environmental concentrations of polystyrene (PS) and dry heat-UV-bioaged polystyrene microplastics (CPS) with the triazine herbicide atrazine on zebrafish. Acute toxicity experiments demonstrated that combined exposure of PS/CPS and atrazine enhanced the 96-h LC50 of atrazine. Long-term exposure experiments showed that combined exposures were more likely to result in tissue damage and oxidative stress disorders in the zebrafish gut and liver. Interestingly, our experiments show that co-exposure also affects exogenous water quality by decreasing dissolved oxygen and increasing NH3+-N, NO3- and NO2- in the water column, and that NO2- and NH3+-N can cause damage to zebrafish. Moreover, the combined exposure was more likely to cause changes in gut flora at the level of phylum. In terms of hepatic gene transcription, combined exposure not only led to a significant enrichment of pathways for amino acid metabolism, fat digestion and absorption, and fatty acid degradation, but also affected several disease-associated signaling pathways. These findings provide novel perspectives and evidence on the mechanisms of toxicity induced by combined exposure to new contaminants and provide guidance for ecological risk assessment.
Collapse
Affiliation(s)
- Zihang Zeng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Lixiang Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Ruixiang Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Yingjie Tan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Xiaofeng Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Caicheng Long
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China.
| |
Collapse
|
2
|
Malbezin L, Mazzella N, Boutry S, Lavoie I, Morin S. Interspecific differences in the response of autotrophic microorganisms to atrazine and S-metolachlor exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117616. [PMID: 39799914 DOI: 10.1016/j.ecoenv.2024.117616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
Atrazine and S-metolachlor are herbicides widely used on corn and soybean crops where they are sometimes found in concentrations of concern in nearby aquatic ecosystems, potentially affecting autotrophic organisms. The aim of this study was to investigate the response of the green algae Enallax costatus, the diatom Gomphonema parvulum and a culture of the cyanobacteria Phormidium sp. and Microcystis aeruginosa, to atrazine and S-metolachlor alone and in mixture (0, 10, 100 and 1000 µg.L-1, for 7 days). For each culture, chlorophyll fluorescence and effective quantum yield of photosynthesis were determined and compared with lipid and methyl-ester fatty acid profiles. In general, the green algae was most strongly affected by atrazine and S-metolachlor. In particular, atrazine led to a total inhibition of photosynthesis and a sharp decrease in triacylglycerols (TAGs), while S-metolachlor caused a partial decrease in photosynthesis in the green algae and a sharp increase in reserve lipids in the diatom when the herbicide was in mixture. The effect of the mixture of compounds depended on the descriptor considered. Indeed, atrazine seemed to explain the toxicity of the mixture for photosynthetic parameters, while certain lipid classes showed intermediate responses between compounds. The results suggest mechanisms of shade adaptation, algal population increase and lipid remodeling in response to compound exposure. The results reveal differences in sensitivity between species after 7 days exposure to the two compounds alone and in mixture. These results support the value of using the study of lipid and fatty acid profiles as complementary information to traditional descriptors for the assessment of pesticide exposure on photoautotrophic organisms.
Collapse
Affiliation(s)
- Laura Malbezin
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Canada.
| | - Nicolas Mazzella
- UR EABX, Inrae, Cestas, France; Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon, France
| | | | - Isabelle Lavoie
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Canada
| | | |
Collapse
|
3
|
Medina A, Eon M, Mazzella N, Bonnineau C, Millan-Navarro D, Moreira A, Morin S, Creusot N. Sensitivity shift of the meta-metabolome and photosynthesis to the chemical stress in periphyton between months along one year and a half period: Case study of a terbuthylazine exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177681. [PMID: 39577586 DOI: 10.1016/j.scitotenv.2024.177681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Despite the knowledge of the effects of contaminants on periphyton, information is limited about their natural fluctuations in sensitivity to chemical stress between various months. In particular, the molecular and biochemical mechanisms associated with sensitivity of photosynthesis and its fluctuations remain poorly described. To tackle this lack of knowledge, meta-metabolomics offers a comprehensive picture of the sensitive molecular response preceding the physiological impact. This study aimed to describe changes in the sensitivity of periphyton to chemical stress at different months over one year and a half period, at both the physiological and molecular levels by measuring photosynthetic yield and meta-metabolome responses (targeted and untargeted approaches). Periphyton was colonized for four weeks and then exposed to a range of terbuthylazine concentrations (0.3-30 μg L-1) under controlled conditions for 4 h. Sensitivity was assessed by determining the benchmark doses for the meta-metabolome and photosynthesis, along with the cumulative distribution of aggregated metabolomics signals. The results showed a strong sensitivity shift in the meta-metabolome compared to a smaller shift in photosynthetic yield at different months. This study also confirmed the high sensitivity of the meta-metabolome, as most signals responded before photosynthesis. The annotation highlighted the discrepancies in the molecular response to TBA between the months in terms of metabolite classes (e.g. amino acids, alkaloids, and lipids), their sensitivity, and trends in common classes across months, and correlation to photosynthesis inhibition, notably oxylipins. Overall, this study highlights that the molecular response of the periphyton to chemical stress, and thus toxicity pathways, may differ between the months but can still lead to similar physiological responses.
Collapse
Affiliation(s)
- Arthur Medina
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France
| | - Melissa Eon
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France; Plateforme Bordeaux Metabolome, F-33140 Villenave d'Ornon, France
| | - Nicolas Mazzella
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France; Plateforme Bordeaux Metabolome, F-33140 Villenave d'Ornon, France
| | - Chloé Bonnineau
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France
| | - Débora Millan-Navarro
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France
| | - Aurelie Moreira
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France; Plateforme Bordeaux Metabolome, F-33140 Villenave d'Ornon, France
| | - Soizic Morin
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France
| | - Nicolas Creusot
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France; Plateforme Bordeaux Metabolome, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
4
|
Zhang Z, Feng Y, Wang W, Ru S, Zhao L, Ma Y, Song X, Liu L, Wang J. Pollution level and ecological risk assessment of triazine herbicides in Laizhou Bay and derivation of seawater quality criteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135270. [PMID: 39053056 DOI: 10.1016/j.jhazmat.2024.135270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Triazine herbicides are widely used in agriculture and have become common pollutants in marine environments. However, the spatiotemporal distribution characteristics and water quality criteria (WQC) of triazine herbicides are still unclear. This study found that triazine herbicides had a high detection rate of 100 % in surface seawater of Laizhou Bay, China, with average concentrations of 217.61, 225.13, 21.97, and 1296.72 ng/L in March, May, August, and October, respectively. Moreover, estuaries were important sources, and especially the Yellow River estuary exhibited the highest concentrations of 16,115.86 ng/L in October. The 10 triazine herbicides were detected in the sediments of Laizhou Bay, with a concentration ranging from 0.14-1.68 μg/kg. Atrazine and prometryn accounted for 33.41 %-59.10 % and 28.93 %-50.06 % of the total triazine herbicides in the seawater, and prometryn had the highest proportion (63.50 %) in the sediments. Correlation analysis revealed that triazine herbicides led to the loss of plankton biodiversity, which further decreased the dissolved oxygen. In addition, this study collected 45 acute toxicity data and 22 chronic toxicity data of atrazine, 16 acute toxicity data of prometryn, and supplemented with toxicity experiments of prometryn on marine organisms. Based on the toxicity database, the WQCs of atrazine and prometryn were derived using species sensitivity distribution. The overall risk probability of atrazine and prometryn were both less than 1.75 % in the Laizhou Bay, indicating an acceptable risk. This study not only clarified the pollution status and ecological risk of triazine herbicides, but also provided scientific basis for their environmental management standards.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongliang Feng
- Department of Basic Courses, Tangshan University, Tangshan 063000, China
| | - Weizhong Wang
- Shandong Blue Ocean Technology Co., Ltd, Yantai 264006, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Lingchao Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuanqing Ma
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Xiukai Song
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Lijuan Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
5
|
Wu G, Shi W, Zheng L, Wang X, Tan Z, Xie E, Zhang D. Impacts of organophosphate pesticide types and concentrations on aquatic bacterial communities and carbon cycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134824. [PMID: 38876013 DOI: 10.1016/j.jhazmat.2024.134824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/01/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Organophosphorus pesticides (OPPs) are important chemical stressors in aquatic ecosystems, and they attract increasing more attentions recently. However, the impacts of different OPPs on carbon cycling remain unclear, particularly for those functional-yet-uncultivable microbes. This study investigated the change in lake aquatic microbial communities in the presence of dichlorvos, monocrotophos, omethoate and parathion. All OPPs significantly inhibited biomass (p < 0.05) and the expression of carbon cycle-related cbbLG gene (p < 0.01), and altered aquatic microbial community structure, interaction, and assembly. Variance partitioning analysis showed a stronger impact of pesticide type on microbial biomass and community structure, where pesticide concentration played more significant roles in carbon cycling. From analysis of cbbLG gene and PICRUSt2, Luteolibacter and Verrucomicrobiaceae assimilated inorganic carbon through Wood-Ljungdahl pathway, whereas it was Calvin-Benson-Bassham cycle for Cyanobium PCC-6307. This work provides a deeper insight into the behavior and mechanisms of microbial community change in aquatic system in response to OPPs, and explicitly unravels the impacts of OPPs on their carbon-cycling functions.
Collapse
Affiliation(s)
- Guanxiong Wu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wei Shi
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhanming Tan
- College of Horticulture and Forestry, Tarim University, Alar, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
6
|
Barchanska H, Malejka A, Płonka J. Non-target metabolomics approach for the investigation of the hidden effects induced by atrazine and its degradation products on plant metabolism. CHEMOSPHERE 2024; 359:142298. [PMID: 38729438 DOI: 10.1016/j.chemosphere.2024.142298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Japanese radish (Raphanus sativus var. longipinnatus) plants grown under laboratory conditions were individually exposed to the same doses of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine, ATR) or its main degradation products: either 2-amino-4-chloro-6-isopropylamino-1,3,5-triazine (DEA) or 2-amino-4-chloro-6-ethylamino-1,3,5-triazine (DIA) or desethyl-desisopropyl-atrazine (DEDIA) or 4-(ethylamino)-2-hydroxy-6-(isopropylamino)-1,3,5-triazine (HA), respectively. One week after treatment in plants exposed to ATR, DIA, and DEA, their concentrations were 7.8 μg/g, 9.7 μg/g, and 14.5 μg/g, respectively, while those treated with DEDIA and HA did not contain these compounds. These results were correlated with plant amino acid profile obtained by suspect screening analysis and metabolomic "fingerprint" based on non-target analysis, obtained by liquid chromatography coupled with QTRAP triple quadrupole mass spectrometer. In all cases, both ATR and its by-products were found to interfere with the plant's amino acid profile and modify its metabolic "fingerprint". Therefore, we proved that the non-target metabolomics approach is an effective tool for investigating the hidden effects of pesticides and their transformation products, which is particularly important as these compounds may reduce the quality of edible plants.
Collapse
Affiliation(s)
- Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Poland
| | - Anna Malejka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Poland
| | - Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Poland; Biotechnology Centre, Silesian University of Technology, Poland.
| |
Collapse
|
7
|
Narayanan M, Devarayan K, Verma M, Selvaraj M, Ghramh HA, Kandasamy S. Assessing the ecological impact of pesticides/herbicides on algal communities: A comprehensive review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106851. [PMID: 38325057 DOI: 10.1016/j.aquatox.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
The escalating use of pesticides in agriculture for enhanced crop productivity threatens aquatic ecosystems, jeopardizing environmental integrity and human well-being. Pesticides infiltrate water bodies through runoff, chemical spills, and leachate, adversely affecting algae, vital primary producers in marine ecosystems. The repercussions cascade through higher trophic levels, underscoring the need for a comprehensive understanding of the interplay between pesticides, algae, and the broader ecosystem. Algae, susceptible to pesticides via spillage, runoff, and drift, experience disruptions in community structure and function, with certain species metabolizing and bioaccumulating these contaminants. The toxicological mechanisms vary based on the specific pesticide and algal species involved, particularly evident in herbicides' interference with photosynthetic activity in algae. Despite advancements, gaps persist in comprehending the precise toxic effects and mechanisms affecting algae and non-target species. This review consolidates information on the exposure and toxicity of diverse pesticides and herbicides to aquatic algae, elucidating underlying mechanisms. An emphasis is placed on the complex interactions between pesticides/herbicides, nutrient content, and their toxic effects on algae and microbial species. The variability in the harmful impact of a single pesticide across different algae species underscores the necessity for further research. A holistic approach considering these interactions is imperative to enhance predictions of pesticide effects in marine ecosystems. Continued research in this realm is crucial for a nuanced understanding of the repercussions of pesticides and herbicides on aquatic ecosystems, mainly algae.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Center for Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602 105, Tamil Nadu, India.
| | - Kesavan Devarayan
- Department of Basic Sciences, College of Fisheries Engineering, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Vettar River View Campus, Nagapattinam 611 002, India
| | - Monu Verma
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul 02504, South Korea; Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hamed A Ghramh
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641004, India.
| |
Collapse
|
8
|
Liu M, Song X, Liu C, Cui X, Sun W, Li Z, Wang J. Nanoplastics increase the adverse impacts of lead on the growth, morphological structure and photosynthesis of marine microalga Platymonashelgolandica. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106259. [PMID: 37976841 DOI: 10.1016/j.marenvres.2023.106259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Nanoplastics and heavy metals are common pollutants in coastal environments with high concerns, but their joint ecological risk to marine primary productivity remains unclear. In this study, the effects of 7, 70, 700 μg/L lead (Pb) single exposure and in combination with 200 μg/L polystyrene nanoplastics (NPs, 70 nm) on marine microalga Platymonas helgolandica were investigated. Pb single exposure induced a dose-dependent inhibition on the growth of P. helgolandica, which was associated with the reduced photosynthetic efficiency and nutrient accumulation. Compared to Pb single exposure, the addition of NPs significantly reduced the photosynthetic efficiency and aggravated the damage to cell structure. Reduced esterase activity and increased membrane permeability also indicated that NPs exacerbated the adverse effects of Pb on P. helgolandica. Thus, co-exposure to NPs and Pb induced more severe impacts on marine microalgae, suggesting that the joint ecological risk of NPs and heavy metals to marine primary productivity merits more attention.
Collapse
Affiliation(s)
- Minhao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiukai Song
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resources and Environment Research Institute, Yantai, 264006, China.
| | - Cong Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xumeng Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Wei Sun
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resources and Environment Research Institute, Yantai, 264006, China
| | - Zhengmao Li
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resources and Environment Research Institute, Yantai, 264006, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
9
|
Li L, Wang Y, Liu L, Gao C, Ru S, Yang L. Occurrence, ecological risk, and advanced removal methods of herbicides in waters: a timely review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3297-3319. [PMID: 38095790 DOI: 10.1007/s11356-023-31067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/12/2023] [Indexed: 01/19/2024]
Abstract
Coastal pollution caused by the importation of agricultural herbicides is one of the main environmental problems that directly affect the coastal primary productivity and even the safety of human seafood. It is urgent to evaluate the ecological risk objectively and explore feasible removal strategies. However, existing studies focus on the runoff distribution and risk assessment of specific herbicides in specific areas, and compared with soil environment, there are few studies on remediation methods for water environment. Therefore, we systematically reviewed the current situation of herbicide pollution in global coastal waters and the dose-response relationships of various herbicides on phytoplankton and higher trophic organisms from the perspective of ecological risks. In addition, we believe that compared with the traditional single physical and chemical remediation methods, biological remediation and its combined technology are the most promising methods for herbicide pollution remediation currently. Therefore, we focus on the application prospects, challenges, and management strategies of new bioremediation systems related to biology, such as constructed wetlands, membrane bioreactor processes, and microbial co-metabolism, in order to provide more advanced methods for reducing herbicide pollution in the water environment.
Collapse
Affiliation(s)
- Lingxiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lijuan Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Chen Gao
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
10
|
Rahav E, Herut B. Impact of combined seawater warming and triazine-type herbicide pollution on the physiology and potential toxicity of the dinoflagellate Alexandrium minutum. MARINE POLLUTION BULLETIN 2023; 196:115612. [PMID: 37837785 DOI: 10.1016/j.marpolbul.2023.115612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/16/2023]
Abstract
Coastal phytoplankton communities are often exposed to multiple anthropogenic stressors simultaneously. Here, we experimentally examined how temperature increase (20-26 °C) and triazine-type herbicides pollution (500 ng terbutryn L-1), both recognized as emerging stressors, affect the abundance, physiology and selected saxitoxin gene expression in the toxic dinoflagellate Alexandrium minutum. The results show that A. minutum is more susceptible to terbutryn pollution with increasing temperatures, resulting in a significant decline in its abundance (∼80 %) and photosynthetic activity (∼40 %), while saxitoxin gene expression increased (1.5-2.5-fold). This suggests that in warming polluted coastal areas where A. minutum is often found, saxitoxin poisoning may occur even in the absence of a massive bloom. Our results recommend the development of science-based monitoring practices for algal dissolved toxins in coastal waters and estuaries, supporting environmental policies under warming and contaminated coastal regions.
Collapse
Affiliation(s)
- Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel 310800.
| | - Barak Herut
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel 310800
| |
Collapse
|
11
|
Sun X, Xing L, Xing J, Zheng X, Liu J, Peng J, Li Z, Tan Z, Wang L. Variation and characterization of prometryn in oysters (Crassostrea gigas) after seawater exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165375. [PMID: 37422222 DOI: 10.1016/j.scitotenv.2023.165375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Prometryn (PRO) is frequently detected in shellfish of international trade among triazine herbicides because of its wide application in agriculture and aquaculture worldwide. Nevertheless, the variations of PRO remain unclear in aquatic organisms, which affect the accuracy of their food safety risk assessment. In the present study, the tissue-specific accumulation, biotransformation, and potential metabolic pathway of PRO were reported in oyster species Crassostrea gigas for the first time. The experiments were conducted through semi-static seawater exposure with low and high concentrations of PRO (at nominal concentrations of 10 and 100 μg/L) via daily renewal over 22 days, followed by 16 days of depuration in clean seawater. The characterization of prometryn in oysters was then evaluated through the bioaccumulation behavior, elimination pathway and metabolic transformation, comparing with other organisms. The digestive gland and gonad were found to be the main target organs during uptake. In addition, the highest bioconcentration factor of 67.4 ± 4.1 was observed when exposed to low concentration. The level of PRO in oyster tissues rapidly decreased within 1 day during depuration, with an elimination rate of >90 % for the gill. Moreover, four metabolites of PRO were identified in oyster samples of exposed groups, including HP, DDIHP, DIP, and DIHP, in which HP was the major metabolite. Considering the mass percentage of hydroxylated metabolites higher than 90 % in oyster samples, PRO poses a larger threat to aquatic organisms than rat. Finally, the biotransformation pathway of PRO in C. gigas was proposed, the major metabolic process of which was hydroxylation along with N-dealkylation. Meanwhile, the newly discovered biotransformation of PRO in oyster indicates the importance of monitoring environmental levels of PRO in cultured shellfish, to prevent possible ecotoxicological effects as well as to ensure the safety of aquatic products.
Collapse
Affiliation(s)
- Xiaojie Sun
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Lihong Xing
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Jun Xing
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xuying Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Jiamin Liu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Zhaoxin Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Lianzhu Wang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| |
Collapse
|
12
|
Jiang S, Xue Y, Wang M, Wang H, Liu L, Dai Y, Liu X, Yue T, Zhao J. Sediment-seawater exchange altered adverse effects of ocean acidification towards marine microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162533. [PMID: 36870492 DOI: 10.1016/j.scitotenv.2023.162533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Ocean acidification (OA) exhibits high threat to marine microalgae. However, the role of marine sediment in the OA-induced adverse effect towards microalgae is largely unknown. In this work, the effects of OA (pH 7.50) on the growth of individual and co-cultured microalgae (Emiliania huxleyi, Isochrysis galbana, Chlorella vulgaris, Phaeodactylum tricornutum, and Platymonas helgolandica tsingtaoensis) were systematically investigated in the sediment-seawater systems. OA inhibited E. huxleyi growth by 25.21 %, promoted P. helgolandica (tsingtaoensis) growth by 15.49 %, while did not cause any effect on the other three microalgal species in the absence of sediment. In the presence of the sediment, OA-induced growth inhibition of E. huxleyi was significantly mitigated, because the released chemicals (N, P and Fe) from seawater-sediment interface increased the photosynthesis and reduced oxidative stress. For P. tricornutum, C. vulgaris and P. helgolandica (tsingtaoensis), the growth was significantly increased in the presence of sediment in comparison with those under OA alone or normal seawater (pH 8.10). For I. galbana, the growth was inhibited when the sediment was introduced. Additionally, in the co-culturing system, C. vulgaris and P. tricornutum were the dominant species, while OA increased the proportions of dominant species and decreased the community stability as indicated by Shannon and Pielou's indexes. After the introduction of sediment, the community stability was recovered, but remained lower than that under normal condition. This work demonstrated the role of sediment in the biological responses to OA, and could be helpful for better understanding the impact of OA on marine ecosystems.
Collapse
Affiliation(s)
- Shiyang Jiang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yinhao Xue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Meng Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Hao Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Lu Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Xia Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
13
|
Gan T, Yin G, Zhao N, Tan X, Wang Y. A Sensitive Response Index Selection for Rapid Assessment of Heavy Metals Toxicity to the Photosynthesis of Chlorella pyrenoidosa Based on Rapid Chlorophyll Fluorescence Induction Kinetics. TOXICS 2023; 11:toxics11050468. [PMID: 37235282 DOI: 10.3390/toxics11050468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Heavy metals as toxic pollutants have important impacts on the photosynthesis of microalgae, thus seriously threatening the normal material circulation and energy flow of the aquatic ecosystem. In order to rapidly and sensitively detect the toxicity of heavy metals to microalgal photosynthesis, in this study, the effects of four typical toxic heavy metals, chromium (Cr(VI)), cadmium (Cd), mercury (Hg), and copper (Cu), on nine photosynthetic fluorescence parameters (φPo, ΨEo, φEo, δRo, ΨRo, φRo, FV/FO, PIABS, and Sm) derived from the chlorophyll fluorescence rise kinetics (OJIP) curve of microalga Chlorella pyrenoidosa, were investigated based on the chlorophyll fluorescence induction kinetics technique. By analyzing the change trends of each parameter with the concentrations of the four heavy metals, we found that compared with other parameters, φPo (maximum photochemical quantum yield of photosystem II), FV/FO (photochemical parameter of photosystem II), PIABS (photosynthetic performance index), and Sm (normalized area of the OJIP curve) demonstrated the same monotonic change characteristics with an increase in concentration of each heavy metal, indicating that these four parameters could be used as response indexes to quantitatively detect the toxicity of heavy metals. By further comparing the response performances of φPo, FV/FO, PIABS, and Sm to Cr(VI), Cd, Hg, and Cu, the results indicated that whether it was analyzed from the lowest observed effect concentration (LOEC), the influence degree by equal concentration of heavy metal, the 10% effective concentration (EC10), or the median effective concentration (EC50), the response sensitivities of PIABS to each heavy metal were all significantly superior to those of φRo, FV/FO, and Sm. Thus, PIABS was the most suitable response index for sensitive detection of heavy metals toxicity. Using PIABS as a response index to compare the toxicity of Cr(VI), Cd, Hg, and Cu to C. pyrenoidosa photosynthesis within 4 h by EC50 values, the results indicated that Hg was the most toxic, while Cr(VI) toxicity was the lowest. This study provides a sensitive response index for rapidly detecting the toxicity of heavy metals to microalgae based on the chlorophyll fluorescence induction kinetics technique.
Collapse
Affiliation(s)
- Tingting Gan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Gaofang Yin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Nanjing Zhao
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Xiaoxuan Tan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Ying Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| |
Collapse
|
14
|
Zhao L, Yang M, Yu X, Liu L, Gao C, Li H, Fu S, Wang W, Wang J. Presence and distribution of triazine herbicides and their effects on microbial communities in the Laizhou Bay, Northern China. MARINE POLLUTION BULLETIN 2023; 186:114460. [PMID: 36521363 DOI: 10.1016/j.marpolbul.2022.114460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the distribution of triazine herbicides in the Laizhou Bay, China and found that the total concentrations of triazine herbicides in the seawater and sediments were 111.15-234.85 ng/L and 0.902-4.661 μg/kg, respectively. Triazine herbicides especially ametryn, atrazine, and simazine were negatively correlated with prokaryote diversity in the seawater. While ametryn, desethylatrazine and desisopropylatrazine had positively significant effects on eukaryotes Dinophyceae, Bacillariophyta, and Cercozoa in the sediments. Moreover, the degree of fragmentation of eukaryotic networks increased dramatically with the increasing numbers of removed nodes, but prokaryotic networks did not change with the decrease of nodes. In addition, the stability analysis and neutral community models revealed that eukaryotes were more sensitive to triazine herbicides than prokaryotes. These results suggest that triazine herbicides might affect the structure and interactions of microbial communities. Therefore, more attentions should be paid to the ecological risk of triazine herbicides in marine ecosystems.
Collapse
Affiliation(s)
- Lingchao Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mengyao Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaowen Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lijuan Liu
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Chen Gao
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Sui Fu
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
15
|
Photocatalytic destruction of prometryn on Ti-containing aluminum foil nanocomposites. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Guo Z, Ouyang W, Tulcan RXS, Lin C, He M, Wang B, Xin M. Spatiotemporal partition dynamics of typical herbicides at a turbid river estuary. MARINE POLLUTION BULLETIN 2022; 182:113946. [PMID: 35870360 DOI: 10.1016/j.marpolbul.2022.113946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Organic pollutants are ubiquitous in estuarine areas, nonetheless, the transport mechanisms of herbicides in such areas are limited. Atrazine and acetochlor were analyzed in suspended particle matter (SPM), surface sediment, and surface water from the Yellow River estuary and the surrounding rivers and sea. Among these rivers, the Yellow River contributes the most herbicide flux to the sea annually. The herbicide concentrations in water and sediment decreased from the estuarine areas to the deep sea. The fugacity fraction values of atrazine exceeded 0.5 in the Yellow River estuary, which supported that the herbicides in sediment desorbed at the estuarine areas. The herbicide in the SPM showed high concentration in the outer sea and increased as a power function with decreasing SPM content. The increasing partition capacity indicated that the herbicides tended to sink into sediment, increasing the ecological risk posed by herbicides. The ecological risk of acetochlor deserves continuous attention.
Collapse
Affiliation(s)
- Zewei Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China.
| | - Roberto Xavier Supe Tulcan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China
| | - Ming Xin
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China
| |
Collapse
|
17
|
Shim KY, Sukumaran V, Yeo IC, Shin H, Jeong CB. Effects of atrazine and diuron on life parameters, antioxidant response, and multixenobiotic resistance in non-targeted marine zooplankton. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109378. [PMID: 35605931 DOI: 10.1016/j.cbpc.2022.109378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Atrazine and diuron are among the most widely used antifoulant biocides in the world. Due to their persistence in the environment, they can induce adverse effects on non-targeted organisms. In this study, we investigated the chronic in vivo toxicity of atrazine and diuron with further assessments on oxidative stress responses (e.g., oxidative stress, antioxidant) and multixenobiotic resistance (MXR) function in the rotifer Brachionus koreanus, a non-targeted microzooplanktonic grazer at the primary level of the marine food chain. Although similar oxidative response was shown by both biocides, diuron induced stronger retardation on reproduction and population growth rates of B. koreanus while moderate effects were observed by atrazine. This higher toxicity of diuron was shown to be associated with its stronger inhibition of MXR conferred by P-glycoprotein and multidrug resistance proteins which play as a first line of defense by transporting various toxicants out of a cell. Our study provides new insight into non-targeted effects of biocides on marine zooplankton and mechanisms beyond their different degrees of toxicity.
Collapse
Affiliation(s)
- Kyu-Young Shim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Vrinda Sukumaran
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - In-Cheol Yeo
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Heesang Shin
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Chang-Bum Jeong
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea.
| |
Collapse
|