1
|
Li J, Liu J, Peng L, Liu J, Xu L, He J, Sun L, Shen G, He L. Functional analysis of SDR112C1 associated with fenpropathrin tolerance in Tetranychus cinnabarinus (Boisduval). INSECT SCIENCE 2025; 32:585-599. [PMID: 38926942 DOI: 10.1111/1744-7917.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Short-chain dehydrogenases/reductases (SDRs) are ubiquitously distributed across diverse organisms and play pivotal roles in the growth, as well as endogenous and exogenous metabolism of various substances, including drugs. The expression levels of SDR genes are reportedly upregulated in the fenpropathrin (FEN)-resistant (FeR) strain of Tetranychus cinnabarinus. However, the functions of these SDR genes in acaricide tolerance remain elusive. In this study, the activity of SDRs was found to be significantly higher (2.26-fold) in the FeR strain compared to the susceptible strain (SS) of T. cinnabarinus. A specific upregulated SDR gene, named SDR112C1, exhibited significant overexpression (3.13-fold) in the FeR population compared with that in the SS population. Furthermore, the expression of SDR112C1 showed a significant increase in the response to FEN induction. Additionally, knockdown of the SDR112C1 gene resulted in decreased SDR activity and reduced mite viability against FEN. Importantly, heterologous expression and in vitro incubation assays confirmed that recombinant SDR112C1 could effectively deplete FEN. Moreover, the overexpression of the SDR112C1 gene in Drosophila melanogaster significantly decreased the toxicity of FEN to transgenic fruit flies. These findings suggest that the overexpression of SDR SDR112C1 is a crucial factor contributing to FEN tolerance in T. cinnabarinus. This discovery not only enhances our understanding of SDR-mediated acaricide tolerance but also introduces a new family of detoxification enzymes to consider in practice, beyond cytochrome P450s, carboxyl/choline esterases and glutathione S-transferases.
Collapse
Affiliation(s)
- Jinhang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jialu Liu
- Key Scientific Research Base of Pest and Mold Control of Heritage Collection (Chongqing China Three Gorges Museum), State Administration of Cultural Heritage, Chongqing, China
| | - Lishu Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jingui Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Lin Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Junfeng He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Longjiang Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Zhang J, Yang Y, Fan Y, Yu W, Qian L, Duan M, Zhao W, Chen X, Song W, Li X, Wang C. Sex Difference in Histopathological and Steroidogenesis Metabolism of Zebrafish After Exposure to Spiromesifen. ENVIRONMENTAL TOXICOLOGY 2025; 40:598-607. [PMID: 39588948 DOI: 10.1002/tox.24438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/18/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
Spiromesifen (SPM) is widely used for orchard mites and white fly control. The ecotoxicological data suggested that SPM is highly toxic to fish, but the information about its toxic effect on zebrafish is still obscure. In this study, adult zebrafish were exposed to SPM for 21 days. The plasma sex steroid hormone levels reflected the ratio of 17β-estradiol (E2) to testosterone (T) (E2/T) was significantly increased at 0.50 μg/L of SPM in male fish (2.4-fold, p = 0.049). Following 21 days' post exposure, distinct pathological changes were noted in gonad, males were more sensitive than female, which showed the interstitial connective tissue hyperplasia and widener in testis at 15 μg/L of SPM. In male fish, the relative percentage of spermatozoa was 13% decreased at 30 μg/L of SPM (p = 0.041). Which suggest SPM potential role in disrupting male gonad development. qRT-PCR results suggest that expression of follicle stimulating hormone receptor (fshr) was significantly down regulated in female zebrafish (0.29 fold of control, p = 0.010). Variable importance of projection (VIP) scores indicate the most important features separate in female and male. The different response of steroid level towards SPM between male and female zebrafish may due to the distinct regulation of key genes related in steroidogenesis and metabolism. This study for the first time connects the biochemical and histological to reveal the adverse effects of SPM on adult zebrafish in a sex dependent manner.
Collapse
Affiliation(s)
- Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, People's Republic of China
| | - Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, People's Republic of China
| | - Wang Yu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, People's Republic of China
| | - Le Qian
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Henan, China
| | - Manman Duan
- Institute of Rural Revitalization, Dezhou University, Dezhou, Shandong, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Xiangguang Chen
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Wanhui Song
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xuefeng Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Zhang J, Li D, Lu C, Wang X, Wang J, Wang J, Li B, Du Z, Yang Y, Zhu L. Negative effects of polyvinyl chloride microplastics and the plasticizer DnOP on earthworms: Co-exposure enhances oxidative stress and immune system damage in earthworms. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136338. [PMID: 39486341 DOI: 10.1016/j.jhazmat.2024.136338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Polyvinyl chloride microplastics (PVC-MPs) are the most used plastics in agriculture. Di-n-octyl phthalate (DnOP), a commonly used plasticizer in PVC-MPs, may be released from plastic and coexist with PVC-MPs. The effects of DnOP alone and coexisting with PVC-MPs are not known. We evaluated the effects of DnOP or/and PVC-MPs on earthworms, and used integrated biomarker response (IBR) to assess the combined toxicity. Molecular docking and transcriptomics were employed for further interpretation of possible toxicity mechanisms. The results showed that exposure to DnOP or/and PVC-MPs caused oxidative damage and interfered with reproduction, adversely affecting the growth and reproduction of earthworms. IBR results showed that toxicity of DnOP+PVC-MPs exposure was greater than that of DnOP and PVC-MPs exposure alone. DnOP has the ability to directly bind to proteins that are associated with antioxidant enzymes and alter their structure. The transcriptomics results indicated that DnOP and PVC-MPs exposure alone mainly affected growth and development-related pathways, while co-exposure affected apoptosis and immune system-related pathways more. To the best of our knowledge, this is the first comprehensive investigation of the combined toxicity of DnOP or/and PVC-MPs to earthworms from different perspectives, which gives scientifically sound evidence for the rational use of plasticizers DnOP and PVC-MPs.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Dengtan Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Xiaole Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Yue Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
4
|
Fang K, Liu T, Tian G, Sun W, You X, Wang X. Assessing the stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment for efficacy improvement and hazard reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136476. [PMID: 39536355 DOI: 10.1016/j.jhazmat.2024.136476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Penthiopyrad, a chiral pesticide, has been widely used in agricultural production. However, systematic evaluation of stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment is insufficient. In this study, the stereoselective bioactivity of penthiopyrad against three soil-borne disease pathogens and its stereoselective biotoxicity to soil non-target organisms were investigated. The present results showed that the bioactivities of S-penthiopyrad were 546, 76 and 1.1-fold higher than those of R-penthiopyrad due to their different interaction modes with SDH in different target pathogens. S-penthiopyrad was more persistent in the soil environment and had stronger bioaccumulation than R-penthiopyrad. The accumulation of penthiopyrad in earthworms induced the response of detoxification system, resulting in the significant increases in the activity of detoxifying enzymes, such as GST, CarE, and CYP450. Additionally, both S-penthiopyrad and R-penthiopyrad induced cell apoptosis, intestinal damage and differentially expressed genes in earthworms, especially S-penthiopyrad. Furthermore, S-penthiopyrad has stronger binding capacity with COL6A and ACE proteins, while R-penthiopyrad has stronger binding capacity with CYP450 family proteins, which may be the main reason for the differences in biotoxicity between PEN enantiomers. Considering the differences in bioactivity and biotoxicity of penthiopyrad enantiomers, as well as the modes of action of pesticides on target and non-target organisms, S-penthiopyrad has greater potential for future development.
Collapse
Affiliation(s)
- Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Guo Tian
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Wei Sun
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiangwei You
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
5
|
Zhang P, Ran L, Yang C, Tang C, Ke X, Xu Z. Comparative study of fenpropathrin and its main metabolite in soil-earthworm microcosms: Toxicity, degradation, transcriptome, and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177354. [PMID: 39489445 DOI: 10.1016/j.scitotenv.2024.177354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
This study comprehensively investigated the comparative acute toxicities, degradation, transcriptome, and oxidative stress induction of fenpropathrin (FEN) and its main metabolite 3-phenoxybenzoic acid (3-PBA)in soil-earthworm microcosms. FEN degradation half-life ranged from 19.09 to 28.52 days, and the peak-shaped trends of 3-PBA were also observed in different soil types. The LC50 values of FEN and 3-PBA were 12.75 and 7.49 μg/cm2, respectively, suggesting that 3-PBA was more toxic to earthworms. Furthermore, the sub-lethal toxicities indicated that 3-PBA exerted more prominent alterations in protein content, enzyme activity, lipid peroxidation, and oxidative stress in earthworms. Additionally, integrated biomarker response evaluations indicated that 3-PBA induced more prominent sub-lethal toxicity in earthworms than FEN. Finally, exposure to FEN and 3-PBA resulted in distinct differentially expressed genes (DEGs) in earthworms. Enrichment analysis revealed that these DEGs were predominantly enriched in purine metabolism and bile secretion pathways in earthworms. Moreover, the p53 signaling pathway, cell cycle, DNA replication, drug metabolism, and pyrimidine metabolism were also enriched in earthworms after exposure to FEN and 3-PBA. These results suggested that FEN and 3-PBA induced varying toxicities in earthworms. This study highlighted the systemic differences in the toxicities, degradation, transcriptome, and oxidative stress induction between FEN and 3-PBA in soil-earthworm microcosms. Our findings could be used for a comprehensive risk assessment of FEN and 3-PBA in the soil ecosystem.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - LuLu Ran
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cancan Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Can Tang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xiaojiang Ke
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Hou R, Wu H, Du P, Li S, Liu J, Chang J, Huang S, Cheng D, Zhang P, Zhang Z. Ecological risk assessment of castor oil based waterborne polyurethane: Mechanism of anionic/cationic state selective toxicity to Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135553. [PMID: 39173386 DOI: 10.1016/j.jhazmat.2024.135553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Cationic and anionic castor oil-based waterborne polyurethanes (C-WPU/A and C-WPU/C) have great potential for development in agriculture. However, it is still unclear whether these polyurethanes are harmful or toxic to soil fauna. Based on multilevel toxicity endpoints and transcriptomics, we investigated the effects of C-WPU/A and C-WPU/C on earthworms (Eisenia fetida). The acute toxicity results showed that C-WPU/A was highly toxic to the earthworms, whereas C-WPU/C was nearly nontoxic. C-WPU/A significantly affected the body weight, burrowing ability and cocoon production rate of earthworms compared to C-WPU/C. After exposure to C-WPU/A, the results showed accumulation of reactive oxygen species (ROS), abnormal peroxidase activity, and increased malondialdehyde levels. Additionally, more serious histopathological damage was observed in earthworms, such as epidermal damage, vacuolization, longitudinal muscle disorganization, and shedding of intestinal epidermal cells. At the cellular level, C-WPU/A induced more severe lysosomal damage, DNA damage and apoptosis than C-WPU/A. C-WPU/A made more differentially expressed genes and considerably more enriched pathways at the transcriptional level than C-WPU/C. These pathways are largely involved in cell membrane signaling, detoxification, and apoptosis. These results provide an important reference for elucidating the selective toxicity mechanisms of C-WPU/A and C-WPU/C in earthworms.
Collapse
Affiliation(s)
- Ruiquan Hou
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Hao Wu
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Pengrui Du
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Shengnan Li
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jinzhe Chang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Suqing Huang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dongmei Cheng
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Peiwen Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| | - Zhixiang Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Wang T, Zhang L, Yao Z, Jin L, Zhang W, Feng X, Ma W, Lin M. Response of earthworm enzyme activity and gut microbial functional diversity to carbendazim in the manured soil. Front Microbiol 2024; 15:1461880. [PMID: 39411442 PMCID: PMC11473445 DOI: 10.3389/fmicb.2024.1461880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The effect of pesticide pollution on environmental microorganisms in soil has become the focus of widespread concern in society today. The response of earthworm gut and surrounding soil microbial functional diversity and enzyme activity to carbendazim (CBD) was studied in a soil-earthworm ecosystem amended with manure. In the experiment, CBD was added to the manured soil (MS). Meanwhile, the pesticide treatment without manure and the control treatment without pesticides were also set up. The activities of catalase (CAT) and acetylcholinesterase (AChE) were measured to evaluate the toxicity of CBD. The Biolog method was used to assess the functional diversity of the microbial community. In the 2 mg/kg CBD treatment, earthworm AChE activity decreased significantly in the MS after 14 d, which occurred earlier than in the un-manured soil (NS). The changes of earthworm CAT activity in the pesticide treatments showed a trend of initially increasing and then maintaining at a high activity level. However, the CAT activities at 28 d in the manured soils were clearly lower than that at 7 d for both the CBD treatments, while they remained stable in the control treatments. The carbon source utilization, Simpson index, Shannon index, and McIntosh index of soil microorganisms in the MS treatments were significantly higher than those in the NS treatments. The overall activity of earthworm gut microorganisms in the MS treated with 2 mg/kg CBD was higher than that in the control. Also, CBD treatment (2 mg/kg) increased significantly the Simpson index and McIntosh index of earthworm gut microorganisms. The results indicated that the enzyme activities in the manured soils increased before 7 d for the pesticide treatments. Furthermore, exposure to CBD at a high concentration in the MS not only led to the earlier inhibition of earthworm enzyme activity but also significantly improved the overall activity of earthworm gut microorganisms and microbial functional diversity. This study revealed the ecotoxicological effects of earthworms in response to pesticide stress following the use of organic fertilizers under facility environmental conditions, which can provide a theoretical basis for the remediation of pesticide pollution in soil in the future.
Collapse
Affiliation(s)
- Tianyu Wang
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Liping Zhang
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Zhoulin Yao
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Longfei Jin
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Weiqing Zhang
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Xianju Feng
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Weibin Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mei Lin
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| |
Collapse
|
8
|
Zang X, He M, Xu Y, Che T, Wang F, Xu J, Zhang H, Hu F, Xu L. Metaphire guillelmi exhibited predominant capacity of arsenic efflux. CHEMOSPHERE 2024; 361:142479. [PMID: 38815813 DOI: 10.1016/j.chemosphere.2024.142479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Earthworm could regulate their body concentration of arsenic via storage or excretion, and the ability of As efflux among different earthworms is not consistent. Here, whole and semi As exposure patterns with 0-10-30-60-100 mg kg-1 exposure concentrations were set to characterize the As efflux in geophagous earthworm, Metaphire guillelmi. Cast As (As-C) and earthworms' antioxidative responses were monitored to explore the efflux mechanisms under 30 mg kg-1 As-spiked soil (As30), besides, As concentration in earthworm tissue after egestion and dissection depurations were compared. In the whole exposure pattern, As concentration in gut content (As-G, 19.2-120.3 mg kg-1) surpassed that in the tissue (As-T, 17.2-53.2 mg kg-1), and they both increased with exposure concentrations. With the prolong time, they firstly increased and kept stable between day 10-15, then As-G increased while As-T decreased between day 15-20. In the semi-exposure pattern, both As-G and As-T decreased when M. guillelmi was transferred to clean soil for 5 days. During the 42-day incubation in As30, the antioxidative responses including reactive oxygen species (ROS), glutathione (GSH) and glutathione-S-transferase (GST) were firstly increased and then decreased, and As-C (13.9-43.9 mg kg-1) kept higher than As-G (14.2-35.1 mg kg-1). Significantly positive correlations were found between As-T and GSH, As-C and GST. Moreover, tissue As after dissection (11.6-22.9 mg kg-1) was obviously lower than that after egestion (11.4-26.4 mg kg-1), but significantly related to ROS and GSH. Taken together, M. guillelmi exhibited excellent capacity of As efflux, and GSH explained tissue As accumulation while GST facilitated the As elimination via cast. Besides, dissection instead of egestion revealed the As efflux in M. guillelmi more accurately. These findings contributed to a better understanding of how geophagous earthworm M. guillelmi regulated tissue As accumulation for As stress tolerance, and recommended an optimal depuration mode to characterize As accumulation.
Collapse
Affiliation(s)
- Xiayun Zang
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China
| | - Mingyue He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuanzhou Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ting Che
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Fei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingjing Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huijuan Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Feng Hu
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China
| | - Li Xu
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
9
|
Qiao Z, Sun X, Fu M, Zhou S, Han Y, Zhao X, Gong K, Peng C, Zhang W, Liu F, Ye C, Yang J. Co-exposure of decabromodiphenyl ethane and cadmium increases toxicity to earthworms: Enrichment, oxidative stress, damage and molecular binding mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134684. [PMID: 38788581 DOI: 10.1016/j.jhazmat.2024.134684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The increase of electronic waste worldwide has resulted in the exacerbation of combined decabromodiphenyl ethane (DBDPE) and cadmium (Cd) pollution in soil, posing a serious threat to the safety of soil organisms. However, whether combined exposure increases toxicity remains unclear. Therefore, this study primarily investigated the toxic effects of DBDPE and Cd on earthworms at the individual, tissue, and cellular levels under single and combined exposure. The results showed that the combined exposure significantly increased the enrichment of Cd in earthworms by 50.32-90.42 %. The toxicity to earthworms increased with co-exposure, primarily resulting in enhanced oxidative stress, inhibition of growth and reproduction, intensified intestinal and epidermal damage, and amplified coelomocyte apoptosis. PLS-PM analysis revealed a significant and direct relationship between the accumulation of target pollutants in earthworms and oxidative stress, damage, as well as growth and reproduction of earthworms. Furthermore, IBR analysis indicated that SOD and POD were sensitive biomarkers in earthworms. Molecular docking elucidated that DBDPE and Cd induced oxidative stress responses in earthworms through the alteration of the conformation of the two enzymes. This study enhances understanding of the mechanisms behind the toxicity of combined pollution and provides important insights for assessing e-waste contaminated soils.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinlin Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fang Liu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Chunmei Ye
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
10
|
Çakır B, Klobučar G, Akat Çömden E. Investigating the toxic effects of ethoprophos on Eisenia fetida: Integrating light microscopy, scanning electron microscopy, and biochemical analysis. CHEMOSPHERE 2024; 350:141019. [PMID: 38141679 DOI: 10.1016/j.chemosphere.2023.141019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
This research investigated the ecological impact of exposing Eisenia fetida, an essential component of soil ecosystems, to the organophosphate pesticide ethoprophos, widely used in agriculture. With a focus on understanding the specific effects on earthworms, we employed three concentrations (7.5, 15, and 30 mg/kg) over 28 days, considering the pesticide's short half-life and existing data on environmental concentrations. We aimed to contribute to a broader understanding of how these pesticides affect soil health. Histological analysis, including staining with Hematoxylin-eosin, Mallory Trichrome, Periodic acid-Schiff, and Alcian blue methods, was conducted on control and treatment groups. The histological and histopathological results were evaluated using the light microscopy, revealing various degenerations in the epithelial and muscle layers. Scanning electron microscopy analysis detected concentration-related notable compaction of the body surface, asymmetry, and distortion in the body segments. In the exposed groups, especially those subjected to higher ethoprophos concentrations, the grid-like appearance of the clitellum was visibly disturbed. This disturbance in the grid-like pattern is indicative of structural changes and disruptions at the microscopic level. Furthermore, total protein, carbohydrate, lipid analyses, as well as acid phosphatase and alkaline phosphatase enzyme activities, were also evaluated for earthworms from each experimental group. The analyses showed a concentration-related decrease in all biochemical measurements, except acid phosphatase enzyme activity. In conclusion, our study reveals that the environmentally realistic concentrations of ethoprophos, an effective and widely used pesticide in pest control, have detrimental effects on the health and physiology of E. fetida. These effects are manifested through histological deformities, altered biochemical profiles, and observable physiological disturbances. These results shed light on the harmful effects of ethoprophos on earthworms, underlining the necessity to restrict its usage in agricultural practices and thereby support environmental sustainability.
Collapse
Affiliation(s)
- Berna Çakır
- Department of Biology, Faculty of Science, Ege University, 35040, İzmir, Turkey; Graduate School of Natural and Applied Sciences, Ege University, İzmir, Turkey
| | - Göran Klobučar
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Esra Akat Çömden
- Department of Biology, Faculty of Science, Ege University, 35040, İzmir, Turkey.
| |
Collapse
|
11
|
Liu T, Ren X, Fang J, Yu Z, Wang X. Multiomics Sequencing and AlphaFold2 Analysis of the Stereoselective Behavior of Mefentrifluconazole for Bioactivity Improvement and Risk Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21348-21357. [PMID: 38051155 DOI: 10.1021/acs.est.3c05327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
As the first isopropanol chiral triazole fungicide, mefentrifluconazole has broad prospects for application. In this study, the stereoselective stability, bioactivity, fate, and biotoxicity were systematically investigated. Our results indicated that the stability of mefentrifluconazole enantiomers differed between environmental media, and they were stable in water and sediment in the dark. The bactericidal activity of R-mefentrifluconazole against the four target pathogens was 4.6-43 times higher than that of S-mefentrifluconazole. In the water-sediment system, S-mefentrifluconazole dissipated faster than R-mefentrifluconazole in water; however, its accumulation capacity was higher than that of R-mefentrifluconazole in sediment and zebrafish. S-Mefentrifluconazole induced more differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in zebrafish than did R-mefentrifluconazole. Multiomics sequencing results showed that S-mefentrifluconazole enhanced the antioxidant, detoxification, immune, and metabolic functions of zebrafish by interacting with related proteins. Based on AlphaFold2 modeling and molecular docking, mefentrifluconazole enantiomers had different binding modes with key target proteins in pathogens and zebrafish, which may be the main reason for the stereoselective differences in bioactivity and biotoxicity. Based on its excellent bioactivity and low biotoxicity, the R-enantiomer can be developed to improve the bioactivity and reduce the risk of mefentrifluconazole.
Collapse
Affiliation(s)
- Tong Liu
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiangyu Ren
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jianwei Fang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zihan Yu
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xiuguo Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
12
|
Liu Y, Chen M, Mu X, Wang X, Zhang M, Yin Y, Wang K. Responses and detoxification mechanisms of earthworm Amynthas hupeiensis to metal contaminated soils of North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121584. [PMID: 37037277 DOI: 10.1016/j.envpol.2023.121584] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Metal contamination is widespread, but only a few studies have evaluated the toxicological risks of metals (Cd, Cu, and Pb) in earthworms from farmlands in North China (Hebei province). Amynthas hupeiensis, the dominant species in the study area, was used to determine the responses and detoxification mechanisms of uncontaminated (CK), and low (LM)-, and high (HM)-metal-contaminated soils following 7-, 14-, and 28-days exposure. Metal toxicity in LM and HM soils inhibited the biomass of A. hupeiensis. The concentrations of Cd in A. hupeiensis bodies indicated accumulated Cd appeared to remain steady with prolonged exposure, while Cu/Pb increased significantly with soil levels. Bioaccumulation occurred in the order Cd > Pb > Cu in LM soil, and in the order Cd > Cu ≈ Pb in HM soil, which was attributed to differences in available fractions between LM and HM soils. Physiological levels of biomarkers in A. hupeiensis were determined, including total protein (TP), glutathione (GSH), glutathione peroxidase (GPx), acetylcholinesterase (AChE), and malondialdehyde (MDA). Deviations in GSH, GPx, and AChE were considered to denote sensitive biomarkers using the IBRv2 index. Metabolomics data (1H nuclear magnetic resonance-based) revealed changes in metabolites following 28-days exposure to LM and HM soils. Differences in metabolism in A. hupeiensis following exposure to LM and HM were related to energy metabolism, amino acid biosynthesis, glycerophospholipid metabolism, inositol phosphate metabolism, and glutathione metabolism. Metal stress from LM and HM soils disturbed osmoregulation, resulting in oxidative stress, destruction of cell membranes and inflammation, and altered levels of amino acids required for energy by A. hupeiensis. These findings provide biochemical insights into the physiological and metabolic mechanisms underlying the ability of A. hupeiensis to resist metal stress, and for assessing the environmental risks of metal-contaminated soils in farmland in North China.
Collapse
Affiliation(s)
- Yanan Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Miaomiao Chen
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Xiaoquan Mu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Xinru Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Menghan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Yue Yin
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Kun Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
13
|
Zhang H, Ren X, Liu T, Zhao Y, Gan Y, Zheng L. The stereoselective toxicity of dinotefuran to Daphnia magna: A systematic assessment from reproduction, behavior, oxidative stress and digestive function. CHEMOSPHERE 2023; 327:138489. [PMID: 36996914 DOI: 10.1016/j.chemosphere.2023.138489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Dinotefuran is a promising neonicotinoid insecticide with chiral structure. In the present study, the stereoselective toxicity of dinotefuran to Daphnia magna (D. magna) was studied. The present result showed that S-dinotefuran inhibited the reproduction of D. magna at 5.0 mg/L. However, both R-dinotefuran and S-dinotefuran had no genotoxicity to D. magna. Additionally, neither R-dinotefuran nor S-dinotefuran had negative influences on the motor behavior of D. magna. However, S-dinotefuran inhibited the feeding behavior of D. magna at 5.0 mg/L. Both R-dinotefuran and S-dinotefuran induced oxidative stress effect in D. magna after exposure. R-dinotefuran significantly activated the activities of superoxide dismutase (SOD) and glutathione S-transferase (GST), while S-dinotefuran showed the opposite effect. S-dinotefuran had more obvious activation effect on the acetylcholinesterase (AchE) activity and trypsin activity compared to R-dinotefuran. The transcriptome sequencing results showed that S-dinotefuran induced more DEGs in D. magna, and affected the normal function of ribosome. The DEGs were mainly related to the synthesis and metabolism of biomacromolecules, indicating the binding mode between dinotefuran enantiomer and biomacromolecules were different. Additionally, the present result indicated that the digestive enzyme activity and digestive gene expression levels in D. magna were greatly enhanced to cope with the inhibition of S-dinotefuran on the feeding.
Collapse
Affiliation(s)
- Hongyuan Zhang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiangyu Ren
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China.
| | - Ying Zhao
- College of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, 264025, China
| | - Yantai Gan
- College of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, 264025, China
| | - Lei Zheng
- State Environmental Protection Key Laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China.
| |
Collapse
|
14
|
Wang M, Liu J, Wang H, Hu T. Spiromesifen contributes vascular developmental toxicity via disrupting endothelial cell proliferation and migration in zebrafish embryos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105242. [PMID: 36464354 DOI: 10.1016/j.pestbp.2022.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Spiromesifen (SPF) is a specific contact pesticide, which has been widely used to control the growth of sucking insects like mites and whiteflies on crops. Although its residues in crops and effects on organisms has been extensively reported, its impact on the vasculature is still not being reported. In the present study, using human umbilical vein endothelial cells (HUVECs) and zebrafish embryos, we investigated the effects of SPF on blood vessel development and its mechanism of action. SPF exposure triggered abnormal blood vessel development, including vascular deletions and malformations, inhibition of CCV remodeling, and decrease of SIV areas. SPF exposure also obstructed the migration of endothelial cell from caudal hematopoietic tissue in zebrafish embryos. SPF damaged cytoskeleton, caused cell cycle arrest, inhibited the viability and migration of HUVECs. In addition, SPF also inhibited the expression of the VEGF/VEGFR pathway-related genes (hif1a, vegfa, flt1, and kdrl), cell cycle-related genes (ccnd1, ccne1, cdk2, and pcna), and Rho/ROCK pathway-related genes (itgb1, rho, rock, mlc-1, and vim-1). Taken together, SPF may inhibit the proliferation and migration of vascular endothelial cells through disturbing cytoskeleton via the Rho/ ROCK pathway, resulting in vascular malformation. Our study contributes to potential insight into the mechanism of SPF toxicity in angiocardiopathy.
Collapse
Affiliation(s)
- Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
15
|
Wang M, Wang H, Chen G, Liu J, Hu T. Spiromesifen conferred abnormal development in zebrafish embryos by inducing embryonic cytotoxicity via causing oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106324. [PMID: 36244087 DOI: 10.1016/j.aquatox.2022.106324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Spiromesifen (SPF) is widely used in agriculture to protect against herbivorous mites, whose residues may be harmful to the environment. However, the toxicity assessment of SPF is insufficient. Here, we investigated the toxicological effects of SPF using zebrafish embryos as an animal model. The results showed that SPF exposure solutions at 10, 20, 30, and 40 μM caused cytotoxicity in zebrafish embryos such as reactive oxygen species (ROS) accumulation, mitochondrial membrane potential decrease, cell division arrest, and apoptosis, which further led to developmental toxicity in zebrafish embryos including delayed hatching, decreased survival rate and spontaneous curling rate, and severe morphological deformities. SPF also induced apoptosis via changes in the expressions of apoptosis-related marker genes, caused immunotoxicity by reducing the number of macrophages and the activity of AKP/ALP and increasing inflammatory factors, and disturbed endogenous antioxidant systems via changes SOD, CAT, and GST activities as well as MDA and GSH contents. Therefore, the potential mechanism that caused embryonic developmental toxicity appeared to be related to the generation of oxidative stress by an elevation in ROS and changes in apoptosis-, immune-, antioxidant-related markers. The antioxidant system and inflammatory response simultaneously participated in and resisted the threat of SPF to prevent tissue damage. Taken together, spiromesifen induced oxidative stress to contribute to developmental toxicity in zebrafish embryos by inducing embryonic cytotoxicity. Our study provides new insight into the toxicity assessment of SPF to non-target organisms.
Collapse
Affiliation(s)
- Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, No. 174, Shazheng, Street, Shapingba District, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, No. 174, Shazheng, Street, Shapingba District, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, No. 174, Shazheng, Street, Shapingba District, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, No. 174, Shazheng, Street, Shapingba District, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, No. 174, Shazheng, Street, Shapingba District, Bioengineering College of Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
16
|
Li D, Zhang J, Cheng C, Hou K, Wang X, Zhu L, Li B, Du Z, Wang J, Wang J. Effects of ecotoxicity of penoxsulam single and co-exposure with AgNPs on Eisenia fetida. CHEMOSPHERE 2022; 307:136134. [PMID: 36028129 DOI: 10.1016/j.chemosphere.2022.136134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Penoxsulam (PNX) and silver nanoparticles (AgNPs) are likely to coexist in soils due to continuous use. However, the ecotoxicity of PNX in earthworms and the effect of AgNPs on PNX toxicity are unknown. Therefore, the toxicity of PNX (0.05, 0.5, and 2.5 mg/kg) single and co-exposure with AgNPs (10 mg/kg) after 28 and 56 days on Eisenia fetida (E. fetida) was investigated from biochemical, genetic, histopathological, and transcriptomic aspects. The results showed that the low concentration of PNX (0.05PNX) had almost no effect on the biochemical level of E. fetida. However, the addition of AgNPs resulted in 0.05PNX causing E. fetida to produce excessive reactive oxygen species, and the activity of antioxidant and detoxification enzymes were interfered, resulting in lipid peroxidation and DNA damage. From the genetic level, even the lowest concentration of PNX can significantly interfere with the expression of functional genes, thus inducing oxidative stress and apoptosis and inhibited reproductive behavior in E. fetida. The integrated biomarker response results at the biochemical and genetic levels showed that the comprehensive toxicity of PNX and PNX + AgNPs on E. fetida was PNX dose-dependent. And the toxicity of all co-exposure groups was greater than that of the PNX only exposure groups. Furthermore, the addition of AgNPs significantly increased the damage of PNX on E. fetida intestinal tissue. Meanwhile, transcriptomic analysis showed that PNX + AgNPs had a greater effect on E. fetida than PNX single, and multiple pathways related to oxidative stress, inflammation, and cellular process regulation were disturbed. These results provide a basis for comprehensive evaluation of the ecotoxicity of PNX and confirm that the AgNPs does increase the ecotoxicity of PNX in soil environment.
Collapse
Affiliation(s)
- Dengtan Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Chao Cheng
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
17
|
Kwak JI, Kim H, An YJ. Earthworm half-pipe assay: A new alternative in vivo skin corrosion test using invertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119519. [PMID: 35618145 DOI: 10.1016/j.envpol.2022.119519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
As a result of the efforts to introduce the principle of the 3Rs (replacement, reduction, and refinement) into animal testing, alternative in vitro skin corrosion test methods have been developed and standardized globally. However, alternative in vitro skin corrosion test methods have some limitations in terms of the use of humanely killed rats or commercial models and kits. The present study focused on the applicability of invertebrates as alternative in vivo skin models. Even though earthworm skin comprises the same biomolecules as human skin, the possibility of using earthworm skin as an alternative for skin testing remains unexplored. In this study, we developed a half-pipe tool for earthworm skin corrosion testing and optimized the test protocol. Subsequently, the applicability of the earthworm half-pipe assay for corrosion testing with six chemicals, including inorganic acids, organic acids, and alkalis, was investigated using stereomicroscopy and electron microscopy. It was observed that the specific concentrations for earthworm skin corrosion were lower than those for animal or in vitro tests. Therefore, the sensitivity of the earthworm half-pipe assay indicates that it could be useful as a screening tool before conducting in vivo animal tests or in vitro skin tests. This new method can contribute to research on alternative skin corrosion tests by reducing ethical issues, time, and cost while achieving effective results.
Collapse
Affiliation(s)
- Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Haemi Kim
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|