1
|
Liang J, Niu T, Zhang L, Yang Y, Li Z, Liang Z, Yu K, Gong S. Polystyrene microplastics exhibit toxic effects on the widespread coral symbiotic Cladocopium goreaui. ENVIRONMENTAL RESEARCH 2025; 268:120750. [PMID: 39755198 DOI: 10.1016/j.envres.2025.120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Within the coral reef habitat, members of the Symbiodiniaceae family stand as pivotal symbionts for reef-building corals. However, the physiological response of Symbiodiniaceae on microplastics are still poorly understood. Research conducted in this investigation assessed the harmful impact of polystyrene microparticles (PS-MPs) on Cladocopium goreaui, a Symbiodiniaceae species with a broad distribution. The results showed that micrometre-sized PS-MPs had a greater toxic effect on C. goreaui than nanometre-sized PS-MPs, and the growth inhibition rate of a concentration of 20 mg/L with 10 μm-sized PS-MPs on C. goreaui was as high as 62.9%-86%, which almost completely inhibited cell proliferation. Exposure to 10 μm PS-MPs significantly increased cell damage, for instance, the concentration of extracellular polymeric substance and malondialdehyde have increased by 161.6%-184.4% and 261.8%-896% on days 10-20 respectively. Furthermore, When PS-MPs inhibited the photosynthesis of C. goreaui, it could ensure their typical photosynthetic activity maintained by increasing their chlorophyll levels, and the increase in chlorophyll concentration is proportional to the level of inhibition experienced. However, Exposure to 10 μm PS-MPs could damage the chloroplasts of C. goreaui, leading to a decrease in the ability to synthesize photosynthetic pigments and subsequently resulting in a reduction in photosynthetic capacity. The morphology and genetic activity of C. goreaui suggest that PS-MPs primarily induce cellular shrinkage and distortion, as well as the disintegration and impairment of nuclear and chloroplastic structures, concurrently eliciting a greater number of suppressed genes, predominantly those associated with the function of succinate dehydrogenase, the attachment to tetrapyrroles, the binding of haem, and the handling of iron ions, including activities related to oxidoreduction. The investigation examined the adverse impacts of PS-MPs on a crucial coral symbiont (Symbiodiniaceae) and the beneficial reaction of these algal organisms, enhancing comprehension of how microplastic pollution affects the coral reef ecosystem.
Collapse
Affiliation(s)
- Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Tianyi Niu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yating Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zhicong Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zhuqing Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510030, China.
| | - Sanqiang Gong
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
2
|
Isa V, Seveso D, Concari E, Becchi A, Saliu F, Lasagni M, Collina EM, Madaschi A, Lavorano S, Montano S, Louis YD, Montalbetti E. Evidence of oxidative stress in the soft coral Pinnigorgia flava (Nutting, 1910) exposed to secondary plastic nanofibers and related leachates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125433. [PMID: 39622405 DOI: 10.1016/j.envpol.2024.125433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/26/2025]
Abstract
Awareness of plastic pollution in marine habitats, such as coral reefs, has grown in recent years. Several studies have shown that tiny particles resulting from plastic breakdown, especially microplastics, can potentially harm corals. However, to date, there is very little evidence regarding the impact that nanoplastics (<1 μm) can have on the physiology and health of corals, particularly soft corals. In this study, we exposed the soft coral Pinnigorgia flava to two concentrations (0.1 and 1 mg/L) of secondary nanoplastics-specifically nanofibers obtained from the photodegradation of polypropylene nonwoven fabrics-and their related leachates, to evaluate the coral's cellular response through the analysis of antioxidant enzyme activities (SOD, CAT, GST, GR). Chemo-physical characterization of the nano-aggregates displayed an average size of 224.3 ± 8.1 nm, while GC-MS analyses of the leachates showed a variety of mono- and dicarboxylic acids. Although both nanoplastic treatments generated a cellular oxidative stress response, the physical interaction with secondary plastic fiber nano-aggregates affected cellular homeostasis more than the chemical interaction with the released compounds, triggering a stronger antioxidant response. The activity of all antioxidant enzymes increased with higher nanofiber concentrations, while this trend was not consistently observed for the leachates. Overall, SOD and CAT were the two most responsive antioxidant enzymes in cellular detoxification. Our study highlights the significant threat that plastic nanofibers and the polymers they release may pose to coral reefs.
Collapse
Affiliation(s)
- Valerio Isa
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; Costa Edutainment SpA - Acquario di Genova, GE, 16128, Italy
| | - Davide Seveso
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133, Palermo, Italy.
| | - Eleonora Concari
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| | - Alessandro Becchi
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy
| | - Francesco Saliu
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy
| | - Marina Lasagni
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy
| | - Elena Maria Collina
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy
| | - Andrea Madaschi
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, GE, 16128, Italy
| | - Simone Montano
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133, Palermo, Italy
| | - Yohan Didier Louis
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133, Palermo, Italy
| | - Enrico Montalbetti
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133, Palermo, Italy
| |
Collapse
|
3
|
Tirpitz V, Hutter M, Hutter H, Prume J, Koch M, Wilke T, Reichert J. Increasing microplastic concentrations have nonlinear impacts on the physiology of reef-building corals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178318. [PMID: 39756095 DOI: 10.1016/j.scitotenv.2024.178318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
The pollution of marine environments with plastics, particularly microplastic (MP, i.e., plastic particles <5 mm), is a major threat to marine biota, including corals. While the effects of MPs are increasingly well understood, knowledge of how different concentrations of naturally occurring MP mixtures affect reef-building corals is still limited. Therefore, we aimed to elucidate the relationship of MP concentrations and their effects on reef-building corals. For this, we exposed two reef-building coral species (Stylophora pistillata and Pocillopora verrucosa) in a 12-week experiment to MPs at a gradient of concentrations (0, 0.1, 1, 10, and 100 mg·L-1). Specifically, we examined effects on the coral host physiology (i.e., surface and volume growth, calcification, necrosis, and polyp activity), and the photosynthetic activity of the photosymbionts (i.e., effective and maximum quantum yield, maximum relative electron transport rate, minimum saturating irradiance, and light capture efficiency). To mimic natural conditions, we used a MP mixture consisting of six polymers in forms of fibers and fragments. Both coral species showed reduced growth rates, necrosis, lower polyp activity, and an upregulation of photosynthesis, which intensified with increasing MP concentrations. While the effects on the coral host mostly showed basic linear or nonlinear dose-response relationships, the effects on the photosymbionts revealed more complex nonlinear dose-response relationships, and photosynthesis was only upregulated after a species-specific threshold. We found that high and extreme pollution scenarios caused strong adverse effects on coral physiology, while current low to moderate concentrations had minor effects. Increasing concentrations had amplifying effects, likely due to the disproportionately higher frequency of entanglement, leading to more frequent direct contact and potential transfer of toxins or pathogens. These results suggest that corals can cope with current average pollution levels. However, they also highlight the need for measures to limit permanent increases of MP pollution to protect the health of coral reefs.
Collapse
Affiliation(s)
- Vanessa Tirpitz
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany.
| | - Mona Hutter
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Hanna Hutter
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Julia Prume
- Department of Physics, Philipps University, Marburg, Germany; Bayreuth Graduate School of Mathematical and Natural Sciences (BayNAT), University of Bayreuth, Bayreuth, Germany
| | - Martin Koch
- Department of Physics, Philipps University, Marburg, Germany
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Jessica Reichert
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| |
Collapse
|
4
|
Hajji AL, Lucas KN. Anthropogenic stressors and the marine environment: From sources and impacts to solutions and mitigation. MARINE POLLUTION BULLETIN 2024; 205:116557. [PMID: 38875966 DOI: 10.1016/j.marpolbul.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Human-released contaminants are often poorly understood wholistically in marine ecosystems. This review examines the sources, pathways, impacts on marine animals, and mitigation strategies of five pollutants (plastics, per- and polyfluoroalkyl substances, bisphenol compounds, ethynylestradiol, and petroleum hydrocarbons). Both abiotic and biotic mechanisms contribute to all five contaminants' movement. These pollutants cause short- and long-term effects on many biological processes genetically, molecularly, neurologically, physiologically, reproductively, and developmentally. We explore the extension of adverse outcome pathways to ecosystem effects by considering known inter-generational and trophic relations resulting in large-scale direct and indirect impacts. In doing so, we develop an understanding of their roles as environmental stressors in marine environments for targeted mitigation and future work. Ecosystems are interconnected and so international collaboration, standards, measures preceding mass production, and citizen involvement are required to protect and conserve marine life.
Collapse
Affiliation(s)
- Angelina L Hajji
- Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Kelsey N Lucas
- Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Xu M, Cai Z, Cheng K, Chen G, Zhou J. Mitigation of Vibrio coralliilyticus-induced coral bleaching through bacterial dysbiosis prevention by Ruegeria profundi. Appl Environ Microbiol 2024; 90:e0227423. [PMID: 38470181 PMCID: PMC11022554 DOI: 10.1128/aem.02274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
6
|
Gao B, Wang Y, Long C, Long L, Yang F. Microplastics inhibit the growth of endosymbiotic Symbiodinium tridacnidorum by altering photosynthesis and bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123603. [PMID: 38373622 DOI: 10.1016/j.envpol.2024.123603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Microplastics, ubiquitous anthropogenic marine pollutants, represent potential threats to coral-Symbiodiniaceae relationships in global reef ecosystems. However, the mechanism underlying the impacts of polystyrene microplastics (PS-MPs) on Symbiodiniaceae remains poorly understood. In this study, the cytological, physiological, and microbial responses of Symbiodinium tridacnidorum, a representative Symbiodiniaceae species, to varying concentrations of PS-MPs (0, 5, 50, 100, and 200 mg L-1) were investigated. The results revealed that microplastic exposure inhibited cell division, resulting in reduced cell density compared to control group. Furthermore, algal photosynthetic activity, as indicated by chlorophyll content, Fv/Fm, and net photosynthetic rate, declined with increasing microplastic concentration up to 50 mg L-1. Notably, elevated levels of microplastics (100 and 200 mg L-1) prompted a significant increase in cell size in S. tridacnidorum. Transmission electron microscopy and fluorescence microscopy indicated that hetero-aggregation was formed between high levels of PS-MPs and algal cells, ultimately causing damage to S. tridacnidorum. Moreover, the impact of PS-MPs exposure on the bacterial community associated with S. tridacnidorum was investigated. The results showed a reduction in alpha diversity of the bacterial community in groups exposed to 50, 100, and 200 mg L-1 of microplastics compared to those treated with 0 and 5 mg L-1. Additionally, the relative abundance of Marinobacter, Marivita, and Filomicrobium significantly increased, while Algiphilus and norank Nannocystaceae declined after microplastic exposure. These findings suggest that MPs can inhibit the growth of S. tridacnidorum and alter the associated bacterial community, posing a potential serious threat to coral symbiosis involving S. tridacnidorum.
Collapse
Affiliation(s)
- Bohai Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuqing Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chao Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China
| | - Fangfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.
| |
Collapse
|
7
|
Cao Y, Zhao Q, Jiang F, Geng Y, Song H, Zhang L, Li C, Li J, Li Y, Hu X, Huang J, Tian S. Interactions between inhalable aged microplastics and lung surfactant: Potential pulmonary health risks. ENVIRONMENTAL RESEARCH 2024; 245:117803. [PMID: 38043900 DOI: 10.1016/j.envres.2023.117803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The relationship between microplastics (MPs) and human respiratory health has garnered significant attention since inhalation constitutes the primary pathway for atmospheric MP exposure. While recent studies have revealed respiratory risks associated with MPs, virgin MPs used as plastic surrogates in these experiments did not represent the MPs that occur naturally and that undergo aging effects. Thus, the effects of aged MPs on respiratory health remain unknown. We herein analyzed the interaction between inhalable aged MPs with lung surfactant (LS) extracted from porcine lungs vis-à-vis interfacial chemistry employing in-vitro experiments, and explored oxidative damage induced by aged MPs in simulated lung fluid (SLF) and the underlying mechanisms of action. Our results showed that aged MPs significantly increased the surface tension of the LS, accompanied by a diminution in its foaming ability. The stronger adsorptive capacity of the aged MPs toward the phospholipids of LS appeared to produce increased surface tension, while the change in foaming ability might have resulted from a variation in the protein secondary structure and the adsorption of proteins onto MPs. The adsorption of phospholipid and protein components then led to the aggregation of MPs in SLF, where the aged MPs exhibited smaller hydrodynamic diameters in comparison with the unaged MPs, likely interacting with biomolecules in bodily fluids to exacerbate health hazards. Persistent free radicals were also formed on aged MPs, inducing the formation of reactive oxygen species such as superoxide radicals (O2•-), hydrogen peroxide (HOOH), and hydroxyl radicals (•OH); this would lead to LS lipid peroxidation and protein damage and increase the risk of respiratory disease. Our investigation was the first-ever to reveal a potential toxic effect of aged MPs and their actions on the human respiratory system, of great significance in understanding the risk of inhaled MPs on lung health.
Collapse
Affiliation(s)
- Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Fanshu Jiang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Haoran Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
8
|
Yu H, Jia H, Shen N, Gang D, Yuan W, Yang Y, Hu C, Qu J. Can "Risk-Sharing" Mechanisms Help Clonal Aquatic Plants Mitigate the Stress of Nanoplastics? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2984-2997. [PMID: 38306608 DOI: 10.1021/acs.est.3c09436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Most aquatic plants applied to ecological restoration have demonstrated a clonal growth pattern. The risk-spreading strategy plays a crucial role in facilitating clonal plant growth under external environmental stresses via clonal integration. However, the effects of different concentrations of nanoplastics (NPs) on the growth traits of clonal aquatic plants are not well understood. Therefore, this study aimed to investigate the impact of NPs exposure on seedlings of parent plants and connected offspring ramets. A dose response experiment (0.1, 1, and 10 mg L-1) showed that the growth of Eichhornia crassipes (water hyacinth) was affected by 100 nm polystyrene nanoplastics after 28 days of exposure. Tracer analysis revealed that NPs are accumulated by parent plants and transferred to offspring ramets through stolon. Quantification analysis showed that when the parent plant was exposed to 10 mg L-1 NPs alone for 28 days, the offspring ramets contained approximately 13 ± 2 μg/g NPs. In the case of connected offspring ramets, leaf and root biomass decreased by 24%-51% and 32%-51%, respectively, when exposed to NP concentrations ranging from 0.1 to 10 mg L-1. Excessive enrichment of NPs had a detrimental effect on the photosynthetic system, decreasing the chlorophyll content and nonphotochemical quenching. An imbalance in the antioxidant defense systems, which were unable to cope with the oxidative stress caused by NP concentrations, further damaged various organs. The root system can take up NPs and then transfer them to the offspring through the stolon. Interference effects of NPs were observed in terms of root activity, metabolism, biofilm composition, and the plant's ability to purify water. However, the risk-spreading strategy employed by parent plants (interconnected offspring ramets) offered some relief from NP-induced stress, as it increased their relative growth rate by 1 to 1.38 times compared to individual plants. These findings provide substantial evidence of the high NP enrichment capacity of E. crassipes for ecological remediation. Nevertheless, we must also remain aware of the environmental risk associated with the spread of NPs within the clonal system of E. crassipes, and contaminated cloned individuals need to be precisely removed in a timely manner to maintain normal functions.
Collapse
Affiliation(s)
- Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huawei Jia
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Shen
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Diga Gang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Pastorino P. Sunscreens and micro(nano)plastics: Are we aware of these threats to the Egyptian coral reefs? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168587. [PMID: 37984652 DOI: 10.1016/j.scitotenv.2023.168587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
During a snorkeling trip to Marsa Alam and Hamata (southern Red Sea Riviera, Egypt) I explored the coral reefs and the diverse marine habitats of fish and invertebrate species. The area invites recreational diving and snorkeling, but the beaches are littered with all sorts of solid waste (mainly fragmented plastics). Also, there are no local restrictions on sunscreen use. The development of tourism to the area raises questions about the environmental impact and how its further growth will have on coral reefs. Every year, 1.2 million tourists visit the Red Sea coast (about 3287 tourists per day) and release about 1.7 tons/month of sunscreen into the Red Sea. As an ecologist and editorial board member of Science of the Total Environment, I ask myself how we as scientists can increase public awareness and call for prompt actions to protect the coral reefs. The discussion underlines two major threats to the Egyptian coral reefs: sunscreen use and micro(nano)plastics waste. The discussion closes with possible solutions, future perspectives, and recommendations to protect the coral reefs ecosystem of the Egyptian Red Sea.
Collapse
Affiliation(s)
- Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Torino, Italy.
| |
Collapse
|
10
|
Koner S, Mukherjee A, Chandrasekaran N. Elucidating the effects of naturally weathered aged-polypropylene microplastics and newly procured polypropylene microplastics on raw 264.7 macrophages. ENVIRONMENTAL SCIENCE: NANO 2024; 11:983-999. [DOI: 10.1039/d3en00742a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In this work, we investigated weathered aged-PPMPs and naturally obtained polypropylene microplastics (NP-PPMPs) with raw 264.7 macrophages, which causes cytotoxicity and an imbalance in the intracellular system.
Collapse
Affiliation(s)
- Shramana Koner
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Amitava Mukherjee
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
11
|
Xu M, Lyu Y, Cheng K, Zhang B, Cai Z, Chen G, Zhou J. Interactions between quorum sensing/quorum quenching and virulence genes may affect coral health by regulating symbiotic bacterial community. ENVIRONMENTAL RESEARCH 2023; 238:117221. [PMID: 37775014 DOI: 10.1016/j.envres.2023.117221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes that may regulate the composition, function and structure of bacterial community. In coral holobiont, autoinducers signaling mediate the communication pathways between interspecies and intraspecies bacteria, which regulate the expression of the virulence factors that can damage host health. However, under environmental stressors, the interaction between the QS/QQ gene and virulence factors and their role in the bacterial communities and coral bleaching is still not fully clear. To address this question, here, metagenomics method was used to examine the profile of QS/QQ and virulence genes from a deeply sequenced microbial database, obtained from three bleached and non-bleached corals species. The prediction of bacterial genes of bleached samples involved in functional metabolic pathways were remarkably decreased, and the bacterial community structure on bleached samples was significantly different compared to non-bleached samples. The distribution and significant difference in QS/QQ and virulence genes were also carried out. We found that Proteobacteria was dominant bacteria among all samples, and AI-1 system is widespread within this group of bacteria. The identified specific genes consistently exhibited a trend of increased pathogenicity in bleached corals relative to non-bleached corals. The abundance of pathogenicity-associated QS genes, including bapA, pfoA and dgcB genes, were significantly increased in bleached corals and can encode the protein of biofilm formation and the membrane damaging toxins promoting pathogenic adhesion and infection. Similarly, the virulence genes, such as superoxide dismutase (Mn-SOD gene), metalloproteinase (yme1, yydH and zmpB), glycosidases (malE, malF, malG, and malK) and LodAB (lodB) genes significantly increased. Conversely, QQ genes that inhibit QS activity and virulence factors to defense the pathogens, including blpA, lsrK, amiE, aprE and gmuG showed a significant decrease in bleached groups. Furthermore, the significant correlations were found among virulence, QS/QQ genes, and coral associated bacterial community, and the virulence genes interact with key QS/QQ genes, directly or indirectly influence symbiotic bacterial communities homeostasis, thereby impacting coral health. It suggested that the functional and structural divergence in the symbiont bacteria may be partially attribute to the interplay, involving interactions among the host, bacterial communication signal systems, and bacterial virulence factors. In conclusion, these data helped to reveal the characteristic behavior of coral symbiotic bacteria, and facilitated a better understanding of bleaching mechanism from a chemical ecological perspective.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China
| | - Yihua Lyu
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou, 510300, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Boya Zhang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
12
|
Das A. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165076. [PMID: 37391150 DOI: 10.1016/j.scitotenv.2023.165076] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Plastic pollution is one of the most pressing environmental threats the world is facing currently. The degradation of macroplastics into smaller forms viz. microplastics (MPs) or Nanoplastics (NPs) is a potential threat to both terrestrial and marine ecosystems and also to human health by directly affecting the organs and activating a plethora of intracellular signaling, that may lead to cell death. There is accumulating evidence that supports the serious toxicity caused by MP/NPs at all levels of biological complexities (biomolecules, organelles, cells, tissues, organs, and organ systems) and the involvement of the reactive oxygen species (ROS) in this process. Studies indicate that MPs or NPs can accumulate in mitochondria and further disrupt the mitochondrial electron transport chain, cause mitochondrial membrane damage, and perturb the mitochondrial membrane potential or depolarization of the mitochondria. These events eventually lead to the generation of different types of reactive free radicals, which can induce DNA damage, protein oxidation, lipid peroxidation, and compromization of the antioxidant defense pool. Furthermore, MP-induced ROS was found to trigger a plethora of signaling cascades, such as the p53 signaling pathway, Mitogen-activated protein kinases (MAPKs) signaling pathway including the c-Jun N-terminal kinases (JNK), p38 kinase, and extracellular signal related kinases (ERK1/2) signaling cascades, Nuclear factor erythroid 2-related factor 2 (Nrf2)-pathway, Phosphatidylinositol-3-kinases (PI3Ks)/Akt signaling pathway, and Transforming growth factor-beta (TGF-β) pathways, to name a few. As a consequence of oxidative stress caused by the MPs/NPs, different types of organ damage are observed in living species, including humans, such as pulmonary toxicity, cardiotoxicity, neurotoxicity, nephrotoxicity, immunotoxicity, reproductive toxicity, hepatotoxicity, etc. Although presently, a good amount of research is going on to access the detrimental effects of MPs/NPs on human health, there is a lack of proper model systems, multi-omics approaches, interdisciplinary research, and mitigation strategies.
Collapse
Affiliation(s)
- Amlan Das
- Department of Biochemistry, School of Biosciences, The Assam Royal Global University, NH-37, opp. Tirupati Balaji Temple, Betkuchi, Guwahati, Assam 781035, India.
| |
Collapse
|
13
|
Annenkov VV, Pal'shin VA, Annenkova NV, Zelinskiy SN, Danilovtseva EN. Uptake and Effects of Nanoplastics on the Dinoflagellate Gymnodinium corollarium. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1124-1133. [PMID: 36920033 DOI: 10.1002/etc.5604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Plastic nanoparticles (NPs) are the final state of plastic degradation in the environment before they disintegrate into low-molecular-weight organic compounds. Unicellular organisms are highly sensitive to the toxic effects of nanoplastics, because they are often capable of phagotrophy but are unable to consume a foreign material such as synthetic plastic. We studied the effect of polystyrene, poly(vinyl chloride), poly(methyl acrylate), and poly(methyl methacrylate) NPs on the photosynthetic dinoflagellate Gymnodinium corollarium Sundström, Kremp et Daugbjerg. Fluorescent tagged particles were used to visualize plastic capture by dinoflagellate cells. We found that these dinoflagellates are capable of phagotrophic nutrition and thus should be regarded as mixotrophic species. This causes their susceptibility to the toxic effects of plastic NPs. Living cells ingest plastic NPs and accumulate in the cytoplasm as micrometer-level aggregates, probably in food vacuoles. The action of nanoplastics leads to a dose-dependent increase in the level of reactive oxygen species in dinoflagellate cells, indicating plastic degradation in the cells. The introduction of a methyl group into the main chain in the α-position in the case of poly(methyl methacrylate) causes a drastic reduction in toxicity. We expect that such NPs can be a tool for testing unicellular organisms in terms of heterotrophic feeding ability. We suggest a dual role of dinoflagellates in the ecological fate of plastic waste: the involvement of nanoplastics in the food chain and its biochemical destruction. Environ Toxicol Chem 2023;42:1124-1133. © 2023 SETAC.
Collapse
Affiliation(s)
- Vadim V Annenkov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Viktor A Pal'shin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Nataliia V Annenkova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Stanislav N Zelinskiy
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Elena N Danilovtseva
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
14
|
Svigruha R, Prikler B, Farkas A, Ács A, Fodor I, Tapolczai K, Schmidt J, Bordós G, Háhn J, Harkai P, Kaszab E, Szoboszlay S, Pirger Z. Presence, variation, and potential ecological impact of microplastics in the largest shallow lake of Central Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163537. [PMID: 37075990 DOI: 10.1016/j.scitotenv.2023.163537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
The presence of microplastics (MPs) in the global ecosystem has generated a rapidly growing concern worldwide. Although their presence in the marine environment has been well-studied, much less data are available on their abundance in freshwaters. MPs alone and in combination with different chemicals has been shown to cause acute and chronic effects on algae and aquatic invertebrate and vertebrate species at different biological levels. However, the combined ecotoxicological effects of MPs with different chemicals on aquatic organisms are still understudied in many species and the reported data are often controversial. In the present study, we investigated, for the first time, the presence of MPs in Lake Balaton, which is the largest shallow lake of Central Europe and an important summer holiday destination. Moreover, we exposed neonates of the well-established ecotoxicological model organism Daphnia magna to different MPs (polystyrene [3 μm] or polyethylene [≤ 100 μm]) alone and in combination with three progestogen compounds (progesterone, drospirenone, levonorgestrel) at an environmentally relevant concentration (10 ng L-1) for 21 days. The presence of 7 polymer types of MPs in the size range of 50-100 μm was detected in Lake Balaton. Similarly to the global trends, polypropylene and polyethylene MPs were the most common types of polymer. The calculated polymer-independent average particle number was 5.5 particles m-3 (size range: 50 μm - 100 μm) which represents the values detected in other European lakes. Our ecotoxicological experiments confirmed that MPs and progestogens can affect D. magna at the behavioral (body size and reproduction) and biochemical (detoxification-related enzyme activity) levels. The joint effects were negligible. The presence of MPs may lead to reduced fitness in the aquatic biota in freshwaters such as Lake Balaton, however, the potential threat of MPs as vectors for progestogens may be limited.
Collapse
Affiliation(s)
- Réka Svigruha
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - Bence Prikler
- Eurofins-Wessling Hungary Ltd, 1045 Budapest, Hungary; Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - András Ács
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - István Fodor
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - Kálmán Tapolczai
- Aquatic Botany and Microbial Ecology Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Bordós
- Eurofins-Wessling Hungary Ltd, 1045 Budapest, Hungary
| | - Judit Háhn
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Péter Harkai
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Edit Kaszab
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Sándor Szoboszlay
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary.
| |
Collapse
|
15
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
16
|
Gao D, Liu X, Junaid M, Liao H, Chen G, Wu Y, Wang J. Toxicological impacts of micro(nano)plastics in the benthic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155620. [PMID: 35508242 DOI: 10.1016/j.scitotenv.2022.155620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Micro(nano)plastics (MNPs) have sparked growing public and scientific concerns as emerging pollutants in recent decades, due to their small size and potential for significant ecological and human health impacts. Understanding the toxicological effects of MNPs on aquatic organisms is of great importance; however, most of the available research on aquatic organisms has focused on the pelagic organisms, and studies on benthic organisms are lacking yet. Being bottom-dwelling creatures, benthos perhaps confronts more extreme pressure from MNPs. Therefore, this review summarizes the current literature on the impacts of MNPs on benthic organisms to reveal their toxicity on the survival, growth, development and reproductive systems. MNPs can accumulate in various tissues of benthos and probably cause tissue-specific damage, resulting in genotoxicity and reproductive toxicity to benthic organisms. And, in severe cases, they may also pass on the adverse effects to the next generations. The complexity of co-exposure to MNPs with other aquatic contaminants is also highlighted. Furthermore, we have comprehensively discussed the internal and external factors affecting the toxicity of MNPs in benthic organisms. Additionally, we also presented the current research gaps and potential future challenges, providing overall background information for a thorough understanding of the toxic effects of MNPs in the benthic aquatic ecosystem.
Collapse
Affiliation(s)
- Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Liu
- Guangzhou Dublin International College of Life Sciences and Technology, College of International Education, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wu
- Guangzhou Environmental Monitoring Centre, Guangzhou 510006, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China.
| |
Collapse
|