1
|
Li T, Xin H, Zhao W. Escherichia coli migration in saturated porous media: Mechanisms of humic acid regulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126137. [PMID: 40154868 DOI: 10.1016/j.envpol.2025.126137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The regulatory behavior of humic acid (HA) on the migration of Escherichia coli (E.coli) in saturated porous media has garnered considerable research interest. Although prior studies have confirmed that HA indeed facilitates the migration of E. coli in saturated porous media, investigating the migration process and regulatory mechanisms at the microscale remains challenging. This study compared the differences in the migration behavior of E. coli in saturated porous media under conditions with and without HA, revealing the dynamic mechanism by which HA regulates microbial migration through the "bacterium-medium-solution" triple interface interaction. The results indicated that E. coli achieves the transition of the "run-tumble" movement pattern (run ≈ 1 s, tumble ≈ 0.1 s) through flagellar morphological regulation, thus completing directed migration in a complex pore network. The addition of HA significantly enhanced the migration rate of E. coli, with an increase of at least 5 %. For the bacteria, HA induced the restructuring of lipopolysaccharides on the bacterial surface, altered the surface Zeta potential of the bacteria, and promoted the formation of stable hetero-aggregates between bacteria and HA. At the medium interface, HA modifies the surface charge of the medium, regulates pore structure, and increases hydrophilicity through the adsorption-desorption mechanism. In the solution system, the dissociation characteristics of HA's carboxyl and phenolic hydroxyl groups dynamically regulated the solution's ionic strength and pH value, creating a chemical microenvironment suitable for bacterial migration. This study systematically revealed the multi-dimensional mechanisms by which HA regulates microbial transport through molecular interface engineering. It provides theoretical support for establishing predictive models of pathogen migration in groundwater systems and offers important guidance for optimizing microbial control strategies in water treatment processes.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Department of Environmental Science, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Huijuan Xin
- Department of Environmental Science, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Wang N, He Y, Zhang X, Wang Y, Peng H, Zhang J, Zhao X, Chen A, Qi R, Dan Wan, Luo L, He L. Assessment of the combined response of heavy metals and human pathogens to different additives during composting of black soldier fly manure. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138347. [PMID: 40286653 DOI: 10.1016/j.jhazmat.2025.138347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
The bioconversion of black soldier fly (BSF) is a new model of livestock manure resourcing. However, the biochemical properties of BSF manure are unstable and direct application can be harmful to crops. Therefore, the effect of additives (biochar, humic acid and tea residue) on the removal of heavy metals and pathogens from BSF compost was investigated. Biochar inhibited the availability of Zn (58.9 %) and As (51.7 %) more significantly. Humic acid and tea residue significantly reduced the availability of Zn (60.8 %) and As (42.5 %) respectively. Humic acid and tea residue inhibited the bioavailability index of heavy metals more than biochar. At the end of composting, the total number of pathogenic bacteria was reduced by 80.1-96.0 % and pathogenic fungi by 41.4-99.9 %. Humic acid and biochar are more helpful in inhibiting the growth of pathogens. The abundance of dominant pathogenic genera was reduced by additive modulation. OM, EC, and temperature were the most key factors affecting the pathogenic bacteria. OM, pH, EC, Cu, Zn, and Cr also responded significantly to the pathogenic fungi. This study promotes the efficient conversion of livestock manure via BSF and provided theoretical guidance for the removal of pollutants in compost.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410028, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410028, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China
| | - Xiaobing Zhang
- Hunan Yirun Biotechnology Co., LTD, Changsha, Hunan 410133, China
| | - Ying Wang
- Hunan Yirun Biotechnology Co., LTD, Changsha, Hunan 410133, China
| | - Hua Peng
- Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410028, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410000, China.
| | - Xichen Zhao
- Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410000, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410028, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China
| | - Renli Qi
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Dan Wan
- Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410000, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410028, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China
| | - Liuqin He
- Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410000, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| |
Collapse
|
3
|
Jing R, Yu Y, Di X, Qin X, Zhao L, Liang X, Sun Y, Huang Q. Supplying silicon reduces cadmium accumulation in pak choi by decreasing soil Cd bioavailability and altering the microbial community. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1145-1156. [PMID: 40160146 DOI: 10.1039/d4em00583j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Silicon-containing materials have been widely used in Cd-contaminated soil remediation. However, the immobilization effects of sodium silicate on Cd migration and transformation in an acidic soil-vegetable system have not been thoroughly studied. Herein, a pot experiment was performed to investigate the effects of sodium silicate application on pak choi growth, oxidative status, Cd uptake and accumulation in pak choi, soil Cd bioavailability and fractions, and soil bacterial communities. The results showed that sodium silicate application significantly increased soil pH (0.29-1.61 units) and induced the transformation of the Cd fraction from an exchangeable fraction (Exc-Cd) into an iron and manganese oxide-bound fraction (OX-Cd) and organic matter-bound fraction (OM-Cd), decreasing Cd bioavailability by 13.7-20.8% in Cd-contaminated acidic soil. As a result, sodium silicate application significantly alleviated Cd toxicity, enhanced pak choi growth, and reduced Cd concentration in roots by 23.5-89.0% and in shoots by 58.5-81.0%, with Cd concentration in the edible part at a Si application rate equal to or greater than 0.4 g Si per kg soil falling below the safety limits for Cd as defined in China's food safety standard (GB 2762-2022). In addition, sodium silicate application significantly increased soil bacterial richness (Ace index and Chao1) and diversity (Shannon and Simpson index) and altered the soil microbial structure. These findings suggested that sodium silicate has great potential as an environmentally friendly amendment to immobilize Cd-contaminated acidic soil and reduce Cd accumulation in vegetables.
Collapse
Affiliation(s)
- Rui Jing
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yao Yu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xuerong Di
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xu Qin
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Lijie Zhao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xuefeng Liang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Qingqing Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
4
|
Kong F, Wang W, Wang X, Yang H, Tang J, Li Y, Shi J, Wang S. Performance and mechanism of nano Fe-Al bimetallic oxide enhanced constructed wetlands for the treatment of Cr(VI)-contaminated wastewater. ENVIRONMENTAL RESEARCH 2025; 271:121154. [PMID: 39971118 DOI: 10.1016/j.envres.2025.121154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/25/2025] [Accepted: 02/17/2025] [Indexed: 02/21/2025]
Abstract
Enhancing the synergistic interactions between substrates and microorganisms in constructed wetlands (CWs) represents a promising approach for treating heavy metal-contaminated wastewater. Multifunctional nanomaterials may play a significant role in this process. However, their impacts and mechanisms in this context remain unclear. In this study, artificial zeolite spheres loaded with Fe-Al double metal oxide (Fe-Al-NBMO) were synthesized and utilized in the CW to treat Cr(VI)-contaminated wastewater. Adsorption experiments demonstrated that the adsorption capacity of Fe-Al-NBMO loaded substrate for Cr(VI) was 988.43 mg/kg at an initial concentration of 30 mg/L, 361, and 37 times higher than that of gravel and carrier, respectively. The CW experiment indicated that the Cr(VI) effluent concentration in CW-ZL with Fe-Al-NBMO substrate did not exceed the integrated wastewater discharge standard (GB8978-1996) (0.5 mg/L) at an influent concentration of 50 mg/L. The introduction of the Fe-Al-NBMO substrate promoted microbial growth and increase the Extracellular Polymeric Substances (EPS) and other metabolite contents, thereby enhancing the microbial adsorption of Cr(VI). Furthermore, the removal performance of Cr(VI) was enhanced by the increase in resistant microorganisms (Hyphomicrobium and Rhodopseudomonas) and functional genes. Notably, metaproteomic analysis revealed that the elevated abundance of NADH-quinone oxidoreductase (nuoB, nuoC, nuoD, nuoE, nuoF, and nuoG), reductive coenzymes (fbp, ALDO, mcrA, and cdhC), metabolic pathways of sulfur (Cysp), and glutathione transferase (GsiB, frmA, and gfa) contributed to Cr(VI) removal. Our results provide a robust strategy for treating Cr(VI)-contaminated wastewater by CWs with Fe-Al-NBMO loaded substrate.
Collapse
Affiliation(s)
- Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Wenpeng Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Xiaoyan Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hong Yang
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
| | - Jianguo Tang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yue Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Jiaxin Shi
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
5
|
Fu Z, Liu Y, Jiang X, Guo H, Wang S, Li Z. Health of plateau soil environment: Corresponding relationship of heavy metals in different land use/cover types (LULCC). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179162. [PMID: 40121910 DOI: 10.1016/j.scitotenv.2025.179162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/26/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
The study of land use and land cover change (LULCC) in the Qinghai Tibet Plateau is an important part of regional land science and global change science research. Due to their sensitive response to climate change, plateau lakes undergo changes in their surrounding land use types and soil physicochemical properties, which in turn affect soil environmental health. In the context of global climate change, more scholars are focusing on the relationship between climate change and the transformation of land use types, while research on the response relationship between land use types and pollutant accumulation at the end of the entire system is scarce. This study systematically analyzed the bioavailability and migration dynamics of heavy metals in soils of different land use types in the Qinghai Tibet Plateau watershed, providing solid data support for ecological protection and high-quality development of the plateau watershed, and offering new research ideas for water environment security in the Qinghai Tibet Plateau under the background of climate change.
Collapse
Affiliation(s)
- Zhenghui Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Huaicheng Guo
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Shuhang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
Zhao K, Zhao X, He L, Wang N, Bai M, Zhang X, Chen G, Chen A, Luo L, Zhang J. Comprehensive assessment of straw returning with organic fertilizer on paddy ecosystems: A study based on greenhouse gas emissions, C/N sequestration, and risk health. ENVIRONMENTAL RESEARCH 2025; 266:120519. [PMID: 39647690 DOI: 10.1016/j.envres.2024.120519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
High greenhouse gas emissions and soil deterioration are caused by the overuse of chemical fertilizers. To improve soil quality and crop productivity, it is necessary to utilize fewer chemical fertilizers to achieve sustainable agriculture. Organic substitution is a scientific fertilization strategy that will benefit future agricultural productivity development, little is known about how it affects the heavy metal content and trace gas emissions in rice grains. A field experiment using straw return to the field (SRF), organic fertilizer application (OFA), and their combination (SRF/OFA) fertilization strategies. The results demonstrated that SRF, OFA, and SRF/OFA increased the yield by 19.40%, 22.39%, and 28.36% than the natural growth control group (NG). The OFA has the highest STN stock and SRF/OFA has the highest STN sequestration rate, while SRF achieved the highest SOC stock and sequestration rate. The OFA reduced CO2, CH4, and N2O emissions by 17.73%, 71.87%, and 86.06%, resulting in a minimum global warming potential and greenhouse gas intensity yield among these strategies. Cumulative seasonal CO2 and CH4 emissions were negatively correlated with soil paddy soil C/N and C/P (P < 0.05). Moreover, Cu, Cd, and Pb contents in grain were reduced by 66.18%-70.31%, 35.45%-40.91%, and 76.62%-77.92%, respectively. The health risk evaluation revealed that all metals had a target hazard quotient of <1, except for NG. The hazard index (0.42-0.53), which measures the additive effects of contaminants, exceeded the threshold. The implementation of the organic alternative strategy can reduce the trend of increasing surface pollution, slow down the excessive utilization intensity of agricultural resources, and encourage the development of a greener, more sustainable agricultural way.
Collapse
Affiliation(s)
- Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410028, China; Yuelushan Laboratory, Hunan Agricultural University Area, Changsha, 410000, Hunan, China
| | - Xichen Zhao
- Yuelushan Laboratory, Hunan Agricultural University Area, Changsha, 410000, Hunan, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China
| | - Liuqin He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410028, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China.
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410028, China; Yuelushan Laboratory, Hunan Agricultural University Area, Changsha, 410000, Hunan, China
| | - Ma Bai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xiaobing Zhang
- Hunan Yirun Biotechnology Co., LTD, Changsha, 410133, Hunan, China
| | - Ge Chen
- Yueyang Bureau of Agriculture and Rural Affairs, Yueyang, 414022, Hunan, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410028, China; Yuelushan Laboratory, Hunan Agricultural University Area, Changsha, 410000, Hunan, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410028, China; Yuelushan Laboratory, Hunan Agricultural University Area, Changsha, 410000, Hunan, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410028, China; Yuelushan Laboratory, Hunan Agricultural University Area, Changsha, 410000, Hunan, China.
| |
Collapse
|
7
|
El-Hefny M, Hussien MK. Enhancing the growth and essential oil components of Lavandula latifolia using Malva parviflora extract and humic acid as biostimulants in a field experiment. Sci Rep 2025; 15:774. [PMID: 39755703 PMCID: PMC11700101 DOI: 10.1038/s41598-024-82127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025] Open
Abstract
Natural extracts as biostimulants have the potential to enhance the productivity and growth of many medicinal and aromatic plants. This study aimed to enhance the growth, and essential oil (EO) content, as well as composition of Lavandula latifolia Medik. by using Malva parviflora L. extract (ME) as a biostimulant in combination with humic acid (HA) in a field experiment in two successive seasons of 2022 and 2023. The phenolic, flavonoid and water-soluble vitamins of the ME were analyzed using an HPLC. The protein amino acids of the ME were identified by an amino acid analyzer. The prepared concentrations of HA (0, 1, 2, and 4 g/L) were applied to the soil. While, they for ME (0, 2, 4, and 6 g/L) were added as a foliar spray. The EO compositions collected from the leaves of the treated L. latifolia plants were subjected to the hydro-distillation method and analyzed using GC-MS. The most prevalent vitamins found in ME were vitamin B12, vitamin C, and folic acid. Besides, several phenolic compounds were found in ME, such as catechol, cinnamic acid and syringic acid, while flavonoid chemicals, such as luteolin and quercetin. Also, alanine, ammonia, aspartic acid, glutamic acid, glycine, and tyrosine were the ME's most prominent nitrogenous and amino acid components. The most effective treatments of HA and ME on the plant height, the number of branches/plant, and plant fresh weight were 4 + 6 g/L and 4 + 2 g/L for leaf area and chlorophyll content, it was 4 + 4 g/L; and for EO percentage were 4 + 0 g/L, 2 + 0 g/L, and 4 + 4 g/L, compared to the control treatment for each characteristic. The main EO compounds eucalyptol, camphor, α-pinene, β-pinene, Δ-elemene, germacrene D-4-ol, isoborneol, β-caryophyllene oxide, and tau.-cadinol identified in the leaves were found in the range of 28.74-46.19%, 15.34-30.49%, 3.39-7.16%, 0-5.08%, 0-5.18%, 0-3.20%, 0-3.31% and 0-3.40%, respectively. It can be concluded that a combination treatment of HA and ME as natural biostimulant compounds at 4 + 4 g/L could be recommended for good plant growth, and EO quantity of L. latifolia plants.
Collapse
Affiliation(s)
- Mervat El-Hefny
- Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Mahmoud Khattab Hussien
- Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
8
|
Li Q, Li L, Yin B, Lin X, Xiao A, Xue W, Liu H, Li Y. Accumulation and distribution of cadmium at organic-mineral micro-interfaces across soil aggregates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117457. [PMID: 39644565 DOI: 10.1016/j.ecoenv.2024.117457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Soil amendments are crucial in regulating cadmium (Cd) distribution as aggregates of varying sizes have different capacities to retain soil Cd. Directly observing the Cd distribution within aggregates and understanding their interactions with minerals and carbon at the submicron scale remain significant challenges. Pot experiments were conducted to assess the impacts of mineral, organic, and microbial amendments on the Cd distribution in soil aggregates using synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy and nano-scale secondary ion mass spectrometry (NanoSIMS). Our results revealed that different soil amendments exerted varying effects on Cd accumulation in soil aggregates. The mineral and microbial amendments facilitated the Cd transfer from the macroaggregates to the silt+clay fraction, while the organic amendment increased the Cd loading in the macroaggregates. Additionally, the mineral and microbial amendments reduced the binding of Fe oxides with microbial-derived peptides in the macroaggregates and enhanced the interaction of Fe oxides with plant-derived lignin in the silt+clay fractions. Furthermore, NanoSIMS analysis provided direct evidence that the mineral and microbial amendments decreased the association between Cd with carbon and minerals in the macroaggregates, while they enhanced the binding of Cd and Fe oxides in the silt+clay fractions. Collectively, our findings revealed that the mineral and microbial amendments promoted Cd transfer, enhancing the stability of Cd in the finer soil fractions and offering essential insights for developing agricultural management strategies to alleviate Cd contamination in paddy soils.
Collapse
Affiliation(s)
- Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Linfeng Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Bohao Yin
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaoyang Lin
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Anwen Xiao
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yichun Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.
| |
Collapse
|
9
|
Luo H, Chen J, Yang B, Li Y, Wang P, Yu J, Yuan B, Zhang Y, Ren J, Du P, Li F. Cadmium distribution and availability in different particle-size aggregates of post-harvest paddy soil amended with bio-based materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177739. [PMID: 39612707 DOI: 10.1016/j.scitotenv.2024.177739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Research on the use of organic materials as soil amendments for the remediation of Cd-contaminated agricultural land exists. However, the mechanisms based on which organic materials affect the distribution and availability of Cd in soil aggregates remain unclear. Here, Cd-contaminated paddy soil and different bio-based materials were used for rice pot experiments. Rhizosphere soils were separated into six particle sizes. Cd fractions were analyzed with BCR sequential extraction and specific functional groups associated with Cd were characterized using XPS. We found that bio-based materials promoted the formation of large aggregates to different extents. Cd tended to be enriched in fine- and coarse-grained soil particles, which is mainly related to the soil organic matter. Bio-based materials reduced the relative content of the weak-acid extractable fraction and increased the relative content of the reducible fraction, resulting in soil Cd immobilization. Soil dissolved organic matter (DOM) was the key factor affecting the distribution and availability of Cd in soil aggregates and different organic matter and Cd-binding functional groups in aggregates altered the Cd availability in soil. The results provide insight and guidance for understanding the cadmium immobilization mechanism and screening appropriate materials in the remediation of agricultural land.
Collapse
Affiliation(s)
- Huilong Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Juan Chen
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Bin Yang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yake Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Panpan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingjing Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bei Yuan
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yunhui Zhang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Jie Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ping Du
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
10
|
Cao Q, Zhao J, Ma W, Cui D, Zhang X, Liu J, Chen H. Heavy metals in homestead soil: Metal fraction contents, bioaccessibility, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135933. [PMID: 39366040 DOI: 10.1016/j.jhazmat.2024.135933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
Rapid urbanization in China has led to the disappearance of countless villages and the transformation of homestead land into cultivated land or grassland. The quality of homestead soil (HS) plays a pivotal role in land-use conversion and reuse strategies, so the current state of heavy metal pollution in HS deserves attention. This study determined the fraction contents, bioaccessibility, risks, and affecting factors of Hg, As, Cd, Pb, Cu, and Zn in HS by comparing them with soil in cultivated land (CS), grassland (GS), homestead-converted cultivated land (HCS), and homestead-converted grassland (HGS). Results demonstrate that the contents of the six metals exceed background values, especially for Cd and Hg, resulting in significant pollution and elevated ecological risk. Distinct from the dominant residual fraction of other metals, the extractable fraction of Cd shows the highest proportion, which also contributes most to the high values of the Risk Assessment Code and extreme pollution conditions in HS, GS, and CS. Moreover, pH shows predominantly negative relations with the effective available and potentially available contents, while the effects of organic carbon fractions are notably the opposite. Furthermore, CS and GS suggest higher non-carcinogenic and carcinogenic risks than in the converted soil. This study indicates that HS has a lower metal accumulation risk compared with cultivated land and grassland, and homestead conversion seems to restrict the bioaccessibility of metals in soil.
Collapse
Affiliation(s)
- Qingqing Cao
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250100, PR China
| | - Jiaqi Zhao
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250100, PR China
| | - Wen Ma
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, PR China
| | - Dongxu Cui
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250100, PR China.
| | - Xiaoping Zhang
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250100, PR China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Hao Chen
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250100, PR China.
| |
Collapse
|
11
|
Zhou W, Zhu Y, Achal V. Synergistic mechanisms of humic acid and biomineralization in cadmium remediation using Lysinibacillus fusiformis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70037. [PMID: 39535923 PMCID: PMC11559593 DOI: 10.1111/1758-2229.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Heavy metal pollution, particularly cadmium, poses severe environmental and health risks due to its high toxicity and mobility, necessitating effective remediation strategies. While both microbially induced carbonate precipitation (MICP) and humic acid adsorption are promising methods for heavy metal mitigation, their combined effects, particularly the influence of humic acid on the MICP process, have not been thoroughly investigated. This study explores the interaction between humic acid and MICP, revealing that humic acid significantly inhibits the MICP process by reducing urease activity, with the 10% humic acid treatment resulting in a 23.8% reduction in urease activity compared to the control. Additionally, while higher concentrations of humic acid did not significantly reduce cadmium ion concentrations, they did result in a slight increase in organically bound cadmium, indicating an interaction that could alter metal speciation in the soil. These findings provide important insights into the mechanisms by which humic acid affects MICP, offering a foundation for optimizing combined remediation approaches. Future research should aim to fine-tune the balance between MICP and humic acid to enhance the overall efficiency of cadmium remediation strategies. This study contributes to the development of more effective and sustainable methods for addressing cadmium contamination.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Environmental Science and EngineeringGuangdong Technion‐Israel Institute of TechnologyShantouChina
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy ConversionGuangdong Technion‐Israel Institute of TechnologyShantouChina
| | - Yaqi Zhu
- Department of Environmental Science and EngineeringGuangdong Technion‐Israel Institute of TechnologyShantouChina
| | - Varenyam Achal
- Department of Environmental Science and EngineeringGuangdong Technion‐Israel Institute of TechnologyShantouChina
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy ConversionGuangdong Technion‐Israel Institute of TechnologyShantouChina
| |
Collapse
|
12
|
Yin Z, Li Q, Zhang Y, Xu R, Qu G, Wu H, Liao L, Yang Y, Jiang T. Stabilization effect of nano-SiO 2@iron-phosphorus on ferrallisols, calcareous soil and organic soil heavily polluted by heavy metals: A fast reaction curing stabilization process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176379. [PMID: 39306137 DOI: 10.1016/j.scitotenv.2024.176379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
The remediation of soil pollution by heavy metals (HMs) presents a significant challenge in environmental restoration. Stabilization remediation technology has proven effective in treating HMs contaminated soil. However, its development is constrained by drawbacks such as slow reaction kinetics and low adsorption capacity. This research synthesized a nano-SiO2@iron‑phosphorus (FPOH) material by SiO32- encapsulating the iron-phosphate precipitate obtained from Fe ion and phosphate. In addition, this research applied this material to ferrallisols, calcareous soils and organic soils with three different levels of high pollution by Cd, Pb, Cu and Zn. The experimental results indicate that all experimental soils stabilized rapidly within 1 day and met the requirements of remediation engineering standards (ChinaMEE HJ 1282-2023). Analysis of the possible mechanisms suggests that the FPOH material effectively fills voids with phosphate mineral formation, preventing the secondary release of HMs. During the stabilization process, FPOH involves the adsorption of free ions and small organic molecules in the soil, which does not affect its high reactivity. The development and utilization of FPOH offer valuable insights for soil stabilization remediation.
Collapse
Affiliation(s)
- Zhe Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Yan Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Rui Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming 650500, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming 650500, China
| | - Haotian Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Lang Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yongbin Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Tao Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
13
|
Song J, Zhang H, Razavi B, Chang F, Yu R, Zhang X, Wang J, Zhou J, Li Y, Kuzyakov Y. Bacterial necromass as the main source of organic matter in saline soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123130. [PMID: 39476662 DOI: 10.1016/j.jenvman.2024.123130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024]
Abstract
Soil salinity poses a major threat to crop growth, microbial activity, and organic matter accumulation in agroecosystems in arid and semiarid regions. The limitations of carbon (C) accrual due to salinity can be partly mitigated by the application of organic fertilizers. Although microorganisms are crucial for soil organic carbon (SOC) stabilization, the relationships between living and dead microbial C pools and the community features of SOC accrual in saline soils are not known. A two-year field experiment was conducted to examine the effects of organic fertilizers on the microbial regulatory mechanisms of C sequestration in saline soil (chloride-sulfate salinity). Compared to manure addition alone, manure plus commercial humic acid increased SOC stock by 11% and decreased CO2 emissions by 10%, consequently facilitated soil C sequestration. We explain these results by greater bacterial necromass formation due to the dominance of r-strategists with faster turnover rate (growth and death), as well as larger necromass stability as supported by the increased aggregate stability under the addition of humic acids with manure. Humic acids increased the abundance of bacterial phylum Proteobacteria (copiotrophs) and decreased Acidobacteria (oligotrophs) compared with straw, indicating that r-strategists outcompeted K-strategists, leading to bacterial necromass accumulation. With larger C/N ratio (88), straw increased leucine aminopeptidase to mine N-rich substrates (i.e., from necromass and soil organic matter) and consequently reduced SOC stock by 8%. The decreased salinity and increased organic C availability under straw with manure addition also led to a 13% higher CO2 flux compared with manure application alone. Thus, humic acids added with manure benefited to SOC accumulation by raising bacterial necromass C and reducing CO2 emissions.
Collapse
Affiliation(s)
- Jiashen Song
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning), Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongyuan Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning), Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bahar Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, University of Kiel, Kiel, Germany
| | - Fangdi Chang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning), Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ru Yu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning), Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning), Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning), Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyi Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning), Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yakov Kuzyakov
- Agro-Technological Institute, RUDN University, Moscow, Russia; Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, Georg August University of Göttingen, D-37077, Göttingen, Germany; Institute of Environmental Sciences, Kazan Federal University, 420049, Kazan, Russia
| |
Collapse
|
14
|
Zhao K, Yin X, Wang N, Chen N, Jiang Y, Deng L, Xiao W, Zhou K, He Y, Zhao X, Yang Y, Zhang J, Chen A, Wu Z, He L. Optimizing the management of aerobic composting for antibiotic resistance genes elimination: A review of future strategy for livestock manure resource utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122766. [PMID: 39369531 DOI: 10.1016/j.jenvman.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Aerobic composting technology is an efficient, safe and practical method to reduce the residues of antibiotics and antibiotic resistance genes (ARGs) due to unreasonable disposal of livestock manure. Nowadays, it remains unclear how aerobic composting works to minimize the level of remaining antibiotics and ARGs in manure. Moreover, aerobic composting techniques even have the potential to enhance ARGs level. Therefore, this study conducted a literature review on ARGs variation during the composting process to assess the fate, migration, and risk features of antibiotics and ARGs in different livestock manure and compost. The relationship between ARGs reduction and crucial factors (temperature, heavy metal, and microbial community structures) in the composting process was discussed. The merits and limitations of different technologies used in compost was summarized. The effects on ARGs reduction in the aerobic composting process with various strategies was examined. We attempt to provide a fresh and novel viewpoint on the advancement of global aerobic composting technology.
Collapse
Affiliation(s)
- Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xiaowei Yin
- POWERCHINA Zhongnan Engineering Corporation Limited, Changsha, Hunan, 410014, China
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Nianqiao Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Youming Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Linyan Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Wenbo Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Kun Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xichen Zhao
- Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China.
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Liuqin He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China.
| |
Collapse
|
15
|
Sun L, Zhang Y, Wu B, Hu E, Li L, Qu L, Li S. Impact of particle size separation on the stabilisation efficiency of heavy-metal-contaminated soil: a meta-analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1821-1835. [PMID: 39221488 DOI: 10.1039/d4em00308j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The separation of heavy-metal-contaminated soil by particle size is crucial for minimising the volume of contaminated soil because of the pronounced variability in the heavy-metal distribution among different soil particle sizes. However, relevant analyses on the effect of soil particle size sorting on stabilisation are limited. Therefore, we screened 2766 peer-reviewed papers published from January 2010 to April 2022 in the Web of Science database, of which 117 met the screening requirements, and conducted a meta-analysis to explore how soil particle size sorting and the interaction between sorting particle size and soil properties affect the stabilisation of heavy metals. The results showed that: (1) For fractionations ≤0.15 mm and from 0.15-2 mm, the materials demonstrating the highest average unit stabilisation efficiency were phosphate (45.0%/%) and organic matter (59.5%/%), respectively. (2) The smaller the size of soil particles, the greater the effect of the initial pH on stabilisation efficiency. (3) Similarly, for soil organic matter, smaller particle sizes (≤0.15 mm) combined with a lower initial content (≤1%) significantly increased the heavy metal stabilisation efficiency. (4) The impact of soil particle size fractionation on unit stabilisation efficiency was observed to be similar for typical heavy metals, specifically Cd and Pb. The relationship between particle size and unit stabilisation efficiency shows an inverted U shape. Particle size sorting can affect the distribution of heavy metals, but the type of stabilisation agent should also be considered in combination with the soil properties and heavy metal types.
Collapse
Affiliation(s)
- Lixia Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China.
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang 110819, P.R. China
| | - Yunlong Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China.
- National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, P.R. China
| | - Enzhu Hu
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang 110819, P.R. China
| | - Linlin Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Longlong Qu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China.
| | - Shuqi Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
16
|
Rachappanavar V, Gupta SK, Jayaprakash GK, Abbas M. Silicon mediated heavy metal stress amelioration in fruit crops. Heliyon 2024; 10:e37425. [PMID: 39315184 PMCID: PMC11417240 DOI: 10.1016/j.heliyon.2024.e37425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Fruit crops are essential for human nutrition and health, yet high level of heavy metal levels in soils can degrade fruit quality. These metals accumulate in plant roots and tissues due to factors like excessive fertilizer and pesticide use, poor waste management, and unscientific agricultural practices. Such accumulation can adversely affect plant growth, physiology, and yield. Consuming fruits contaminated with toxic metals poses significant health risks, including nervous system disorders and cancer. Various strategies, such as organic manuring, biomaterials, and modified cultivation practices have been widely researched to reduce heavy metal accumulation. Recently, silicon (Si) application has emerged as a promising and cost-effective solution for addressing biological and environmental challenges in food crops. Si, which can be applied to the soil, through foliar application or a combination of both, helps reduce toxic metal concentrations in soil and plants. Despite its potential, there is currently no comprehensive review that details Si's role in mitigating heavy metal stress in fruit crops. This review aims to explore the potential of Si in reducing heavy metal-induced damage in fruit crops while enhancing growth by alleviating heavy metal toxicity.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnlogy and Management, Solan, Himachal Pradesh, 173230, India
| | - Satish K. Gupta
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnlogy and Management, Solan, Himachal Pradesh, 173230, India
| | | | - Mohamed Abbas
- Electrical Engineering Department, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
17
|
Li Y, Wang K, Dötterl S, Xu J, Garland G, Liu X. The critical role of organic matter for cadmium-lead interactions in soil: Mechanisms and risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135123. [PMID: 38981228 DOI: 10.1016/j.jhazmat.2024.135123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Understanding the interaction mechanisms between complex heavy metals and soil components is a prerequisite for effectively forecasting the mobility and availability of contaminants in soils. Soil organic matter (SOM), with its diverse functional groups, has long been a focal point of research interest. In this study, four soils with manipulated levels of SOM, cadmium (Cd) and lead (Pb) were subjected to a 90-day incubation experiment. The competitive interactions between Cd and Pb in soils were investigated using Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray adsorption near-edge structure (XANES) analysis. Our results indicate that Pb competed with Cd for adsorption sites on the surface of SOM, particularly on carboxyl and hydroxyl functional groups. Approximately 22.6 % of Cd adsorption sites on humus were occupied by Pb. The use of sequentially extracted exchangeable heavy metals as indicators for environment risk assessments, considering variations in soil physico-chemical properties and synergistic or antagonistic effects between contaminants, provides a better estimation of metal bioavailability and its potential impacts. Integrating comprehensive contamination characterization of heavy metal interactions with the soil organic phase is an important advancement to assess the environmental risks of heavy metal dynamics in soil compared to individual contamination assessments.
Collapse
Affiliation(s)
- Yiren Li
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland
| | - Kai Wang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Sebastian Dötterl
- Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Gina Garland
- Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland.
| | - Xingmei Liu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Zhao B, Xu Z, Li S, Yang Z, Ling W, Wu Z, Gao J, Wang Y. Reduction of the exchangeable cadmium content in soil by appropriately increasing the maturity degree of organic fertilizers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121599. [PMID: 38968895 DOI: 10.1016/j.jenvman.2024.121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/02/2024] [Accepted: 06/23/2024] [Indexed: 07/07/2024]
Abstract
To enhance the remediation effect of heavy metal pollution, organic fertilizers with different maturity levels were added to cadmium-contaminated soil. The remediation effect was determined by evaluating the form transformation and bioavailability of cadmium in heavy metal-contaminated soil. -Results showed that when the maturity was 50%, although the soil humus (HS) content increased, it didn't contribute to reducing the bioavailability of soil Cd. Appropriately increasing the maturity (GI ≥ 80%), the HS increased by 113.95%∼157.96%, and reduced significantly the bioavailability of soil Cd, among the exchangeable Cd decreased by 16.04%∼33.51% (P < 0.01). The structural equation modeling (SEM) revealed that HS content is a critical factor influencing the transformation of Cd forms and the reduction of exchangeable Cd accumulation; the HS and residual Cd content were positively correlated with the maturity (P < 0.01), while exchangeable Cd content was negatively correlated with maturity (P < 0.01), and the correlation increased with increasing maturity. In summary, appropriately increasing the maturity (GI ≥ 80%) can increase significantly HS, promote the transformation of exchangeable Cd into residual Cd, and ultimately enhance the effectiveness of organic fertilizers in the remediation of soil Cd pollution. These results provide a new insight into the remediation of Cd-contaminated soil through organic fertilizer as soil amendment in Cd-contaminated soil.
Collapse
Affiliation(s)
- Bing Zhao
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhi Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215128, Jiangsu, China
| | - Shaoming Li
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhixin Yang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wen Ling
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhicheng Wu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jiangfei Gao
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yuyun Wang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
19
|
Zhang Y, Miao G, Ma Q, Niu Y, Zhu Q, Ke X. Cumulative characteristics and ecological risk source analysis of soil potentially toxic elements in the northern margin of the Tibetan Plateau. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:351. [PMID: 39080079 DOI: 10.1007/s10653-024-02138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/17/2024] [Indexed: 09/07/2024]
Abstract
To understand the soil toxic and hazardous elements content, pollution level, and ecological risk status in the northern margin of the Tibetan Plateau, we collected and analyzed 8273 sets of surface soil samples. Evaluations were conducted using the single-factor pollution index, geo-accumulation, pollution load, and potential ecological risk indices, and source identification correlation and principal component analysis. The results revealed that, compared with the background levels in China, the accumulation of soil arsenic, cadmium, nickel, and chromium was greater in the surface soil of the study area. Additionally, in comparison with Qinghai Province, more mercury accumulated in the surface soil of the study area and owing to the influence of anthropogenic activities. Benchmarking against soil environmental quality standards, the study area exhibited pollution control zones primarily dominated by arsenic and cadmium (3.9%). The spatial distribution revealed distinct zones: a ridge mountain type characterized by arsenic-cadmium-chromium-nickel, a Daban mountain type with solely cadmium presence, and a Longyangxia-Jianzha South type dominated by arsenic. Compared with the Qinghai Province soil background values, evaluations using the Pollution loading index, Geological Cumulative Index, and Potential Ecological Risk Index methods revealed varying degrees of potentially toxic element content exceedance. From an ecological risk perspective, the individual element with the highest potential ecological risk coefficients were mercury, followed by cadmium and arsenic; however, the region's overall ecological risk index was classified as low. Three distinct sources were identified: natural sources leading to high background levels of chromium, nickel, copper, zinc, and mercury; mixed natural and industrial/agricultural sources contributing to elevated cadmium levels; and human activity-related mercury enrichment. Based on the evaluation results, synergistic monitoring of soil and biota in naturally occurring risk zones is recommended to ensure the safety of agricultural and pastoral products. Additionally, ecological impact assessments and pollution source mitigation studies should be conducted in regions influenced by human activities to curb the further degradation of soil ecological quality.
Collapse
Affiliation(s)
- Yafeng Zhang
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
- Qinghai Engineering Research Center for Selenium-Rich Resource Utilization, Xining, 810099, Qinghai, China
| | - Guowen Miao
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
- Qinghai Engineering Research Center for Selenium-Rich Resource Utilization, Xining, 810099, Qinghai, China
| | - Qiang Ma
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
- Qinghai Engineering Research Center for Selenium-Rich Resource Utilization, Xining, 810099, Qinghai, China
| | - Yao Niu
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
| | - Qiaohui Zhu
- College of Resources and Environment, Yangtze University, Wuhan, China.
| | - Xinying Ke
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
20
|
Zhong B, Xie H, Pan T, Su B, Xu W, Wu Z. High acidity organic waste degradation and the potential to bioremediation of heavy metals in soil by an acid-tolerant Serratia sp. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:321. [PMID: 39012543 DOI: 10.1007/s10653-024-02109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
Highly acidic citrus pomace (CP) is a byproduct of Pericarpium Citri Reticulatae production and causes significant environmental damage. In this study, a newly isolated acid-tolerant strain of Serratia sp. JS-043 was used to treat CP and evaluate the effect of reduced acid citrus pomace (RACP) in passivating heavy metals. The results showed that biological treatment could remove 97.56% of citric acid in CP, the organic matter in the soil increased by 202.60% and the catalase activity in the soil increased from 0 to 0.117 U g-1. Adding RACP into soil can increase the stabilization of Cu, Zn, As, Co, and Pb. Specifically, through the metabolism of strain JS-043, RACP was also involved in the stabilization of Zn and Pb, and Residual Fraction in the total pool of these metals increased by 10.73% and 10.54%, respectively. Finally, the genome sequence of Serratia sp. JS-043 was completed, and the genetic basis of its acid-resistant and acid-reducing characteristics was preliminarily revealed. JS-043 also contains many genes encoding proteins associated with heavy metal ion tolerance and transport. These findings suggest that JS-043 may be a high-potential strain to improve the quality of acidic organic wastes that can then be useful for soil bioremediation.
Collapse
Affiliation(s)
- Bin Zhong
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Hanyi Xie
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen, 529080, China
| | - Tao Pan
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Buli Su
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Weijun Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen, 529080, China
| | - Zhenqiang Wu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Yang Y, Peng H, Deng K, Shi Y, Wei W, Liu S, Li C, Zhu J, Dai Y, Song M, Ji X. Rice rhizospheric effects and mechanism on soil cadmium bioavailability during silicon application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172702. [PMID: 38657810 DOI: 10.1016/j.scitotenv.2024.172702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Exogenous Si mitigates the mobility and bioavailability of Cd in the soil, thereby alleviating its phytotoxicity. This study focused on specific Si-induced immobilisation effects within the rhizosphere (S1), near-rhizosphere (S2), and far-rhizosphere (S3) zones. Based on the rhizobox experiment, we found that applying Si significantly elevated soil pH, and the variation amplitudes in the S3 soil exceeded those in the S1 and S2 soils. Si-induced changes in the rhizosphere also included enhanced dissolved organic carbon and diminished soil Eh, particularly in the Si400 treatment. Meanwhile, the introduction of Si greatly enhanced the Fe2+ and Mn2+ concentrations in the S1 soil, but reduced them in the S2 soil. The rhizosphere effect of Si which enriched Fe2+ and Mn2+ subsequently promoted the formation of Fe and Mn oxides/hydro-oxides near the rice roots. Consequently, the addition of Si significantly reduced the available Cd concentrations in S1, surpassing the reductions in S2 and S3. Moreover, Si-treated rice exhibited increased Fe plaque generation and fixation on soil Cd, resulting in decreased Cd concentrations in rice tissues, accompanied by reduced Cd translocation from roots to shoots and shoots to grains. Structural equation modelling further highlighted that Si is essential in Cd availability in S1 and Fe plaque development, ultimately mitigating Cd accumulation in rice. Si-treated rice also exhibited higher biomass and grain yield than those of control groups. These findings provide valuable insights into Si-based strategies for addressing the Cd contamination of agricultural soils.
Collapse
Affiliation(s)
- Yi Yang
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Hua Peng
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China.
| | - Kai Deng
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China.
| | - Yu Shi
- Xiangxi Station of Soil and Fertilizer, Jishou 416000, China
| | - Wei Wei
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Saihua Liu
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Changjun Li
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Jian Zhu
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Yanjiao Dai
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Min Song
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Xionghui Ji
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| |
Collapse
|
22
|
Zhou C, Zhu L, Zhao T, Dahlgren RA, Xu J. Fertilizer application alters cadmium and selenium bioavailability in soil-rice system with high geological background levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124033. [PMID: 38670427 DOI: 10.1016/j.envpol.2024.124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The co-occurrence of cadmium (Cd) pollution and selenium (Se) deficiency commonly exists in global soils, especially in China. As a result, there is great interest in developing practical agronomic strategies to simultaneously achieve Cd remediation and Se mobilization in paddy soils, thereby enhancing food quality/safety. To this end, we conducted a field-plot trial on soils having high geological background levels of Cd (0.67 mg kg-1) and Se (0.50 mg kg-1). We explored 12 contrasting fertilizers (urea, potassium sulfate (K2SO4), calcium-magnesium-phosphate (CMP)), amendments (manure and biochar) and their combinations on Cd/Se bioavailability. Soil pH, total organic carbon (TOC), soil available Cd/Se, Cd/Se fractions and Cd/Se accumulation in different rice components were determined. No significant differences existed in mean grain yield among treatments. Results showed that application of urea and K2SO4 decreased soil pH, whereas the CMP fertilizer and biochar treatments increased soil pH. There were no significant changes in TOC concentrations. Three treatments (CMP, manure, biochar) significantly decreased soil available Cd, whereas no treatment affected soil available Se at the maturity stage. Four treatments (CMP, manure, biochar and manure+urea+CMP+K2SO4) achieved our dual goal of Cd reduction and Se enrichment in rice grain. Structural equation modeling (SEM) demonstrated that soil available Cd and root Cd were negatively affected by pH and organic matter (OM), whereas soil available Se was positively affected by pH. Moreover, redundancy analysis (RDA) showed strong positive correlations between soil available Cd, exchangeable Cd and reducible Cd with grain Cd concentration, as well as between pH and soil available Se with grain Se concentration. Further, there was a strong negative correlation between residual Cd/Se (non-available fraction) and grain Cd/Se concentrations. Overall, this study identified the primary factors affecting Cd/Se bioavailability, thereby providing new guidance for achieving safe production of Se-enriched rice through fertilizer/amendment management of Cd-enriched soils.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Lianghui Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Tingting Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, 95616, CA, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Fang M, Sun Y, Zhu Y, Chen Q, Chen Q, Liu Y, Zhang B, Chen T, Jin J, Yang T, Zhuang L. The potential of ferrihydrite-synthetic humic-like acid composite as a soil amendment for metal-contaminated agricultural soil: Immobilization mechanisms by combining abiotic and biotic perspectives. ENVIRONMENTAL RESEARCH 2024; 250:118470. [PMID: 38373548 DOI: 10.1016/j.envres.2024.118470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
In-situ passivation technique has attracted increasing attention for metal-contaminated agricultural soil remediation. However, metal immobilization mechanisms are mostly illustrated based on metal speciation changes and alterations in soil physicochemical properties from a macroscopic and abiotic perspective. In this study, a ferrihydrite-synthetic humic-like acid composite (FH-SHLA) was fabricated and applied as a passivator for a 90-day soil incubation. The heavy metals immobilization mechanisms of FH-SHLA were investigated by combining both abiotic and biotic perspectives. Effects of FH-SHLA application on soil micro-ecology were also evaluated. The results showed that the 5%FH-SHLA treatment significantly decreased the DTPA-extractable Pb, Cd and Zn by 80.75%, 46.82% and 63.63% after 90 days of incubation (P < 0.05), respectively. Besides, 5% FH-SHLA addition significantly increased soil pH, soil organic matter content and cation exchange capacity (P < 0.05). The SEM, FTIR, and XPS characterizations revealed that the abiotic metal immobilization mechanisms by FH-SHLA included surface complexation, precipitation, electrostatic attraction, and cation-π interactions. For biotic perspective, in-situ microorganisms synergistically participated in the immobilization process via sulfide precipitation and Fe mineral production. FH-SHLA significantly altered the diversity and composition of the soil microbial community, and enhanced the intensity and complexity of the microbial co-occurrence network. Both metal bioavailability and soil physiochemical parameters played a vital role in shaping microbial communities, while the former contributed more. Overall, this study provides new insight into the heavy metal passivation mechanism and demonstrates that FH-SHLA is a promising and environmentally friendly amendment for metal-contaminated soil remediation.
Collapse
Affiliation(s)
- Mingzhi Fang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yucan Sun
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yi Zhu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qi Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qianhui Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yifei Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
24
|
Ren Y, Wang G, Su Y, Li J, Zhang H, Han J. Response of antioxidant activity, active constituent and rhizosphere microorganisms of Salvia miltiorrhiza to combined application of microbial inoculant, microalgae and biochar under Cu stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171812. [PMID: 38508267 DOI: 10.1016/j.scitotenv.2024.171812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinfeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
25
|
Liu J, He T, Yang Z, Peng S, Zhu Y, Li H, Lu D, Li Q, Feng Y, Chen K, Wei Y. Insight into the mechanism of nano-TiO 2-doped biochar in mitigating cadmium mobility in soil-pak choi system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169996. [PMID: 38224887 DOI: 10.1016/j.scitotenv.2024.169996] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
Soil cadmium (Cd) pollution poses severe threats to food security and human health. Previous studies have reported that both nanoparticles (NPs) and biochar have potential for soil Cd remediation. In this study, a composite material (BN) was synthesized using low-dose TiO2 NPs and silkworm excrement-based biochar, and the mechanism of its effect on the Cd-contaminated soil-pak choi system was investigated. The application of 0.5 % BN to the soil effectively reduced 24.8 % of diethylenetriaminepentaacetic acid (DTPA) Cd in the soil and promoted the conversion of Cd from leaching and HOAc-extractive to reducible forms. BN could improve the adsorption capacity of soil for Cd by promoting the formation of humic acid (HA) and increasing the cation exchange capacity (CEC), as well as activating the oxygen-containing functional groups such as CO and CO. BN also increased soil urease and catalase activities and improved the synergistic network among soil bacterial communities to promote soil microbial carbon (C) and nitrogen (N) cycling, thus enhancing Cd passivation. Moreover, BN increased soil biological activity-associated metabolites like T-2 Triol and altered lipid metabolism-related fatty acids, especially hexadecanoic acid and dodecanoic acid, crucial for bacterial Cd tolerance. In addition, BN inhibited Cd uptake and root-to-shoot translocation in pak choi, which ultimately decreased Cd accumulation in shoots by 51.0 %. BN significantly increased the phosphorus (P) uptake in shoots by 59.4 % by improving the soil microbial P cycling. This may serve as a beneficial strategy for pak choi to counteract Cd toxicity. These findings provide new insights into nanomaterial-doped biochar for remediation of heavy metal contamination in soil-plant systems.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tieguang He
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, China
| | - Zhixing Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China; CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shirui Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Yanhuan Zhu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Dan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Qiaoxian Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Yaxuan Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Kuiyuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Yanyan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China.
| |
Collapse
|
26
|
Li L, Wang C, Wang W, Zhou L, Zhang D, Liao H, Wang Z, Li B, Peng Y, Xu Y, Chen Q. Uncovering the mechanisms of how corn steep liquor and microbial communities minimize cadmium translocation in Chinese cabbage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22576-22587. [PMID: 38411912 DOI: 10.1007/s11356-024-32579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
Corn steep liquor-assisted microbial remediation has been proposed as a promising strategy to remediate cadmium (Cd)-contaminated soil. In this study, we determined Bacillus subtilis (K2) with a high cadmium (Cd) accumulation ability and Cd resistance. However, studies on this strategy used in the Cd uptake of Chinese cabbage are lacking, and the effect of the combined incorporation of corn steep liquor and K2 on the functions and microbial interactions of soil microbiomes is unclear. Here, we study the Cd uptake and transportation in Chinese cabbage by the combination of K2 and corn steep liquor (K2 + C7) in a Cd-contaminated soil and corresponding microbial regulation mechanisms. Results showed that compared to inoculant K2 treatment alone, a reduction of Cd concentration in the shoots by 14.4% and the dry weight biomass of the shoots and the roots in Chinese cabbage increased by 21.6% and 30.8%, respectively, under K2 + C7 treatment. Meanwhile, hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were decreased by enhancing POD and SOD activity, thereby reversing Cd-induced oxidative damage. Importantly, inoculation of K2 would decrease the diversity of the microbial community while enhancing the abundance of dominant species. These findings provide a promising strategy for reducing the Cd accumulation in Chinese cabbage and recovering soil ecological functions.
Collapse
Affiliation(s)
- Longcheng Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chensi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenhao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lin Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Donghan Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Hongjie Liao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zihao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Bingchen Li
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 523758, Guangdong, China
| | - Yangping Xu
- ShiFang Anda Chemicals CO., LTD., Deyang, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
27
|
Liu Y, Huang W, Wang Y, Wen Q, Zhou J, Wu S, Liu H, Chen G, Qiu R. Effects of naturally aged microplastics on the distribution and bioavailability of arsenic in soil aggregates and its accumulation in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169964. [PMID: 38211862 DOI: 10.1016/j.scitotenv.2024.169964] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Naturally aged microplastics (NAMPs) and arsenic (As) have been reported to coexist in and threaten potentially to soil-plant ecosystem. The research explored the combined toxic effects of NAMPs and As to lettuce (Lactuca sativa L.) growth, and the distribution, accumulation and bioavailability of As in soil aggregates. The As contaminated soil with low, medium and high concentrations (L-As, M-As, H-As) were treated with or without NAMPs, and a total of six treatments. The results displayed that, in comparison to separate treatments of L-As and M-As, the presence of NAMPs increased the total biomass of lettuce grown at these two As concentrations by 68.9 % and 55.4 %, respectively. Simultaneous exposure of NAMPs and L-As or M-As led to a decrease in As content in shoot (0.45-2.17 mg kg-1) and root (5.68-14.66 mg kg-1) of lettuce, indicating an antagonistic effect between them. In contrast, co-exposure to H-As and NAMPs showed synergistic toxicity, and the leaf chlorophyll and nutritional quality of lettuce were also reduced. NAMPs altered the ratio of different soil aggregate fractions and the distribution of bioavailable As within them, which influenced the absorption of As by lettuce. In conclusion, these direct observations assist us in enhancing the comprehend of the As migration and enrichment characteristics in soil-plant system under the influence of NAMPs.
Collapse
Affiliation(s)
- Yanwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weigang Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yujue Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qian Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Juanjuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shengze Wu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Hui Liu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Guikui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
28
|
Wu Y, Yan Y, Wang Z, Tan Z, Zhou T. Biochar application for the remediation of soil contaminated with potentially toxic elements: Current situation and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119775. [PMID: 38070425 DOI: 10.1016/j.jenvman.2023.119775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Recently, biochar has garnered extensive attention in the remediation of soils contaminated with potentially toxic elements (PTEs) owing to its exceptional adsorption properties and straightforward operation. Most researchers have primarily concentrated on the effects, mechanisms, impact factors, and risks of biochar in remediation of PTEs. However, concerns about the long-term safety and impact of biochar have restricted its application. This review aims to establish a basis for the large-scale popularization of biochar for remediating PTEs-contaminated soil based on a review of interactive mechanisms between soil, PTEs and biochar, as well as the current situation of biochar for remediation in PTEs scenarios. Biochar can directly interact with PTEs or indirectly with soil components, influencing the bioavailability, mobility, and toxicity of PTEs. The efficacy of biochar in remediation varies depending on biomass feedstock, pyrolysis temperature, type of PTEs, and application rate. Compared to pristine biochar, modified biochar offers feasible solutions for tailoring specialized biochar suited to specific PTEs-contaminated soil. Main challenges limiting the applications of biochar are overdose and potential risks. The used biochar is separated from the soil that not only actually removes PTEs, but also mitigates the negative long-term effects of biochar. A sustainable remediation technology is advocated that enables the recovery and regeneration (95.0-95.6%) of biochar from the soil and the removal of PTEs (the removal rate of Cd is more than 20%) from the soil. Finally, future research directions are suggested to augment the environmental safety of biochar and promote its wider application.
Collapse
Affiliation(s)
- Yi Wu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhang Yan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongwei Wang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongxin Tan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tuo Zhou
- China State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
29
|
Jin Y, Yuan Y, Liu Z, Gai S, Cheng K, Yang F. Effect of humic substances on nitrogen cycling in soil-plant ecosystems: Advances, issues, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119738. [PMID: 38061102 DOI: 10.1016/j.jenvman.2023.119738] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
Nitrogen (N) cycle is one of the most significant biogeochemical cycles driven by soil microorganisms on the earth. Exogenous humic substances (HS), which include composted-HS and artificial-HS, as a new soil additive, can improve the water retention capacity, cation exchange capacity and soil nutrient utilization, compensating for the decrease of soil HS content caused by soil overutilization. This paper systematically reviewed the contribution of three different sources of HS in the soil-plant system and explained the mechanisms of N transformation through physiological and biochemical pathways. HS convert the living space and living environment of microorganisms by changing the structure and condition of soil. Generally, HS can fix atmospheric and soil N through biotic and abiotic mechanisms, which improved the availability of N. Besides, HS transform the root structure of plants through physiological and biochemical pathways to promote the absorption of inorganic N by plants. The redox properties of HS participate in soil N transformation by altering the electron gain and loss of microorganisms. Moreover, to alleviate the energy crisis and environmental problems caused by N pollution, we also illustrated the mechanisms reducing soil N2O emissions by HS and the application prospects of artificial-HS. Eventually, a combination of indoor simulation and field test, molecular biology and stable isotope techniques are needed to systematically analyze the potential mechanisms of soil N transformation, representing an important step forward for understanding the relevance between remediation of environmental pollution and improvement of the N utilization in soil-plant system.
Collapse
Affiliation(s)
- Yongxu Jin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Yue Yuan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Kui Cheng
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China.
| |
Collapse
|
30
|
Zhang Y, Bi Z, Tian W, Ge Z, Xu Y, Xu R, Zhang H, Tang S. Synergistic effect triggered by Fe 2O 3 and oxygen-induced hydroxyl radical enhances formation of amino-phenolic humic-like substance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119312. [PMID: 37857214 DOI: 10.1016/j.jenvman.2023.119312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Metal oxides play a promising role in the transformation of polyphenols and amino acids involved in naturally occurring humification. The objective of this study was to explore the synergistic interactions between Fe2O3 and O2 in the formation of humic substances under a controlled O2 atmosphere (0%, 21% and 40% O2 levels). The results indicate that an O2 level of 21% with Fe2O3 was optimal for humic acid (HA) production. Hydroxyl radicals (∙OH) formed and promoted the formation of HA in the presence of O2, and O2 improved the enhancing capacity of Fe2O3 by oxidizing Fe(II) to Fe(III). Moreover, the combination of these processes resulted in a synergistic improvement in humification. The evolution of functional groups in HA suggested that O2 promoted the formation of oxygen-containing groups such as lipids, and Fe2O3 was conducive to the formation of dark-coloured polymers during the darkening process of humification. Furthermore, the O2 level of 40% inhibited the formation of HA by reducing the transformation from Fe(III) to Fe(II). The XRD results showed few changes in the composition of Fe2O3 before and after humification, which indicated that Fe2O3 was a catalyst and an oxidant. The heterospectral UV-Vis/FTIR results suggested that ∙OH attacked phenolic rings to form the aromatic ring skeleton of HA and benefit the ring-opening copolymerization of humic precursors. In addition, structural equation modelling demonstrated that dissolved Fe was the key parameter affecting the HA yield. These findings provide new insights into the synergism of O2-mediated ∙OH production associated with metal oxide-facilitated humification.
Collapse
Affiliation(s)
- Yingchao Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Zhitao Bi
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Wenxin Tian
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Zhenyu Ge
- Leading Bio-agricultural Co. Ltd. and Hebei Agricultural Biotechnology Innovation Center, Qinhuangdao, 066004, PR China
| | - Yang Xu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Rui Xu
- Yunnan Provincial Rural Energy Engineering Key Laboratory, Kunming, 650231, PR China
| | - Hongqiong Zhang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shoufeng Tang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| |
Collapse
|
31
|
Adhikari A, Aneefi AG, Sisuvanh H, Singkham S, Pius MV, Akter F, Kwon EH, Kang SM, Woo YJ, Yun BW, Lee IJ. Dynamics of Humic Acid, Silicon, and Biochar under Heavy Metal, Drought, and Salinity with Special Reference to Phytohormones, Antioxidants, and Melatonin Synthesis in Rice. Int J Mol Sci 2023; 24:17369. [PMID: 38139197 PMCID: PMC10743973 DOI: 10.3390/ijms242417369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to develop a biostimulant formulation using humic acid (HA), silicon, and biochar alone or in combination to alleviate the lethality induced by combined heavy metals (HM-C; As, Cd, and Pb), drought stress (DS; 30-40% soil moisture), and salt stress (SS; 150 mM NaCl) in rice. The results showed that HA, Si, and biochar application alone or in combination improved plant growth under normal, DS, and SS conditions significantly. However, HA increased the lethality of rice by increasing the As, Cd, and Pb uptake significantly, thereby elevating lipid peroxidation. Co-application reduced abscisic acid, elevated salicylic acid, and optimized the Ca2+ and Si uptake. This subsequently elevated the K+/Na+ influx and efflux by regulating the metal ion regulators (Si: Lsi1 and Lsi2; K+/Na+: OsNHX1) and increased the expressions of the stress-response genes OsMTP1 and OsNramp in the rice shoots. Melatonin synthesis was significantly elevated by HM-C (130%), which was reduced by 50% with the HA + Si + biochar treatment. However, in the SS- and DS-induced crops, the melatonin content showed only minor differences. These findings suggest that the biostimulant formulation could be used to mitigate SS and DS, and precautions should be taken when using HA for heavy metal detoxification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (A.A.); (A.G.A.); (H.S.); (S.S.); (M.V.P.); (F.A.); (E.-H.K.); (S.-M.K.); (Y.-J.W.); (B.-W.Y.)
| |
Collapse
|
32
|
Hussain B, Riaz L, Li K, Hayat K, Akbar N, Hadeed MZ, Zhu B, Pu S. Abiogenic silicon: Interaction with potentially toxic elements and its ecological significance in soil and plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122689. [PMID: 37804901 DOI: 10.1016/j.envpol.2023.122689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Abiogenic silicon (Si), though deemed a quasi-nutrient, remains largely inaccessible to plants due to its prevalence within mineral ores. Nevertheless, the influence of Si extends across a spectrum of pivotal plant processes. Si emerges as a versatile boon for plants, conferring a plethora of advantages. Notably, it engenders substantial enhancements in biomass, yield, and overall plant developmental attributes. Beyond these effects, Si augments the activities of vital antioxidant enzymes, encompassing glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), among others. It achieves through the augmentation of reactive oxygen species (ROS) scavenging gene expression, thus curbing the injurious impact of free radicals. In addition to its effects on plants, Si profoundly ameliorates soil health indicators. Si tangibly enhances soil vitality by elevating soil pH and fostering microbial community proliferation. Furthermore, it exerts inhibitory control over ions that could inflict harm upon delicate plant cells. During interactions within the soil matrix, Si readily forms complexes with potentially toxic metals (PTEs), encapsulating them through Si-PTEs interactions, precipitative mechanisms, and integration within colloidal Si and mineral strata. The amalgamation of Si with other soil amendments, such as biochar, nanoparticles, zeolites, and composts, extends its capacity to thwart PTEs. This synergistic approach enhances soil organic matter content and bolsters overall soil quality parameters. The utilization of Si-based fertilizers and nanomaterials holds promise for further increasing food production and fortifying global food security. Besides, gaps in our scientific discourse persist concerning Si speciation and fractionation within soils, as well as its intricate interplay with PTEs. Nonetheless, future investigations must delve into the precise functions of abiogenic Si within the physiological and biochemical realms of both soil and plants, especially at the critical juncture of the soil-plant interface. This review seeks to comprehensively address the multifaceted roles of Si in plant and soil systems during interactions with PTEs.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, 47150, Punjab, Pakistan
| | - Kun Li
- Sichuan Academy of Forestry, Chengdu, 610081, Sichuan, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Naveed Akbar
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | | | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
33
|
Fan Q, Jiu Y, Zou D, Feng J, Zhao M, Zhang Q, Lv D, Song J, Xu Z, Ye H. Alkaline humic acid fertilizer alters the distribution, availability, and translocation of cadmium and zinc in the acidic soil-Sauropus androgynus system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115698. [PMID: 37976927 DOI: 10.1016/j.ecoenv.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Humic acids (HA) are a popular soil additive to reduce metal availability, but they have the drawbacks of reduced effectiveness over time and a significant reduction in soil pH. An alkaline humic acid fertilizer (AHAF) combining alkaline additives with HA was developed to overcome such drawbacks. A field experiment was conducted to investigate the effects of different AHAF application rates on the physicochemical properties, bioavailability, accumulation, and translocation of Cd and Zn heavy metals in Sauropus androgynus grown in acidic soil. Based on our results, the 100AF (100% AHAF) treatment significantly increased soil pH, cation exchange capacity (CEC), and organic matter content (OM) after one year of application. Compared with the control treatment (CK), the application of different rates of AHAF resulted in a 37.1-40.3% decrease in soil exchangeable Cd fractions (Exc-Cd) and an increase in the humic acid-bound Cd fractions (HA-Cd) Fe- and Mn-oxide-bound Cd fractions (OX-Cd), and organic matter-bound Cd fractions (OM-Cd) by 9.5-64.6%, 24.8-45.1%, and 158.8-191.2%, respectively (P < 0.05). The different AHAF treatments decreased the Res-Zn, Exc-Zn, and OM-Zn fractions by 69.6-73.0%, 7.4-23.9%, and 18.1-23.2%, respectively (P < 0.05), and increased the HA-Zn fraction by 8.4-28.1%. In the control treatment, the bioconcentration factors (BCFs) for Cd and Zn in different S. androgynus plant organs were in the following order: (Cd) Leaves > Stems > Branches > Roots > Edible branches; (Zn) Roots > Stems > Leaves > Branches > Edible branches. The transfer factors (TFs) of Cd and Zn in S. androgynus were classified as follows: TF2 > TF1 > TF3 > TF4. Thus, S. androgynus stems, and roots had a strong ability to transport Cd and Zn to the leaves. Compared with CK, the 100AF treatment significantly increased the BCFs for Zn in all plant parts (except BCFedible branches). In contrast, it significantly decreased all BCFs and TFs for Cd and the TF4 for Zn, effectively reducing Cd and Zn accumulation in the edible branches of S. androgynus. Soil pH, CEC, OM, and HA-M fraction were highly and significantly negatively correlated with Cd and Zn content in edible branches (P < 0.001). Stepwise multiple linear regression analysis revealed that the soil HA-M fraction was the key contributing factor for Zn accumulation and translocation in S. androgynus. Moreover, based on our findings, the absorption, uptake, and translocation of Cd and Zn were mainly determined by metal speciation and the pH in the soil. Moreover, the competitive antagonistic mechanisms between Zn and Cd absorption also affected their accumulation in S. androgynus. Thus, AHAF can be used as a soil amendment to sustainably improve acidic soils and effectively reduce Cd and Zn accumulation in edible branches of S. androgynus.
Collapse
Affiliation(s)
- Qiong Fan
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Yuanda Jiu
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Dongmei Zou
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Jian Feng
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Min Zhao
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Qun Zhang
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Daizhu Lv
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Jia Song
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Zhi Xu
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Haihui Ye
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China.
| |
Collapse
|
34
|
Xue S, Miao Z, Gao M, Wan K. Structural analysis of lignite-derived humic acid and its microscopic interactions with heavy metal ions in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165385. [PMID: 37423290 DOI: 10.1016/j.scitotenv.2023.165385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Understanding heavy metal environmental behavior with humic acid (HA) is critical. There is currently a lack of information on the control of its structure organization on its reactivity to metals. The difference in HA structures under non-homogeneous conditions is critical for revealing its micro-interaction with heavy metals. The heterogeneity of HA was reduced using the fractionation method in this study, the chemical properties of HA fractions were analyzed using py-GC/MS, and the structural units of HA were proposed. Pb2+ was used as a probe to investigate the difference in the adsorption capacity of HA fractions. The microscopic interaction of structures with heavy metal was investigated and validated by structural units. The results show that as molecular weight increased, the oxygen content and the number of aliphatic chains decreased, but the opposite was true for aromatic and heterocyclic rings. The adsorption capacity for Pb2+ was as follows: HA-1 > HA-2 > HA-3. According to the linear analysis of the influencing factors of maximum adsorption capacity and possibility factors, the adsorption capacity was positively correlated with the contents of acid groups, carboxyl groups, phenolic hydroxyl groups, and the number of aliphatic chains. The phenolic hydroxyl group and the aliphatic-chain structure have the greatest impact. Therefore, structural differences and the number of active sites play an important role in adsorption. The binding energy of HA structural units to Pb2+ was calculated. It was found that the chain structure is easier to bind to heavy metals than aromatic rings, and the affinity of-COOH to Pb2+ is greater than that of -OH. These findings can help improve the adsorbent design.
Collapse
Affiliation(s)
- Shuwen Xue
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Zhenyong Miao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Mingqiang Gao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Keji Wan
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
35
|
Xu Y, Li N, Yang L, Liu T, Xiao S, Zhou L, Li D, Chen J, Zhang Y, Zhou X. Optimizing directional recovery of high-bioavailable phosphorus from human manure: Molecular-level understanding and assessment of application potential. WATER RESEARCH 2023; 245:120642. [PMID: 37774539 DOI: 10.1016/j.watres.2023.120642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/20/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023]
Abstract
Phosphorus (P) recovery from human manure (HM) is critical for food production security. For the first time, a one-step hydrothermal carbonation (HTC) treatment of HM was proposed in this study for the targeted high-bioavailable P recovery from P-rich hydrochars (PHCs) for direct soil application. Furthermore, the mechanism for the transformation of P speciation in the derived PHCs was also studied at the molecular level. A high portion of P (80.1∼89.3%) was retained in the solid phase after HTC treatment (120∼240°C) due to high metal contents. The decomposition of organophosphorus (OP) into high-bioavailable orthophosphate (Ortho-P) was accelerated when the HTC temperature was increased, reaching ∼97.1% at 210°C. In addition, due to the high content of Ca (40.45±2.37 g/kg) in HM, the HTC process promoted the conversion of low-bioavailable non-apatite inorganic (NAIP) into high-bioavailable apatite inorganic P (AP). In pot experiments with pea seedling growth, the application of newly obtained PHCs significantly promoted plant growth, including average wet/dry weight and plant height. Producing 1 ton of PHCs (210°C) with the same effective P content as agricultural-type calcium superphosphate could result in a net return of $58.69. More importantly, this pathway for P recovery is predicted to meet ∼38% of the current agricultural demand.
Collapse
Affiliation(s)
- Yao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liling Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
36
|
Mohammadi M, Egli M, Kavian A, Lizaga I. Static and dynamic source identification of trace elements in river and soil environments under anthropogenic activities in the Haraz plain, Northern Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164432. [PMID: 37245832 DOI: 10.1016/j.scitotenv.2023.164432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Unsustainable human activities have disrupted the natural cycle of trace elements, causing the accumulation of chemical pollutants and making it challenging to determine their sources due to interwoven natural and human-induced processes. A novel approach was introduced for identifying the sources and for quantifying the contribution of trace elements discharge from rivers to soils. We integrated fingerprinting techniques, soil and sediment geochemical data, geographically weighted regression model (GWR) and soil quality indices. The FingerPro package and the state-of-the-art tracer selection techniques including the conservative index (CI) and consensus ranking (CR) were used to quantify the relative contribution of different upland sub-watersheds in trace element discharge soil. Our analysis revealed that off-site sources (upland watersheds) and in-site sources (land use) both play an important role in transferring trace elements to the Haraz plain (northern Iran). The unmixing model's results suggest that the Haraz sub-watersheds exhibit a higher contribution to trace elements transfer in the Haraz plain, and therefore, require greater attention in terms of implementing soil and water conservation strategies. However, it is noteworthy that the Babolroud (adjacent to Haraz) exhibited a better performance of the model. A spatial correlation between certain heavy metals, such as As and Cu, and rice cultivation existed. Additionally, we found a significant spatial correlation between Pb and residential areas, particularly in the Amol region. Our result highlights the importance of using advanced spatial statistical techniques, such as GWR, to identify subtle but critical associations between environmental variables and sources of pollution. The methodology used comprehensively identifies dynamic trace element sourcing at the watershed scale, allowing for pollutant source identification and practical strategies for soil and water quality control. Tracer selection techniques (CI and CR) based on conservatives and consensus improve unmixing model accuracy and flexibility for precise fingerprinting.
Collapse
Affiliation(s)
- Maziar Mohammadi
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Markus Egli
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ataollah Kavian
- Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ivan Lizaga
- Isotope Bioscience Laboratory - ISOFYS, Department of Green Chemistry and Technology, Ghent University, Gent, Belgium
| |
Collapse
|
37
|
Wang Y, Gao M, Chen H, Chen Y, Wang L, Wang R. Organic Amendments promote saline-alkali soil desalinization and enhance maize growth. FRONTIERS IN PLANT SCIENCE 2023; 14:1177209. [PMID: 37692414 PMCID: PMC10484106 DOI: 10.3389/fpls.2023.1177209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Secondary soil salinization in arid and semi-arid regions is a serious problem that severely hampers local agricultural productivity and poses a threat to the long-term sustainability of food production. the utilization of organic soil amendments presents a promising approach to mitigate yield losses and promote sustainable agricultural production in saline-alkali soil. In this study, we established four distinct treatments, chemical fertilizer (CK), humic acid with chemical fertilizer (HA), carboxymethyl cellulose with chemical fertilizer (CMC), and amino acid with chemical fertilizer (AA), to elucidate their respective impacts on the reclamation of saline soil and the growth of maize. The findings of our study reveal notable variations in desalination rates within the 0-40 cm soil layer due to the application of distinct soil amendments, ranging from 11.66% to 37.17%. Moreover, application of amendments significantly increased the percentage of soil macro-aggregates as compared to the CK treatment. Furthermore, HA and AA treatments significantly augmented soil nutrient content (HA: 48.07%; AA: 39.50%), net photosynthetic rate (HA: 12.68%; AA: 13.94%), intercellular CO2 concentration (HA: 57.20%; AA: 35.93%) and maize yield (HA:18.32%; AA:16.81%). Correlation analysis and structural equation modeling unveiled diverse mechanisms of yield enhancement for HA, CMC, and AA treatments. HA enhanced yield by increasing organic matter and promoting soil aggregate formation, CMC improved soil water content and facilitated salt leaching due to its excellent water-holding properties, while AA increased yield by elevating soil organic matter and effective nitrogen content. Among the array of soil amendment materials scrutinized, HA treatment emerged as the most promising agent for enhancing soil conditions and is thus recommended as the preferred choice for treating local saline soils.
Collapse
Affiliation(s)
- Yaqi Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Ming Gao
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Heting Chen
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yiwen Chen
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Lei Wang
- School of Ecology and Environment, Ningxia University, Yinchuan, Ningxia, China
| | - Rui Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
38
|
Liu L, Song Z, Tang J, Li Q, Sarkar B, Ellam RM, Wang Y, Zhu X, Bolan N, Wang H. New insight into the mechanisms of preferential encapsulation of metal(loid)s by wheat phytoliths under silicon nanoparticle amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162680. [PMID: 36889405 DOI: 10.1016/j.scitotenv.2023.162680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Silicon nanoparticles (SiNPs) have been widely used to immobilize toxic trace metal(loid)s (TTMs) in contaminated croplands. However, the effect and mechanisms of SiNP application on TTM transportation in response to phytolith formation and phytolith-encapsulated-TTM (PhytTTM) production in plants are unclear. This study demonstrates the promotion effect of SiNP amendment on phytolith development and explores the associated mechanisms of TTM encapsulation in wheat phytoliths grown on multi-TTM contaminated soil. The bioconcentration factors between organic tissues and phytoliths of As and Cr (> 1) were significantly higher than those of Cd, Pb, Zn and Cu, and about 10 % and 40 % of the total As and Cr that bioaccumulated in wheat organic tissues were encapsulated into the corresponding phytoliths under high-level SiNP treatment. These observations demonstrate that the potential interaction of plant silica with TTMs is highly variable among elements, with As and Cr being the two most strongly concentrated TTMs in the phytoliths of wheat treated with SiNPs. The qualitative and semi-quantitative analyses of the phytoliths extracted from wheat tissues suggest that the high pore space and surface area (≈ 200 m2 g-1) of phytolith particles could have contributed to the embedding of TTMs during silica gel polymerization and concentration to form PhytTTMs. The abundant SiO functional groups and high silicate-minerals in phytoliths are dominant chemical mechanisms for the preferential encapsulation of TTMs (i.e., As and Cr) by wheat phytoliths. Notably, the organic carbon and bioavailable Si of soils and the translocation of minerals from soil to plant aerial parts can impact TTM sequestration by phytoliths. Thus, this study has implications for the distribution or detoxification of TTMs in plants via preferential PhytTTM production and biogeochemical cycling of PhytTTMs in contaminated cropland following exogenous Si supplementation.
Collapse
Affiliation(s)
- Linan Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Robert Mark Ellam
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng 475004, China
| | - Xiangyu Zhu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hailong Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
39
|
Wang Y, Xu Y, Li L, Yang Y, Xu C, Luo Y, Wang Y, Liang X, Sun J. Immobilization of Cd by mercapto-palygorskite in typical calcareous and acidic soil aggregates: Performance and differences. CHEMOSPHERE 2023; 323:138223. [PMID: 36863623 DOI: 10.1016/j.chemosphere.2023.138223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The microscale spatial heterogeneity and complexity of soil aggregates affect the properties and distribution of heavy metals (HMs). It has been confirmed that amendments can alter the distribution of Cd in soil aggregates. However, whether the Cd immobilization effect of amendments varies across soil aggregate levels remains unknown. In this study, soil classification and culture experiments were combined to explore the effects of mercapto-palygorskite (MEP) on Cd immobilization in soil aggregates of different particle sizes. The results showed that a 0.05-0.2% MEP application decreased soil available Cd by 53.8-71.62% and 23.49-36.71% in calcareous and acidic soils, respectively. The Cd immobilization efficiency of MEP in calcareous soil aggregates was in the following order: micro-aggregates (66.42-80.19%) > bulk soil (53.78-71.62%) > macro-aggregates (44.00-67.51%), while the efficiency in acidic soil aggregates was inconsistent. In MEP-treated calcareous soil, the percentage change in Cd speciation in micro-aggregates were higher than that in macro-aggregates, whereas there was no significant difference in Cd speciation between the four acidic soil aggregates. Mercapto-palygorskite addition in micro-aggregates of calcareous soil increased the available Fe and Mn concentrations by 20.98-47.10% and 17.98-32.66%, respectively. Mercapto-palygorskite had no effect on soil pH, EC, CEC, and DOC values, while the difference in soil properties between the four particle sizes was the main influencing factor of MEP treatments on Cd in calcareous soil. The effects of MEP on HMs varied across soil aggregates and soil types, but had strong specificity and selectivity for Cd immobilization. This study illustrates the influence of soil aggregates on Cd immobilization using MEP, which can be used to guide the remediation of Cd-contaminated calcareous and acidic soils.
Collapse
Affiliation(s)
- Yale Wang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan, 450001, China; Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yingming Xu
- Innovation Team of Remediation of Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Liping Li
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan, 450001, China; Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yongqiang Yang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan, 450001, China; Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Chunhong Xu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan, 450001, China; Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yichao Luo
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yali Wang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan, 450001, China; Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| | - Xuefeng Liang
- Innovation Team of Remediation of Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Jingjie Sun
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| |
Collapse
|
40
|
Sun Y, Yang T. Investigating the use of synthetic humic-like acid as a soil amendment for metal-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16719-16728. [PMID: 36512281 DOI: 10.1007/s11356-022-24730-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Humic acid can effectively bind several metals and is regarded as a promising soil amendment. In this study, a novel synthetic humic-like acid (SHLA) was applied as a soil amendment to immobilize metals (Cu, Zn, Ni, As) in a contaminated agricultural soil (pH 6.17 ± 0.11; total organic carbon 5.91 ± 0.40%; Cu 302.86 ± 3.97 mg/kg; Zn 700.45 ± 14.30 mg/kg; Ni 140.16 ± 1.59 mg/kg). With increasing additions of SHLA from 0 to 10% (w/w), the soil pH constantly decreased from 6.17 ± 0.11 to 4.91 ± 0.10 (p < 0.001), while both total organic carbon (from 6.10 ± 0.12% to 10.55 ± 0.18%) and water-soluble carbon content (from 171.01 ± 10.15 mg/kg to 319.18 ± 20.74 mg/kg) of soil significantly increased (p < 0.001). Based on the results of 0.01 M CaCl2-extractable concentration of different metals, SHLA could lower the bioavailability of Cu (from 1.26 ± 0.04 mg/kg to 0.55 ± 0.05 mg/kg), Zn (from 6.74 ± 0.12 mg/kg to 3.26 ± 0.23 mg/kg), and Ni (from 5.16 ± 0.07 mg/kg to 0.12 ± 0.02 mg/kg), but increase the bioavailability of As (from 0.31 ± 0.02 to 1.83 ± 0.09 mg/kg). The immobilization mechanisms of metals in soils amended with SHLA involved surface complexation, electrostatic attraction, and cation-π interaction. Overall, SHLA shows great potential as a soil amendment for cationic heavy metal immobilization.
Collapse
Affiliation(s)
- Yucan Sun
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
- Department of Environment and Geography, University of York, Heslington, Wentworth Way, York, YO10 5NG, UK.
| |
Collapse
|
41
|
Luo Y, Tan C, He Y, Chen Y, Wan Z, Fu T, Wu Y. Rhizosphere activity induced mobilization of heavy metals immobilized by combined amendments in a typical lead/zinc smelter-contaminated soil. CHEMOSPHERE 2023; 313:137556. [PMID: 36528153 DOI: 10.1016/j.chemosphere.2022.137556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The persistence of the stabilization effect of amendments on heavy metals (HMs) is of great concern when they are used for remediating HM-contaminated soil. Here, pot experiments were conducted to investigate the effects of two consecutive seasons of vegetable cultivation on the mobilization of HMs (Cu, Pb, Zn, and Cd) immobilized by different application ratios (0, 20, 40, and 80 g kg-1, labelled C0, C2, C4, and C8) of a combined amendments (lime: sepiolite: biochar: humic acid = 2:2:1:1). The results showed that HM bioavailability decreased with increasing application ratios of the combined amendments in control (CK) treatments. The DOC contents, HM bioavailability, and HM contents in the leaves of vegetables increased, but the pH decreased during two consecutive seasons of vegetable cultivation; however, the HM bioavailability in the C2, C4, and C8 treatments was lower than that in the C0 treatments with vegetables. Catalase, urease, alkaline phosphatase, and dehydrogenase activities in the combined amendment treatments with and without vegetables were decreased compared to those in the C0 treatments. The relative abundances of the dominant bacterial phyla in the different treatments were Actinobacteria > Proteobacteria > Chloroflexi > Acidobacteria > Gemmatimonadetes > Bacteroidetes for the first season and Proteobacteria > Actinobacteria > Chloroflexi > Acidobacteria > Bacteroidetes > Gemmatimonadetes for the second season. Correlations showed that the pH and DOM properties during two consecutive seasons of vegetable cultivation were important factors influencing HM bioavailability, enzyme activity, and bacterial community composition. The bacterial community composition shift indirectly influenced the mobilization of HMs immobilized by the combined amendments. Thus, rhizosphere activity induced the mobilization of HMs immobilized by combined amendments during two consecutive seasons of vegetable cultivation.
Collapse
Affiliation(s)
- Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Chuanjing Tan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yu He
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yulu Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Zuyan Wan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tianling Fu
- The New Rural Development Research Institute, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
42
|
Zhao Y, Shi Y, Wang Z, Qian G. Enhancement of humic acid on plant growth in a Cd-contaminated matrix: performance, kinetics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5677-5687. [PMID: 35982387 DOI: 10.1007/s11356-022-22586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Phytoremediation of heavy metal-contaminated sites has been widely used. Nonetheless, the destruction of chloroplasts and plant growth enzymes by heavy metals leads to a low germination rate and high mortality of plants. To address these issues, an experiment was conducted in which plants were grown with (SHC) and without humic acid (SC) in actual Cd-contaminated soil from the site of an industrial pollution source. The results showed that the average germination rates of SC and SHC samples were 94.17% and 98.33%, respectively, and the plant heights were approximately 5 and 7 cm after 42 days of planting, respectively. It was discovered that humic acid (HA) enhanced plant growth by increasing urease and invertase content of the soil. The Shannon index and Venn diagram revealed that SHC had the richer population diversity. High-throughput analysis demonstrated that HA increased the content of plant growth-promoting bacteria in the soil from 5.01 to 34.27%. The experimental results revealed that HA increased microbial activity and diversity, thereby providing a favorable environment for plants to thrive. This study develops an effective method to enhance the phytoremediation performance of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Environment Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yang Shi
- Department of Environment Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang, 110819, China
- Shenyang Environmental Technology Assessment Center, Shenyang, 110170, China
| | - Zhi Wang
- Shenyang Environmental Technology Assessment Center, Shenyang, 110170, China
| | - Guangsheng Qian
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, 999078, China.
| |
Collapse
|
43
|
Wang N, Zhao K, Li F, Peng H, Lu Y, Zhang L, Pan J, Jiang S, Chen A, Yan B, Luo L, Huang H, Li H, Wu G, Zhang J. Characteristics of carbon, nitrogen, phosphorus and sulfur cycling genes, microbial community metabolism and key influencing factors during composting process supplemented with biochar and biogas residue. BIORESOURCE TECHNOLOGY 2022; 366:128224. [PMID: 36328174 DOI: 10.1016/j.biortech.2022.128224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling functional genes and bacterial and fungal communities during composting with biochar and biogas residue amendments were studied. Correlations between microbial community structure, functional genes and physicochemical properties were investigated by network analysis and redundancy analysis. It was shown that the gene of acsA abundance accounted for about 50% of the C-related genes. Biogas residue significantly decreased the abundance of denitrification gene nirK. Biogas residues can better promote the diversity of bacteria and fungi during composting. Biochar significantly increased the abundance of Humicola. Redundancy analysis indicated that pile temperature, pH, EC were the main physicochemical factors affecting the microbial community. WSC and NO3--N have significant correlation with C, N, P, S functional genes. The research provides a theoretical basis for clarifying the metabolic characteristics of microbial communities during composting and for the application of biochar and biogas residues in composting.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Keqi Zhao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Fanghong Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Hua Peng
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Yaoxiong Lu
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shilin Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hui Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
44
|
Fan J, Deng L, Wang W, Yi X, Yang Z. Contamination, Source Identification, Ecological and Human Health Risks Assessment of Potentially Toxic-Elements in Soils of Typical Rare-Earth Mining Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15105. [PMID: 36429823 PMCID: PMC9690513 DOI: 10.3390/ijerph192215105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The mining and leaching processes of rare-earth mines can include the entry of potentially toxic elements (PTEs) into the environment, causing ecological risks and endangering human health. However, the identification of ecological risks and sources of PTEs in rare-earth mining areas is less comprehensive. Hence, we determine the PTE (Co, Cr, Cu, Mn, Ni, Pb, Zn, V) content in soils around rare-earth mining areas in the south and analyze the ecological health risks, distribution characteristics, and sources of PTEs in the study area using various indices and models. The results showed that the average concentrations of Co, Mn, Ni, Pb and Zn were higher than the soil background values, with a maximum of 1.62 times. The spatial distribution of PTEs was not homogeneous and the hot spots were mostly located near roads and mining areas. The ecological risk index and the non-carcinogenic index showed that the contribution was mainly from Co, Pb, and Cr, which accounted for more than 90%. Correlation analysis and PMF models indicated that eight PTEs were positively correlated, and rare-earth mining operations (concentration of 22.85%) may have caused Pb and Cu enrichment in soils in the area, while other anthropogenic sources of pollution were industrial emissions and agricultural pollution. The results of the study can provide a scientific basis for environmental-pollution assessment and prevention in rare-earth mining cities.
Collapse
Affiliation(s)
- Jiajia Fan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
| | - Li Deng
- Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining 810007, China
| | - Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiu Yi
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
| | - Zhiping Yang
- Jiangxi Research Academy of Ecological Civilization, Nanchang 330036, China
| |
Collapse
|
45
|
Lu H, Xu C, Zhang J, Du C, Wu G, Luo L. The characteristics of alkaline phosphatase activity and phoD gene community in heavy-metal contaminated soil remediated by biochar and compost. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:298-303. [PMID: 35552473 DOI: 10.1007/s00128-022-03513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
This research was carried out to determine the influence of biochar and compost addition on the characteristics of potential alkaline phosphatase (ALP) activity and phoD gene community in heavy metal polluted soils. The ALP activity, the abundance and structure of phoD gene were systematically determined. Results showed that biochar and compost significantly changed soil properties, and promoted the microbial transformation of phosphorus. Compost addition significantly increased the ALP activity. Biochar and compost addition markedly increased the phoD gene abundance. The addition of biochar increased the proportion of Actinobacteria, Euryarchaeota, and Proteobacteria. By contrast, Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were the dominant taxa in soils with compost addition. Electrical conductivity critically controlled the expression of phoD and changed the structure of phoD-coding microbial communities in heavy-metal polluted soils that remediated by biochar and compost.
Collapse
Affiliation(s)
- Haiwei Lu
- College of Resources and Environment, Hunan Agricultural University, 410128, Changsha, China
| | - Chong Xu
- College of Resources and Environment, Hunan Agricultural University, 410128, Changsha, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, 410128, Changsha, China.
| | - Chunyan Du
- School of Hydraulic Engineering, Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha University of Science & Technology, 410114, Changsha, China
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, 410128, Changsha, China.
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, 410128, Changsha, China
| |
Collapse
|