1
|
Qin H, Chen Y, Cai Y, Liu H, Zhang J. Simulation of greenhouse gas emission during sewage-sludge composting with high-concentration oxygen aeration. ENVIRONMENTAL RESEARCH 2025; 276:121479. [PMID: 40147513 DOI: 10.1016/j.envres.2025.121479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/02/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Continuous emission of greenhouse gases (CH4, N2O) is still one of key issues inhibiting the sustainability of the composting industry, which is regulated by aeration combined with porosity of the matrix via varying dissolved-oxygen (DO) distribution of in compost particles. Numerical simulation is considered to be an emerging tool for optimizing oxygen supply and porosity of the matrix. Therefore, in this study, a novel numerical simulation approach was developed, which includes a DO distribution model and fitting equations of GHG based on DO distribution. The parameters (porosity distribution, coefficients) were obtained from pilot experiments of sewage-sludge composting at aeration of two oxygen concentrations (20.9 %, OC20.9; 40.0 %, OC40.0) respectively. As a result, when the air-immobile region ranged from 0.2 to 0.5 and the O2 concentration was increased from 20.9 % (OC20.9) to 100.0 % (OC100.0), the CH4 emission rate decreased by a range of 53 %-96 %, while the N2O emission rate varied from a decrease of 7 % to an increase of 59 %. The developed simulation approach can be used to assist in establishing novel technologies to reduce GHGs emission in composting via optimizing oxygen supply combined with matrix's porosity.
Collapse
Affiliation(s)
- Haiguang Qin
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Yixiao Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Areas, Guilin University of Technology, Guilin 541004, China
| | - Yanpeng Cai
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jun Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Areas, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
2
|
Liang Y, Gao B, Zhang X, Yi H, Li J, Zhang W. Combined addition of γ-PGA and DCD facilitates phytoremediation of heavy metals and carbon sequestration: A field experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124746. [PMID: 40054352 DOI: 10.1016/j.jenvman.2025.124746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/18/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
A field study examined the impact of γ-polyglutamic acid (γ-PGA), both alone and in combination with dicyandiamide (DCD), on the phytoremediation of soil contaminated with Cd, Pb, and Zn. This study focused on the heavy metal (HM) accumulation, and soil CO2 and N2O emissions in Cosmos sulphureus and Pennisetum americanum × P. purpureum, and soil microbial communities. The findings indicated that the application of γ-PGA, either alone or in combination with DCD, increased plant yield and HM bioavailability in the soil, leading to improved HM uptake by plants. For P. americanum × P. purpureum, compared to CK treatment, the combined addition of γ-PGA and DCD increased the Cd, Pb, and Zn extraction by 131.4%, 80.6%, and 99.7%, respectively. Compared to γ-PGA alone, the combined addition of γ-PGA and DCD reduced the soil N2O emission and global warming potential by 26.4% and 39.1%, respectively. P. americanum × P. purpureum treated with γ-PGA and DCD achieved C sequestration of 829 kg ha-1. Moreover, the application of γ-PGA, alone or in combination with DCD, increased the abundance of soil microbes. Bacteria (Proteobacteria, Actinobacteriota, and Firmicutes) as well as fungi (Basidiomycota and Mortierellomycota) contributed to HM accumulation and resistance to stress by altering soil enzyme activities, C and N fractions. Additionally, Acidobacteriota and Patescibacteria are beneficial to reducing soil GHG emissions and GWP in P. americanum × P. purpureum soil treated with γ-PGA and DCD. In conclusion, P. americanum × P. purpureum with the combined addition of γ-PGA and DCD increased HM extraction and total C sequestration in the plant-soil system. This approach offers a scientific basis and promising approach for integrating phytoremediation with C sequestration.
Collapse
Affiliation(s)
- Yexi Liang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Bo Gao
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; College of Plant and Ecological Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xingfeng Zhang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China.
| | - Haifeng Yi
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Junjiang Li
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Wenying Zhang
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; College of Plant and Ecological Engineering, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
3
|
Ma X, Bai H, Li G, Li L, Meng H, Liu Y, Yuan J. Effects of nitrification inhibitors DCD and DMPP on maturity, N 2O and NH 3 emissions during manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124895. [PMID: 40073474 DOI: 10.1016/j.jenvman.2025.124895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
In order to reduce N2O emissions during composting, the effects of different nitrification inhibitors (NI), dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP), on compost maturity, N2O, and NH3 emissions were studied under continuous incremental addition. This study used pig manure and corn straw as composting materials, based on the total nitrogen (TN) content of the initial mixture, two treatments were set: DCD (2.5% in the early phase and 5.0% in the maturation phase) and DMPP (0.25% in the early phase and 0.75% in the maturation phase) in a composting experiment. The results showed that adding DCD and DMPP did not affect the compost maturity, with the seed germination index (GI) of final compost reaching 80.76%-97.06%. Before the maturity period of compost, ammonia (NH3) emissions accounted for 98.5%-99.4% of total emissions. Compared with the control group (CK), the addition of DCD and DMPP in the early stage reduced NH3 emissions by 8.85% and 12.83%, respectively, by decreasing the ammonification rate. During the mature stage of composting, N2O emissions account for 95.6%-98.9% of the total emissions. The addition of DCD and DMPP delayed N2O emissions by 4 and 6 days, respectively, through nitrification inhibition. The DMPP amendment also reduced cumulative N2O emissions by 54.50% and increased the nitrogen content of the final compost. Correlation analysis showed that N2O was mainly originated from the denitrification of nitrification substrate (NO2--N and NO3--N). This study provides technical support for low-carbon management of agricultural waste.
Collapse
Affiliation(s)
- Xinyuan Ma
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Haobo Bai
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Lingling Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Haofeng Meng
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China.
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Lou Y, Mo K, Shao W, Liu Y, Chong Y, Yu G, Zheng Q, Qiu R. Exploring the Dual Nature of Integrated Crop-Livestock Systems: A Review of Environmental Benefits and Risk Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7019-7033. [PMID: 40072285 DOI: 10.1021/acs.jafc.4c10994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Integrated crop-livestock systems (ICLS) are acknowledged as both productive and environmentally sustainable, with notable potential to optimize resource use, enhance ecosystem services, and boost crop yields. However, manure application, a critical component of ICLS, may amplify negative environmental impacts, particularly the risks associated with emerging pollutants, which remain underexplored and insufficiently understood. This comprehensive review seeks to thoroughly evaluate the environmental benefits of ICLS. It integrates case studies of successful ICLS models implemented across leading agricultural nations to deepen insights into their practical application. Moreover, this review uniquely underscores the environmental challenges posed by emerging pollutants in ICLS and examines mitigation strategies. Additionally, technological advancements, sustainable practices, assessment models, and policy interventions are essential for ICLS development, highlighting the need for further in-depth research.
Collapse
Affiliation(s)
- Yueshang Lou
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kexin Mo
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wankui Shao
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yilun Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yunxiao Chong
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Guangwei Yu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qian Zheng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
5
|
Shi S, Guo Z, Bao J, Jia X, Fang X, Tang H, Zhang H, Sun Y, Xu X. Machine learning-based prediction of compost maturity and identification of key parameters during manure composting. BIORESOURCE TECHNOLOGY 2025; 419:132024. [PMID: 39732375 DOI: 10.1016/j.biortech.2024.132024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Evaluating compost maturity, e.g. via manual seed germination index (GI) measurement, is both time-consuming and costly during composting. This study employed six machine learning methods, including random forest (RF), extra tree (ET), eXtreme gradient boosting, gradient boosting decision tree, back propagation neural network, and multilayer perceptron, to develop models for predicting GI during manure composting. RF and ET exhibited robust predictive performance for GI, achieving high coefficient of determination (R2) of 0.937 and 0.904, respectively, along with root mean squared error of 7.261 and 8.930. SHapley additive exPlanations identified the duration time of composting, total nitrogen, and electrical conductivity as the key features influencing GI. Validation with actual GI data further confirmed the effectiveness of RF and ET models in predicting GI. This study could facilitate optimizing manure composting strategies, enable efficient parameter regulation, reduce labor costs, assist in anomaly detection, and promote intelligent management in real-world composting practices.
Collapse
Affiliation(s)
- Shuai Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Zhiheng Guo
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Jiaxin Bao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Xiangyang Jia
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Xiuyu Fang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Huaiyao Tang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Hongxin Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Yu Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Xiuhong Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Zhao M, Ding Y, Qin Y, Xiao Z, Xi B, Ren X, Zhao J, Wang Q. Effects of selenate on greenhouse gas release and microbial community variations during swine manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123523. [PMID: 39632302 DOI: 10.1016/j.jenvman.2024.123523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Co-composting of livestock manure and selenate is an effective means to produce selenium-rich organic fertilizer. However the effect of selenate on greenhouse gas emission during composting is still unknown. To probe the influences of selenate on greenhouse gas and microbial community changes during swine manure composting. Various dose of selenate were added to the fresh swine manure and wheat straw for 80 days aerobic composting, sequentially labeled as T1 (control) to T6 (0, 1, 2, 3, 4 and 5 mg kg-1). Results indicated that selenate generally increased the nitrous oxide (N2O) and ammonia (NH3) emissions while presented varying impacts on methane (CH4) emissions. Compared with the control, adding 2 and 5 mg kg-1 selenate reduced the CH4 emission by 39.60% and 13.75%, respectively, while other concentrations presented opposite results. Meanwhile, adding 2 mg kg-1 selenate could reduce the global warming potential and improve the compost maturity. According to the microbial results, adding 2 mg kg-1 selenate enhanced the richness and variety of the microbes and might influence Proteobacteria, Chloroflexi, Actinobacteria and Methylococcaceae_unclassified to decrease the global warming potential.
Collapse
Affiliation(s)
- Mengxiang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Yilang Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Ziling Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Bin Xi
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100000, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Jiarui Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
7
|
Xu M, Yu B, Chen Y, Zhou P, Xu X, Qi W, Jia Y, Liu J. Mitigating greenhouse gas emission and enhancing fermentation by phosphorus slag addition during sewage sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122740. [PMID: 39378818 DOI: 10.1016/j.jenvman.2024.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
During the composting of sewage sludge (SS), a quantity of greenhouse gases has been produced. This study aimed to clarify the microbial mechanisms associated with the addition of industrial solid waste phosphorus slag (PS) to SS composting, specifically focusing on its impact on greenhouse gas emissions and the humification. The findings indicated that the introduction of PS increased the temperature and extended the high-temperature phase. Moreover, the incorporation of 10% and 15% PS resulted in a decrease of N2O emissions by 68.9% and 88.6%, respectively. Microbial diversity analysis indicated that PS improved waste porosity, ensuring the aerobic habitat. Therefore, the environmental factors of the system were altered, leading to the enrichment of various functional bacterial species, such as Firmicutes and Chloroflexi, and a reduction of pathogenic bacterium Dokdonella. Consequently, incorporating PS into SS composting represents an effective waste treatment strategy, exhibiting economic feasibility and promising application potential.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Bao Yu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yue Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ping Zhou
- Kunming Dianchi Water Treatment Co., Ltd, Kunming, 650228, China
| | - Xingkun Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenzhi Qi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yufeng Jia
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Xiao R, Li L, Zhang Y, Fang L, Li R, Song D, Liang T, Su X. Reducing carbon and nitrogen loss by shortening the composting duration based on seed germination index (SCD@GI): Feasibilities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172883. [PMID: 38697528 DOI: 10.1016/j.scitotenv.2024.172883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Addressing carbon (C) and nitrogen (N) losses through composting has emerged as a critical environmental challenge recently, and how to mitigate these losses has been a hot topic across the world. As the emissions of carbonaceous and nitrogenous gases were closely correlated with the composting process, the feasibility of composting duration shortening on C and N loss needs to be explored. Therefore, the goal of this paper is to find evidence-based approaches to reduce composting duration, utilizing the seed germination index as a metric (SCD@GI), for assessing its efficiency on C and N loss reductions as well as compost quality. Our findings reveal that the terminal seed germination index (GI) frequently surpassed the necessary benchmarks, with a significant portion of trials achieving the necessary GI within 60 % of the standard duration. Notably, an SCD@GI of 80 % resulted in a reduction of CO2 and NH3 by 21.4 % and 21.9 %, respectively, surpassing the effectiveness of the majority of current mitigation strategies. Furthermore, compost quality, maturity specifically, remained substantially unaffected at a GI of 80 %, with the composting process maintaining adequate thermophilic conditions to ensure hygienic quality and maturity. This study also highlighted the need for further studies, including the establishment of uniform GI testing standards and comprehensive life cycle analyses for integrated composting and land application practices. The insights gained from this study would offer new avenues for enhancing C and N retention during composting, contributing to the advancement of high-quality compost production within the framework of sustainable agriculture.
Collapse
Affiliation(s)
- Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Lan Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yanye Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| | - Dan Song
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| | - Tao Liang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China.
| |
Collapse
|
9
|
Cheng J, Zhang L, Gao X, Shi T, Li G, Luo W, Qi C, Xu Z. Multi-stage aeration regime to regulate organic conversion toward gas alleviation and humification in food waste digestate composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120809. [PMID: 38583382 DOI: 10.1016/j.jenvman.2024.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Aerobic composting has been considered as a pragmatic technique to convert food waste digestate into high-quality biofertiliser. Nevertheless, massive gaseous emission and immature product remain the primary challenges in food waste digestate composting. Thus, the performance of multi-stage aeration regimes to improve gaseous emissions and organic humification during food waste digestate composting was investigated in this study. In addition to continuous aeration with a constant intensity of 0.3 L kg·dry mass (DM)-1·min-1, two multi-stage decreased aeration regimes were designed as "0.3-0.2-0.1" and "0.3-0.1-0.1" L·kg·DM-1·min-1 from the thermophilic to cooling and then mature stages, respectively. Results showed that the decreased aeration regimes could alleviate nitrous oxide (N2O) and ammonia (NH3) emission and slightly enhance humification during composting. The alleviated N2O and NH3 emission were mainly contributed by abiotically reducing gaseous release potential as well as biotically inactivating denitrifers (Pusillimonas and Pseudidiomarina) and proliferating Atopobium to reduce nitrate availability under lower aeration supply. The "0.3-0.2-0.1 L kg·DM-1·min-1" regime exhibited a more excellent performance to alleviate N2O and NH3 emission by 27.5% and 16.3%, respectively. Moreover, the decreased aeration regimes also favored the enrichment of functional bacteria (Caldicoprobacter and Syntrophomonas) to accelerate lignocellulosic biodegradation and thus humic acid synthesis by 6.5%-11.2%. Given its better performance to improve gaseous emissions and humification, the aeration regime of "0.3-0.2-0.1 L kg·DM-1·min-1" are recommended in food waste digestate composting in practice.
Collapse
Affiliation(s)
- Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Tong Shi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Jiao M, Yang Z, Xu W, Zhan X, Ren X, Zhang Z. Elucidating carbon conversion and bacterial succession by amending Fenon-like systems during co-composting of pig manure and branch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170279. [PMID: 38280577 DOI: 10.1016/j.scitotenv.2024.170279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The essential point of current study was to investigate the effect of a Fenton-like system established by oxalic acid and Fe(II) on gas emission, organic matter decomposition and humification during composting. Branches were pretreated with Fenton reagents (0.02 M FeCl2·4H2O + 1.5 M H2O2) and then adding 10 % oxalic acid (OA). The treatments were marked as B1 (control), B2 (Fenton reagent), B3 (10% OA) and B4 (Fenton-like reagent). The results collected from 80 d of composting showed that adding Fenton-like reagent benefited the degradation of organic substances, as reflected by the total organic carbon and dissolved organic carbon, and the maximum decomposition rate was observed in B4. In addition, the Fenton-like reagent could improve the synthesis of humus characterized by complex and stable compounds, which was consistent with the spectral parameters (SUVA254, SUVA280, E253/E203 and Fourier transform-infrared indicators) of DOC. Furthermore, the functional microbial succession performance and linear discriminant effect size analyses provided microbial evidence of humification improvement. Notably, compared with the control, the minimum value of CH4 cumulation was reported in B4, which decreased by 30.44 %. Concluded together, the addition of a Fenton-like reagent composed by OA and Fe(II) is a practical way to improve the humification. Furthermore, the mechanisms related to the promotion of humification should be investigated from free radicals, functional genes, and metabolic pathways.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhaowen Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Wanying Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
11
|
Zhu L, Li W, Huang C, Tian Y, Xi B. Functional redundancy is the key mechanism used by microorganisms for nitrogen and sulfur metabolism during manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169389. [PMID: 38104842 DOI: 10.1016/j.scitotenv.2023.169389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The microbial ecological functions associated with the nitrogen and sulfur cycles during composting have not been thoroughly elucidated. Using metagenomic sequencing, the microbial mechanisms underlying the nitrogen and sulfur metabolism during livestock and poultry manure composting were investigated in this study. The findings demonstrate that functional redundancy among microorganisms is a crucial factor for the nitrogen and sulfur cycling during livestock and poultry manure composting. Processes such as organic sulfur synthesis, assimilatory sulfate reduction, ammonia assimilation, and denitrification were found to be prevalent. Additionally, there was a certain degree of conservation in nitrogen and sulfur conversion functions among microorganisms at the phylum level. All high-quality metagenomic assembly genomes (MAGs) possessed carbon fixation potential, with 86.3 % of MAGs containing both nitrogen and sulfur conversion genes. Except for bin30, other MAGs encoding sulfur oxidation enzymes were found to be associated with at least one denitrification gene. This suggests a potential interplay between nitrogen and sulfur metabolism among microorganisms. 45, 19, 1, 31, 1, and 2 MAGs could completely regulate organic sulfur synthesis, assimilatory sulfate reduction, thiosulfate oxidation to sulfate, glutamine synthase-glutamate synthase pathway (GS-GOGAT), denitrification, and dissimilatory nitrate reduction, respectively by encoding the required enzymes. TN and pH were the key factors driving the functional redundancy in nitrogen and sulfur microbial community.
Collapse
Affiliation(s)
- Lin Zhu
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
12
|
Huang Y, Mei J, Duan E, Zhu Y, Wu Y. Effect and its mechanism of potassium persulfate on aerobic composting process of vegetable wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7111-7121. [PMID: 38157178 DOI: 10.1007/s11356-023-31466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Vegetable waste (VW) is a potential organic fertilizer resource. As an important way to utilize vegetable wastes, aerobic composting of VW generally has the problems of long fermentation cycle and incomplete decomposition of materials. In this study, 0.3-1.2% of potassium persulfate (KPS) was added to promote the maturity of compost. The results showed that the addition of KPS promoted the degradation of materials, accelerated the temperature rise of compost. KPS also promoted the formation of humic substances (HS). Compared with the control, HS contents of treatments with KPS addition increased by 7.81 ~ 17.52%. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) analysis reveal the mechanism of KPS affecting the composting process: KPS stimulated the degradation of various organic substances such as lignin at high temperature stage, and the degradation of lignin could accelerate the release and decomposition of other components; KPS made the structure of the material looser, with more voids and pores, and more specific surface area of the material, which was more suitable for microbial degradation activities. Therefore, the addition of KPS can promote the decomposition of organic matter in the early stage of composting, accelerate the process of thermophilic phase, and shorten the composting process and improve product maturity.
Collapse
Affiliation(s)
- YuYing Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Juan Mei
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou, 215009, China.
| | - EnShuai Duan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ying Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - YanZe Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
13
|
Zhou Y, Zhao H, Lu Z, Ren X, Zhang Z, Wang Q. Synergistic effects of biochar derived from different sources on greenhouse gas emissions and microplastics mitigation during sewage sludge composting. BIORESOURCE TECHNOLOGY 2023; 387:129556. [PMID: 37517712 DOI: 10.1016/j.biortech.2023.129556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
This study aimed to investigate the effects of biochar derived from different sources (wheat straw, sawdust and pig manure) on greenhouse gas and microplastics (MPs) mitigation during sewage sludge composting. Compared to the control, all biochar significantly reduced the N2O by 28.91-41.23%, while having no apparent effect on CH4. Sawdust biochar and pig manure biochar significantly reduced the NH3 by 12.53-23.53%. Adding biochar decreased the global warming potential during composting, especially pig manure biochar (177.48 g/kg CO2-eq.). The concentration of MPs significantly increased in the control (43736.86 particles/kg) compared to the initial mixtures, while the addition of biochar promoted the oxidation and degradation of MPs (15896.06-23225.11 particles/kg), with sawdust biochar and manure biochar were more effective. Additionally, biochar significantly reduced the abundance of small-sized (10-100 μm) MPs compared to the control. Moreover, biochar might regulate specific microbes (e.g., Thermobifida, Bacillus and Ureibacillus) to mitigate greenhouse gas emissions and MPs degradation.
Collapse
Affiliation(s)
- Yanting Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Haoran Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zonghui Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
14
|
Wu JP, Li ML, Wang Y, Lin S, Hu RG, Xiang RB. Impact of bentonite on greenhouse gas emissions during pig manure composting and its subsequent application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118453. [PMID: 37354585 DOI: 10.1016/j.jenvman.2023.118453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Additives were widely investigated to retain the nutrients and mitigate the greenhouse gas emissions (GHGs) during manure composting. However, the sustained effects of additives on the GHGs emissions following incorporation of composts to soil were scarcely explored. This study evaluated the effects of bentonite added at the beginning of pig manure composting on the GHGs emissions during two successive processes, i.e., composting and soil incubation amended with composting products. Addition of bentonite did not hinder the composting process and alter the total CO2 emission. On the other hand, reduction by about 17% and 29% for CH4 and N2O emission, respectively, was achieved in the presence of bentonite during composting. Incorporation of the final composting products to soil enhanced significantly the soil C and N of various forms, and gas emissions of CO2 and N2O. However, no significant differences were observed between bentonite-manure co-compost and manure-only compost application except for the N2O emission. Compared to the manure-only compost, compost amended with bentonite reduced N2O loss by around 6.8%, but not statistically significant. This study confirmed that addition of bentonite at the composting stage can mitigate the GHGs emission considering both composting and compost application stages, with all reductions occurring at the composting stage.
Collapse
Affiliation(s)
- Jia-Ping Wu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Meng-Ling Li
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yan Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shan Lin
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Rong-Gui Hu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Rong-Biao Xiang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
15
|
Zhu L, Huang C, Li W, Wu W, Tang Z, Tian Y, Xi B. Ammonia assimilation is key for the preservation of nitrogen during industrial-scale composting of chicken manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:50-61. [PMID: 37544234 DOI: 10.1016/j.wasman.2023.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Nitrogen loss from compost is a serious concern, causing severe environmental pollution. The NH4+-N content reflects the release of NH3. However, the nitrogen conversion pathway that has the greatest impact on NH4+-N content is still unclear. This study attempted to explore the key pathways, core functional microorganisms, and mechanisms involved in the transformation of ammonia nitrogen during composting. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathways revealed that ammonia assimilation was dominated by the glutamate dehydrogenase (GDH) pathway (53.4%), which is crucial for nitrogen preservation. The combined analysis of KEGG, NR species annotation, and co-occurrence network identified 20 easy-to-regulate obligate core nitrogen-transforming functional microorganisms, including 18 ammonia-assimilating bacteria. Furthermore, the effects of environmental parameters on the obligate core functional microorganisms were investigated. The present study results provided a theoretical basis for the utilization of ten ammonia-assimilating bacteria, such as Paenibacillus, Erysipelatoclostridium, and Defluviimonas to improve the quality of compost.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weixia Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Zhurui Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
16
|
Yang Y, Chen W, Liu G, Kong Y, Wang G, Yin Z, Li G, Yuan J. Effects of cornstalk and sawdust coverings on greenhouse gas emissions during sheep manure storage. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:104-114. [PMID: 37167708 DOI: 10.1016/j.wasman.2023.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Manure covered by organic materials during the storage has shown that it can effectively reduce emissions of greenhouse gases, but few studies have focused on the bacterial communities in manure or the coverage and mechanism responsible for reducing gas emissions. Therefore, this study investigated the impacts and mechanisms of cornstalk and sawdust coverings on greenhouse gas emissions during sheep manure storage. Sheep manure covered by organic material reduced nitrous oxide (N2O) emissions (42.27%-42.55%) relative to uncovered control through physical adsorption and biological transformation of Acinetobacter, Corynebacterium, Brachybacterium, Dietzia and Brevibacterium. Sheep manure covered by organic materials also increased methane (CH4) emissions (16.31%-43.07%) by increasing anaerobic zones of coverage. Overall, coverings reduced carbon dioxide equivalent (CO2eq) by 29.87%-33.60%. Coverings had less effect on the bacterial diversity and community of sheep manure, and the number of bacteria shared by sheep manure and the covering material increased with storage progress, indicating that these bacteria were transferred to the covering materials with gas emissions and moisture volatilization. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) images showed that functional group intensities of the covering materials increased and the fibrous structures became more disordered during the storage period. In general, it was safe to use organic materials as coverages during sheep manure storage, which was conducive to reducing greenhouse gas emissions.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Wenjie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Guoliang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ziming Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
17
|
Bao M, Cui H, Lv Y, Wang L, Ou Y, Hussain N. Greenhouse gas emission during swine manure aerobic composting: Insight from the dissolved organic matter associated microbial community succession. BIORESOURCE TECHNOLOGY 2023; 373:128729. [PMID: 36774985 DOI: 10.1016/j.biortech.2023.128729] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Greenhouse gas emissions during aerobic composting is unavoidable, but good practices can minimize emission. Therefore, to explore the key factors influencing the release of greenhouse gas emissions during composting, the inaction of organic matter conversion, greenhouse gas emissions and bacterial community structure during co-composting with different ratio (pig manure and corn straw) over a 6-week period was studied. The excitation-emission matrix fluorescence spectroscopy with the parallel factor was used to identify that dissolved organic matter associated microbial community succession mainly influenced greenhouse gas emissions. Protein-like fractions of dissolved organic matter were more likely to decompose and promote CH4 and CO2 emissions, while the humic-like fractions of dissolved organic matter positively affected N2O emissions. The largest of greenhouse gas emissions was appeared in MR2 with 12.7 kg CO2-eq, and the MR3 and MR4 reduced greenhouse gas emissions by 26.8 % and 11.4 %, respectively.
Collapse
Affiliation(s)
- Meiwen Bao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hu Cui
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yan Lv
- Soil and Fertilizer Station of Jilin Province, Changchun 130033, China
| | - Lixia Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Yang Ou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Naseer Hussain
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| |
Collapse
|
18
|
Li M, Li S, Chen S, Meng Q, Wang Y, Yang W, Shi L, Ding F, Zhu J, Ma R, Guo X. Measures for Controlling Gaseous Emissions during Composting: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3587. [PMID: 36834281 PMCID: PMC9964147 DOI: 10.3390/ijerph20043587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Composting is a promising technology for treating organic solid waste. However, greenhouse gases (methane and nitrous oxide) and odor emissions (ammonia, hydrogen sulfide, etc.) during composting are practically unavoidable, leading to severe environmental problems and poor final compost products. The optimization of composting conditions and the application of additives have been considered to mitigate these problems, but a comprehensive analysis of the influence of these methods on gaseous emissions during composting is lacking. Thus, this review summarizes the influence of composting conditions and different additives on gaseous emissions, and the cost of each measure is approximately evaluated. Aerobic conditions can be achieved by appropriate process conditions, so the contents of CH4 and N2O can subsequently be effectively reduced. Physical additives are effective regulators to control anaerobic gaseous emissions, having a large specific surface area and great adsorption performance. Chemical additives significantly reduce gaseous emissions, but their side effects on compost application must be eliminated. The auxiliary effect of microbial agents is not absolute, but is closely related to the dosage and environmental conditions of compost. Compound additives can reduce gaseous emissions more efficiently than single additives. However, further study is required to assess the economic viability of additives to promote their large-scale utilization during composting.
Collapse
Affiliation(s)
- Minghan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Shuyan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Shigeng Chen
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Qingyu Meng
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Yu Wang
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Wujie Yang
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Lianhui Shi
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Fangjun Ding
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Jun Zhu
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Ronghui Ma
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Xinsong Guo
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| |
Collapse
|