1
|
Hou J, Wang L, Wang J, Chen L, Han B, Yang T, Liu W. Insights on common fungicides: A national survey on farmland soils from Mainland China. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138177. [PMID: 40199079 DOI: 10.1016/j.jhazmat.2025.138177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Fungicides are a growing concern owing to their ecological and human health threats. In China, which is a large fungicide-consuming country, only a few provincial studies have reported several fungicide residues in agricultural soils. Additionally, terrestrial ecological risk assessments of pesticides are limited to the single species. This study showed that fungicides were commonly found in agricultural soils in mainland China, and the Σ13fungicides concentrations ranged from 0.0548 to 3183 μg/kg, with the major contributing component being difenoconazole. Spatial variation in fungicide concentrations was significant, with the highest concentrations observed in Southern China. The Σ13fungicides concentration was higher in soils covered with plastic films compared to uncovered soils, possibly because microplastics from agro-film sources promote fungicide retention in the soil. Among the crop types, the highest fungicide residues were found in soils planted with fruits. In addition, this study was the first to use the probabilistic species sensitivity distribution (pSSD) approach to deduce the predicted no-effect concentrations of major fungicides as terrestrial safety thresholds. Particularly, soil texture conditions may influence the hazard assessment of fungicides. Finally, from the species taxa perspective, the proportions of ecological risks of carbendazim and tebuconazole in agricultural soils in China were 4.3 % and 5.9 %, respectively.
Collapse
Affiliation(s)
- Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - LiXi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - JinZe Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Tong Yang
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
2
|
Wang K, Chen W, Zhao F, Li C, Xing X, Xu L. Occurrence and health risk assessment of phthalate ester pollution in mulched farmland soil at a national scale, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138276. [PMID: 40239526 DOI: 10.1016/j.jhazmat.2025.138276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Phthalate esters (PAEs), widely used as plasticizers in mulching films, are emerging contaminants of concern in farmland soils. However, systematic data on their pollution characteristics and health risks in long-term mulched soils across China remain limited. In this study, 53 typically mulched farmland soil samples from 29 provinces were analyzed using gas chromatography-tandem mass spectrometry to investigate PAEs occurrence, spatial distribution, drivers, and risks. Method validation showed recoveries of 76.3-111.6 % for 16 PAEs, with limits of detection and quantification ranging from 0.2-3.7 ng/mL and 0.1-0.8 ng/mL, respectively. Results revealed Σ16PAE concentrations of 108-2970 μg/kg (mean: 852 μg/kg), with elevated levels in southern/eastern China. Di-isobutyl phthalate and di-butyl phthalate (DBP) showed 100 % detection rates, while DBP dominated contamination (mean: 323 μg/kg). Redundancy analysis identified precipitation and polyethylene microplastic abundance as key drivers. Although non-carcinogenic risks (hazard quotients <1) were low, di(2-ethylhexyl) phthalate posed carcinogenic risks exceeding 10⁻⁴ in 11.3 % of samples. This nationwide assessment highlights the urgency to regulate PAEs emissions from plastic mulch residues and prioritize child health protection in agricultural policies.
Collapse
Affiliation(s)
- Kang Wang
- School of Environmental Studies & State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430074, China; Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Chen
- School of Environmental Studies & State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430074, China
| | - Fang Zhao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xinli Xing
- School of Environmental Studies & State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430074, China.
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
3
|
Yi Y, Wang Y, Liu W, Zhu J, Gu M, Jia Q, Li X, Mutalifu M, Jiang L, Zhang W, Zhang Z. Screening, identification, metabolic pathway of di-n-butyl phthalate degrading Priestia megaterium P-7 isolated from long-term film mulched cotton field soil in Xinjiang. Front Microbiol 2025; 16:1538746. [PMID: 40371103 PMCID: PMC12075219 DOI: 10.3389/fmicb.2025.1538746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Di-n-butyl phthalate (DBP) is one of the most widely used phthalate esters (PAEs) and is considered an emerging global pollutant. It may pose a significant threat to ecosystem and human health due to its residual hazards and accumulation in the environment. Bacteria-driven PAE biodegradation is considered an economical and effective strategy for remediating such polluted environments. Methods A DBP-degrading bacterium (P-7), was isolated from long-term film mulched cotton field soil. Its identity was confirmed via physiological, biochemical, and 16S rRNA gene analyses. The degradation conditions were optimized through single-factor experiments and response surface methodology (RSM).Furthermore, the whole-genome sequencing coupled with metabolomics was employed to elucidate metabolic mechanisms. Results Priestia megaterium P-7 (P. megaterium P-7) achieved 100% DBP removal within 20 h under optimal conditions and exhibited broad substrate specificity for other PAEs. Genomic analysis identified key genes (lip, aes, ybfF, estA, and yvaK) encoding esterases/hydrolases that initiate DBP catabolism, converting it to phthalic acid (PA). Subsequent decarboxylation (pdc, bsdCD, mdcACDH, and lysA) and dioxygenase-mediated steps integrated PA into the TCA cycle. Metabolomics revealed three degradation pathways: decarboxylation (DBP → MBP → BB → BA→Catechol), hydrolysis (DBP → MBP → PA → PCA → Catechol) and direct β-oxidation (DBP → DEP → MEP → PA → Catechol). Conclusion P. megaterium P-7 demonstrates exceptional degradation efficiency, substrate versatility, and environmental stress tolerance, making it a promising candidate for bioremediation of organic pollutants in contaminated soil.
Collapse
Affiliation(s)
- Yuanyang Yi
- College of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Yuxian Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Wanqin Liu
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jing Zhu
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Meiying Gu
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Qiong Jia
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Xue Li
- College of Food Science and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi, China
| | - Munire Mutalifu
- College of Food Science and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi, China
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Wei Zhang
- College of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Zhidong Zhang
- College of Life Sciences, Xinjiang Normal University, Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Science, Urumqi, China
- College of Food Science and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
4
|
Pan Y, Dong S, Zhu Q, Tao L, Wu X, Lu M, Liao C, Jiang G. Unveiling Human Exposure to Plasticizers through Drinking Tea: A Nationwide Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8210-8220. [PMID: 40231705 DOI: 10.1021/acs.est.5c02127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Dietary intake represents a significant exposure pathway for phthalates (PAEs) and nonphthalate plasticizers (NPPs). However, the associated exposure risk linked to tea consumption remains unclear. This study analyzed 10 PAEs and 10 NPPs in six types of tea collected from 18 provinces in China. Both PAEs and NPPs were detected in all samples, with concentrations ranging from 309 to 8150 ng/g for PAEs and 42.2 to 899 ng/g for NPPs, respectively. Source apportionment analysis indicates that packaging materials are important sources of plasticizer contamination in tea. The concentrations of di-isobutyl phthalate (DiBP), benzyl-butyl phthalate (BzBP), and trioctyl trimellitate (TOTM) in tea exhibited a significant correlation with those found in packaging materials (r: 0.414-0.465, p < 0.01). Five transformation products (TPs) of plasticizers were identified in brewed tea samples through suspect screening analysis, raising concerns about their potential health effects. Comparisons suggest that cold brewing may result in higher plasticizer exposure than hot brewing after a single brew. However, as the brewing times for hot brewed tea increased, the risk of human exposure rose, ultimately exceeded that of cold brewed tea. This study provides national-scale data on plasticizer contamination in Chinese tea and valuable insights into tea consumption practices.
Collapse
Affiliation(s)
- Yitong Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Tao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyi Wu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Meichen Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang Y, Rehman H, Khattak F, Tariq M, Khan BN, Chaman S, Riaz A, Ovais Omer M, Ali A, un Nisa Q, Muddassir Ali M, Saleem G. Immunomodulatory and growth-promoting effects of Rauwolfia serpentina root powder in broiler chicks challenged with Salmonella Gallinarum. Front Vet Sci 2025; 12:1534347. [PMID: 39963274 PMCID: PMC11831699 DOI: 10.3389/fvets.2025.1534347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Background Amid growing concern about antimicrobial resistance due to the irrational use of antibiotics in treating common poultry diseases, particularly Salmonella which is a foodborne pathogen in humans. This study investigates the effects of ethnoveterinary supplementation of Rauwolfia serpentina (L. Benth. ex Kurz) powder (RSP) on three key immune-related genes; Suppressor of cytokine signaling 3 (SOCS3), the quiescence-related gene P20K (P20K), and the major histocompatibility complex Class IIβ (MHC class IIβ), gut morphology and growth performance of broiler chicks infected with Salmonella Gallinarum. Methods Two hundred and forty day-old Hubbard classic chickens were randomly assigned to four groups: non-challenged control (NC), and Salmonella Gallinarum challenge group (SGC), and two treatment groups fed a basic diet supplemented with 1.5% Rauwolfia serpentina powder (RSP) with SGC (RSP-1) and 3% RSP with SGC (RSP-2), respectively, from day 3 till 28 days of age. Each treatment was replicated 4 times with 15 bird/replicate pen. On day 7, all the birds in the RSP-1, RSP-2 and SGC groups received 1 ml of BHI broth containing 2 × 108 CFU of Salmonella Gallinarum via oral gavage. While control birds received an equivalent volume of sterile BHI broth. Gene expression analysis was conducted using real-time PCR to measure the expression of key immune-related genes: SOCS3, P20K, and MHC Class IIβ in spleen, liver, and caeca. Additionally, histopathological assessments of gut and growth performance parameters including feed intake, body weight gain, and feed conversion ratio (FCR) were monitored throughout the experimental period. Result The gene expression analysis at 3 and 21 days post-challenge revealed that SGC birds had significantly higher SOCS3, P20K, and lower MHC class IIβ expression (p < 0.001) in the caecum, liver, and spleen of broiler chickens. In contrast, the RSP-1 and RSP-2 groups showed significantly lower SOCS3 and P20K expression (p < 0.001), alongside improved gut morphology, weight gain, and FCR compared to the SGC group, with these benefits increasing over time. Conclusion In conclusion, these findings suggest that Rauwolfia serpentina supplementation modulates key immune-related gene expression (SOCS3, P20K, and MHC class IIβ), enhances intestinal health, and improves growth performance in broilers challenged with Salmonella Gallinarum.
Collapse
Affiliation(s)
- Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Hiba Rehman
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Farina Khattak
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | - Maryam Tariq
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Sadia Chaman
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ayaesha Riaz
- Department of Parasitology and Microbiology, Faculty of Veterinary and Animal PMAS-ARID Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Ovais Omer
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Aqib Ali
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Qamar un Nisa
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary Animal Sciences, Lahore, Pakistan
| | - Gulbeena Saleem
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
6
|
Liu H, Liu X, Wang K, Ma X, Gao H, Liu X, Yan C. The occurrence and safety evaluation of phthalic acid esters in Oasis agricultural soils of Xinjiang, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117593. [PMID: 39953690 DOI: 10.1016/j.ecoenv.2024.117593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 02/17/2025]
Abstract
Soil pollution caused by plastic residues containing additives (e.g. phthalic acid esters (PAEs)) is ubiquitous and has become a global concern. However, the distribution, accumulation, and potential risks associated with PAEs in agricultural soils have not been fully explored. This study quantified the types, concentrations, and distribution patterns of common PAEs in 29 agricultural soil samples collected from the Xinjiang Oasis, China. The results indicated that no significant variation in PAE concentrations across the oasis farmlands in Xinjiang. The PAEs were predominantly concentrated in the topsoil layer (0-20 cm), with an average concentration of 102.3 μg/kg, with some migration observed to the deeper soil layer (20-40 cm). The most abundant PAEs detected were Di (2-ethylhexyl) phthalate (DEHP), diisobutyl phthalate (DIBP), and diethyl phthalate (DEP), which accounted for 49.82 %, 23.74 %, and 20.96 % of the total, respectively. Furthermore, the concentrations of all PAEs were below China's soil quality risk control standards, and the non-carcinogenic risks to both adults and children were below the current threshold, indicating relatively low risks to both the human health and the environment. These findings are crucial for understanding the presence and safety evaluation of PAEs in Xinjiang Oasis farmland, and they provide important reference data for managing and controlling PAE contamination in agricultural soils.
Collapse
Affiliation(s)
- Hejiang Liu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China.
| | - Xiuting Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| | - Xingwang Ma
- Institute of Soil, Fertilizer and Water-saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China.
| | - Haihe Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
7
|
Cui Z, Shi C, Zha L, Liu J, Guo Y, Li X, Zhang E, Yin Z. Phthalates in the environment of China: A scoping review of distribution, anthropogenic impact, and degradation based on meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117659. [PMID: 39778321 DOI: 10.1016/j.ecoenv.2024.117659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Phthalates (PAEs) are a group of endocrine-disrupting environmental chemicals (EEDs) that pose significant risks to human health. PAEs are widespread in various environmental media, including air, dust, water, and soil, and are subject to both horizontal and vertical migration. Human activities significantly influence the distribution of PAEs, yet current research on this relationship remains limited. In this study, we first describe the hot issues of PAEs in the environment through bibliometrics, and then review published related studies. We outline the global distribution of PAEs in different media and conducted a comparative analysis of their composition. Principal component analysis (PCA) revealed PAEs differences in environmental mediums and geographic locations. Correlation analysis between PAEs composition and human activities in China further demonstrated that PAE concentrations were closely linked to agricultural and industrial activities. We also discussed the biodegradation and abiotic degradation of PAEs, finding that bacteria play a crucial role in their degradation in soil. This study aims to assess the distribution, transfer, impact, and degradation of PAEs, providing insights for the prevention and remediation of PAE pollution.
Collapse
Affiliation(s)
- Zhigang Cui
- School of Nursing, China Medical University, Shenyang 110122, PR China
| | - Ce Shi
- School of Stomatology, China Medical University, Shenyang 110002, PR China
| | - Lanting Zha
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jiaman Liu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yinchu Guo
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiaohan Li
- School of Nursing, China Medical University, Shenyang 110122, PR China.
| | - Enjiao Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, PR China.
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
8
|
Kong X, Barone GD, Jin D, Mao Y, Nan F, Xu L, Wang Z, Deng Y, Cernava T. Pollution Status, Ecological Effects, and Bioremediation Strategies of Phthalic Acid Esters in Agricultural Ecosystems: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27668-27678. [PMID: 39620367 DOI: 10.1021/acs.jafc.4c07884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Phthalic acid esters (PAEs) are common organic contaminants in farmland soil throughout agricultural systems, posing significant threats to human health and thus closely associated with food safety concerns. Here, we consolidate the latest findings regarding the distribution, ecological effects, bioremediation methods, and microbial degradation pathways of PAEs in agricultural ecosystems. Generally, di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), and di-isobutyl phthalate (DiBP) exhibit the highest detection frequencies and concentrations in soil, air and agricultural products. The presence of these PAEs in agricultural ecosystems can significantly affect soil and plant-associated microbial communities, leading to decreased yield and quality of agricultural products. Bioremediation techniques, such as microbial degradation and phytoremediation, are frequently explored to address these issues. Overall, this review provides a comprehensive overview of current research on PAEs in China's agricultural systems and offers insights into potential problems and future research directions.
Collapse
Affiliation(s)
- Xiao Kong
- School of Public Health, Qingdao University, Qingdao 266021, China
| | | | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiting Mao
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Fengting Nan
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhigang Wang
- Department of Biotechnology, Institute of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
9
|
Zhou Y, Li S, Sun X, Wang J, Chen H, Xu Q, Ye H, Li S, Shi S, Zhang X. Preparation of novel magnetic ethylene glycol dimethacrylate-based molecularly imprinted polymer for rapid adsorption of phthalate esters from ethanol aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124891. [PMID: 39241951 DOI: 10.1016/j.envpol.2024.124891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Phthalate esters (PAEs), as emerging pollutants, pose a serious threat to human health and have become a major concern in the fields of environmental protection and food safety. Selective adsorption using molecularly imprinted polymer (MIP) is feasible, but most MIPs use the potentially toxic methacrylic acid (MAA) as a functional monomer, along with other crosslinking agents. In this study, MIP adsorbent was prepared using only ethylene glycol dimethacrylate (EGDMA) as both the functional monomer and crosslinking agent, without the inclusion of MAA. The adsorbent was utilized for the adsorption of PAEs from an ethanol aqueous solution. The results showed that EGDMA-based MIP (EMIP) achieved better adsorption performance of PAEs than MAA-based MIP (MMIP) due to more interactions of EGDMA with PAEs than MAA with them. For the adsorption of dibutyl phthalate (DBP) using EMIP, 95% of the equilibrium adsorption capacity was achieved within the first 15 min. In the isotherm analysis, the theoretical maximum adsorption capacity of EMIP was obtained as high as 159.24 mg/g at 20 °C in an ethanol (10 v%) aqueous solution. Furthermore, the adsorption of EMIP was not affected by the pH of the solution. The adsorption process of EMIP followed the pseudo-second-order kinetic and Freundlich isotherm model. Ethanol had a significant impact on the adsorption of DBP, and the results of molecular simulation could validate this. In addition, the regeneration experiments indicated that EMIP could be recycled 5 times without significant performance change and had a high recovery efficiency of 94.55%.
Collapse
Affiliation(s)
- Yuanhao Zhou
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Shunying Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaoya Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Jun Wang
- Shanxi Kunming Tobacco Company Ltd., Shanxi, 030032, China
| | - Haoxiang Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Qiangqiang Xu
- Shandong Zhaojin Motian Company Ltd., Shandong, 265400, China
| | - Hong Ye
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Shuangyang Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Shengpeng Shi
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
10
|
Singh I, Kanade GS, Kumar AR. Levels, distribution, and health risk assessment of phthalic acid esters in urban surface soils of Nagpur city, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1084. [PMID: 39432121 DOI: 10.1007/s10661-024-13281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Surface soil samples from residential, commercial, and industrial areas of Nagpur city, India, were collected to study the levels, distribution, and impact of land use patterns on phthalic acid ester (PAEs) contamination. The Σ6PAEs concentrations in soils from residential, commercial, and industrial areas ranged between 6,493 to 13,195 µg/kg, 707 to 18,446 µg/kg, and 1,882 to 5,004 µg/kg with medians of 10,399, 6,199, and 3,401 µg/kg, respectively. Bis-2-ethylhexyl phthalate (DEHP) and dimethyl phthalate (DMP) were the dominant PAEs in the urban soils. The concentrations of DEHP and DMP were significantly greater than those in Ontario's soil quality guidelines. Among the PAEs, benzyl-butyl phthalate (BzBP) was found at relatively high concentrations (1,238 and 9,171 µg/kg) at two locations (i.e., S1 and S15). The chronic toxic risk (CTR) of PAEs was below the threshold, although the risk to children through ingestion and dermal exposure routes was greater than that to adults. The CR due to BzBP and DEHP were below the threshold level; however, the CR due to DMP was > 1 × 10-6 in residential areas. The cumulative CR of the six PAEs for adults (1.33-1.41 × 10-5) and children (8.08-8.89 × 10-6) surpassed the threshold level. This study revealed that PAEs in urban soils pose a risk to public health and require immediate risk reduction strategies.
Collapse
Affiliation(s)
- Ishan Singh
- CSIR-National Environmental Engineering Research Institute, Stockholm Convention Regional Centre (SCRC India), Nehru Marg, Nagpur, 440020, Maharashtra, India
- Rashatrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, 440033, Maharashtra, India
| | - Gajanan Sitaramji Kanade
- CSIR-National Environmental Engineering Research Institute, Stockholm Convention Regional Centre (SCRC India), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Asirvatham Ramesh Kumar
- CSIR-National Environmental Engineering Research Institute, Stockholm Convention Regional Centre (SCRC India), Nehru Marg, Nagpur, 440020, Maharashtra, India.
- Rashatrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, 440033, Maharashtra, India.
| |
Collapse
|
11
|
Liang Y, Liu X, Zhai W, Guo Q, Guo H, Lv S, Wang Z, Zhao F, Zheng L, Zhou Z, Liu D, Wang P. Agricultural film-derived microplastics elevate the potential risk of pesticides in soil ecosystem: The inhibited leaching by altering soil pore. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135210. [PMID: 39047559 DOI: 10.1016/j.jhazmat.2024.135210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
The residue of mulch film is a crucial source of microplastics (MPs) in agricultural fields. The effects of mulch film-derived MPs on the environmental behavior of pesticides in agriculture remain unclear. In the present study, the effects of MPs of different sizes (5 mm, 1 mm, 30 µm, and 0.3 µm) at environmentally relevant concentrations on pesticide transport were evaluated, and the mechanism was explored with respect to adsorption and pore structure using fluorescence visualization, the extended Derjaguin-Landau-Verwey-Overbeek model, and microcomputed tomography. MPs were found to be retained in the soil due to size limitation, pore capture, and surface adhesion. The presence of mm-sized MPs (5 and 1 mm) at a concentration of 0.25 % inhibited the leaching behavior of atrazine, metolachlor, and tebuconazole. MPs did not significantly alter the pesticide adsorption ability of the soil. The reduced leaching originated from the impact of MPs on soil pore structure. Specifically, the porosity increased by 16.2-25.0 %, and the connectivity decreased by 34.5 %. These results demonstrate that mm-sized MPs inhibit pesticide leaching by obstructing the pores and altering the transport pathways, thereby potentially elevating environmental risks, particularly to the soil ecosystem.
Collapse
Affiliation(s)
- Yabo Liang
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Wangjing Zhai
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Qiqi Guo
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Haoming Guo
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Shengchen Lv
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhixuan Wang
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Fanrong Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Li Zheng
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
12
|
Lin Q, Zheng N, An Q, Xiu Z, Li X, Zhu H, Chen C, Li Y, Wang S. Phthalate monoesters accumulation in residential indoor dust and influence factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174900. [PMID: 39047842 DOI: 10.1016/j.scitotenv.2024.174900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Phthalate monoesters (mPAEs) possess biological activity that matches or even exceeds that of their parent compounds, phthalate esters (PAEs), negatively impacting humans. Indoor dust is the main carrier of indoor pollutants. In this study, indoor dust samples were collected from 46 households in Changchun City, Jilin Province, in May 2019, and particulate and flocculent fibrous dust was used as the research target to analyze the concentration and compositional characteristics of mPAEs, primary metabolites of five significant PAEs. The influence of factors such as architectural features and living habits in residential areas on exposure to mPAEs was explored. Ten suspected enzyme genes along with two metabolic pathways with the ability to degrade PAEs were screened using PICRUSt2. The results showed that the total concentrations of the five mPAEs in the indoor dust samples were particulate dust (11.49-78.69 μg/g) and flocculent fibrous dust (21.61-72.63 μg/g), respectively. The molar concentration ratio (RC) of mPAEs to corresponding PAEs significantly differed among chemicals, with MMP/DMP and MEP/DEP sporting the highest RC values. Different bacterial types have shown distinct influences against mPAEs and PAEs. Enzyme function and metabolic pathway abundance had a significant effect on the concentration of some mPAEs, mPAEs are most likely derived from microbial degradation of PAEs.
Collapse
Affiliation(s)
- Qiuyan Lin
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China; College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Qirui An
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhifei Xiu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiaoqian Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Huicheng Zhu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Changcheng Chen
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yunyang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Sujing Wang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
13
|
Tian J, Qian Y, He X, Qi R, Lei J, Wang Q, Feng C. Influencing factors and risk assessment of phthalate ester pollution in the agricultural soil on a tropical island. CHEMOSPHERE 2024; 357:142041. [PMID: 38636919 DOI: 10.1016/j.chemosphere.2024.142041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Phthalate esters (PAEs) are widely prevalent in agricultural soil and pose potential risks to crop growth and food safety. However, the current understanding of factors influencing the behavior and fate of PAEs is limited. This study conducted a large-scale investigation (106 sites in 18 counties with 44 crop types) of 16 types of PAEs on a tropical island. Special attention was given to the impacts of land use type, soil environmental conditions, agricultural activity intensity, and urbanization level. The health risks to adults and children from soil PAEs via multiple routes of exposure were also evaluated. The results showed that the mean concentration of PAEs was 451.87 ± 284.08 μg kg-1 in the agricultural soil. Elevated agricultural and urbanization activities contributed to more pronounced contamination by PAEs in the northern and southern regions. Land use type strongly affected the concentration and composition of PAEs in agricultural soils, and the soil PAE concentration decreased in the order of vegetable fields, orchards, paddy fields, and woodlands. In paddy fields, di-isobutyl phthalate and di-n-butyl phthalate made more substantial contributions to the process through which the overlying water inhibited volatilization. Soil microplastic abundance, pesticide usage, crop yield, gross domestic product, and distance to the nearest city were calculated to be the major factors influencing the concentration and distribution of PAEs. Soil pH, organic matter content, microplastic abundance and the fertilizer application rate can affect the adsorption of PAEs by changing the soil environment. A greater risk was detected in the northern region and paddy fields due to the higher soil PAE concentrations and the dietary structure of the population. This study reveals important pathways influencing the sources and fate of PAE pollution in agricultural soils, providing fundamental data for controlling PAE contamination.
Collapse
Affiliation(s)
- Jinfei Tian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Yibin Qian
- Hainan Research Academy of Environmental Sciences, 571127, Haikou, PR China; National Plot Zone for Ecological Conservation (Hainan) Research Center, 571127, Haikou, PR China
| | - Xiaokang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Ruifang Qi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Jinming Lei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Qixuan Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
14
|
Chen L, Yu L, Han B, Li Y, Zhang J, Tao S, Liu W. Pollution characteristics and affecting factors of phthalate esters in agricultural soils in mainland China. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133625. [PMID: 38295727 DOI: 10.1016/j.jhazmat.2024.133625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/15/2024]
Abstract
Phthalate esters (PAEs), the most commonly produced and used plasticizers, are widely used in plastic products and agroecosystems, posing risks to agricultural products and human health. However, current research on PAE pollution characteristics in agricultural soils in China is not comprehensive; affecting factors and relationships with microplastics and plasticizer organophosphate esters have not been sufficiently considered. In this study, farmland soil samples were collected with field questionnaires on a national scale across mainland China. The results showed that the detection rate of PAEs was 100% and the Σ16PAEs concentrations were 23.5 - 903 μg/kg. The level of PAEs was highest in the greenhouse, and significantly higher than that in mulched farmland (p < 0.05). The PAE concentration in northwestern China was the lowest among different physical geographic zones. PAEs in farmlands posed a low cancer risk to Chinese people. PAE pollution in farmlands was significantly (p < 0.05) affected by agronomic measures (such as disposal method), environmental factors, and socioeconomic factors. Overall, PAEs were significantly and positively correlated (p < 0.05) with organophosphate esters but not with microplastics. This study aims to provide scientific data for relevant prevention and control policies, as well as actionable recommendations for pollution reduction.
Collapse
Affiliation(s)
- LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - YuJun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - JiaoDi Zhang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Feng Y, Li J, Ai Y, Cheng Y, Yang L, Han L, Chen M. Exposure risk assessment of representative phthalate acid esters and associated plastic debris under the agricultural land use in typical Chinese regions. CHEMOSPHERE 2024; 350:141059. [PMID: 38163469 DOI: 10.1016/j.chemosphere.2023.141059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Phthalate acid esters (PAEs) are frequently detected in the global environment and can cause potential health hazards. In this study, quantitative exposure risk assessment was undertaken to derive soil generic assessment criteria (GAC) for six representative PAEs under the agricultural land use in the evaluated Chinese regions, which coupled multi-media transport and human exposure models based on multiple exposure pathways including vegetables consumption, dermal absorption, ingestion of soil and dust, and the exposure from non-soil sources. It is identified that the PAEs in agricultural soil are dominated by DEHP and DnBP representing 72-96% of the total PAEs. The GAC for BBP and DEHP, calculated on the basis of region-specific exposure parameters and soil properties in various locations, are stringent, signifying greater potential health risks from exposure to them, warranting more rigorous contamination management. The proposed soil GAC for plastic debris are 100, 107, 73 and 88 mg kg-1 for Heilongjiang Province, Beijing City, Jiangsu and Guangdong Provinces respectively. Additionally, the potential risks of 1.68 × 10-6 and 7 × 10-6 are identified for BBP and DEHP in Guangdong Province as indicated by the exceedance of target risk level of 1 × 10-6, with the consumption of vegetables being the dominant contributor to the total estimated PAEs exposure. Overall, this methodology based on the coupled contaminant transport and exposure models incorporating region-specific data provides a technical framework to derive science-based soil GAC for representative PAEs for maintaining and assessing soil quality and food safety under the agricultural land use.
Collapse
Affiliation(s)
- Yudong Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jing Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing Jinghongze Environmental Technology Co Ltd, Nanjing, 210000, China.
| | - Yulu Ai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yikang Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Lei Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Lu Han
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Mengfang Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
16
|
Li X, Zhang Y, Wang J, Zeng G, Tong X, Ullah S, Liu J, Zhou R, Lian J, Guo X, Tang Z. Revealing the metabolomics and biometrics underlying phytotoxicity mechanisms for polystyrene nanoplastics and dibutyl phthalate in dandelion (Taraxacum officinale). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167071. [PMID: 37714347 DOI: 10.1016/j.scitotenv.2023.167071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Micro/nanoplastics (M/NPs) and phthalates (PAEs) are emerging pollutants. Polystyrene (PS) MPs and dibutyl phthalate (DBP) are typical MPs and PAEs in the environment. However, how dandelion plants respond to the combined contamination of MPs and PAEs remains unclear. In this study, we evaluated the individual and combined effects of PS NPs (10 mg L-1) and DBP (50 mg L-1) on dandelion (Taraxacum officinale) seedlings. The results showed that compared to control and individual-treated plants, coexposure to PS NPs and DBP significantly affected plant growth, induced oxidative stress, and altered enzymatic and nonenzymatic antioxidant levels of dandelion. Similarly, photosynthetic attributes and chlorophyll fluorescence kinetic parameters were significantly affected by coexposure. Scanning electron microscopy (SEM) results showed that PS particles had accumulated in the root cortex of the dandelion. Metabolic analysis of dandelion showed that single and combined exposures caused the plant's metabolic pathways to be profoundly reprogrammed. As a consequence, the synthesis and energy metabolism of carbohydrates, amino acids, and organic acids were affected because galactose metabolism, the citric acid cycle, and alanine, aspartic acid and glutamic acid metabolism pathways were significantly altered. These results provide a new perspective on the phytotoxicity and environmental risk assessment of MPs and PAEs in individual or coexposures.
Collapse
Affiliation(s)
- Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jianxin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guangnian Zeng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xin Tong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shakir Ullah
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040, China
| | - Ranran Zhou
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
17
|
Wang D, Jiang SY, Fan C, Fu L, Ruan HD. Occurrence and correlation of microplastics and dibutyl phthalate in rivers from Pearl River Delta, China. MARINE POLLUTION BULLETIN 2023; 197:115759. [PMID: 37988965 DOI: 10.1016/j.marpolbul.2023.115759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Microplastics have been identified as the novel contaminants in various environments. Phthalates would be released from plasticized microplastics into a riverine environment while transporting to a marine region, but data on their relationship in rivers have been scarce. In this study, the occurrence, distribution and correlation of microplastics and dibutyl phthalate (DBP) in two rivers from the Pearl River Estuary were investigated. The elevated level of DBP in the Qianshan River (2.70 ± 0.20 μg/L) was in alignment with the presence of highest microplastic concentration at the same sampling site (15.8 ± 9.8 items/L). A positive correlation was observed between microplastics and DBP in all sampling sites (p < 0.05). The results showed that UV irradiation from sunlight was a majorly inducing factor of DBP leaching from polyethylene microplastics. The concentrations of chemical additives in some degrees reflect the microplastic pollution, but environmental factors and multidimensionality of microplastics such as residence times and types may cause spatial differences of chemical additives in aquatic systems.
Collapse
Affiliation(s)
- Duojia Wang
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China
| | - Sabrina Yanan Jiang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Macao.
| | - Changchang Fan
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China
| | - Longshan Fu
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Macao
| | - Huada Daniel Ruan
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China.
| |
Collapse
|
18
|
Chen Y, Wang Y, Tan Y, Jiang C, Li T, Yang Y, Zhang Z. Phthalate esters in the Largest River of Asia: An exploration as indicators of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166058. [PMID: 37553051 DOI: 10.1016/j.scitotenv.2023.166058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Phthalate esters (PAEs) are the most ubiquitous and highly used plasticizers in plastic products globally, yet studies on the spatial variation, risks, and their correlation with microplastics (MPs) are limited, particularly throughout the Yangtze River (the largest river in China/Asia). Therefore, this study investigated for the first time the PAEs pollution characteristics throughout the Yangtze River sediments, studied the environmental factors linked to the distribution of PAEs, and explored their potential as chemical indicators for interpreting pollution patterns of MPs. Totally 14 out of 16 PAEs were detected in sediments, with total concentrations ranging from 84.67 ng/g to 274.0 ng/g (mean: 163.5 ng/g), dominated by Bis(2-ethylhexyl) phthalate (DEHP), Di-n-butyl phthalate (DBP), and Di-isobutyl phthalate (DIBP), with contributions of 38.9 %, 31.8 %, and 20.8 %, respectively. Spatial distribution of PAEs did not indicate significant differences, which may be related to anthropogenic activities (i.e., emission intensity), runoff, and sediment physicochemical properties (i.e., TOC and TN), with TOC and TN being potential predictors of PAEs. The quantitative relationships (p < 0.001) between DEHP/∑16PAEs ratio and MPs (both individual and total MPs) were found in sediments, which suggested that DEHP could be potentially used as an indicator for MPs. DEHP, DIBP, and DBP posed high risks, accounting for 100 %, 68.4 %, and 10.5 % of the monitoring sites, respectively. Further work is necessary to better understand the relationship between DEHP/∑16PAEs and MPs in the environment and to take corresponding management and control measures for these pollutants.
Collapse
Affiliation(s)
- Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yile Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yang Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tianyi Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
19
|
Li Y, Cheng S, Fang H, Yang Y, Guo Y, Zhou Y, Shi F. Composition, distribution, health risks, and drivers of phthalates in typical red paddy soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94814-94826. [PMID: 37537413 DOI: 10.1007/s11356-023-28815-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
The accelerated accumulation of phthalate esters (PAEs) in paddy soils poses a serious threat to human health. However, related studies mainly focus on facility vegetable fields, drylands, and orchards, and little is known about paddy soils. In this study, 125 samples were collected from typical red paddy fields to investigate the pollution characteristics, sources, health risks, and main drivers of PAEs. Soil physicochemical properties, enzyme activity, and bacterial community composition were also measured simultaneously. The results showed that eight PAE congeners were detected ranging from 0.17 to 1.97 mg kg-1. Di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and di-isobutyl phthalate (DIBP) were the most abundant PAE congeners, accounting for 81% of the total PAEs. DEHP exhibited a potential carcinogenic risk to humans through the intake route. The main PAEs were positively correlated with soil organic matter (SOM) and soil water content (SWC) contents. Low levels of PAEs increased bacterial abundance. Furthermore, most PAE congeners were positively correlated with hydrolase activity. Soil acidity and nutrient dynamics played a dominant role in the bacterial community composition, with PAE congeners playing a secondary role. These findings suggest that there may be a threshold response between PAEs and organic matter and nutrient transformation in red paddy soils, and that microbial community should be the key driver. Overall, this study deepens the understanding of ecological risks and microbial mechanisms of PAEs in red paddy soils.
Collapse
Affiliation(s)
- Yuna Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulan Cheng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huajun Fang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
- The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China.
| | - Yan Yang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yifan Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangying Shi
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
20
|
Billings A, Carter H, Cross RK, Jones KC, Pereira MG, Spurgeon DJ. Co-occurrence of macroplastics, microplastics, and legacy and emerging plasticisers in UK soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163258. [PMID: 37019241 DOI: 10.1016/j.scitotenv.2023.163258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023]
Abstract
Despite a theoretical link between plastic and plasticiser occurrence in the terrestrial environment, there are few empirical studies of the relationship between these contaminants in soils. We carried out a field study to assess the co-occurrence of plastic waste, and legacy and emerging plasticisers in UK soils (n = 19) from various land uses (woodlands, urban roadsides, urban parklands, landfill-associated). Surface plastics and soil microplastics were quantified and characterised using ATR-FTIR and μ-FTIR. Eight legacy (phthalate) and three emerging (adipate, citrate, trimellitate) plasticisers were quantified using GC-MS. Surface plastics were found at higher prevalence at landfill-associated and urban roadside sites, with levels significantly (2 orders of magnitude) greater than in woodlands. Microplastics were detected in landfill-associated (mean 12.3 particles g-1 dw), urban roadside (17.3 particles g-1 dw) and urban parkland (15.7 particles g-1 dw) soils, but not in woodland soils. The most commonly detected polymers were polyethene, polypropene and polystyrene. Mean ∑plasticiser concentration in urban roadside soils (3111 ng g-1 dw) was significantly higher than in woodlands (134 ng g-1 dw). No significant difference was found between landfill-associated (318 ng g-1 dw) and urban parkland (193 ng g-1 dw) soils and woodlands. Di-n-butyl phthalate (94.7% detection frequency) and the emerging plasticiser trioctyl trimellitate (89.5%) were the most commonly detected plasticisers, with diethylhexyl phthalate (493 ng g-1 dw) and di-iso-decyl phthalate (96.7 ng g-1 dw) present at the highest concentrations. ∑plasticiser concentrations were significantly correlated with surface plastic (R2 = 0.23), but not with soil microplastic concentrations. Whilst plastic litter seems a fundamental source of plasticisers in soils, mechanisms such as airborne transport from source areas may be as important. Based on the data from this study, phthalates remain the dominant plasticisers in soils, but emerging plasticisers are already widespread, as reflected by their presence in all land uses studied.
Collapse
Affiliation(s)
- Alex Billings
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Heather Carter
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Richard K Cross
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - M Glória Pereira
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - David J Spurgeon
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| |
Collapse
|