1
|
Abou Jaoude L, H Mohtar R, Kamaleddine F, Dbaibo R, Bou Said R, Keniar I, F Yanni S. Impact of treated wastewater sludge on soil and wheat growth characteristics in a semi-arid climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179166. [PMID: 40138910 DOI: 10.1016/j.scitotenv.2025.179166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 02/04/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Sludge accumulation as a byproduct of wastewater treatment is an increasingly growing concern which can be addressed by utilizing the sludge as a soil amendment. A two-year study was conducted to valorize sludge as an organic amendment on soil cultivated with rainfed wheat (Triticum icaversea) and its impact on soil properties, microbial activity, wheat yield and grain quality. The study was conducted in Lebanon, where the sludge accumulation problem is especially important given the absence of proper treatment and disposal methods. Baseline characterization of sewage sludge collected from secondary (SS) and tertiary (TS) wastewater treatment plants showed that both sludge types can be classified as suitable for restricted agricultural use (Class B), which cannot be used on soils to grow fruits or vegetables that are eaten raw. Post-harvest analysis of the amended soils revealed a significant enhancement in organic matter (OM), soil moisture, wheat yield and grain quality in both seasons in SS and TS treatments compared to the control. All tested heavy metals in the sludge were much lower than the allowable limits for agricultural soils, except for zinc (Zn). Wheat biomass and grain quality improved with a significant increase in grain yield (61-76 %) in both treated soils (SS: 74 g/m2, TS: 81 g/m2) compared to the control (46 g/m2). Under the TS treatment the grain had the highest protein content (14.5 %) in the first season. Soil microbial analysis were not consistent in the two seasons, but showed a potential risk of total coliforms contamination with SS application in the second season. This research provides valuable insights into the positive effects of treated sewage sludge application on soil fertility and wheat grain quality emphasizing the potential benefits of this sludge in sustainable agriculture. It also highlights the need for monitoring sludge and soil quality.
Collapse
Affiliation(s)
- Lena Abou Jaoude
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Rabi H Mohtar
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon; Biological and Agricultural Engineering, Zachry Department of Civil Engineering, Energy Institute, Texas A&M University, College Station, TX, USA.
| | - Farah Kamaleddine
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Razan Dbaibo
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Rania Bou Said
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Imad Keniar
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Sandra F Yanni
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, KW Neatby, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
2
|
Wei L, Tang Y, Zhang T, Ji J, Zhang Q, Dong Y, Luo L, Ding X, Kong J. Factors influencing K-struvite purity via phosphorus coprecipitation in synthetic urine: Verification, quantification, and modelling. ENVIRONMENTAL RESEARCH 2025; 264:120346. [PMID: 39528039 DOI: 10.1016/j.envres.2024.120346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Due to the plethora of nitrogen (N), phosphorus (P), potassium (K) in urine, it is bound to trigger phosphorus coprecipitation, thereby adversely affecting K-struvite purity in the coprecipitates. To obtain high pure K-struvite, the present study was to innovatively explore the effect of residual NH4+ concentration, pH and initial Mg2+ concentration on phosphorus coprecipitation in synthetic urine. Importantly, a Back-Propagation Artificial Neural Network (BPANN) model was innovatively proposed to simulate and predict crystal purities in the coprecipitates. It was revealed that K-struvite, struvite, hydroxyapatite and cattiite dominated the coprecipitates. Comparatively, the content of calcium in synthetic urine is far lower than that of phosphorus and potassium, resulting in low hydroxyapatite purity in the coprecipitates. Notably, cattiite purity is highly dependent of Mg2+ concentration, because it was low at the Mg2+ concentration of <10 mmol/L, but increased up to above 50% at the Mg2+ concentration of 50 mmol/L. At 10 mmol/L Mg2+ and pH 10, K-struvite purity in the coprecipitates decreased from 64.6% to 43.3% following the increase of NH4+ concentration from 0 to 300 mg/L. The BPANN model well simulated and predicted the purities of the crystals in the coprecipitates from synthetic urine. At 10 mmol/L Mg2+ and 100 mg/L NH4+, an increase in pH from 8.5 to 10 can facilitate K-struvite crystallization in synthetic urine. The adjustment of pH and initial Mg2+ concentration can significantly mitigate the inhibitory effect of residual NH4+ on K-struvite crystallization. The BPANN model herein can effectively obtain optimized operational parameters for the full-scale implementation of slow-release NPK fertilizers from urine, which can also provide an effective reference for nutrient recovery from various waste streams.
Collapse
Affiliation(s)
- Lin Wei
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China.
| | - Yiming Tang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China
| | - Tingting Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China
| | - Junjie Ji
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China
| | - Qiang Zhang
- Instrumental Analysis Center, Hefei University of Technology, Hefei, 230009, China
| | - Yugang Dong
- Tianchang Yunchuang Electronic Technology Co., Ltd, TianChang, 239332, China
| | - Lei Luo
- College of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaoke Ding
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China
| | - Jianyu Kong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
3
|
Krzyżak J, Rusinowski S, Szada-Borzyszkowska A, Pogrzeba M, Stec R, Janota P, Lipowska B, Stec K, Długosz J, Sitko K. A novel agrosinters support growth, photosynthetic efficiency and reduce trace metal elements accumulation in oilseed rape growing on metalliferous soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125095. [PMID: 39389250 DOI: 10.1016/j.envpol.2024.125095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Soil conditioners to fertilize, improve soil structure and support the phytostabilization of trace metal elements (TMEs) are being used more and more frequently. One of the options are agrosinters - slow-release ceramic fertilizers consisting mainly of SiO2, CaO, P2O5 and K2O, with an alkaline pH and high impact strength. The effect of two different agrosinters, A1 and A2, on the growth and physiological condition of Brassica napus grown in uncontaminated and Pb-, Cd- and Zn-contaminated soil was investigated in a pot experiment. In vivo data were collected using an infrared gas analyzer, a fluorimeter, a pigment content meter and a thermal camera. Elemental composition of the biomass was also investigated. The tested agrosinters promote biomass yield and have an effect on improving leaf chlorophyll content, phenomenological energy fluxes and plant gas exchange. The effect of the agrosinters on the plants was dose- and amendment-specific. An immobilization effect was observed not only in the soil but also in the plants. A reduction in the Cd (22%) and Zn (40%) content in the biomass was measured. All this was related to the effect of increasing the available form of P (50%), K (300%) and Ca (50%) in the soil, which improves soil fertility and reduces the bioavailable forms of the studied TMEs, due to the increase in soil pH and/or the complexation of these with phosphate compounds. The multidimensional analysis of A2 agrosinter shows the most positive effects on plant conditions, indicating that fly ash as a mixed substrate benefits the plants.
Collapse
Affiliation(s)
- J Krzyżak
- Institute for Ecology of Industrial Areas, Katowice, Poland.
| | - S Rusinowski
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | | | - M Pogrzeba
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | - R Stec
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | - P Janota
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | - B Lipowska
- Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Refractory Materials Centre in Gliwice, Poland
| | - K Stec
- Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Refractory Materials Centre in Gliwice, Poland
| | - J Długosz
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | - K Sitko
- Institute for Ecology of Industrial Areas, Katowice, Poland; Plant Ecophysiology Team, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
4
|
Wiegmann ME, Zhao K, Hube S, Ge L, Lisak G, Wu B. Integrating gravity-driven ceramic membrane filtration with hydroponic system for nutrient recovery from primary municipal wastewater. J Environ Sci (China) 2024; 146:91-102. [PMID: 38969465 DOI: 10.1016/j.jes.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2024]
Abstract
In this study, a gravity-driven membrane (GDM) filtration system and hydroponic system (cultivating basil and lettuce) were combined for nutrient recovery from primary municipal wastewater. The GDM system was optimized by increasing the periodic air sparging flow rate from 1 to 2 L/min (∼15 hr per 3-4 days), resulting in a ∼52% reduction of irreversible fouling. However, the total fouling was not alleviated, and the water productivity remained comparable. The GDM-filtrated water was then delivered to hydroponic systems, and the effects of hydroponic operation conditions on plant growth and heavy metal uptake were evaluated, with fertilizer- and tap water-based hydroponic systems and soil cultivation system (with tap water) for comparison. It was found that (i) the hydroponic system under batch mode facilitated to promote vegetable growth with higher nutrient uptake rates compared to that under flow-through feed mode; (ii) a shift in nutrient levels in the hydroponic system could impact plant growth (such as plant height and leaf length), especially in the early stages. Nevertheless, the plants cultivated with the GDM-treated water had comparable growth profiles to those with commercial fertilizer or in soils. Furthermore, the targeted hazard quotient levels of all heavy metals for the plants in the hydroponic system with the treated water were greatly lower than those with the commercial fertilizer. Especially, compared to the lettuce, the basil had a lower heavy metal uptake capability and displayed a negligible impact on long-term human health risk, when the treated water was employed for the hydroponic system.
Collapse
Affiliation(s)
- Megan Elizabeth Wiegmann
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Ke Zhao
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland.
| |
Collapse
|
5
|
Shitu A, Tadda MA, Zhao J, Danhassan UA, Ye Z, Liu D, Chen W, Zhu S. Review of recent advances in utilising aquaculture wastewater for algae cultivation and microalgae-based bioproduct recovery. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:485. [PMID: 39508916 DOI: 10.1007/s10653-024-02286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Aquaculture operations produce large amounts of wastewater contaminated with organic matter, nitrogenous compounds, and other emerging contaminants; when discharged into natural water bodies, it could result in ecological problems and severely threaten aquatic habitats and human health. However, using aquaculture wastewater in biorefinery systems is becoming increasingly crucial as advancements in valuable bioproduct production continue to improve economic feasibility. Research on utilising microalgae as an alternative to producing biomass and removing nutrients from aquaculture wastewater has been extensively studied over the past decades. Microalgae have the potential to use carbon dioxide (CO2) effectively and significantly reduce carbon footprint, and the harvested biomass can also be used as aquafeed. Furthermore, aquaculture wastewater enriched with phosphorus (P) is a potential resource for P recovery for the production of biofertiliser. This will reduce the P supply shortage and eliminate the environmental consequences of eutrophication. In this context, the present review aims to provide a comprehensive overview of the current state of the art in a generation, as well as the characteristics and environmental impact of aquaculture wastewater reported by the most recent research. Furthermore, the review synthesized recent developments in algal biomass cultivation using aquaculture wastewater and its utilisation as biorefinery feedstocks for producing value-added products, such as aquafeeds, bioethanol, biodiesel, biomethane, and bioenergy. This integrated process provides a sustainable method for recovering biomass and water, fully supporting the framework of a circular economy in aquaculture wastewater treatment via resource recovery.
Collapse
Affiliation(s)
- Abubakar Shitu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
- Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, 700241, Nigeria.
| | - Musa Abubakar Tadda
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, 700241, Nigeria
| | - Jian Zhao
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Umar Abdulbaki Danhassan
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhangying Ye
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Ocean Academy, Zhejiang University, Zhoushan, 316000, China
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Songming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
- Ocean Academy, Zhejiang University, Zhoushan, 316000, China.
| |
Collapse
|
6
|
Albaseer SS, Al-Hazmi HE, Kurniawan TA, Xu X, Abdulrahman SAM, Ezzati P, Habibzadeh S, Hollert H, Rabiee N, Lima EC, Badawi M, Saeb MR. Microplastics in water resources: Global pollution circle, possible technological solutions, legislations, and future horizon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173963. [PMID: 38901599 DOI: 10.1016/j.scitotenv.2024.173963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Beneath the surface of our ecosystems, microplastics (MPs) silently loom as a significant threat. These minuscule pollutants, invisible to the naked eye, wreak havoc on living organisms and disrupt the delicate balance of our environment. As we delve into a trove of data and reports, a troubling narrative unfolds: MPs pose a grave risk to both health and food chains with their diverse compositions and chemical characteristics. Nevertheless, the peril extends further. MPs infiltrate the environment and intertwine with other pollutants. Worldwide, microplastic levels fluctuate dramatically, ranging from 0.001 to 140 particles.m-3 in water and 0.2 to 8766 particles.g-1 in sediment, painting a stark picture of pervasive pollution. Coastal and marine ecosystems bear the brunt, with each organism laden with thousands of microplastic particles. MPs possess a remarkable ability to absorb a plethora of contaminants, and their environmental behavior is influenced by factors such as molecular weight and pH. Reported adsorption capacities of MPs vary greatly, spanning from 0.001 to 12,700 μg·g-1. These distressing figures serve as a clarion call, demanding immediate action and heightened environmental consciousness. Legislation, innovation, and sustainable practices stand as indispensable defenses against this encroaching menace. Grasping the intricate interplay between microplastics and pollutants is paramount, guiding us toward effective mitigation strategies and preserving our health ecosystems.
Collapse
Affiliation(s)
- Saeed S Albaseer
- Institute of Ecology, Evolution and Diversity, Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | | | - Xianbao Xu
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Peyman Ezzati
- ERA Co., Ltd, Science and Technology Center, P.O. Box: 318020, Taizhou, Zhejiang, China
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Henner Hollert
- Institute of Ecology, Evolution and Diversity, Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Eder C Lima
- Institute of Chemistry - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Michael Badawi
- Université de Lorraine, CNRS, Laboratoire Lorrain de Chimie Moléculaire, F-57000 Metz, France
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
7
|
Śniatała B, Al-Hazmi HE, Sobotka D, Zhai J, Mąkinia J. Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173446. [PMID: 38788940 DOI: 10.1016/j.scitotenv.2024.173446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Wastewater serves as a vital resource for sustainable fertilizer production, particularly in the recovery of nitrogen (N) and phosphorus (P). This comprehensive study explores the recovery chain, from technology to final product reuse. Biomass growth is the most cost-effective method, valorizing up to 95 % of nutrients, although facing safety concerns. Various techniques enable the recovery of 100 % P and up to 99 % N, but challenges arise during the final product crystallization due to the high solubility of ammonium salts. Among these techniques, chemical precipitation and ammonia stripping/ absorption have achieved full commercialization, with estimated recovery costs of 6.0-10.0 EUR kgP-1 and 4.4-4.8 £ kgN-1, respectively. Multiple technologies integrating biomass thermo-chemical processing and P and/or N have also reached technology readiness level TRL = 9. However, due to maturing regulatory of waste-derived products, not all of their products are commercially available. The non-homogenous nature of wastewater introduces impurities into nutrient recovery products. While calcium and iron impurities may impact product bioavailability, some full-scale P recovery technologies deliver products containing this admixture. Recovered mineral nutrient forms have shown up to 60 % higher yield biomass growth compared to synthetic fertilizers. Life cycle assessment studies confirm the positive environmental outcomes of nutrient recycling from wastewater to agricultural applications. Integration of novel technologies may increase wastewater treatment costs by a few percent, but this can be offset through renewable energy utilization and the sale of recovered products. Moreover, simultaneous nutrient recovery and energy production via bio-electrochemical processes contributes to carbon neutrality achieving. Interdisciplinary cooperation is essential to offset both energy and chemicals inputs, increase their cos-efficiency and optimize technologies and understand the nutrient release patterns of wastewater-derived products on various crops. Addressing non-technological factors, such as legal and financial support, infrastructure redesign, and market-readiness, is crucial for successfully implementation and securing the global food production.
Collapse
Affiliation(s)
- Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland.
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Jun Zhai
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland.
| |
Collapse
|
8
|
Zhou T, Wang M, Zeng H, Min R, Wang J, Zhang G. Application of physicochemical techniques to the removal of ammonia nitrogen from water: a systematic review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:344. [PMID: 39073643 DOI: 10.1007/s10653-024-02129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Ammonia nitrogen is a common pollutant in water and soil, known for its biological toxicity and complex removal process. Traditional biological methods for removing ammonia nitrogen are often inefficient, especially under varying temperature conditions. This study reviews physicochemical techniques for the treatment and recovery of ammonia nitrogen from water. Key methods analyzed include ion exchange, adsorption, membrane separation, struvite precipitation, and advanced oxidation processes (AOPs). Findings indicate that these methods not only remove ammonia nitrogen but also allow for nitrogen recovery. Ion exchange, adsorption, and membrane separation are effective in separating ammonia nitrogen, while AOPs generate reactive species for efficient degradation. Struvite precipitation offers dual benefits of removal and resource recovery. Despite their advantages, these methods face challenges such as secondary pollution and high energy consumption. This paper highlights the development principles, current challenges, and future prospects of physicochemical techniques, emphasizing the need for integrated approaches to enhance ammonia nitrogen removal efficiency.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Miao Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Honglin Zeng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jinyi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
9
|
Kurniawan TA, Mohyuddin A, Othman MHD, Goh HH, Zhang D, Anouzla A, Aziz F, Casila JC, Ali I, Pasaribu B. Beyond surface: Unveiling ecological and economic ramifications of microplastic pollution in the oceans. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11070. [PMID: 39005104 DOI: 10.1002/wer.11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Every year, the global production of plastic waste reaches a staggering 400 million metric tons (Mt), precipitating adverse consequences for the environment, food safety, and biodiversity as it degrades into microplastics (MPs). The multifaceted nature of MP pollution, coupled with its intricate physiological impacts, underscores the pressing need for comprehensive policies and legislative frameworks. Such measures, alongside advancements in technology, hold promise in averting ecological catastrophe in the oceans. Mandated legislation represents a pivotal step towards restoring oceanic health and securing the well-being of the planet. This work offers an overview of the policy hurdles, legislative initiatives, and prospective strategies for addressing global pollution due to MP. Additionally, this work explores innovative approaches that yield fresh insights into combating plastic pollution across various sectors. Emphasizing the importance of a global plastics treaty, the article underscores its potential to galvanize collaborative efforts in mitigating MP pollution's deleterious effects on marine ecosystems. Successful implementation of such a treaty could revolutionize the plastics economy, steering it towards a circular, less polluting model operating within planetary boundaries. Failure to act decisively risks exacerbating the scourge of MP pollution and its attendant repercussions on both humanity and the environment. Central to this endeavor are the formulation, content, and execution of the treaty itself, which demand careful consideration. While recognizing that a global plastics treaty is not a panacea, it serves as a mechanism for enhancing plastics governance and elevating global ambitions towards achieving zero plastic pollution by 2040. Adopting a life cycle approach to plastic management allows for a nuanced understanding of possible trade-offs between environmental impact and economic growth, guiding the selection of optimal solutions with socio-economic implications in mind. By embracing a comprehensive strategy that integrates legislative measures and technological innovations, we can substantially reduce the influx of marine plastic litter at its sources, safeguarding the oceans for future generations.
Collapse
Affiliation(s)
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Dongdong Zhang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity and Climate Changes, Semlalia Faculty of Sciences, B.P. 2390, Cadi Ayyad University, Marrakech, Morocco
| | - Joan C Casila
- Land and Water Resources Engineering Division, Institute of Agricultural and Biosystems Engineering, College of Engineering and Agro-industrial Technology, University of the Philippines-Los Baños, Los Baños, Philippines
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Buntora Pasaribu
- Department of Marine Science, Faculty of Fisheries and Marine Science, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
10
|
Miranda AM, Hernandez-Tenorio F, Villalta F, Vargas GJ, Sáez AA. Advances in the Development of Biofertilizers and Biostimulants from Microalgae. BIOLOGY 2024; 13:199. [PMID: 38534468 DOI: 10.3390/biology13030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Microalgae have commercial potential in different sectors of the industry. Specifically in modern agriculture, they can be used because they have the ability to supply nutrients to the soil and produce plant growth hormones, polysaccharides, antimicrobial compounds, and other metabolites that improve agricultural productivity. Therefore, products formulated from microalgae as biofertilizers and biostimulants turn out to be beneficial for agriculture and are positioned as a novel and environmentally friendly strategy. However, these bioproducts present challenges in preparation that affect their shelf life due to the rapid degradation of bioformulated products. Therefore, this work aimed to provide a comprehensive review of biofertilizers and biostimulants from microalgae, for which a bibliometric analysis was carried out to establish trends using scientometric indicators, technological advances were identified in terms of formulation methods, and the global market for these bioproducts was analyzed.
Collapse
Affiliation(s)
- Alejandra M Miranda
- Biological Sciences and Bioprocesses Group (CIBIOP), Environmental and Biotechnological Processes Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| | - Fabian Hernandez-Tenorio
- Environmental Processes Research Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| | - Fabian Villalta
- Centro de Investigación de Biotecnología, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Gabriel J Vargas
- I&D Cementos Argos S.A, Centro de Argos para la Innovación, Medellín 050022, Colombia
| | - Alex A Sáez
- Biological Sciences and Bioprocesses Group (CIBIOP), Environmental and Biotechnological Processes Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| |
Collapse
|
11
|
Kotoka F, Gutierrez L, Verliefde A, Cornelissen E. Selective separation of nutrients and volatile fatty acids from food wastes using electrodialysis and membrane contactor for resource valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120290. [PMID: 38367499 DOI: 10.1016/j.jenvman.2024.120290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Transport and selectivity parameters describe the quantity and purity of nutrients and volatile fatty acids (VFAs) separated from fermentation media. However, the complexity of fermentation media and low nutrient concentrations hinder the optimal conditions of such parameters. Exploring technologies to overcome such limitations is crucial for selectively separating VFAs from nutrients in fermented media. The objectives of this study were to investigate the: (1) flux, (2) recovery, (3) concentration factor, and (4) specific energy consumption of nutrients (NH4+, K+, NO3-, and PO43-) and VFAs (acetic, propionic, and butyric acid) via electrodialysis (ED), and (5) selectively separate the VFAs from the nutrients in the ED concentrate using a hydrophobic membrane contactor (HMC). Synthetic feed and real industrial fermented food wastes were used for ED and HMC experiments. The ED consumed 0.395 kWh/kg, recovering 64-95% of the nutrients and VFAs, corresponding to 4.1-9.4 and 0.6-22.1 g/L nutrients and VFAs, respectively. The HMC selectively separated over 94% of VFAs after ED, with <2% nutrients contamination in the final VFA stream. The results suggest that applying HMC after ED can concentrate and selectively separate VFAs from nutrients in fermented food wastes, which can be valorized for bio-based fertilizers and chemical platforms.
Collapse
Affiliation(s)
- Francis Kotoka
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium.
| | - Leonardo Gutierrez
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium; Facultad del Mar y Medio Ambiente, Universidad del Pacifico, Ecuador
| | - Arne Verliefde
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Emile Cornelissen
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium; KWR Water Research Institute, the Netherlands
| |
Collapse
|
12
|
Tiong YW, Sharma P, Xu S, Bu J, An S, Foo JBL, Wee BK, Wang Y, Lee JTE, Zhang J, He Y, Tong YW. Enhancing sustainable crop cultivation: The impact of renewable soil amendments and digestate fertilizer on crop growth and nutrient composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123132. [PMID: 38081377 DOI: 10.1016/j.envpol.2023.123132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024]
Abstract
Utilizing digestate as a fertilizer enhances soil nutrient content, improves fertility, and minimizes nutrient runoff, mitigating water pollution risks. This alternative approach replaces commercial fertilizers, thereby reducing their environmental impact and lowering greenhouse gas emissions associated with fertilizer production and landfilling. Herein, this study aimed to evaluate the impact of various soil amendments, including carbon fractions from waste materials (biochar, compost, and cocopeat), and food waste anaerobic digestate application methods on tomato plant growth (Solanum lycopersicum) and soil fertility. The results suggested that incorporating soil amendments (biochar, compost, and cocopeat) into the potting mix alongside digestate application significantly enhances crop yields, with increases ranging from 12.8 to 17.3% compared to treatments without digestate. Moreover, the combination of soil-biochar amendment and digestate application suggested notable improvements in nitrogen levels by 20.3% and phosphorus levels by 14%, surpassing the performance of the those without digestate. Microbial analysis revealed that the soil-biochar amendment significantly enhanced biological nitrification processes, leading to higher nitrogen levels compared to soil-compost and soil-cocopeat amendments, suggesting potential nitrogen availability enhancement within the rhizosphere's ecological system. Chlorophyll content analysis suggested a significant 6.91% increase with biochar and digestate inclusion in the soil, compared to the treatments without digestate. These findings underscore the substantial potential of crop cultivation using soil-biochar amendments in conjunction with organic fertilization through food waste anaerobic digestate, establishing a waste-to-food recycling system.
Collapse
Affiliation(s)
- Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Pooja Sharma
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Shuai Xu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Engineering Research Center of Edible and Medicinal Fungi of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jie Bu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Soobin An
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Jordan Bao Luo Foo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Bryan Kangjie Wee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Yueyang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Jonathan Tian En Lee
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
13
|
Taweekarn T, Wongniramaikul W, Roop-o P, Towanlong W, Choodum A. Recovering Phosphate from Complex Wastewater Using Macroporous Cryogel Composited Calcium Silicate Hydrate Nanoparticles. Molecules 2023; 29:228. [PMID: 38202812 PMCID: PMC10780374 DOI: 10.3390/molecules29010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Since currently used natural, nonrenewable phosphorus resources are estimated to be depleted in the next 30-200 years, phosphorus recovery from any phosphorus-rich residues has attracted great interest. In this study, phosphorus recovery from complex wastewater samples was investigated using continuous adsorption on cryogel column composited calcium silicate hydrate nanoparticles (CSH columns). The results showed that 99.99% of phosphate was recovered from a synthetic water sample (50 mg L-1) using a 5 cm CSH column with a 5 mL min-1 influent flow rate for 6 h while 82.82% and 97.58% of phosphate were recovered from household laundry wastewater (1.84 mg L-1) and reverse osmosis concentrate (26.46 mg L-1), respectively. The adsorption capacity decreased with an increasing flow rate but increased with increasing initial concentration and column height, and the obtained experimental data were better fitted to the Yoon-Nelson model (R2 = 0.7723-0.9643) than to the Adams-Bohart model (R2 = 0.6320-0.8899). The adsorption performance of phosphate was decreased 3.65 times in the presence of carbonate ions at a similar concentration, whereas no effect was obtained from nitrate and sulfate. The results demonstrate the potential of continuous-flow phosphate adsorption on the CSH column for the recovery of phosphate from complex wastewater samples.
Collapse
Affiliation(s)
| | | | | | | | - Aree Choodum
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand; (T.T.); (W.W.); (P.R.-o.); (W.T.)
| |
Collapse
|
14
|
Clagnan E, Cucina M, De Nisi P, Dell'Orto M, D'Imporzano G, Kron-Morelli R, Llenas-Argelaguet L, Adani F. Effects of the application of microbiologically activated bio-based fertilizers derived from manures on tomato plants and their rhizospheric communities. Sci Rep 2023; 13:22478. [PMID: 38110487 PMCID: PMC10728056 DOI: 10.1038/s41598-023-50166-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023] Open
Abstract
Bio-based fertilizers (BBFs) recovered from animal manure are promising products to optimise resources recovery and generate high agricultural yields. However, their fertilization value may be limited and it is necessary to enrich BBFs with microbial consortia to enhance their fertilization value. Three specific microbial consortia were developed according to the characteristics of three different BBFs produced from manure (bio-dried solid fraction, solid fraction of digestate and biochar) to enhance plant growth and product quality. A greenhouse pot experiment was carried out with tomato plants grown with microbiologically activated BBFs applied either as N-organic fertilizers or as an organic amendment. A next generation sequencing analysis was used to characterise the development of each rhizospheric community. All the activated BBFs gave enhanced tomato yields (fresh and dry weight) compared with the non-activated treatments and similar to, or higher than, chemical fertilization. Concerning the tomato fruits' organoleptic quality, lycopene and carotenoids concentrations were improved by biological activation. Metagenomic analysis points at Trichoderma as the main driver of the positive effects, with the effects of added bacteria being negligible or limited at the early stages after fertilization. In the context of the circular economy, the activated BBFs could be used to replace synthetic fertilisers, reducing costs and environmental burdens and increasing production.
Collapse
Affiliation(s)
- Elisa Clagnan
- Gruppo Ricicla Labs., Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia (DiSAA), Università Degli Studi Di Milano, Via Celoria 2, 20133, Milano, Italy
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Mirko Cucina
- Gruppo Ricicla Labs., Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia (DiSAA), Università Degli Studi Di Milano, Via Celoria 2, 20133, Milano, Italy
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (ISAFOM-CNR), Via Della Madonna Alta 128, 06128, Perugia, Italy
| | - Patrizia De Nisi
- Gruppo Ricicla Labs., Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia (DiSAA), Università Degli Studi Di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Marta Dell'Orto
- Gruppo Ricicla Labs., Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia (DiSAA), Università Degli Studi Di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Giuliana D'Imporzano
- Gruppo Ricicla Labs., Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia (DiSAA), Università Degli Studi Di Milano, Via Celoria 2, 20133, Milano, Italy
| | | | - Laia Llenas-Argelaguet
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, Ctra de Roda 70, 08500, Vic, Spain
| | - Fabrizio Adani
- Gruppo Ricicla Labs., Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia (DiSAA), Università Degli Studi Di Milano, Via Celoria 2, 20133, Milano, Italy.
| |
Collapse
|
15
|
He J, Xia S, Li W, Deng J, Lin Q, Zhang L. Resource recovery and valorization of food wastewater for sustainable development: An overview of current approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119118. [PMID: 37769472 DOI: 10.1016/j.jenvman.2023.119118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
The food processing industry is one of the world's largest consumers of potable water. Agri-food wastewater systems consume about 70% of the world's fresh water and cause at least 80% of deforestation. Food wastewater is characterized by complex composition, a wide range of pollutants, and fluctuating water quality, which can cause huge environmental pollution problems if discharged directly. In recent years, food wastewater has attracted considerable attention as it is considered to have great prospects for resource recovery and reuse due to its rich residues of nutrients and low levels of harmful substances. This review explored and compared the sources and characteristics of different types of food wastewater and methods of wastewater treatment. Particular attention was paid to the different methods of resource recovery and reuse of food wastewater. The diversity of raw materials in the food industry leads to different compositional characteristics of wastewater, which determine the choice and efficiency of wastewater treatment methods. Physicochemical methods, and biological methods alone or in combination have been used for the efficient treatment of food wastewater. Current approaches for recycling and reuse of food wastewater include culture substrates, agricultural irrigation, and bio-organic fertilizers, recovery of high-value products such as proteins, lipids, biopolymers, and bioenergy to alleviate the energy crisis. Food wastewater is a promising substrate for resource recovery and reuse, and its valorization meets the current international policy requirements regarding food waste and environment protection, follows the development trend of the food industry, and is also conducive to energy conservation, emission reduction, and economic development. However, more innovative biotechnologies are necessary to advance the effectiveness of food wastewater treatment and the extent of resource recovery and valorization.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - SuXuan Xia
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China.
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| |
Collapse
|
16
|
Dong S, Li X, Wang S, Zhang D, Chen Y, Xiao F, Wang Y. Adsorption-electrochemical mediated precipitation for phosphorus recovery from sludge filter wastewater with a lanthanum-modified cellulose sponge filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165545. [PMID: 37454846 DOI: 10.1016/j.scitotenv.2023.165545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, the sludge filter wastewater is confirmed to investigate the effects of adsorption-electrochemical mediated precipitation (EMP) driven phosphorus recovery on the basis of lanthanum-modified cellulose sponge filter (LCLM) material. The adsorption-EMP method relies on in situ recovery phosphate (P) from the used desorption agent (NaOH-NaCl binary solution) via the formation of Ca5(PO4)3OH all while preserving the alkalinity of the desorption agents which benefited long-term application. The lanthanum content of LCLM was 9.0 mg/g, and the adsorption capacity reached 226.1 ± 15.2 mg P/g La at an equilibrium concentration of 3.9 mg P/L. After adsorption, 55.7 % of P was recovered, and the corresponding alkalinity increased from 1.9 mmol/L to 2.2 mmol/L. Adsorption mechanism analysis revealed that the high lanthanum usage of LCLM was attributed to the synergistic effect of the lattice oxygen of LaO and LaPO4·0.5H2O crystallite formation. Additionally, the Ca5(PO4)3OH was found precipitated in the precipitation in the cathode chamber (P-CC) rather than on the surface/section of cation exchange membrane (CEM) and cathode indicating that the P recovery process was controlled by the saturation of CaP species in the EMP system and the electromigration effect. These findings present a new strategy to promote the effective utilization of rare earth elements for P adsorption and demonstrate the potential application of adsorption-EMP systems in dephosphorization for wastewater treatment.
Collapse
Affiliation(s)
- Shuoxun Dong
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolin Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Siying Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Daxin Zhang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yuchi Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Feng Xiao
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yili Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Coque J, Jacobsen C, Forghani B, Meyer A, Jakobsen G, Sloth JJ, Sørensen ADM. Recovery of Nutrients from Cod Processing Waters. Mar Drugs 2023; 21:558. [PMID: 37999382 PMCID: PMC10672049 DOI: 10.3390/md21110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
Liquid side-streams from food industries can be processed and used in food applications and contribute to reduce the environmental footprint of industries. The goal of this study was to evaluate the effectiveness and applicability of protein and phosphorus separation processes, namely microfiltration, ultrafiltration and flocculation, using protein-rich process waters with low (LS) and high (HS) salt content from the processing of salted cod (Gadus morhua). The application of different flocculants (chitosan lactate and Levasil RD442) were evaluated at different concentrations and maturation periods (0, 1 or 3 h). The results showed that different flocculation treatments resulted in different recoveries of the nutrients from LS and HS. Proteins in LS could be most efficiently recovered by using Levasil RD442 0.25% and no maturation period (51.4%), while phosphorus was most efficiently recovered when using Levasil RD442 1.23% and a maturation period of 1 h (34.7%). For HS, most of its protein was recovered using Levasil RD442 1.23% and a maturation period of 1 h (51.8%), while phosphorus was recovered the most using Levasil 1.23% and no maturation period (47.1%). The salt contents allowed interactions through intermolecular forces with Levasil RD442. The ultrafiltration method was effective on HS since it recovered higher percentages of nutrients in the retentate phase (57% of the protein and 46% of the phosphorus) compared to LS.
Collapse
Affiliation(s)
- Jorge Coque
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Bita Forghani
- Food and Nutrition Science, Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden;
| | | | | | - Jens J. Sloth
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | |
Collapse
|
18
|
Di Costanzo N, Cesaro A, Di Capua F, Mascolo MC, Esposito G. Application of high-intensity static magnetic field as a strategy to enhance the fertilizing potential of sewage sludge digestate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:122-130. [PMID: 37573717 DOI: 10.1016/j.wasman.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/18/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Anaerobic digestion (AD) is a sustainable and well-established option to handle sewage sludge (SS), as it generates a methane-rich biogas and a digestate with potential fertilizing properties. In the past, different strategies have been proposed to enhance the valorization of SS. Among these, the application of a static magnetic field (SMF) has been poorly evaluated. This study aims to determine the effects of a high-intensity SMF (1.5 and 2 T) on the chemical composition of SS anaerobic digestate. Several strategies (i.e., number of magnetization cycles, addition of different sources and quantities of magnesium, and digestate aeration) have been applied to evaluate the possible formation of compounds with valuable fertilizing properties in the digestate. Experimental results showed that by combining different strategies promoting digestate exposure to the magnetic field it is possible to favour the reduction in the liquid phase of NH4+, NO3-, PO43-, SO42- and Mg2+ concentrations up to 28%, 38%, 34%, 39% and 31%, respectively. The XRD analyses conducted on the solid phase of the same magnetized digestate samples showed an increase in crystalline and amorphous phases of nitrogen and phosphorus compounds with fertilizing value, such as struvite. These results highlight that SMF application can increase the fertilizing potential of sewage sludge digestate and promote its valorization in a sustainable and circular perspective.
Collapse
Affiliation(s)
- Nicola Di Costanzo
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy.
| | - Alessandra Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Francesco Di Capua
- School of Engineering, University of Basilicata, Via dell' Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Cristina Mascolo
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Gaetano di Biasio 43, 03043 Cassino, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
19
|
Guo T, Bai SH, Omidvar N, Wang Y, Chen F, Zhang M. Insight into the functional mechanisms of nitrogen-cycling inhibitors in decreasing yield-scaled ammonia volatilization and nitrous oxide emission: A global meta-analysis. CHEMOSPHERE 2023; 338:139611. [PMID: 37482310 DOI: 10.1016/j.chemosphere.2023.139611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
Soil ammonia (NH3) volatilization and nitrous oxide (N2O) emission decrease nitrogen (N) utilization efficiency and cause some environmental problems. The N-cycling inhibitors are suggested to apply to enhance N utilization efficiency. Quantifying effects of N-cycling inhibitors on yield-scaled NH3 volatilization and N2O emission and functional genes could provide support for the optimal selection and application of N-cycling inhibitor. We conducted a meta-analysis to reveal the effects of N-cycling inhibitors on soil abiotic properties, functional genes and yield-scaled NH3 volatilization and N2O emission by extracting data from 166 published articles and linked their comprehensive relationships. The N-cycling inhibitors in this meta-analysis mainly includes nitrification inhibitors 3, 4-dimethyl pyrazole phosphate, dicyandiamide and 2-chloro-6-trichloromethylpyridine, urease inhibitor N-(n-butyl) thiophosphoric triamide and biological nitrification inhibitors methyl 4-hydroxybenzoate and 1, 9-decanediol. The N-cycling inhibitor applications significantly increased alkaline soil pH but significantly decreased acidic soil pH. The N-cycling inhibitors decreased soil AOB amoA gene abundances mostly under the condition of pH 4.5-6 (mean: 212%, 95% confidence intervals (CI): 249% and -176%) and significantly decreased nirS gene (mean: 39%; 95% CI: 72% and -6%). The yield-scaled NH3 volatilization was significantly decreased by the N-cycling inhibitors under the condition of soil pH = 7-8.5 (mean: 45%; 95% CI: 59% and -31%). The yield-scaled N2O emission was also significantly reduced by all N-cycling inhibitors and had negative correlations with the soil nirK and nirS gene abundances. The effects of N-cycling inhibitors on soil pH, ammonium-N, nitrate-N and nitrifying and denitrifying genes and yield-scaled NH3 volatilization and N2O emission were dominated by the inhibitor types, soil textures, crop species and environmental pH. Our study could provide technical support for the optimal selection and application of N-cycling inhibitor under different environmental conditions.
Collapse
Affiliation(s)
- Tao Guo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Shahla Hosseini Bai
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD, 4111, Australia
| | - Negar Omidvar
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD, 4111, Australia
| | - Yan Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Falin Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Manyun Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China; Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
20
|
Awasthi MK, Ganeshan P, Gohil N, Kumar V, Singh V, Rajendran K, Harirchi S, Solanki MK, Sindhu R, Binod P, Zhang Z, Taherzadeh MJ. Advanced approaches for resource recovery from wastewater and activated sludge: A review. BIORESOURCE TECHNOLOGY 2023; 384:129250. [PMID: 37286046 DOI: 10.1016/j.biortech.2023.129250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Due to resource scarcity, current industrial systems are switching from waste treatment, such as wastewater treatment and biomass, to resource recovery (RR). Biofuels, manure, pesticides, organic acids, and other bioproducts with a great market value can be produced from wastewater and activated sludge (AS). This will not only help in the transition from a linear economy to a circular economy, but also contribute to sustainable development. However, the cost of recovering resources from wastewater and AS to produce value-added products is quite high as compared to conventional treatment methods. In addition, most antioxidant technologies remain at the laboratory scale that have not yet reached the level at industrial scale. In order to promote the innovation of resource recovery technology, the various methods of treating wastewater and AS to produce biofuels, nutrients and energy are reviewed, including biochemistry, thermochemistry and chemical stabilization. The limitations of wastewater and AS treatment methods are prospected from biochemical characteristics, economic and environmental factors. The biofuels derived from third generation feedstocks, such as wastewater are more sustainable. Microalgal biomass are being used to produce biodiesel, bioethanol, biohydrogen, biogas, biooils, bioplastics, biofertilizers, biochar and biopesticides. New technologies and policies can promote a circular economy based on biological materials.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Prabakaran Ganeshan
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, India
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
21
|
Kazi OA, Chen W, Eatman JG, Gao F, Liu Y, Wang Y, Xia Z, Darling SB. Material Design Strategies for Recovery of Critical Resources from Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300913. [PMID: 37000538 DOI: 10.1002/adma.202300913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Population growth, urbanization, and decarbonization efforts are collectively straining the supply of limited resources that are necessary to produce batteries, electronics, chemicals, fertilizers, and other important products. Securing the supply chains of these critical resources via the development of separation technologies for their recovery represents a major global challenge to ensure stability and security. Surface water, groundwater, and wastewater are emerging as potential new sources to bolster these supply chains. Recently, a variety of material-based technologies have been developed and employed for separations and resource recovery in water. Judicious selection and design of these materials to tune their properties for targeting specific solutes is central to realizing the potential of water as a source for critical resources. Here, the materials that are developed for membranes, sorbents, catalysts, electrodes, and interfacial solar steam generators that demonstrate promise for applications in critical resource recovery are reviewed. In addition, a critical perspective is offered on the grand challenges and key research directions that need to be addressed to improve their practical viability.
Collapse
Affiliation(s)
- Omar A Kazi
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Wen Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jamila G Eatman
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Feng Gao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yining Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuqin Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Zijing Xia
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Seth B Darling
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
22
|
Yu P, Baker MC, Crump AR, Vogler M, Strawn DG, Möller G. Biochar integrated reactive filtration of wastewater for P removal and recovery, micropollutant catalytic oxidation, and negative CO 2 e: Process operation and mechanism. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10926. [PMID: 37696540 DOI: 10.1002/wer.10926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Biochar (BC) use in water treatment is a promising approach that can simultaneously help address societal needs of clean water, food security, and climate change mitigation. However, novel BC water treatment technology approaches require operational testing in field pilot-scale scenarios to advance their technology readiness assessment. Therefore, the objective of this study is to evaluate the system performance of BC integrated into hydrous ferric oxide reactive filtration (Fe-BC-RF) with and without catalytic ozonation (CatOx) process in laboratory and field pilot-scale scenarios. For this investigation, Fe-BC-RF and Fe-CatOx-BC-RF pilot-scale trials were conducted on synthetic lake water variants and at three municipal water resource recovery facilities (WRRFs) at process flows of 0.05 and 0.6 L/s, respectively. Three native and two iron-modified BCs were used in these studies. The commercially available reactive filtration process (Fe-RF without BC) had 96%-98% total phosphorus (TP) removal from 0.075- and 0.22-mg/L TP, as orthophosphate process influent in these trials. With BC integration, phosphorus removal yielded 94%-98% with the same process-influent conditions. In WRRF field pilot-scale studies, the Fe-CatOx-BC-RF process removed 84%-99% of influent total phosphorus concentrations that varied from 0.12 to 8.1 mg/L. Nutrient analysis on BC showed that the recovered BC used in the pilot-scale studies had an increase in TP from its native concentration, with the Fe-amended BC showing better P recovery at 110% than its unmodified state, which was 16%. Lastly, the field WRRF Fe-CatOx-BC-RF process studies showed successful destructive removals at >90% for more than 20 detected micropollutants, thus addressing a critical human health and environmental water quality concern. The research demonstrated that integration of BC into Fe-CatOx-RF for micropollutant removal, disinfection, and nutrient recovery is an encouraging tertiary water treatment technology that can address sustainable phosphorus recycling needs and the potential for carbon-negative operation. PRACTITIONER POINTS: A pilot-scale hydrous ferric oxide reactive sand filtration process integrating biochar injection typically yields >90% total phosphorus removal to ultralow levels. Biochar, modified with iron, recovers phosphorus from wastewater, creating a P/N nutrient upcycled soil amendment. Addition of ozone to the process stream enables biochar-iron-ozone catalytic oxidation demonstrating typically excellent (>90%) micropollutant destructive removals for the compounds tested. A companion paper to this work explores life cycle assessment (LCA) and techno-economic analysis (TEA) to explore biochar water treatment integrated reactive filtration impacts, costs, and readiness. Biochar use can aid in long-term carbon sequestration by reducing the carbon footprint of advanced water treatment in a dose-dependent manner, including enabling an overall carbon-negative process.
Collapse
Affiliation(s)
- Paulo Yu
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| | - Martin C Baker
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| | - Alex R Crump
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| | - Michael Vogler
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| | - Daniel G Strawn
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| | - Gregory Möller
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
23
|
Pismenskaya N, Rybalkina O, Solonchenko K, Butylskii D, Nikonenko V. Phosphates Transfer in Pristine and Modified CJMA-2 Membrane during Electrodialysis Processing of Na xH (3-x)PO 4 Solutions with pH from 4.5 to 9.9. MEMBRANES 2023; 13:647. [PMID: 37505013 PMCID: PMC10386648 DOI: 10.3390/membranes13070647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Phosphate recovery from different second streams using electrodialysis (ED) is a promising step to a nutrients circular economy. However, the relatively low ED performance hinders the widespread adoption of this environmentally sound method. The formation of "bonded species" between phosphates and the weakly basic fixed groups (primary and secondary amines) of the anion exchange membrane can be the cause of decrease in current efficiency and increase in energy consumption. ED processing of NaxH(3-x)PO4 alkaline solutions and the use of intense current modes promote the formation of a bipolar junction from negatively charged bound species and positively charged fixed groups. This phenomenon causes a change in the shape of current-voltage curves, increase in resistance, and an enhancement in proton generation during long-term operation of anion-exchange membrane with weakly basic fixed groups. Shielding of primary and secondary amines with a modifier containing quaternary ammonium bases significantly improves ED performance in the recovery of phosphates from NaxH(3-x)PO4 solution with pH 4.5. Indeed, in the limiting and underlimiting current modes, 40% of phosphates are recovered 1.3 times faster, and energy consumption is reduced by 1.9 times in the case of the modified membrane compared to the pristine one. Studies were performed using a new commercial anion exchange membrane CJMA-2.
Collapse
Affiliation(s)
- Natalia Pismenskaya
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Olesya Rybalkina
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Ksenia Solonchenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Dmitrii Butylskii
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| |
Collapse
|
24
|
Ersahin ME, Cicekalan B, Cengiz AI, Zhang X, Ozgun H. Nutrient recovery from municipal solid waste leachate in the scope of circular economy: Recent developments and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117518. [PMID: 36841005 DOI: 10.1016/j.jenvman.2023.117518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Holistically considering the current situation of the commercial synthetic fertilizer (CSF) market, recent global developments, and future projection studies, dependency on CSFs in agricultural production born significant risks, especially to the food security of foreign-dependent countries. The foreign dependency of countries in terms of CSFs can be reduced by the concepts such as the circular economy and resource recovery. Recently, waste streams are considered as a source in order to produce recovery-based fertilizers (RBF). RBFs produced from different waste streams can be substituted with CSFs as input for agricultural applications. Municipal solid waste leachate (MSWL) is one of the waste streams that have a high potential for RBF production. Distribution of the published papers over the years shows that this potential was noticed by more researchers in the millennium. MSWL contains a remarkable amount of nitrogen and phosphorus which are the main nutrients required for agricultural production. These nutrients can be recovered with many different methods such as microalgae cultivation, chemical precipitation, ammonia stripping, membrane separation, etc. MSWL can be generated within the different phases of municipal solid waste (MSW) management. Although it is mainly composed of landfill leachate (LL), composting plant leachate (CPL), incineration plant leachate (IPL), and transfer station leachate (TSL) should be considered as potential sources to produce RBF. This study compiles studies conducted on MSWL from the perspective of nitrogen and phosphorus recovery. Moreover, recent developments and limitations of the subject were extensively discussed and future perspectives were introduced by considering the entire MSW management. Investigated studies in this review showed that the potential of MSWL to produce RBF is significant. The outcomes of this paper will serve the countries for ensuring their food security by implementing the resource recovery concept to produce RBF. Thus, the risks born with the recent global developments could be overcome in this way besides the positive environmental outcomes of resource recovery.
Collapse
Affiliation(s)
- Mustafa Evren Ersahin
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey.
| | - Busra Cicekalan
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey
| | - Ali Izzet Cengiz
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey
| | - Xuedong Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hale Ozgun
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey
| |
Collapse
|
25
|
Wu C, Mori M, Abele M, Banaei-Esfahani A, Zhang Z, Okano H, Aebersold R, Ludwig C, Hwa T. Enzyme expression kinetics by Escherichia coli during transition from rich to minimal media depends on proteome reserves. Nat Microbiol 2023; 8:347-359. [PMID: 36737588 PMCID: PMC9994330 DOI: 10.1038/s41564-022-01310-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/15/2022] [Indexed: 02/05/2023]
Abstract
Bacterial fitness depends on adaptability to changing environments. In rich growth medium, which is replete with amino acids, Escherichia coli primarily expresses protein synthesis machineries, which comprise ~40% of cellular proteins and are required for rapid growth. Upon transition to minimal medium, which lacks amino acids, biosynthetic enzymes are synthesized, eventually reaching ~15% of cellular proteins when growth fully resumes. We applied quantitative proteomics to analyse the timing of enzyme expression during such transitions, and established a simple positive relation between the onset time of enzyme synthesis and the fractional enzyme 'reserve' maintained by E. coli while growing in rich media. We devised and validated a coarse-grained kinetic model that quantitatively captures the enzyme recovery kinetics in different pathways, solely on the basis of proteomes immediately preceding the transition and well after its completion. Our model enables us to infer regulatory strategies underlying the 'as-needed' gene expression programme adopted by E. coli.
Collapse
Affiliation(s)
- Chenhao Wu
- Department of Physics, U.C. San Diego, La Jolla, CA, USA.
| | - Matteo Mori
- Department of Physics, U.C. San Diego, La Jolla, CA, USA
| | - Miriam Abele
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Amir Banaei-Esfahani
- Department of Biology, Institute of Molecular Systems Biology, ETH, Zurich, Switzerland
| | - Zhongge Zhang
- Division of Biological Sciences, U.C. San Diego, La Jolla, CA, USA
| | - Hiroyuki Okano
- Department of Physics, U.C. San Diego, La Jolla, CA, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany.
| | - Terence Hwa
- Department of Physics, U.C. San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, U.C. San Diego, La Jolla, CA, USA.
| |
Collapse
|