1
|
Rodríguez-Castrejón UE, Serafín-Muñoz AH, Álvarez-Vargas A, Cruz-Jiménez G, Gutiérrez-Ortega NL, Miranda-Avilés R, Cano-Canchola MC. Assessment of arsenite removal efficiency, resistance, and biotransformation by Microbacterium hydroxycarbonoxydans isolated from contaminated sites. Sci Rep 2025; 15:18494. [PMID: 40425681 PMCID: PMC12116799 DOI: 10.1038/s41598-025-98622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/14/2025] [Indexed: 05/29/2025] Open
Abstract
There are reports on resistance to metals by the Microbacteriaceae family, although few studies have focused on the Microbacterium genus. The present work is one of the first studies related to arsenic (As) resistance and removal by Microbacterium hydrocarbonoxydans. Growth curves were performed simultaneously as follows: (1) growth kinetics without As, and (2) growth kinetics added with As(III). Incubation conditions were at 30 °C and 120 rpm for 168 h, with an inoculation of bacterial culture, 107 (CFU)/ml. Absorbance was measured at 600 nm in an ultraviolet (UV)-vis spectrophotometer. The As surface adsorption and uptake into bacterial cells, exposed to As(III), were confirmed through SEM, EDX, and FTIR analyses. It was observed that the cellular morphology of M. hydrocarbonoxydans through TEM was deformed when exposed to high concentrations of arsenite. Bacterial cells growing in a rich medium with As(III) were able to oxidize 98% As(III), and the inactivated biomass of the bacterium exhibited a high removal capacity. Likewise, M. hydrocarbonoxydans was employed to test its ability to remove other toxic heavy metals such as lead, cadmium, and chromium. The order of resistance of each metal was as follows: Cr VI (2.08 gL-1) > Pb (1.24 gL-1) > Cd (0.169 gL-1). This work demonstrated that the strain M. hydrocarbonoxydans has high arsenic resistance and removal capacity, as well as significant As(III) oxidation potential, rendering it a promising candidate for biotechnological application in the development of affordable systems for the removal of metals/metalloids from contaminated sites.
Collapse
Affiliation(s)
| | | | - Aurelio Álvarez-Vargas
- Division of Natural and Exact Sciences, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico
| | - Gustavo Cruz-Jiménez
- Division of Natural and Exact Sciences, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico
| | | | - Raúl Miranda-Avilés
- Division of Engineering, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico
| | - Ma Carmen Cano-Canchola
- Division of Natural and Exact Sciences, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
2
|
Scarrone M, Turner D, Dion M, Tremblay D, Moineau S. In silico and in vitro comparative analysis of 79 Acinetobacter baumannii clinical isolates. Microbiol Spectr 2025:e0284924. [PMID: 40377313 DOI: 10.1128/spectrum.02849-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/08/2025] [Indexed: 05/18/2025] Open
Abstract
Acinetobacter baumannii is a significant nosocomial bacterial pathogen that poses a substantial infection risk due to its high resistance to antibiotics and ability to survive in hospital environments. In this study, we performed comprehensive in silico and in vitro analyses on 79 A. baumannii clinical isolates from different geographical locations to uncover their genomic and epidemiological characteristics as well as their antibiotic and phage susceptibilities. Our findings revealed considerable genomic diversity among the isolates, as shown by average nucleotide identity (ANI) heat maps, multilocus sequence typing (MLST), and core genome MLST (cgMLST). We identified several international clones known for their high antibiotic resistance and global prevalence. Surprisingly, we also observed that the number of antimicrobial resistance genes (ARGs) was higher in isolates containing CRISPR-Cas systems. Plaque assays with 13 phages indicated that Acinetobacter phages have a narrow host range, with capsule loci (KL) serving as a good indicator of phage-bacteria interactions. The presence of CRISPR-Cas systems and other antiviral defense mechanisms in A. baumannii genomes also appears to play a key role in providing phage resistance, regardless of the phage receptors. We also found that spacers associated with subtypes I-F1 and I-F2 CRISPR-Cas systems predominantly target prophages, suggesting a role in maintaining genomic stability and contributing to phage-bacteria co-evolution. Overall, this study provides a set of highly characterized A. baumannii clinical isolates for future studies on antibiotic-phage-bacteria interactions.IMPORTANCEAcinetobacter baumannii poses a significant challenge to the healthcare system due to its antibiotic resistance and strong survival mechanisms. This study examines a diverse collection of 79 clinical isolates to deepen our understanding of A. baumannii's genetic characteristics and its defense mechanisms against both antibiotics and phages. Genomic analysis revealed globally prevalent, highly resistant clones and uncovered a complex role for CRISPR-Cas systems. Although CRISPR-Cas systems were not widespread among these isolates, they primarily targeted prophages. Additionally, the study emphasizes the importance of capsule types as indicators of phage susceptibility. Together, these findings provide insights into the pathogen's resilience and evolutionary adaptations, potentially guiding future research on infection control strategies and new therapeutic approaches to combat A. baumannii infections.
Collapse
Affiliation(s)
- Martina Scarrone
- Département de biochimie, de microbiologie et de bio-Informatique, Faculté des sciences et de génie, Université Laval, Quebec City, Quebec, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, , Bristol, United Kingdom
| | - Moïra Dion
- Département de biochimie, de microbiologie et de bio-Informatique, Faculté des sciences et de génie, Université Laval, Quebec City, Quebec, Canada
| | - Denise Tremblay
- Département de biochimie, de microbiologie et de bio-Informatique, Faculté des sciences et de génie, Université Laval, Quebec City, Quebec, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Quebec City, Quebec, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-Informatique, Faculté des sciences et de génie, Université Laval, Quebec City, Quebec, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
3
|
Bell I PJ, Muniyan R. Synergistic pathogenesis: exploring biofilms, efflux pumps and secretion systems in Acinetobacter baumannii and Staphylococcus aureus. Arch Microbiol 2025; 207:134. [PMID: 40314822 DOI: 10.1007/s00203-025-04336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/03/2025]
Abstract
Antimicrobial resistance (AMR) is a growing global health crisis, particularly among ESKAPE pathogens: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species. Among them, A. baumannii and S. aureus are major contributors to nosocomial infections, with high prevalence in intensive care units and immunocompromised patients. Their ability to resist multiple antibiotic classes complicates treatment strategies, leading to increased morbidity and mortality. Key resistance mechanisms, including biofilm formation, efflux pump activity, and horizontal gene transfer, enhance their survival and persistence. Furthermore, interactions during polymicrobial infections intensify disease severity through synergistic effects that promote both virulence and resistance. The epidemiological burden of these pathogens highlights the urgent need for novel antimicrobial strategies and targeted interventions. This review explores their virulence factors, resistance mechanisms, pathogenic interactions, and clinical implications, emphasizing the necessity of innovative therapeutic approaches to combat their growing threat.
Collapse
Affiliation(s)
- Praisy Joy Bell I
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Rajiniraja Muniyan
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Brek TM, Muhajir AA, Alkuwaity KK, Haddad MA, Alattas EM, Eisa ZM, Al-Thaqafy MS, Albarraq AM, Al-Zahrani IA. Genomic insights of predominant international high-risk clone ST2 Acinetobacter baumannii isolates in Saudi Arabia. J Glob Antimicrob Resist 2025; 42:243-252. [PMID: 40158887 DOI: 10.1016/j.jgar.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
OBJECTIVES Carbapenem-resistant Acinetobacter baumannii (CRAB), particularly the globally prevalent ST2 clone, poses significant threats in the Gulf Cooperation Council region through extensive drug resistance, high virulence, and efficient gene transfer. This study investigates the epidemiological and genomic characteristics of CRAB in the Jazan region, using whole genome sequencing to understand its transmission and genetic determinants. METHODS Sixty-five clinical A. baumannii isolates exhibiting phenotypic resistance to carbapenems (meropenem, imipenem, and ertapenem) were collected from various tertiary hospitals in the Jazan region. The presence of prevalent carbapenemase genes among these isolates was examined using two sets of multiplex polymerase chain reaction (PCR). Forty-eight isolates confirmed as carbapenemase producers were selected for WGS analysis. RESULTS Among the 65 clinical CRAB isolates, the adult ICU exhibited the highest prevalence of CRAB (76.9%). Multiplex PCR identified 48 (73.8%) isolates as carbapenemase producers, all harboring blaOXA-51-like genes. Specifically, blaOXA-23 was detected in 39 isolates (60%), blaNDM in 8 (12.3%), and blaOXA-24 in one isolate. These 48 carbapenemase-producing isolates also carried virulence-associated genes related to adherence, biofilm formation, immune evasion, iron acquisition and regulation, and serum resistance. Whole-genome sequencing (WGS) revealed that 39 (81.2%) of the carbapenemase-positive isolates belonged to ST2, followed by ST85 and ST107, with the KL152 locus as the most common capsule type. CONCLUSIONS The study indicates a significant rise in the ST2 clone in the Arabian Gulf, particularly in Saudi Arabia, and underscores the need for ongoing surveillance of less common clones such as ST85 and ST107 to manage public health risks effectively.
Collapse
Affiliation(s)
- Thamer M Brek
- The regional laboratory, Jazan Health Cluster, Jazan, Saudi Arabia
| | | | - Khalil K Alkuwaity
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moayad A Haddad
- Medical Laboratory Department, King Fahd hospital, Jazan Health Cluster, Jazan, Saudi Arabia
| | - Elaf M Alattas
- Medical Laboratory Department, King Fahd hospital, Jazan Health Cluster, Jazan, Saudi Arabia
| | - Zaki M Eisa
- Public Health Authority, Jazan, Saudi Arabia
| | - Majid S Al-Thaqafy
- Infection Prevention and Control Department, King Abdulaziz Medical City, Jeddah, Saudi Arabia; Epidemiology and Public Health, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia; King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, Saudi Arabia
| | - Ahmed M Albarraq
- Public Health Laboratory, Public Health Authority, Riyadh, Saudi Arabia
| | - Ibrahim A Al-Zahrani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
5
|
Ren L, Li Y, Ye Z, Wang X, Luo X, Lu F, Zhao H. Explore the Contamination of Antibiotic Resistance Genes (ARGs) and Antibiotic-Resistant Bacteria (ARB) of the Processing Lines at Typical Broiler Slaughterhouse in China. Foods 2025; 14:1047. [PMID: 40232101 PMCID: PMC11941655 DOI: 10.3390/foods14061047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Farms are a major source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB), and previous research mainly focuses on polluted soils and breeding environments. However, slaughtering is an important link in the transmission of ARGs and ARB from farmland to dining table. In this study, we aim to reveal the pollution of ARGs and ARB in the slaughter process of broilers. First, by qualitative and quantitative analysis of ARGs in samples collected from the broiler slaughtering and processing production chain, the contamination level of ARGs was reflected; secondly, potential hosts for ARGs and microbial community were analyzed to reflect the possible transmission rules; thirdly, through the antibiotic susceptibility spectrum analysis of four typical food-borne pathogens, the distribution of ARB was revealed. The results showed that 24 types of ARGs were detected positive on the broiler slaughter production line, and tetracycline-resistance genes (20.45%) were the most frequently detected. The types of ARGs vary with sampling process, and all sampling links contain high levels of sul2 and intI1. The most abundant ARGs were detected in chicken surface in the scalding stage and entrails surface in the evisceration stage. There was a significant correlation between intI1 and tetM, suggesting that tetM might be able to enter the human food chain through class-1 integrons. The host range of the oqxB gene is the most extensive, including Sphingobacterium, Bacteroidia unclassified, Rothia, Microbacterium, Algoriella, etc. In the relevant links of the slaughter production line, the microbial community structure is similar. Removing viscera may cause diffusion of ARGs carried by intestinal microorganisms and contaminate chicken and following processing production. The four food-borne pathogens we tested are widely present in all aspects of the slaughter process, and most of them have multi-drug resistance and even have a high degree of resistance to some veterinary drugs banned by the Ministry of Agriculture. Our study preliminarily revealed the pollution of ARGs and ARB in the slaughter process of broilers, and these results are helpful to carry out food safety risk assessment and formulate corresponding control measures.
Collapse
Affiliation(s)
- Lu Ren
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| | - Ying Li
- China Animal Disease Control Center, Slaughtering Technology Center, Ministry of Agriculture and Rural Affairs, Beijing 102600, China; (Y.L.)
| | - Ziyu Ye
- China Animal Disease Control Center, Slaughtering Technology Center, Ministry of Agriculture and Rural Affairs, Beijing 102600, China; (Y.L.)
| | - Xixi Wang
- China Animal Disease Control Center, Slaughtering Technology Center, Ministry of Agriculture and Rural Affairs, Beijing 102600, China; (Y.L.)
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| | - Huabing Zhao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| |
Collapse
|
6
|
Chaichana N, Yaikhan T, Yingkajorn M, Thepsimanon N, Suwannasin S, Singkhamanan K, Chusri S, Pomwised R, Wonglapsuwan M, Surachat K. First whole genome report of Mangrovibacter phragmitis PSU-3885-11 isolated from a patient in Thailand. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100350. [PMID: 39911356 PMCID: PMC11795813 DOI: 10.1016/j.crmicr.2025.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Mangrovibacter phragmitis is a Gram-negative bacterium typically found in plant roots that supports nitrogen fixation in nutrient-poor environments such as mangrove ecosystems. Although primarily found in environmental niches, an unusual case in Thailand of M. phragmitis strain PSU-3885-11 isolated from the sputum of a 29-year-old female patient with spinal tuberculosis. This isolate was initially misidentified as part of the Enterobacter cloacae complex (ECC) by MALDI-TOF. However, WGS subsequently confirmed its correct identity as M. phragmitis. The genome contains 4,651 coding sequences, along with 72 tRNA genes and 1 tmRNA. Moreover, comparative genomic analysis showed 99.32 % average nucleotide identity (ANI) similar to M. phragmitis MP23, and several antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) were identified in the PSU-3885-11 genome which may contribute to its ability to survive in diverse environments, including human hosts. The PSU-3885-11 displayed resistance to beta-lactam antibiotics such as ampicillin and cefotaxime, while remaining sensitive to a wide range of other antibiotics. Key virulence genes including ompA, hcp/tssD, and rpoS, were identified which may play a role in its persistence in human hosts as an opportunistic pathogen. The presence of ribosomally synthesized and post-translationally modified peptides (RiPPs) and bacteriocins indicates the antimicrobial properties that may provide a competitive advantage in both environmental and clinical settings of this strain. Therefore, this study provides valuable insights into the genomic features, antibiotic resistance, and potential pathogenicity of M. phragmitis PSU-3885-11. The findings also emphasize the importance of continued surveillance and genomic analysis of environmental bacteria that may emerge as opportunistic pathogens in human infections.
Collapse
Affiliation(s)
- Nattarika Chaichana
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nonthawat Thepsimanon
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
7
|
Gutierrez-Montiel D, Guerrero-Barrera AL, Ramírez-Castillo FY, Galindo-Guerrero F, Ornelas-García IG, Chávez-Vela NA, de O. Costa M, Avelar-Gonzalez FJ, Moreno-Flores AC, Vazquez-Pedroza E, Arreola-Guerra JM, González-Gámez M. Guava Leaf Extract Exhibits Antimicrobial Activity in Extensively Drug-Resistant (XDR) Acinetobacter baumannii. Molecules 2024; 30:70. [PMID: 39795127 PMCID: PMC11722033 DOI: 10.3390/molecules30010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Currently, a global health crisis is being caused by microbial resistance, in which Acinetobacter baumannii plays a crucial role, being considered the highest-priority microorganism by the World Health Organization (WHO) for discovering new antibiotics. As a result, phytochemicals have emerged as a potential alternative to combat resistant strains, since they can exert antimicrobial activity through various mechanisms and, at the same time, represent a more natural and safe option. This study analyzes the antimicrobial effects of guava leaf extract in ten clinical isolates of extensively drug-resistant (XDR) A. baumannii, using the agar diffusion technique and the microdilution method to determine the minimum inhibitory concentrations (MICs). Additionally, possible improvements in antimicrobial activity after the purification of polyphenolic compounds and potential synergy with the antibiotic gentamicin are examined in this research. Moreover, the effect of the plant extract in cell line A549 derived from lung tissue was also evaluated. The extract exhibited antimicrobial activity against all the strains studied, and the purification of polyphenols along with the combination with gentamicin improved the extract activity. The presence of the plant extract induced morphological changes in the lung cells after 24 h of exposure. Therefore, Psidium guajava L. leaf extract is a potential antimicrobial agent.
Collapse
Affiliation(s)
- Daniela Gutierrez-Montiel
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (D.G.-M.); (F.Y.R.-C.); (F.G.-G.); (I.G.O.-G.); (A.C.M.-F.); (E.V.-P.)
| | - Alma L. Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (D.G.-M.); (F.Y.R.-C.); (F.G.-G.); (I.G.O.-G.); (A.C.M.-F.); (E.V.-P.)
| | - Flor Y. Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (D.G.-M.); (F.Y.R.-C.); (F.G.-G.); (I.G.O.-G.); (A.C.M.-F.); (E.V.-P.)
| | - Fabiola Galindo-Guerrero
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (D.G.-M.); (F.Y.R.-C.); (F.G.-G.); (I.G.O.-G.); (A.C.M.-F.); (E.V.-P.)
| | - Ingrid G. Ornelas-García
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (D.G.-M.); (F.Y.R.-C.); (F.G.-G.); (I.G.O.-G.); (A.C.M.-F.); (E.V.-P.)
| | - Norma A. Chávez-Vela
- Laboratorio de Biotecnología, Departamento Ingeniería Bioquímica, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico;
| | - Matheus de O. Costa
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
- Population Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Francisco J. Avelar-Gonzalez
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico;
| | - Adriana C. Moreno-Flores
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (D.G.-M.); (F.Y.R.-C.); (F.G.-G.); (I.G.O.-G.); (A.C.M.-F.); (E.V.-P.)
| | - Erick Vazquez-Pedroza
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (D.G.-M.); (F.Y.R.-C.); (F.G.-G.); (I.G.O.-G.); (A.C.M.-F.); (E.V.-P.)
| | - José M. Arreola-Guerra
- Departamento de Nefrología, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico; (J.M.A.-G.); (M.G.-G.)
| | - Mario González-Gámez
- Departamento de Nefrología, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico; (J.M.A.-G.); (M.G.-G.)
| |
Collapse
|
8
|
Yu K, He B, Xiong J, Kan P, Sheng H, Zhi S, Zhu DZ, Yao Z. Deciphering basic and key traits of bio-pollutants in a long-term reclaimed water headwater urban stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177696. [PMID: 39577583 DOI: 10.1016/j.scitotenv.2024.177696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Reclaimed water has been recognized as a stable water resource for ecological replenishment in riverine environment. However, information about the bio-pollutants spatial and temporal distributions and the associated risk in this environment remains insufficient. Herein, the bio-pollutant profile in a long-term reclaimed water headwater urban stream, including antibiotic resistance genes (ARGs), mobile genetic elements and pathogens, were revealed by metagenomics. Notably, the temporal variation in bio-pollutant levels exceeded spatial fluctuations, possibly due to the varied rainfall intensity. Specially, multidrug resistance genes and Acinetobacter baumannii (A. baumannii) were the dominant ARGs and pathogens, respectively, exhibiting higher abundance in the dry season, especially in the downstream of the receiving point, where the bio-risk also peaked. A. baumannii and Ralstonia solanacearum were found to be the main plasmids contributors inducing the horizontal gene transfer process in this stream. Overall, A. baumannii contributed over 50 % bio-risk values in most samples, indicating that it was the "overlord" in this headwater urban stream. This study revealed characteristics of bio-pollutants in a typical long-term reclaimed water headwater urban stream, highlighting the superiority of A. baumannii in bio-pollutants, which should be a key consideration in the bio-pollutants surveillance for reclaimed waters.
Collapse
Affiliation(s)
- Kai Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Bin He
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peiying Kan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Huafeng Sheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo 315211, China
| | - David Z Zhu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
9
|
Luca VD, Giovannuzzi S, Capasso C, Supuran CT. Sulfonamide-Based Inhibition of the β-Carbonic Anhydrase from A. baumannii, a Multidrug-Resistant Bacterium. Int J Mol Sci 2024; 25:12291. [PMID: 39596360 PMCID: PMC11594608 DOI: 10.3390/ijms252212291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic pathogen responsible for severe hospital-associated infections. Owing to its ability to develop resistance to a wide range of antibiotics, novel therapeutic strategies are urgently needed. One promising approach is to target bacterial carbonic anhydrases (CAs; EC 4.2.1.1), which are enzymes critical for various metabolic processes. The genome of A. baumannii encodes a β-CA (βAbauCA), which is essential for producing bicarbonate ions required in the early stages of uridine triphosphate (UTP) synthesis, a precursor for the synthesis of peptidoglycans, which are vital components of the bacterial cell wall. This study aimed to inhibit βAbauCA in vitro, with the potential to impair the vitality of the pathogen in vivo. We conducted sequence and structural analyses of βAbauCA to explore its differences from those of human CAs. Additionally, kinetic and inhibition studies were performed to investigate the catalytic efficiency of βAbauCAβ and its interactions with sulfonamides and their bioisosteres, classical CA inhibitors. Our results showed that βAbauCA has a turnover rate higher than that of hCA I but lower than that of hCA II and displays distinct inhibition profiles compared to human α-CAs. Based on the obtained data, there are notable differences between the inhibition profiles of the human isoforms CA I and CA II and bacterial βAbauCA. This could open the door to designing inhibitors that selectively target bacterial β-CAs without affecting human α-CAs, as well as offer a novel strategy to weaken A. baumannii and other multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy;
| | - Simone Giovannuzzi
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.G.); (C.T.S.)
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy;
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.G.); (C.T.S.)
| |
Collapse
|
10
|
Chen J, Su Z, Li F, Cao F, Xiong F, Jiang B, Xing Y, Wen D. The variation of resistome, mobilome and pathogen in domestic and industrial wastewater treatment systems. ENVIRONMENT INTERNATIONAL 2024; 193:109051. [PMID: 39418785 DOI: 10.1016/j.envint.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Wastewater treatment plants (WWTPs), including both domestic and industrial facilities, are key contributors to antibiotic resistance genes (ARGs) and human pathogens in the environment. However, the characteristics and dissemination mechanisms of ARGs in domestic (SD) and industrial (SI) wastewater treatment systems remain unclear, leading to uncertainties in risk assessment. Based on metagenomic analysis, we observed significant differences in the compositions of resistome (ARGs and metal resistance genes, MRGs), mobilome (mobile genetic elements, MGEs), and bacterial community between SD and SI. SI exhibited lower diversity of ARGs but higher abundance of MRGs compared to SD. The removal efficiency of resistome was lower in the SI than that in the SD. MGEs emerged as the primary driver of ARG dissemination in the WWTPs, followed by the bacterial community. Environmental conditions (physicochemical parameters, heavy metals, and antibiotics) indirectly influenced the variation of resistome. Significantly, environmental conditions and MGEs highly influenced the composition of resistome in the SI, while bacterial community more associated with resistome in the SD. Additionally, we identified 36 human bacterial pathogens as potential hosts of ARGs, MRGs, and MGEs in wastewater samples. This study provides new insights on the dissemination mechanisms and risk assessment of antimicrobial resistance in the different types of WWTPs.
Collapse
Affiliation(s)
- Jiayu Chen
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Feifei Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Feng Cao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Fuzhong Xiong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Tian P, Li QQ, Guo MJ, Zhu YZ, Zhu RQ, Guo YQ, Yang Y, Liu YY, Yu L, Li YS, Li JB. Zidovudine in synergistic combination with nitrofurantoin or omadacycline: in vitro and in murine urinary tract or lung infection evaluation against multidrug-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 2024; 68:e0034424. [PMID: 39194261 PMCID: PMC11459972 DOI: 10.1128/aac.00344-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Limited treatment options and multidrug-resistant (MDR) Klebsiella pneumoniae present a significant therapeutic challenge, underscoring the need for novel approaches. Drug repurposing is a promising tool for augmenting the activity of many antibiotics. This study aimed to identify novel synergistic drug combinations against K. pneumoniae based on drug repurposing. We used the clinically isolated GN 172867 MDR strain of K. pneumoniae to determine the reversal resistance activity of zidovudine (AZT). The combined effects of AZT and various antibiotics, including nitrofurantoin (NIT) and omadacycline (OMC), were examined using the checkerboard method, growth curves, and crystal violet assays to assess biofilms. An in vitro combination activity testing was carried out in 12 isolates of K. pneumoniae. In vivo murine urinary tract and lung infection models were used to evaluate the therapeutic effects of AZT + NIT and AZT + OMC, respectively. The fractional inhibitory concentration index and growth curve demonstrated that AZT synergized with NIT or OMC against K. pneumoniae strains. In addition, AZT + NIT inhibited biofilm formation and cleared mature biofilms. In vivo, compared with untreated GN 172867-infected mice, AZT + NIT and AZT + OMC treatment decreased colony counts in multiple tissues (P < 0.05) and pathological scores in the bladder and kidneys (P < 0.05) and increased the survival rate by 60% (P < 0.05). This study evaluated the combination of AZT and antibiotics to treat drug-resistant K. pneumoniae infections and found novel drug combinations for the treatment of acute urinary tract infections. These findings suggest that AZT may exert significant anti-resistance activity.
Collapse
Affiliation(s)
- Ping Tian
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Qing-Qing Li
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Ming-Juan Guo
- Department of Hepatology, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Yun-Zhu Zhu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Rong-Qing Zhu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Ya-Qin Guo
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Yi Yang
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Yan-Yan Liu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Liang Yu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Ya-Sheng Li
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Jia-Bin Li
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Tayabali AF, Dirieh Y, Groulx E, Elfarawi N, Di Fruscio S, Melanson K, Moteshareie H, Al-Gafari M, Navarro M, Bernatchez S, Demissie Z, Anoop V. Survival and virulence of Acinetobacter baumannii in microbial mixtures. BMC Microbiol 2024; 24:324. [PMID: 39243004 PMCID: PMC11378493 DOI: 10.1186/s12866-024-03471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Acinetobacter species such as A. venetianus and A. guillouiae have been studied for various biotechnology applications, including bioremediation of recalcitrant and harmful environmental contaminants, as well as bioengineering of enzymes and diagnostic materials. Bacteria used in biotechnology are often combined with other microorganisms in mixtures to formulate efficacious commercial products. However, if the mixture contained a closely related Acinetobacter pathogen such as A. baumannii (Ab), it remains unclear whether the survival and virulence of Ab would be masked or augmented. This uncertainty poses a challenge in ensuring the safety of such biotechnology products, since Ab is one of the most significant pathogens for both hospital and community -acquired infections. This research aimed to investigate the growth and virulence of Ab within a mixture of 11 bacterial species formulated as a mock microbial mixture (MM). Growth challenges with environmental stressors (i.e., temperature, pH, sodium, iron, and antibiotics) revealed that Ab could thrive under diverse conditions except in the presence of ciprofloxacin. When cultured alone, Ab exhibited significantly more growth in the presence of almost all the environmental stressors than when it was co-incubated with the MM. During the exposure of A549 lung epithelial cells to the MM, Ab growth was stimulated compared to that in standard mammalian culture media. Cytotoxicity caused by Ab was suppressed in the presence of the MM. Lymphocytes were significantly reduced in mice exposed to Ab with or without MM via intravenous injection. The levels of the splenic cytokines IL-1α, IL-1β, MCP-1, and MIP-1α were significantly reduced 24 h after exposure to Ab + MM. This study demonstrated that the presence of the MM marginally but significantly reduced the growth and virulence of Ab, which has implications for the safety of mixtures of microorganisms for biotechnological applications. Furthermore, these findings expand our understanding of the virulence of Ab during host-pathogen interactions.
Collapse
Affiliation(s)
- Azam F Tayabali
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Yasmine Dirieh
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Emma Groulx
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Nusaybah Elfarawi
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Sabrina Di Fruscio
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Kristina Melanson
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Houman Moteshareie
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Mustafa Al-Gafari
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Martha Navarro
- Scientific Services Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Stéphane Bernatchez
- Biotechnology Sections 1 and 2, New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Zerihun Demissie
- Biotechnology Sections 1 and 2, New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Valar Anoop
- Biotechnology Sections 1 and 2, New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
13
|
Khan MAS, Chaity SC, Hosen MA, Rahman SR. Genomic epidemiology of multidrug-resistant clinical Acinetobacter baumannii in Bangladesh. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105656. [PMID: 39116952 DOI: 10.1016/j.meegid.2024.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The rising frequency of multidrug-resistant (MDR) Acinetobacter baumannii infections represents a significant public health challenge in Bangladesh. Genomic analysis of bacterial pathogens enhances surveillance and control efforts by providing insights into genetic diversity, antimicrobial resistance (AMR) profiles, and transmission dynamics. In this study, we conducted a comprehensive bioinformatic analysis of 82 whole-genome sequences (WGS) of A. baumannii from Bangladesh to understand their genomic epidemiological characteristics. WGS of the MDR and biofilm-forming A. baumannii strain S1C revealed the presence of 28 AMR genes, predicting its pathogenicity and classification within sequence type ST2. Multi-locus sequence typing (MLST) genotyping suggested heterogeneity in the distribution of clinical A. baumannii strains in Bangladesh, with a predominance of ST575. The resistome diversity was evident from the detection of 82 different AMR genes, with antibiotic inactivation being the most prevalent resistance mechanism. All strains were predicted to be multidrug-resistant. The observed virulence genes were associated with immune evasion, biofilm formation, adherence, nutrient acquisition, effector delivery, and other mechanisms. Mobile genetic elements carrying AMR genes were predicted in 68.29% (N = 56) of the genomes. The "open" state of the pan-genome and a high proportion of accessory genes highlighted the genome plasticity and diversity of A. baumannii in Bangladesh. Additionally, phylogenomic analysis indicated clustering of A. baumannii strains into three separate clades according to sequence type. In summary, our findings offer detailed insights into the genomic landscape of A. baumannii in Bangladesh, contributing to our understanding of its epidemiology and pathogenicity and informing strategies to combat this pathogen.
Collapse
Affiliation(s)
| | | | - Md Arman Hosen
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
14
|
Yi S, Wei M, Li F, Liu X, Fan Q, Lu H, Wu Y, Liu Y, Tian J, Zhang M. In-situ enrichment of ARGs and their carriers in soil by hydroxamate siderophore: A promising biocontrol approach for source reduction. ENVIRONMENT INTERNATIONAL 2024; 190:108915. [PMID: 39084127 DOI: 10.1016/j.envint.2024.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Pathogenic microorganisms with antibiotic resistance genes (ARGs) pose a serious threat to public health and soil ecology. Although new drugs and available antibacterial materials can kill ARG carriers but accidentally kill beneficial microorganisms. Therefore, the rapid enrichment and separation of ARGs and their carriers from soil is becoming an important strategy for controlling the diffusion of ARGs. Hydroxamate siderophore (HDS) has gained widespread attentions for its involvement in trace element transfer among microorganisms in the soil environment, we thus explored an in-situ trapping-enrichment method for ARGs and their carriers via a small molecular HDS secreted by Pseudomonas fluorescens HMP01. In this study, we demonstrate that HDS significantly in-situ traps and enriches certain ARGs, including chloramphenicol, MLS, rifamycin, and tetracycline resistance genes in the soil environment. The enrichment efficiencies were 1473-fold, 38-fold, 17-fold, and 5-fold, respectively, higher than those in the control group. Specifically, the primary enriched ARGs were rpoB, mphL, catB2, and tetA(60), and Bacillus, Rhizobium, Rossellomorea, and Agrobacterium were hosts for these ARGs. This enrichment was caused by the upregulation of chemotaxis genes (e.g., cheW, cheC, and cheD) and rapid biofilm formation within the enriched bacterial population. Notably, representative ARGs such as cat, macB, and rpoB were significantly reduced by 36%, 85.7%, and 72%, respectively, in the paddy soil after HDS enrichment. Our research sheds light on the potential application of siderophore as a rapping agent for the eco-friendly reduction of ARGs and their carriers in soil environments.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Ming Wei
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Xingang Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Qingqing Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Hainan Lu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yujun Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Jiang Tian
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
15
|
Khan MU, Romance M, Polash MAUZ, Zahan N, Ali MS, Raihan J, Sarker S, Haque MH. Draft genome sequence of carbapenems-resistant Acinetobacter baumannii Hakim RU_CBWP strain isolated from a pond surface water in Bangladesh. Microbiol Resour Announc 2024; 13:e0044024. [PMID: 38864657 PMCID: PMC11256773 DOI: 10.1128/mra.00440-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
We have revealed the genomic sequence of Acinetobacter baumannii strain Hakim RU_CBWP isolated from pond surface water. Our assembled genome covers 3.787 Mb with 45.5629× coverage, showcasing an average GC content of 38.60%. This genome contains two CRISPR arrays, 17 prophages, 22 antibiotic resistance genes, and 20 virulence factor genes.
Collapse
Affiliation(s)
- Muhib Ullah Khan
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - M. Romance
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Nusrat Zahan
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Sumon Ali
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Jafor Raihan
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Md. Hakimul Haque
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
16
|
Marino A, Augello E, Stracquadanio S, Bellanca CM, Cosentino F, Spampinato S, Cantarella G, Bernardini R, Stefani S, Cacopardo B, Nunnari G. Unveiling the Secrets of Acinetobacter baumannii: Resistance, Current Treatments, and Future Innovations. Int J Mol Sci 2024; 25:6814. [PMID: 38999924 PMCID: PMC11241693 DOI: 10.3390/ijms25136814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Acinetobacter baumannii represents a significant concern in nosocomial settings, particularly in critically ill patients who are forced to remain in hospital for extended periods. The challenge of managing and preventing this organism is further compounded by its increasing ability to develop resistance due to its extraordinary genomic plasticity, particularly in response to adverse environmental conditions. Its recognition as a significant public health risk has provided a significant impetus for the identification of new therapeutic approaches and infection control strategies. Indeed, currently used antimicrobial agents are gradually losing their efficacy, neutralized by newer and newer mechanisms of bacterial resistance, especially to carbapenem antibiotics. A deep understanding of the underlying molecular mechanisms is urgently needed to shed light on the properties that allow A. baumannii enormous resilience against standard therapies. Among the most promising alternatives under investigation are the combination sulbactam/durlobactam, cefepime/zidebactam, imipenem/funobactam, xeruborbactam, and the newest molecules such as novel polymyxins or zosurabalpin. Furthermore, the potential of phage therapy, as well as deep learning and artificial intelligence, offer a complementary approach that could be particularly useful in cases where traditional strategies fail. The fight against A. baumannii is not confined to the microcosm of microbiological research or hospital wards; instead, it is a broader public health dilemma that demands a coordinated, global response.
Collapse
Affiliation(s)
- Andrea Marino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Federica Cosentino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Serena Spampinato
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Bruno Cacopardo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| |
Collapse
|
17
|
Hu R, Ren M, Liang S, Zou S, Li D. Effects of antibiotic resistance genes on health risks of rivers in habitat of wild animals under human disturbance - based on analysis of antibiotic resistance genes and virulence factors in microbes of river sediments. Ecol Evol 2024; 14:e11435. [PMID: 38799388 PMCID: PMC11126646 DOI: 10.1002/ece3.11435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Studying the ecological risk of antibiotic resistance genes (ARGs) to wild animals from human disturbance (HD) is an important aspect of "One Health". The highest risk level of ARGs is reflected in pathogenic antibiotic-resistant bacteria (PARBs). Metagenomics was used to analyze the characteristics of PARBs in river sediments. Then, the total contribution of ARGs and virulence factors (VFs) were assessed to determine the health risk of PARBs to the rivers. Results showed that HD increased the diversity and total relative abundance of ARG groups, as well as increased the kinds of PARBs, their total relative abundance, and their gene numbers of ARGs and VFs. The total health risks of PARBs in wild habitat group (CK group), agriculture group (WA group), grazing group (WG group), and domestic sewage group (WS group) were 0.067 × 10-3, -1.55 × 10-3, 87.93 × 10-3, and 153.53 × 10-3, respectively. Grazing and domestic sewage increased the health risk of PARBs. However, agriculture did not increase the total health risk of the rivers, but agriculture also introduced new pathogenic mechanisms and increased the range of drug resistance. More serious was the increased transfer risk of ARGs in the PARBs from the rivers to wild animals under agriculture and grazing. If the ARGs in the PARBs are transferred from the rivers under HD to wild animals, then wild animals may face severe challenges of acquiring new pathogenic mechanisms and developing resistance to antibiotics. Further analysis showed that the total phosphorus (TP) and dissolved organic nitrogen (DON) were related to the risk of ARGs. Therefore, controlling human emissions of TP and DON could reduce the health risk of rivers.
Collapse
Affiliation(s)
- Rongpan Hu
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
| | - Minxing Ren
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
| | - Sumei Liang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
| | - Shuzhen Zou
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus Roxellana at China West Normal University of Sichuan ProvinceChina West Normal UniversityNanchongChina
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus Roxellana at China West Normal University of Sichuan ProvinceChina West Normal UniversityNanchongChina
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan ProvinceScience and Technology Department of Sichuan ProvinceChengduChina
| |
Collapse
|
18
|
Zhang C, You Z, Li S, Zhang C, Zhao Z, Zhou D. NO 3- as an electron acceptor elevates antibiotic resistance gene and human bacterial pathogen risks in managed aquifer recharge (MAR): A comparison with O 2. ENVIRONMENTAL RESEARCH 2024; 248:118277. [PMID: 38266895 DOI: 10.1016/j.envres.2024.118277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Managed aquifer recharge (MAR) stands out as a promising strategy for ensuring water resource sustainability. This study delves into the comparative impact of nitrate (NO3-) and oxygen (O2) as electron acceptors in MAR on water quality and safety. Notably, NO3-, acting as an electron acceptor, has the potential to enrich denitrifying bacteria, serving as hosts for antibiotic resistance genes (ARGs) and enriching human bacterial pathogens (HBPs) compared to O2. However, a direct comparison between NO3- and O2 remains unexplored. This study assessed risks in MAR effluent induced by NO3- and O2, alongside the presence of the typical refractory antibiotic sulfamethoxazole. Key findings reveal that NO3- as an electron acceptor resulted in a 2 times reduction in dissolved organic carbon content compared to O2, primarily due to a decrease in soluble microbial product production. Furthermore, NO3- significantly enriched denitrifying bacteria, the primary hosts of major ARGs, by 747%, resulting in a 66% increase in the overall abundance of ARGs in the effluent of NO3- MAR compared to O2. This escalation was predominantly attributed to horizontal gene transfer mechanisms, as evidenced by a notable 78% increase in the relative abundance of mobile ARGs, alongside a minor 27% rise in chromosomal ARGs. Additionally, the numerous denitrifying bacteria enriched under NO3- influence also belong to the HBP category, resulting in a significant 114% increase in the abundance of all HBPs. The co-occurrence of ARGs and HBPs was also observed to intensify under NO3- influence. Thus, NO3- as an electron acceptor in MAR elevates ARG and HBP risks compared to O2, potentially compromising groundwater quality and safety.
Collapse
Affiliation(s)
- Chongjun Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Zhiang You
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Shaoran Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Chaofan Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Zhenhao Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin, 130021, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
19
|
Zhao K, Li C, Li F. Research progress on the origin, fate, impacts and harm of microplastics and antibiotic resistance genes in wastewater treatment plants. Sci Rep 2024; 14:9719. [PMID: 38678134 PMCID: PMC11055955 DOI: 10.1038/s41598-024-60458-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
Previous studies reported microplastics (MPs), antibiotics, and antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). There is still a lack of research progress on the origin, fate, impact and hazards of MPs and ARGs in WWTPs. This paper fills a gap in this regard. In our search, we used "microplastics", "antibiotic resistance genes", and "wastewater treatment plant" as topic terms in Web of Science, checking the returned results for relevance by examining paper titles and abstracts. This study mainly explores the following points: (1) the origins and fate of MPs, antibiotics and ARGs in WWTPs; (2) the mechanisms of action of MPs, antibiotics and ARGs in sludge biochemical pools; (3) the impacts of MPs in WWTPs and the spread of ARGs; (4) and the harm inflicted by MPs and ARGs on the environment and human body. Contaminants in sewage sludge such as MPs, ARGs, and antibiotic-resistant bacteria enter the soil and water. Contaminants can travel through the food chain and thus reach humans, leading to increased illness, hospitalization, and even mortality. This study will enhance our understanding of the mechanisms of action among MPs, antibiotics, ARGs, and the harm they inflict on the human body.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Chengzhi Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fengxiang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China.
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
20
|
Nasrollahian S, Graham JP, Halaji M. A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Front Cell Infect Microbiol 2024; 14:1387497. [PMID: 38638826 PMCID: PMC11024256 DOI: 10.3389/fcimb.2024.1387497] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The dissemination of antibiotic resistance in Escherichia coli poses a significant threat to public health worldwide. This review provides a comprehensive update on the diverse mechanisms employed by E. coli in developing resistance to antibiotics. We primarily focus on pathotypes of E. coli (e.g., uropathogenic E. coli) and investigate the genetic determinants and molecular pathways that confer resistance, shedding light on both well-characterized and recently discovered mechanisms. The most prevalent mechanism continues to be the acquisition of resistance genes through horizontal gene transfer, facilitated by mobile genetic elements such as plasmids and transposons. We discuss the role of extended-spectrum β-lactamases (ESBLs) and carbapenemases in conferring resistance to β-lactam antibiotics, which remain vital in clinical practice. The review covers the key resistant mechanisms, including: 1) Efflux pumps and porin mutations that mediate resistance to a broad spectrum of antibiotics, including fluoroquinolones and aminoglycosides; 2) adaptive strategies employed by E. coli, including biofilm formation, persister cell formation, and the activation of stress response systems, to withstand antibiotic pressure; and 3) the role of regulatory systems in coordinating resistance mechanisms, providing insights into potential targets for therapeutic interventions. Understanding the intricate network of antibiotic resistance mechanisms in E. coli is crucial for the development of effective strategies to combat this growing public health crisis. By clarifying these mechanisms, we aim to pave the way for the design of innovative therapeutic approaches and the implementation of prudent antibiotic stewardship practices to preserve the efficacy of current antibiotics and ensure a sustainable future for healthcare.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jay P. Graham
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, United States
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
21
|
Hassannia M, Naderifar M, Salamy S, Akbarizadeh MR, Mohebi S, Moghadam MT. Engineered phage enzymes against drug-resistant pathogens: a review on advances and applications. Bioprocess Biosyst Eng 2024; 47:301-312. [PMID: 37962644 DOI: 10.1007/s00449-023-02938-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
In recent decades, the expansion of multi and extensively drug-resistant (MDR and XDR) bacteria has reached an alarming rate, causing serious health concerns. Infections caused by drug-resistant bacteria have been associated with morbidity and mortality, making tackling bacterial resistance an urgent and unmet challenge that needs to be addressed properly. Endolysins are phage-encoded enzymes that can specifically degrade the bacterial cell wall and lead to bacterial death. There is remarkable evidence that corroborates the unique ability of endolysins to rapidly digest the peptidoglycan particular bonds externally without the assistance of phage. Thus, their modulation in therapeutic approaches has opened new options for therapeutic applications in the fight against bacterial infections in the human and veterinary sectors, as well as within the agricultural and biotechnology areas. The use of genetically engineered phage enzymes (EPE) promises to generate endolysin variants with unique properties for prophylactic and therapeutic applications. These approaches have gained momentum to accelerate basic as well as translational phage research and the potential development of therapeutics in the near future. This review will focus on the novel knowledge into EPE and demonstrate that EPE has far better performance than natural endolysins and phages in dealing with antibiotic-resistant infections. Therefore, it provides essential information for clinical trials involving EPE.
Collapse
Affiliation(s)
- Mohadeseh Hassannia
- Department of Genetic, Faculty of Science, Islamic Azad University, Tehran, Iran
| | - Mahin Naderifar
- School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Shakiba Salamy
- Department of Microbiology, Faculty of Pharmacy, Islamic Azad University, Tehran, Iran
| | | | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
22
|
Wang Z, Cai M, Du P, Li X. Wastewater surveillance for antibiotics and resistance genes in a river catchment: Spatiotemporal variations and the main drivers. WATER RESEARCH 2024; 251:121090. [PMID: 38219685 DOI: 10.1016/j.watres.2023.121090] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Wastewater-based epidemiology (WBE) is used for mining information about public health such as antibiotics resistance. This study investigated the distribution profiles of six types of antibiotic resistance genes (ARGs) in wastewater and rivers in Wuhu City, China. The levels of ARGs found in the Qingyijiang River were significantly higher than other rivers, and were comparable to effluent levels. Among the ARGs, sulfonamides ARGs and intI1 were the predominant in both wastewaters and rivers. Additionally, the concentrations of ARGs were higher on weekends as opposed to weekdays. Their distribution patterns remained consistent inter-week and inter-season using linear regression analysis (p < 0.001). Interestingly, the occurrence levels of ARGs in wastewaters during spring were significantly higher than in autumn, although insignificant in rivers. The apparent removal rate of ARGs in domestic wastewater sources ranged from 61.52-99.29%, except for qepA (-1.91% to 81.09%), whereas the removal rates in mixed domestic and industrial wastewaters showed a marked decrease (-92.94% to 76.67%). A correlation network analysis revealed that azithromycin and erythromycin were key antibiotics, while blaNDM-1, tetM, tetB, and ermB were identified as key ARGs. Sulfonamide and fluoroquinolone antibiotics, and tetracycline and macrolide ARGs were the primary contributors. Linear mixed models demonstrated that socio-economic variables positively impacted the occurrence levels of ARGs, whereas wastewater flow and river runoff were the negative drivers for their concentrations in wastewaters and surface waters, respectively. Overall, this WBE study contributes to the understanding of spatiotemporal profiles and main drivers of the occurrence of ARGs in wastewater and receiving water.
Collapse
Affiliation(s)
- Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041 PR China
| | - Min Cai
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875 PR China.
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871 PR China
| |
Collapse
|
23
|
Wang C, Wu S, Zhou W, Hu L, Hu Q, Cao Y, Wang L, Chen X, Zhang Q. Effects of Neolamarckia cadamba leaves extract on microbial community and antibiotic resistance genes in cecal contents and feces of broilers challenged with lipopolysaccharides. Appl Environ Microbiol 2024; 90:e0110723. [PMID: 38231769 PMCID: PMC10880616 DOI: 10.1128/aem.01107-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/20/2023] [Indexed: 01/19/2024] Open
Abstract
The effects of Neolamarckia cadamba leaves extract (NCLE), with effective ingredients of flavonoids, on antibiotic resistance genes (ARGs) and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation (LPS) were investigated. LPS stimulation increased (P < 0.05) the relative abundance of ARGs and mobile genetic elements (MGEs), such as tet(W/N/W), APH(3')-IIIa, ErmB, tet (44), ANT (6)-Ia, tet(O), tet (32), Vang_ACT_CHL, myrA, ANT (6)-Ib, IncQ1, tniB, and rep2 in cecal contents. However, the difference disappeared (P > 0.05) when NCLE was added at the same time. These differential ARGs and MGEs were mainly correlated (P < 0.01) with Clostridiales bacterium, Lachnospiraceae bacterium, and Candidatus Woodwardibium gallinarum. These species increased in LPS-stimulated broilers and decreased when NCLE was applied at the same time. In feces, LPS stimulation decreased (P < 0.05) the relative abundance of tet(Q), adeF, ErmF, Mef(En2), OXA-347, tet (40), npmA, tmrB, CfxA3, and ISCrsp1, while the LPS + NCLE treated group showed no significant effect (P > 0.05) on these ARGs. These differential ARGs and MGEs in feces were mainly correlated (P < 0.01) with Clostridiales bacterium, Pseudoflavonifractor sp. An184, Flavonifractor sp. An10, Ruminococcaceae bacterium, etc. These species increased in LPS-stimulated broilers and increased when NCLE was applied at the same time. In conclusion, LPS stimulation and NCLE influenced microbial communities and associated ARGs in both cecal contents and feces of broilers. NCLE alleviated the change of ARGs and MGEs in LPS-induced broilers by maintaining the microbial balance.IMPORTANCEAntibiotics showed a positive effect on gut health regulation and growth performance improvement in livestock breeding, but the antimicrobial resistance threat and environment pollution problem are increasingly severe with antibiotics abuse. As alternatives, plant extract containing bioactive substances are increasingly used to improve immunity and promote productivity. However, little is known about their effects on diversity and abundance of ARGs. Here, we investigated the effects of NCLE, with effective ingredients of flavonoids, on ARGs and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation. We found that NCLE reduced the abundance of ARGs in cecal contents of lipopolysaccharide-induced broilers by maintaining the microbial balance. This study provides a comprehensive view of cecal and fecal microbial community, ARGs, and MGEs of broiler following LPS stimulation and NCLE treatment. It might be used to understand and control ARGs dissemination in livestock production.
Collapse
Affiliation(s)
- Cheng Wang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
- State key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuo Wu
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Lei Hu
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Qi Hu
- Bioinformation Center, NEOMICS Institute, Shenzhen, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- State key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Chen Y, Yan Z, Zhou Y, Zhang Y, Jiang R, Wang M, Yuan S, Lu G. Dynamic evolution of antibiotic resistance genes in plastisphere in the vertical profile of urban rivers. WATER RESEARCH 2024; 249:120946. [PMID: 38043355 DOI: 10.1016/j.watres.2023.120946] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MPs) can vertically transport in the aquatic environment due to their aging and biofouling, forming distinct plastisphere in different water layers. However, even though MPs have been regarded as hotspots for antibiotic resistance genes (ARGs), little is known about the propagation and transfer of ARGs in plastisphere in waters, especially in the vertical profile. Therefore, this study investigated the dynamic responses and evolution of ARGs in different plastisphere distributed vertically in an urbanized river. The biofilm biomass in the polylactic acid (PLA) plastisphere was relatively higher than that in the polyethylene terephthalate (PET), showing depth-decay variations. The ARGs abundance in plastisphere were much higher than that in the surrounding waters, especially for the PLA. In the vertical profiles, the ARGs abundance in the PET plastisphere increased with water depths, while the highest abundance of ARGs in the PLA mostly appeared at intermediate waters. In the temporal dynamic, the ARGs abundance in plastisphere increased and then decreased, which may be dominated by the MP types at the initial periods. After long-term exposure, the influences of water depths seemed to be strengthened, especially in the PET plastisphere. Compared with surface waters, the microbiota attached in plastisphere in deep waters showed high species richness, strong diversity, and complex interactions, which was basically consistent with the changes of nutrient contents in different water layers. These vertical variations in microbiota and nutrients (e.g., nitrogen) may be responsible for the propagation of ARGs in plastisphere in deep waters. The host bacteria for ARGs in plastisphere was also developed as water depth increased, leading to an enrichment of ARGs in deep waters. In addition, the abundance of ARGs in plastisphere in bottom waters was positively correlated with the mobile genetic elements (MGEs) of intI1 and tnpA05, indicative of a frequent horizontal gene transfer of ARGs. Overall, water depth played a critical role in the propagation of ARGs in plastisphere, which should not be ignored in a long time series. This study provides new insights into the dynamic evolution of ARGs propagation in plastisphere under increasing global MPs pollution, especially in the vertical profile.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yixin Zhou
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Saiyu Yuan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
25
|
Sánchez-Urtaza S, Ocampo-Sosa A, Rodríguez-Grande J, El-Kholy MA, Shawky SM, Alkorta I, Gallego L. Plasmid content of carbapenem resistant Acinetobacter baumannii isolates belonging to five International Clones collected from hospitals of Alexandria, Egypt. Front Cell Infect Microbiol 2024; 13:1332736. [PMID: 38264728 PMCID: PMC10803598 DOI: 10.3389/fcimb.2023.1332736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Multidrug resistant Acinetobacter baumannii is one of the most important nosocomial pathogens worldwide. During the last decades it has become a major threat for healthcare settings due to the high antibiotic resistance rates among these isolates. Many resistance determinants are coded by conjugative or mobilizable plasmids, facilitating their dissemination. The majority of plasmids harbored by Acinetobacter species are less than 20 Kb, however, high molecular weight elements are the most clinically relevant since they usually contain antibiotic resistance genes. The aim of this work was to describe, classify and determine the genetic content of plasmids harbored by carbapem resistant A. baumannii isolates belonging to predominant clonal lineages circulating in hospitals from Alexandria, Egypt. The isolates were subjected to S1-Pulsed Field Gel Electrophoresis experiments to identify high molecular weight plasmids. To further analyze the plasmid content and the genetic localization of the antibiotic resistance genes, isolates were sequenced by Illumina Miseq and MinION Mk1C and a hybrid assembly was performed using Unicycler v0.5.0. Plasmids were detected with MOBsuite 3.0.3 and Copla.py v.1.0 and mapped using the online software Proksee.ca. Replicase genes were further analyzed through a BLAST against the Acinetobacter Plasmid Typing database. Eleven plasmids ranging in size from 4.9 to 205.6 Kb were characterized and mapped. All isolates contained plasmids, and, in many cases, more than two elements were identified. Antimicrobial resistance genes such as bla OXA-23, bla GES-like, aph(3')-VI and qacEΔ1 were found in likely conjugative large plasmids; while virulence determinants such as septicolysin or TonB-dependent receptors were identified in plasmids of small size. Some of these resistance determinants were, in turn, located within transposons and class 1 integrons. Among the identified plasmids, the majority encoded proteins belonging to the Rep_3 family, but replicases of the RepPriCT_1 (Aci6) family were also identified. Plasmids are of high interest as antibiotic resistance control tools, since they may be used as genetic markers for antibiotic resistance and virulence, and also as targets for the development of compounds that can inhibit transfer processes.
Collapse
Affiliation(s)
- Sandra Sánchez-Urtaza
- Laboratory of Antibiotics and Molecular Bacteriology, Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Alain Ocampo-Sosa
- Microbiology Service, University Hospital Marqués de Valdecilla, Health Research Institute (IDIVAL), Santander, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Rodríguez-Grande
- Microbiology Service, University Hospital Marqués de Valdecilla, Health Research Institute (IDIVAL), Santander, Spain
| | - Mohammed A. El-Kholy
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology & Maritime Transport (AASTMT), Alexandria, Egypt
| | - Sherine M. Shawky
- Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Lucia Gallego
- Laboratory of Antibiotics and Molecular Bacteriology, Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| |
Collapse
|
26
|
Boroujeni MB, Mohebi S, Malekian A, Shahraeini SS, Gharagheizi Z, Shahkolahi S, Sadeghi RV, Naderifar M, Akbarizadeh MR, Soltaninejad S, Moghadam ZT, Moghadam MT, Mirzadeh F. The therapeutic effect of engineered phage, derived protein and enzymes against superbug bacteria. Biotechnol Bioeng 2024; 121:82-99. [PMID: 37881139 DOI: 10.1002/bit.28581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Defending against antibiotic-resistant infections is similar to fighting a war with limited ammunition. As the new century unfolded, antibiotic resistance became a significant concern. In spite of the fact that phage treatment has been used as an effective means of fighting infections for more than a century, researchers have had to overcome many challenges of superbug bacteria by manipulating phages and producing engineered enzymes. New enzymes and phages with enhanced properties have a significant impact on the ability to fight antibiotic-resistant infections, which is considered a window of hope for the future. This review, therefore, illustrates not only the challenges caused by antibiotic resistance and superbug bacteria but also the engineered enzymes and phages that are being developed to solve these issues. Our study found that engineered phages, phage proteins, and enzymes can be effective in treating superbug bacteria and destroying the biofilm caused by them. Combining these engineered compounds with other antimicrobial substances can increase their effectiveness against antibiotic-resistant bacteria. Therefore, engineered phages, proteins, and enzymes can be used as a substitute for antibiotics or in combination with antibiotics to treat patients with superbug infections in the future.
Collapse
Affiliation(s)
| | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Malekian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Medical Biotechnology, Drug Design and Bioinformatics Unit, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Gharagheizi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Shahkolahi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rezvaneh Vahedian Sadeghi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahin Naderifar
- School of Nursing & Midwifery, Zabol University of Medical Sciences, Zabol, Iran
| | | | | | - Zahra Taati Moghadam
- School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | | | | |
Collapse
|
27
|
Lim AL, Miller BW, Lin Z, Fisher MA, Barrows LR, Haygood MG, Schmidt EW. Resistance mechanisms for Gram-negative bacteria-specific lipopeptides, turnercyclamycins, differ from that of colistin. Microbiol Spectr 2023; 11:e0230623. [PMID: 37882570 PMCID: PMC10714751 DOI: 10.1128/spectrum.02306-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/13/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Bacterial resistance to antibiotics is a crisis. Acinetobacter baumannii is among the CDC urgent threat pathogens in part for this reason. Lipopeptides known as turnercyclamycins are produced by symbiotic bacteria that normally live in marine mollusks, where they may be involved in shaping their symbiotic niche. Turnercyclamycins killed Gram-negative pathogens including drug-resistant Acinetobacter, but how do the mechanisms of resistance compare to other lipopeptide drugs? Here, we define resistance from a truncation of MlaA, a protein involved in regulating bacterial membrane phospholipids. Intriguingly, this resistance mechanism only affected one turnercyclamycin variant, which differed only in two atoms in the lipid tail of the compounds. We could not obtain significant resistance to the second turnercyclamycin variant, which was also effective in an infection model. This study reveals an unexpected subtlety in resistance to lipopeptide antibiotics, which may be useful in the design and development of antibiotics to combat drug resistance.
Collapse
Affiliation(s)
- Albebson L. Lim
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Bailey W. Miller
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Mark A. Fisher
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Margo G. Haygood
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
28
|
Lee JH, Kim NH, Jang KM, Jin H, Shin K, Jeong BC, Kim DW, Lee SH. Prioritization of Critical Factors for Surveillance of the Dissemination of Antibiotic Resistance in Pseudomonas aeruginosa: A Systematic Review. Int J Mol Sci 2023; 24:15209. [PMID: 37894890 PMCID: PMC10607276 DOI: 10.3390/ijms242015209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudomonas aeruginosa is the primary opportunistic human pathogen responsible for a range of acute and chronic infections; it poses a significant threat to immunocompromised patients and is the leading cause of morbidity and mortality for nosocomial infections. Its high resistance to a diverse array of antimicrobial agents presents an urgent health concern. Among the mechanisms contributing to resistance in P. aeruginosa, the horizontal acquisition of antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) has gained recognition as a substantial concern in clinical settings, thus indicating that a comprehensive understanding of ARG dissemination within the species is strongly required for surveillance. Here, two approaches, including a systematic literature analysis and a genome database survey, were employed to gain insights into ARG dissemination. The genome database enabled scrutinizing of all the available sequence information and various attributes of P. aeruginosa isolates, thus providing an extensive understanding of ARG dissemination within the species. By integrating both approaches, with a primary focus on the genome database survey, mobile ARGs that were linked or correlated with MGEs, important sequence types (STs) carrying diverse ARGs, and MGEs responsible for ARG dissemination were identified as critical factors requiring strict surveillance. Although human isolates play a primary role in dissemination, the importance of animal and environmental isolates has also been suggested. In this study, 25 critical mobile ARGs, 45 critical STs, and associated MGEs involved in ARG dissemination within the species, are suggested as critical factors. Surveillance and management of these prioritized factors across the One Health sectors are essential to mitigate the emergence of multidrug-resistant (MDR) and extensively resistant (XDR) P. aeruginosa in clinical settings.
Collapse
Affiliation(s)
- Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Nam-Hoon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Hyeonku Jin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Kyoungmin Shin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Dae-Wi Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| |
Collapse
|
29
|
Deng YP, Fu YT, Yao C, Shao R, Zhang XL, Duan DY, Liu GH. Emerging bacterial infectious diseases/pathogens vectored by human lice. Travel Med Infect Dis 2023; 55:102630. [PMID: 37567429 DOI: 10.1016/j.tmaid.2023.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Human lice have always been a major public health concern due to their vector capacity for louse-borne infectious diseases, like trench fever, louse-borne relapsing fever, and epidemic fever, which are caused by Bartonella quintana, Borrelia recurrentis, and Rickettsia prowazekii, respectively. Those diseases are currently re-emerging in the regions of poor hygiene, social poverty, or wars with life-threatening consequences. These louse-borne diseases have also caused outbreaks among populations in jails and refugee camps. In addition, antibodies and DNAs to those pathogens have been steadily detected in homeless populations. Importantly, more bacterial pathogens have been detected in human lice, and some have been transmitted by human lice in laboratories. Here, we provide a comprehensive review and update on louse-borne infectious diseases/bacterial pathogens.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China; Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Xue-Ling Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
30
|
Ng HK, Puah SM, Teh CSJ, Idris N, Chua KH. Comparative Transcriptomic Profiling of Pellicle and Planktonic Cells from Carbapenem-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2023; 12:1185. [PMID: 37508281 PMCID: PMC10375965 DOI: 10.3390/antibiotics12071185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii forms air-liquid interface pellicles that boost its ability to withstand desiccation and increase survival under antibiotic pressure. This study aims to delve into the transcriptomic profiles of pellicle cells from clinical strains of carbapenem-resistant A. baumannii (CRAB). The total RNA was extracted from pellicle cells from three pellicle-forming CRAB strains and planktonic cells from three non-pellicle-forming CRAB strains, subject to RNA sequencing using Illumina HiSeq 2500 system. A transcriptomic analysis between pellicle and planktonic cells, along with differential expression genes (DEGs) analysis and enrichment analysis of annotated COGs, GOs, and KEGGs, was performed. Our analysis identified 366 DEGs in pellicle cells: 162 upregulated genes and 204 downregulated genes. The upregulated ABUW_1624 (yiaY) gene and downregulated ABUW_1550 gene indicated potential involvement in fatty acid degradation during pellicle formation. Another upregulated ABUW_2820 (metQ) gene, encoding the D-methionine transporter system, hinted at its contribution to pellicle formation. The upregulation of two-component systems, CusSR and KdpDE, which implies the regulation of copper and potassium ions in a CRAB pellicle formation was also observed. These findings provide valuable insights into the regulation of gene expression during the formation of pellicles in CRAB, and these are potential targets that may aid in the eradication of CRAB infections.
Collapse
Affiliation(s)
- Heng Kang Ng
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
31
|
Cho H, Sondak T, Kim KS. Characterization of Increased Extracellular Vesicle-Mediated Tigecycline Resistance in Acinetobacter baumannii. Pharmaceutics 2023; 15:1251. [PMID: 37111736 PMCID: PMC10146562 DOI: 10.3390/pharmaceutics15041251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is the most detrimental pathogen that causes hospital-acquired infections. Tigecycline (TIG) is currently used as a potent antibiotic for treating CRAB infections; however, its overuse substantially induces the development of resistant isolates. Some molecular aspects of the resistance mechanisms of AB to TIG have been reported, but they are expected to be far more complicated and diverse than what has been characterized thus far. In this study, we identified bacterial extracellular vesicles (EVs), which are nano-sized lipid-bilayered spherical structures, as mediators of TIG resistance. Using laboratory-made TIG-resistant AB (TIG-R AB), we demonstrated that TIG-R AB produced more EVs than control TIG-susceptible AB (TIG-S AB). Transfer analysis of TIG-R AB-derived EVs treated with proteinase or DNase to recipient TIG-S AB showed that TIG-R EV proteins are major factors in TIG resistance transfer. Additional transfer spectrum analysis demonstrated that EV-mediated TIG resistance was selectively transferred to Escherichia coli, Salmonella typhimurium, and Proteus mirabilis. However, this action was not observed in Klebsiella pneumonia and Staphylococcus aureus. Finally, we showed that EVs are more likely to induce TIG resistance than antibiotics. Our data provide direct evidence that EVs are potent cell-derived components with a high, selective occurrence of TIG resistance in neighboring bacterial cells.
Collapse
Affiliation(s)
| | | | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
32
|
Lustri WR, Lazarini SC, Simei Aquaroni NA, Resende FA, Aleixo NA, Pereira DH, Lustri BC, Moreira CG, Ribeiro CM, Pavan FR, Nakahata DH, Gonçalves AM, Nascimento-Júnior NM, Corbi PP. A new complex of silver(I) with probenecid: Synthesis, characterization, and studies of antibacterial and extended spectrum β-lactamases (ESBL) inhibition activities. J Inorg Biochem 2023; 243:112201. [PMID: 37003189 DOI: 10.1016/j.jinorgbio.2023.112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
This article describes the in vitro antibacterial and β-lactamase inhibition of a novel silver(I) complex with the sulfonamide probenecid (Ag-PROB). The formula Ag2C26H36N2O8S2·2H2O for the Ag-PROB complex was proposed based on elemental analysis. High-resolution mass spectrometric studies revealed the existence of the complex in its dimeric form. Infrared, nuclear magnetic resonance spectroscopies and Density Functional Theory calculations indicated a bidentate coordination of probenecid to the silver ions by the oxygen atoms of the carboxylate. In vitro antibacterial activities of Ag-PROB showed significant growth inhibitory activity over Mycobacterium tuberculosis, S. aureus, and P. aeruginosa PA01biofilm-producers, B. cereus, and E. coli. The Ag-PROB complex was active over multi-drug resistant of uropathogenic E. coli extended spectrum β-lactamases (ESBL) producing (EC958 and BR43), enterohemorrhagic E. coli (O157:H7) and enteroaggregative E. coli (O104:H4). Ag-PROB was able to inhibit CTX-M-15 and TEM-1B ESBL classes, at concentrations below the minimum inhibitory concentration for Ag-PROB, in the presence of ampicillin (AMP) concentration in which EC958 and BR43 bacteria were resistant in the absence of Ag-PROB. These results indicate that, in addition to ESBL inhibition, there is a synergistic antibacterial effect between AMP and the Ag-PROB. Molecular docking results revealed potential key residues involved in interactions between Ag-PROB, CTX-M-15 and TEM1B, suggesting the molecular mechanism of the ESBL inhibition. The obtained results added to the absence of mutagenic activity and low cytotoxic activity over non-tumor cell of the Ag-PROB complex open a new perspective for future in vivo tests demonstrating its potential of use as an antibacterial agent.
Collapse
|