1
|
Bai Y, Song Y, He X, He W, Chen Y, Zhao M, Zhang J, Han W, Bai W. Evidence of microplastic accumulation on the surface of lettuce and analysis of contamination sources. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138201. [PMID: 40209404 DOI: 10.1016/j.jhazmat.2025.138201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/04/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
Microplastic (MP) pollution has emerged as a significant environmental concern. Microplastics land on vegetable surfaces with airborne deposition and agronomic activities. However, research on the sources of microplastics on vegetable surfaces is limited by the lack of monitoring of microplastics in the growing environment. Therefore, we detected microplastics on lettuce surfaces, in air, and in pesticides to determine the correlation between them. In addition, this study compared microplastics on the surface of different types of lettuce to explore their differences. The results showed that the content, in descending order, was old leaves of leaf lettuce > new leaves of leaf lettuce > nodular lettuce. A total of 19 polymers, mainly polyamide polyethylene and polypropylene, were detected on the surface of the lettuce. The contribution of microplastics on the surface of lettuce was air and pesticides in descending order of origin. Microplastic risk assessment index was determined that the risk level of microplastics on lettuce surfaces could be classed as level IV, indicating a high dietary health risk. The results presented here will enable scientific assessments of the exposure pathways of MPs in fresh vegetables and their potential harm to human health.
Collapse
Affiliation(s)
- Yeran Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China
| | - Yang Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China
| | - Xiaoxuan He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China
| | - Wenqing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Han
- Shandong Agro-tech Extension Center, Jinan 250013, China
| | - Wenbo Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China.
| |
Collapse
|
2
|
Augustus de Araújo G, Santana Ramos MC, Dias Carvalho GL, Camilo-Cotrim CF, Braga do Amaral R, Castro ÍB, Rocha TL, Damacena-Silva L. Microplastic contamination in wild freshwater fish: Global trends, challenges and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126406. [PMID: 40348270 DOI: 10.1016/j.envpol.2025.126406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Microplastics (MPs) are emerging contaminants of global concern with potential risks to wildlife and human health. This study reviewed the literature on MP contamination in wild freshwater fish, analyzing 144 articles published since 2016. Studies were conducted in 45 countries, mainly by China (8.97 %), Bangladesh and India (8.28 % each), and Indonesia (6.90 %). Cypriniformes were the most studied order (52.08 %), with rivers being the predominant sampling sites (57.64 %). Omnivorous fish (80.55 %) were the most studied, and MPs were found in the gastrointestinal tract (51.10 %), gills (19.38 %), and muscle (10.57 %). A total of 450 fish species were found to be contaminated by MPs, including 35 listed on the IUCN Red List: 2 critically endangered, 8 endangered, 12 vulnerable, and 13 near threatened. Although the representativeness of the data may be compromised by selective sampling, polymers such as PE and PP predominated, typically in the form of blue fibers ranging from 0.1 to 0.5 mm, indicating recurring contamination patterns in freshwater environments. Significant research gaps remain, including the need for standardized methods, broader inclusion of Neotropical fish species, investigation of biological responses, and studies on trophic transfer and biomagnification.
Collapse
Affiliation(s)
| | - Maria Clara Santana Ramos
- Host-Parasite Interaction Research Laboratory, Academic Institute of Health and Biological Sciences, State University of Goiás, Central Campus, Anápolis, Goiás, Brazil
| | - Gabriela Lidiane Dias Carvalho
- Host-Parasite Interaction Research Laboratory, Academic Institute of Health and Biological Sciences, State University of Goiás, Central Campus, Anápolis, Goiás, Brazil
| | - Carlos Filipe Camilo-Cotrim
- Postgraduate Program in Natural Resources of the Cerrado, State University of Goiás, Anápolis, Goiás, Brazil
| | - Rafael Braga do Amaral
- Laboratory of Theory Metacommunity and Landscape Ecology, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Ítalo Braga Castro
- Institute of the Sea, Federal University of São Paulo (IMAR-UNIFESP), Santos, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Luciana Damacena-Silva
- Host-Parasite Interaction Research Laboratory, Academic Institute of Health and Biological Sciences, State University of Goiás, Central Campus, Anápolis, Goiás, Brazil.
| |
Collapse
|
3
|
Li G, Lv M, Zhang H, Zhang D, Yu H, Li Q, Wang L. Toxic effects of co-exposure to polystyrene nanoplastics and arsenic in zebrafish (Danio rerio): Oxidative stress, physiological and biochemical responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118286. [PMID: 40378726 DOI: 10.1016/j.ecoenv.2025.118286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/04/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
The issue of nanoplastics (NPs) in the aquatic environment has recently received considerable attention. Arsenic (As) is a relatively abundant and toxic metalloid element in aquatic environments. However, the potential toxic effects of As on aquatic organisms under the influence of NPs remain uncertain. In this study, zebrafish were divided into five different groups: a control group, a single As(V) (10 μg/L) treatment group and three As (10 μg/L) + polystyrene nanoplastics (PS-NPs) treatment groups (NPs at concentrations of 1, 5 and 10 mg/L, respectively) for a period of seven days using a semi-static method. The findings demonstrated that the presence of PS-NPs facilitated the accumulation of As in zebrafish liver, gill and intestine with the following promoting efficiency: liver > gill > intestine. The presence of PS-NPs enhanced the oxidative stress effects of As on the aforementioned tissues. Furthermore, the activities of glutathione-S-transferase and glutathione peroxidase in the liver and intestine were found to be instrumental in mitigating oxidative stress during co-exposure. Furthermore, the presence of PS-NPs led to a further reduction in As-induced acetylcholinesterase activity in the liver and intestine of zebrafish. The combined exposure of zebrafish to PS-NPs and As resulted in an increase in lactate dehydrogenase activity in the liver, intestine and gills. This subsequently led to a reduction in the activity of acid phosphatase and alkaline phosphatase in the aforementioned tissues, thus affecting immune dysfunction in zebrafish. The integrated biomarker response indexes indicate that combined exposures result in greater toxic effects compared to single As exposures. The findings provide a fundamental basis for the assessment of the toxic effects of combined nanoscale plastic and As pollution on aquatic organisms.
Collapse
Affiliation(s)
- Guoxin Li
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Min Lv
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Heng Zhang
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Dandan Zhang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Haitao Yu
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Qingsong Li
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Lei Wang
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| |
Collapse
|
4
|
Shruti VC, Kutralam-Muniasamy G, Pérez-Guevara F, Alvarez RC. Exploring the micro- and nanoplastics-diabetes nexus: Shattered barriers, toxic links, and methodological horizons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126319. [PMID: 40294693 DOI: 10.1016/j.envpol.2025.126319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Micro- and nanoplastics (MNPs) are emerging environmental contaminants with increasing evidence linking them to metabolic dysfunction, including diabetes-related outcomes. While experimental studies have demonstrated that MNPs disrupt glucose metabolism, insulin signaling, and lipid homeostasis through oxidative stress, systemic inflammation, and endocrine disruption, the implications for human health remain largely unexplored. Given the widespread presence of MNPs in food, water, and air, chronic low-dose exposure may contribute to metabolic disorders, yet epidemiological data are scarce. This review synthesizes current findings on MNP-induced metabolic disturbances, highlighting their impact on insulin resistance, hepatic fat accumulation, gut microbiota dysbiosis, and adipose tissue dysfunction. Additionally, we evaluate the analytical methodologies used to detect MNPs in biological systems and assess the relevance of exposure levels in real-world scenarios. By contextualizing these mechanisms within a broader public health framework, this review underscores the urgent need for large-scale human studies to establish causal links between MNP exposure and metabolic diseases. Addressing these knowledge gaps is critical for informing risk assessment, regulatory policies, and future research directions aimed at mitigating the metabolic risks associated with environmental plastic pollution.
Collapse
Affiliation(s)
- V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Ciudad de México, Mexico
| | - Gurusamy Kutralam-Muniasamy
- CIITEC - IPN. Centro de Investigación e Innovación Tecnológica, Cda. de Cecati s/n, Santa Catarina, Azcapotzalco, 02250, Ciudad de México, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Ciudad de México, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Ciudad de México, Mexico
| | - Ricardo Cuenca Alvarez
- CIITEC - IPN. Centro de Investigación e Innovación Tecnológica, Cda. de Cecati s/n, Santa Catarina, Azcapotzalco, 02250, Ciudad de México, Mexico
| |
Collapse
|
5
|
Liu M, Pu H, Sun DW. Eco-friendly lily bulb-derived polysaccharide aerogel for efficient microplastics and nanoplastics removal. Carbohydr Polym 2025; 357:123410. [PMID: 40158961 DOI: 10.1016/j.carbpol.2025.123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 04/02/2025]
Abstract
Microplastics that eventually convert into nanoplastics are emerging global pollutants and the development of efficient adsorbents for their removal is urgently needed. For sustainability and eco-friendliness, in the current study, a polysaccharide aerogel (LPA) was prepared with lily bulbs as the raw material by following water bath extraction, purification and freeze-drying processes. The prepared porous LPA was then applied as a packing material in a mini adsorption column for removing polystyrene (PS) microplastics and nanoplastics. Results revealed that LPA was over 90 kDa in size and consisted mainly of glucomannan and the removal efficiencies for microplastics and nanoplastics were 93.68 % and 96.98 %, respectively, mainly due to hydrogen bonding interactions and porous structure. The adsorption column was robust and maintained a remarkable removal efficiency (over 90 %) for 3 months. In addition, the effects of other extraction methods and pre-freezing conditions before the freeze-drying process were studied. Compared with water bath extraction, ultrasonic-assisted extraction and microwave-assisted extraction transformed the LPA structure, resulting in reduced adsorption ability, while the pre-freezing temperature could be used to adjust the specific surface area. Meanwhile, the effects of temperature and pH of adsorbates were also investigated. The LPA was heat sensitive and not stable under strongly acidic (pH 4) or strongly alkaline (pH 10) conditions, resulting in a sharp decline in removal efficiency. The adsorption behaviour of LPA was further described via adsorption kinetic models, showing that the microplastics and nanoplastics adsorptions could be fitted by pseudo-second-order and pseudo-first-order models, respectively. Moreover, the adsorption performance of LPA was compared with some other aerogels and had a better result. This research provides a promising, sustainable alternative for microplastic and nanoplastic removal that has potential for pollutant adsorption and sample purification as well as a low preparation cost.
Collapse
Affiliation(s)
- Meiting Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Rahman MH, Izlal S, Islam T, Ruhad FM, Jahin A, Islam MR, Ahmed E, Mohona HT, Mitu TJ. Occurrence and risk assessment of microplastics in surface water, sediment, and biota of Surma River, Bangladesh. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 273:104620. [PMID: 40424972 DOI: 10.1016/j.jconhyd.2025.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/21/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025]
Abstract
Pollution from microplastics (MPs) has become a major environmental concern worldwide, impacting ecosystems severely. Bangladesh is one of the developing nations, with concerning issues of improper plastic trash handling by poor recycling infrastructure. The present study focuses on MPs pollution in the Surma River, which is in the northeastern part of the country. MPs in the water, sediment, and biota sample were observed in the study. Density separation, microscopic observations, and Fourier transform infrared spectroscopy (FTIR) analysis have been conducted for MPs identification and quantification. MPs concentrations were observed at 5-20 items/L in surface water, 360-960 items/kg in sediment, and 2-3.6 items/species in biota. Fiber shapes, 1-2 mm sizes, and transparent colored MPs were the most prevalent type in surface water. While fragment shape, 1-2 mm sizes, and black MPs were most common in sediment samples. For biota samples, fiber shape, 1-2 mm sizes, and black MPs were the most prevalent. Moreover, risk assessment indices were examined for the individual sites, including contamination factors (CF), polymeric hazard assessment (PHA), pollution risk index (PRI), and pollution load index (PLI). PLI recorded for surface water and sediment are 1.92 and 2.69, respectively, indicating substantial contamination in the Surma River. This study provides the first multi-compartment analysis of microplastic pollution in the Surma River. The findings can inform future mitigation strategies, waste management policies, and contribute to global efforts in combating the pervasive issue of MPs pollution.
Collapse
Affiliation(s)
- Md Hafizur Rahman
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Saif Izlal
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tariqul Islam
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Fahim Mahafuz Ruhad
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Afifa Jahin
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Rubaith Islam
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Elias Ahmed
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Humayra Tasnim Mohona
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tasrin Jahan Mitu
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
7
|
Feng C, Liang Z, Liao X, Lin K, Zhai Y, Liu G, Malpei F, Hu A. Microbial Dynamics on Different Microplastics in Coastal Urban Aquatic Ecosystems: The Critical Roles of Extracellular Polymeric Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40392941 DOI: 10.1021/acs.est.5c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Microplastics (MPs) serve as carriers for microbial community colonization, forming unique ecosystems known as plastispheres in urban aquatic ecosystems. However, interactions among microbes, extracellular polymeric substances (EPS), and MPs remain poorly understood. This study investigates microbial consortia and their EPS secretion behaviors across various plastispheres at two representative coastal urban water sites. Permutational multivariate analysis of variance revealed that MP type significantly influenced microbial community structures in reservoir environments (R2 = 0.60, p < 0.001), highlighting the pronounced impact of MP types in high-quality urban waters. Specific microbial phyla and genera were identified as key contributors to EPS compositional variations across different plastispheres. Hierarchical partitioning results identified Acidobacteria, Nitrospirae, and Planctomycetes as influential phyla positively affecting EPS composition. Spearman correlation analysis pinpointed Robiginitialea (positive correlation) and Fimbriiglobus (negative correlation) as critical genera influencing EPS dynamics. Moreover, EPS-related gene abundance corresponded closely with observed EPS compositional differences. Dominant genes associated with protein biosynthesis included xapD in reservoirs and glnA in bays, while glmS and eno were predominant for polysaccharide biosynthesis in bays. This research advances our understanding of microbial-EPS-MP interactions in urban water systems, offering critical insights into ecological remediation and risk assessment of MP pollution.
Collapse
Affiliation(s)
- Cuijie Feng
- Center for Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ziyan Liang
- Center for Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xin Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, PR China
| | - Kairong Lin
- Center for Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yujia Zhai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Gang Liu
- Key Lab of Aquatic Chemistry, State Key Lab of Regional Environment, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sanitary engineering, Department of Water Management, Delft University of Technology, Delft 2628 CN, The Netherlands
| | - Francesca Malpei
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan 20133, Italy
| | - Anyi Hu
- Carbon Neutral Innovation Research Center and Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361105, PR China
| |
Collapse
|
8
|
Contreras-Castillo L, Blázquez-Blázquez E, Cerrada ML, Amariei G, Rosal R. Aquatic toxicity of UV-irradiated commercial polypropylene plastic particles and associated chemicals. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138645. [PMID: 40383040 DOI: 10.1016/j.jhazmat.2025.138645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/30/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Plastics often contain non-polar chemical additives, such as antioxidants, flame retardants, plasticizers, and UV stabilizers, which improve performance but have poorly understood environmental risks. This study assessed the aquatic toxicity of polypropylene (PP) containing the antioxidant Irgafos 168 (IRG) to the crustacean Daphnia magna and the green alga Raphidocelis subcapitata. Commercial PP containing IRG (PPc) and additive- and oligomer-free PP (PPd) were irradiated at 254 nm using germicidal light, both with and without H2O2. The tested particles included microplastics (MPs, 1-50 μm and 50-500 μm) and nanoplastics (NPs, < 1 μm). The results showed that the toxicity was influenced by particle size, concentration, and the presence of the antioxidant additive. Smaller particles, along with the presence of IRG and its degradation products, tris(2,4-di-tert-butylphenyl) phosphate, bis(2,4-di-tert-butylphenyl) phosphate, and 2,4-di-tert-butylphenol, contributed to higher toxicity in both D. magna and R. subcapitata. The highest toxicity was observed for NPs containing IRG (PPc), which resulted in an EC20 for D. magna immobilization of 7.2 ± 0.1 mg/L, compared to the less toxic NPs free of IRG (EC20 28.7 ± 4.2 mg/L). The growth rate of R. subcapitata was also more affected by NPs generated from PPc (EC20 0.2 ± 1.2 mg/L) than by the corresponding NPs free of IRG (LOEC 3 mg/L). Our findings showed that the main toxicity was driver was an increase of intracellular reactive oxygen species, lipid peroxidation (LPO), damage to cell membrane integrity and impairment of esterase activity. The results demonstrated that irradiated plastic particles act as carriers for toxic non-polar compounds, enhancing negative effects on aquatic organisms, with particle size being a key factor. This study highlights the complex toxicological impacts of micro- and nano-plastics containing additives on aquatic biota.
Collapse
Affiliation(s)
- Laura Contreras-Castillo
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - Enrique Blázquez-Blázquez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| | - María L Cerrada
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| | - Georgiana Amariei
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain.
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
9
|
Wang H, Zhu T, Wang J, Liu Y. Microplastic pollution in Pearl River networks: Characteristic, potential sources, and migration pathways. WATER RESEARCH 2025; 276:123261. [PMID: 39952073 DOI: 10.1016/j.watres.2025.123261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Microplastic (MP) pollution has become a global environmental problem with profound impacts on aquatic ecosystems. Although the topic of MPs has attracted high attention, the sources, transport pathway, and removal of MPs in river networks is still unclear. Here, we conducted a field survey across the Pearl River Basin (PRB) (> 4.5 × 105 km2) and collected the water samples to characterize the spatial distribution of MPs using a Laser Direct Infrared (LDIR) chemical imaging system. The MPs were detected in all samples with an average abundance of 1092.86 items/L, in which polyamide (PA), polyurethane (PU), and polyvinyl chloride (PVC) are the main polymer types. Population and surface runoff were identified as major factors influencing the concentrations of MPs. The Partial Least Squares Structural Equation Modeling (PLS-PM) analysis revealed that precipitation-induced surface runoff is a major pathway for MPs transferring from terrestrial environment to river networks. River hydraulic dynamics were found to have considerable influence on the selective removal of MPs from water column in the river channel. The smooth state (Froude number, Fr <0.23) promotes while the rough state (Fr > 0.23) inhibits the deposition of MPs from water column to sediments. In particular, the smooth state facilitates the deposition of large-sized and high-density MPs from the water column to sediments. The deposition processes in river channel cause considerable fractionation of polymer types and size of riverine MPs. This study provides the first-hand MP pollution status in the networks of the PRB and provide insights into sources, spatial distribution characteristics, and transmission mechanism of MPs in river networks, which would provide theoretical bases and experimental reference for river water quality management and risk control of MPs for governor, stakeholders, and policy makers.
Collapse
Affiliation(s)
- Huan Wang
- Earth, Ocean and Atmospheric Sciences (EOAS) Thrust, Function Hub, The Hong Kong University of Science and Technology Guangzhou, China
| | - Tingting Zhu
- State Environmental Protection Key Laboratory of Managing Technology of Drinking Water Source, Shenzhen Key Laboratory of Emerging Contaminants Detection & Control in Water Environment, Shenzhen Academy of Environmental Science, Shenzhen, China
| | - Jun Wang
- Advanced Materials Thrust (AMAT), Function Hub, The Hong Kong University of Science and Technology Guangzhou, China
| | - Yi Liu
- Earth, Ocean and Atmospheric Sciences (EOAS) Thrust, Function Hub, The Hong Kong University of Science and Technology Guangzhou, China; Center for Ocean Research in Hong Kong and Macau (CORE), Hong Kong, China.
| |
Collapse
|
10
|
Geppner L, Hellner J, Henjakovic M. Effects of micro- and nanoplastics on blood cells in vitro and cardiovascular parameters in vivo, considering their presence in the human bloodstream and potential impact on blood pressure. ENVIRONMENTAL RESEARCH 2025; 273:121254. [PMID: 40024503 DOI: 10.1016/j.envres.2025.121254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The adverse effects of plastics on the environment, wildlife, and human health have been extensively studied, yet their production remains unavoidable due to the lack of viable alternatives. Environmental fragmentation of larger plastic particles generates microplastics (MPs, 0.1-5000 μm) and nanoplastics (NPs, 1-100 nm), which can enter the bloodstream through inhalation or ingestion. This review examines whether MPs and NPs influence blood pressure. To address this question, relevant studies were analyzed based on predefined criteria. Due to anatomical barriers and microcirculatory dynamics, only NPs and small MPs are expected to enter the bloodstream under physiological conditions, although pathological states may alter this. In vitro research indicates that MPs and NPs negatively affect erythrocytes and endothelial cells, while rodent models suggest potential cardiovascular effects. Plastic particles and fibers have been detected in human blood, thrombi, atherosclerotic plaques, and various tissues. However, validated data on plastic particle-related blood pressure changes remain lacking. Despite limitations in their applicability to human physiology, preclinical models suggest that MPs and NPs circulate in the bloodstream, interact with blood cells, and contribute to vascular damage. Mechanisms such as endothelial injury, platelet activation, inflammation, and MPs/NPs accumulation in atherosclerotic plaques may contribute to blood pressure elevation but are unlikely to be the exclusive cause of hypertension. Further research is needed to clarify the role of plastic particles in blood pressure regulation. Standardized detection methods, real-world scenario-related models, and targeted human studies are essential to assessing cardiovascular risks associated with MP and NP exposure.
Collapse
Affiliation(s)
- Liesa Geppner
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems an der Donau, Austria; Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Julius Hellner
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems an der Donau, Austria
| | - Maja Henjakovic
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems an der Donau, Austria.
| |
Collapse
|
11
|
Foka K, Ferousi C, Topakas E. Polyester-derived monomers as microbial feedstocks: Navigating the landscape of polyester upcycling. Biotechnol Adv 2025; 82:108589. [PMID: 40354902 DOI: 10.1016/j.biotechadv.2025.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/10/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Since their large-scale adoption in the early 20th century, plastics have become indispensable to modern life. However, inadequate disposal and recycling methods have led to severe environmental consequences. While traditional end-of-life plastics management had predominantly relied on landfilling, a paradigm shift towards recycling and valorization emerged in the 1970s, leading to the development of various, mostly mechanochemical, recycling strategies, together with the more recent approach of biological depolymerization and upcycling. Plastic upcycling, which converts plastic waste into higher-value products, is gaining attention as a sustainable strategy to reduce environmental impact and reliance on virgin materials. Microbial plastic upcycling relies on efficient depolymerization methods to generate monomeric substrates, which are subsequently metabolized by native or engineered microbial systems yielding valuable bioproducts. This review focuses on the second phase of microbial polyester upcycling, examining the intracellular metabolic pathways that enable the assimilation and bioconversion of polyester-derived monomers into industrially relevant compounds. Both biodegradable and non-biodegradable polyesters with commercial significance are considered, with emphasis on pure monomeric feedstocks to elucidate intracellular carbon assimilation pathways. Understanding these metabolic processes provides a foundation for future metabolic engineering efforts, aiming to optimize microbial systems for efficient bioconversion of mixed plastic hydrolysates into valuable bioproducts.
Collapse
Affiliation(s)
- Katerina Foka
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| | - Christina Ferousi
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| |
Collapse
|
12
|
Mondal R, Sarkar DJ, Bhattacharyya S, Raja R, Chaudhuri P, Biswas JK, Kumar Das B. Health risk assessment of microplastics contamination in the daily diet of South Asian countries. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138527. [PMID: 40378741 DOI: 10.1016/j.jhazmat.2025.138527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
South Asian countries face a major threat concerning microplastics (MPs) contamination in food. This study explores the existing evidence of MPs in major foods of South Asian countries and links with available health risk indices through meta-analysis. Overall range of MPs in treated water, bottled water, fish, milk, salt, wheat, rice, and sugar were 0.75-35.33 particles L-1, 0.07-500 particles L-1, 0.006-361.6 particles g-1, 11.1-295.5 particles L-1, 0.01-350 particles g-1, 4.57 particles g-1, 0.303 particles g-1 and 0.343 particles g-1, respectively. Daily intake of MPs through food items was estimated with a range of 508-2280 particles person-1 day-1 depending on age group. Hazard score of MPs contaminated food indicates high to very high hazard scores in salt with an average PHI of 10,817.6 followed by fish (9012.9), milk (4900.4) and drinking water (3752.9) which are higher than the global values. High-risk polymers include Polyvinyl Chloride, Polyacrylamide, Styrene-Butadiene copolymer, Polyester, Polyurethane, and Polyamide. Average rate of microplastics ingestion ranged between 0.64 and 36.3 g person-1 year-1 with fish stand apex followed by bottled water, salt and milk. This study further investigates research gaps on MPs contamination in the foods of South Asian countries. Overall, the present study summarised the present level of MPs ingestion through different food sources in South Asian countries, highlighting the need for strong regulation to monitor level of MPs contamination in food.
Collapse
Affiliation(s)
- Riashree Mondal
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Dhruba Jyoti Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700120, India.
| | - Subarna Bhattacharyya
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India.
| | - Ramij Raja
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700120, India
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata, West Bengal 700019, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700120, India
| |
Collapse
|
13
|
Wang R, Fan W, Zhu L, Wang W, Luo X, Yan W, Wang T, Zhang H. Edible rice starch films incorporated with curcumin nanoparticles exerting anti-microbial properties for strawberry preservation. Int J Biol Macromol 2025; 310:142993. [PMID: 40210058 DOI: 10.1016/j.ijbiomac.2025.142993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/20/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Pure starch film presents poor barrier properties and lacks anti-microbial properties. Herein, curcumin nanoparticles (cNPs) were prepared by the reassembly of food proteins and were utilized to reinforce the starch-based film. Herein, the reassembly of rice proteins and casein encapsulated curcumin upon pH adjustment to produce water-dispersible cNPs with a diameter of 140.9 ± 6.8 nm and curcumin loading capacity of 276.0 μg/mg. The cNPs showed a good dispersibility in gelatinized rice starch (RS) solutions as well and resultant composites films (RS@cNPs) had greater light barrier property than the pure RS film. The incorporation of cNPs tended to decrease the water solubility and water vapor permeability of RS@cNPs films, and increasing curcumin content gradually enhanced the hydrophobicity of RS@cNPs films. With a curcumin content of 3.0 %, the tensile strength of RS@cNPs was three times higher than the pure starch film. Besides, the RS@cNPs films coating prevented the growth of microorganism in the strawberries with a storage period of 3 days, and the pH value and soluble solids contents of strawberries in RS@cNPs group remained stable over storage period, suggesting that the RS@cNPs films coating preserved the freshness of strawberries and highlighted the preparation of novel starch-based films for food preservation.
Collapse
Affiliation(s)
- Ren Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenyu Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lixin Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Wei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xiaohu Luo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | - Wenjing Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Tao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
14
|
Li W, Meng F. Microplastics in marine systems: A review of sources and sinks, typical environmental behaviors, and biological effects. MARINE POLLUTION BULLETIN 2025; 214:117758. [PMID: 40037102 DOI: 10.1016/j.marpolbul.2025.117758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Marine microplastics (MPs), whether originating from household and industrial production or stemming from the degradation of larger plastic fragments, have currently attracted significant global attention among the scientific community. The transport and deposition of MPs, characterized by their small size and large quantity, under oceanic hydrodynamics result in the contamination of a wide range of areas. Furthermore, MPs are capable of carrying metals and organic pollutants that constitute composite pollutants. The additives it carries will gradually release harmful substances during the degradation process. Once ingested by aquatic organisms and amplified by the food chain, these pollutants can adversely affect the survival and growth of marine flora and fauna, ultimately posing potential threats to humans. In this review, the major sources and sinks of MPs are described, considering the pollution of marine ecosystems. Additionally, typical environmental behaviors of MPs including their migration and accumulation in the ocean, their combined ability with heavy metals and organic pollutants, their leaching of additives, and their abiotic and biotic degradation pathways are discussed. The adverse effects on marine organisms resulting from ingestion and translocation of MPs are also reviewed herein. Even though the number of studies on MPs-associated environmental impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' impacts on marine ecology in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Wenlu Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
15
|
Facchino M, Pietrelli L, Menegoni P, Capocelli M, Limiti E, Trombetta M, Basoli F, De Falco M. Greener Microplastics Removal: Progressive Replacement of Iron-Based Coagulants with Sodium Alginate and Chitosan to Enhance Sustainability. Chempluschem 2025; 90:e202400736. [PMID: 39950829 DOI: 10.1002/cplu.202400736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Wastewater treatment plants (WWTPs) currently represent one of the main sources for microplastics (MPs) and other emerging contaminants entering the environment. Coagulation is a longstanding and cost-effective process designed to enhance the removal of colloidal particles and proved to be efficient in the abatement of MPs. The present study investigates the feasibility of a progressive replacement of ferric chloride (FeCl3) with chitosan (CT) and sodium alginate (SA), starting from their use as coagulant aids. Coagulations tests were carried out to assess the performance of FeCl3-CT and FeCl3-SA systems in the removal of polystyrene (PS) microbeads, polyethylene (PE) and polyethylene terephthalate (PET) fragments with sizes lower than 500 μm. Results from experiments have shown that both CT and SA are useful to enhance the removal performance of conventional coagulation by improving the settling characteristics of flocs. The use of CT allows a reduction of coagulant dosage for removing PS and PE particles, while it turned out to be detrimental for the removal of PET fragments. Instead, SA at a concentration of 0.2 mg L-1 proved to be useful both to achieve higher removal rate at a medium dosage of coagulant and to improve the efficiency of the process at lower dosages.
Collapse
Affiliation(s)
- Marco Facchino
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Loris Pietrelli
- Scientific Committee, Legambiente, Via Salaria 403, 00199, Rome, Italy
| | | | - Mauro Capocelli
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Emanuele Limiti
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Marcella Trombetta
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Francesco Basoli
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Marcello De Falco
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128, Rome, Italy
| |
Collapse
|
16
|
Liberty JT, Bromage S, Peter E, Ihedioha OC, Alsalman FB, Odogwu TS. CRISPR revolution: Unleashing precision pathogen detection to safeguard public health and food safety. Methods 2025; 240:180-194. [PMID: 40311721 DOI: 10.1016/j.ymeth.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025] Open
Abstract
Foodborne pathogens represent a significant challenge to global food safety, causing widespread illnesses and economic losses. The growing complexity of food supply chains and the emergence of antimicrobial resistance necessitate rapid, sensitive, and portable diagnostic tools. CRISPR technology has emerged as a transformative solution, offering unparalleled precision and adaptability in pathogen detection. This review explores CRISPR's role in addressing critical gaps in traditional and modern diagnostic methods, emphasizing its advantages in sensitivity, specificity, and scalability. CRISPR-based diagnostics, such as Cas12 and Cas13 systems, enable rapid detection of bacterial and viral pathogens, as well as toxins and chemical hazards, directly in food matrices. Their integration with isothermal amplification techniques and portable biosensors enhances field applicability, making them ideal for decentralized and real-time testing. Additionally, CRISPR's potential extends beyond food safety, contributing to public health efforts by monitoring antimicrobial resistance and supporting One Health frameworks. Despite these advancements, challenges remain, including issues with performance in complex food matrices, scalability, and regulatory barriers. This review highlights future directions, including AI integration for assay optimization, the development of universal CRISPR platforms, and the adoption of sustainable diagnostic solutions. By tackling these challenges, CRISPR has the potential to redefine global food safety standards and create a more resilient food system. Collaborative research and innovation will be critical to fully unlocking its transformative potential in food safety and public health.
Collapse
Affiliation(s)
| | - Sabri Bromage
- Community Nutrition Unit, Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Boston, MA 02115, United States
| | - Endurance Peter
- Department of Public Health, Nazarbayev University, School of Medicine, Astana, Kazakhstan
| | - Olivia C Ihedioha
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6842, United States
| | - Fatemah B Alsalman
- Food Security Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Tochukwu Samuel Odogwu
- Aston Medical School, College of Health & Life Sciences, Aston University, United Kingdom
| |
Collapse
|
17
|
Ma J, Ladd DM, Kaval N, Wang HS. Toxicity of long term exposure to low dose polystyrene microplastics and nanoplastics in human iPSC-derived cardiomyocytes. Food Chem Toxicol 2025; 202:115489. [PMID: 40312000 DOI: 10.1016/j.fct.2025.115489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/27/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Microplastics and nanoplastics (MNPs) are widespread environmental pollutants with potential risks to human health including cardiovascular effects. However, the impact of MNPs on the heart, particularly in human-relevant cardiac models, remains poorly understood. In this study, we investigated the long term effects of polystyrene (PS) MNPs-1 μm (PS-1) and 0.05 μm (PS-0.05) in human iPSC-derived cardiomyocytes (hiPSC-CMs). PS MNPs exposure reduced myocyte viability in a time- and dose-dependent manner. At a low dose of 0.1 μg/L, both PS-0.05 and PS-1 suppressed myocyte contractility, reduced Ca2+ transient amplitude, and altered contraction and Ca2+ transient dynamics. In hypertrophic hiPSC-CMs, PS-0.05 exposure exacerbated hypertrophy, increasing cell size and proBNP expression, a marker of myocyte hypertrophy. The mechanism of PS MNPs-induced cardiotoxicity likely involved mitochondrial dysfunction, as indicated by decreased mitochondrial membrane potential, increased mitochondrial ROS, and elevated intracellular ROS levels. This is the first study to assess the long term impact of low dose MNPs in human cardiomyocytes, providing crucial insight into the potential cardiac toxicity of MNPs and their implications for human heart health.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Drew M Ladd
- Department of Chemistry, College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Necati Kaval
- Department of Chemistry, College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
18
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F, Garcia BDG. Unraveling microplastic behavior in simulated digestion: Methods, insights, and standardization. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138340. [PMID: 40273860 DOI: 10.1016/j.jhazmat.2025.138340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Despite the rapid expansion of in vitro digestion studies on microplastics (MPs), the field remains fragmented due to inconsistent methodologies, varying analytical approaches, and a lack of standardized protocols. These discrepancies hinder cross-study comparisons, complicate risk assessments, and limit the applicability of in vitro models for understanding MP fate and pollutant interactions in the gastrointestinal environment. A comprehensive synthesis is needed to assess progress, identify research gaps, and establish a unified research direction. This review systematically evaluates 85 studies (2020-2024), consolidating key findings and methodological challenges. It examines disparities in digestion protocols, fluid compositions, and exposure conditions, assessing how factors such as pH, enzyme activity, residence time, and temperature shape MPs' behavior and physicochemical transformations. Key findings on bio-corona formation, structural modifications, contaminant bioaccessibility, and interactions with digestive enzymes are synthesized to provide a clearer picture of MP behavior during digestion. With the field remains dominated by studies on polystyrene and polyethylene MPs in human-based models, inconsistencies persist, highlighting the urgent need for standardized methodologies. By addressing these gaps, this review lays a critical foundation for improving reproducibility, advancing standardization efforts, and strengthening exposure assessments, ultimately enhancing our understanding of MP ingestion risks to human health.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico; CIITEC - IPN. Centro de Investigación e Innovación Tecnológica, Cda. de Cecati s/n, Santa Catarina, Azcapotzalco, Ciudad de México 02250, Mexico.
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico
| | - Berenice Dafne Garcia Garcia
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico
| |
Collapse
|
19
|
Xiao M, Yang Y, Alahmadi H, Harbolic A, Moreno GM, Yu T, Liu J, Guo A, Warner GR, Stapleton PA, Chen H. Rapid detection of microplastics and nanoplastics in seconds by mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138322. [PMID: 40253782 DOI: 10.1016/j.jhazmat.2025.138322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are pervasive pollutants and their analyses by traditional mass spectrometric methods require time-intensive sample preparation (e.g., extraction, digestion, and separation). This study presents a rapid and novel method for detecting MPs and NPs using flame ionization mass spectrometry (FI-MS) in which a dried sample (e.g., powder, soil and tissue) is directly burnt or heated with a flame in front of the MS inlet. FI-MS enables decomposition and ionization of various plastics such as polyethylene terephthalate (PET) and polystyrene (PS), allowing for analysis to be completed as fast as 10 seconds per sample. As a demonstration of application of this technique, PET contaminants in 1 L of bottled water or in 0.65 L of apple juice contained in plastic bottles were quickly detected from a filter paper after sample filtration and brief drying. A 0.89 mg soil sample spiked with 6000 ppm PET microplastics was measured to contain 4.98 µg of PET (5595 ppm, quantitation error: 6.8 %). Strikingly, PS nanoplastics (200 nm size) in mouse placentas were successfully identified and quantified, highlighting the method's ability to analyze biological tissue without tedious sample preparation. Overall, this study demonstrates the high potential of FI-MS for real-world sample analysis of MPs and NPs in environmental, biological, or consumer product samples.
Collapse
Affiliation(s)
- Mengyuan Xiao
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Yongqing Yang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Hanin Alahmadi
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Allison Harbolic
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Gina M Moreno
- Department of Pharmacology and Toxicology and Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Terry Yu
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Jerry Liu
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Alex Guo
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Genoa R Warner
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology and Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| |
Collapse
|
20
|
Xiao Z, Chen Y, Zhang Y. Self-powered portable photoelectrochemical sensor based on dual-photoelectrode for microplastics detection. ENVIRONMENTAL RESEARCH 2025; 271:121084. [PMID: 39923818 DOI: 10.1016/j.envres.2025.121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Plastic pollution has emerged as a significant global concern due to its potential threat to human health. The advancement of self-powered photoelectrochemical (PEC) sensors based on dual-photoelectrode presents ongoing challenges. The photoanode PEC analysis method is normally employed due to its remarkable photocurrent and low detection limit; however, it exhibits limited anti-interference capability in real sample detection. Conversely, the photocathode analysis method demonstrates excellent anti-interference detection capabilities, effectively mitigating the inherent disadvantages associated with the photoanode. Consequently, we have developed a self-powered PEC portable sensor that integrates both a photocathode and a photoanode, enabling accurate, sensitive, and convenient detection of polystyrene microplastics (PS MPs). Under optimal conditions, the sensor has a detection limit of 0.09 μg/mL, with a linear range from 0.5 to 1000 μg/mL. The method has good anti-interference ability to heavy metal ions and organics. In the presence of interfering substances, the accuracy can be maintained at over 97%. In addition, the sensor has demonstrated excellent performance in complex aquatic environments, providing an innovative design strategy for constructing PEC sensors aimed at detecting PS MPs.
Collapse
Affiliation(s)
- Zizhen Xiao
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Yinxiang Chen
- School of Unclear Science and Technology, University of South China, Hengyang, 421001, China.
| | - Ye Zhang
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
21
|
Luo J, Lin S. Association between microplastics exposure and depressive symptoms in college students. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118142. [PMID: 40185030 DOI: 10.1016/j.ecoenv.2025.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Microplastics (MP) are pervasive environmental pollutants that have raised concerns regarding their potential health effects. However, limited studies have investigated the relationship between MP exposure and depression, particularly in college students. Our study aims to examine the association between MP exposure and depressive symptoms in college students. METHODS A total of 1420 college students from Jiangsu College of Nursing, China, were included in this cross-sectional study. Depressive symptoms were assessed using the Patient Health Questionnaire-2 (PHQ-2), and MP exposure was estimated based on daily airborne MP concentration and drinking-water MP levels. Multivariate logistic regression models were used to estimate the associations between MP exposure and depressive symptoms. RESULTS The prevalence of depressive symptoms among college students was 61.8 %. The median (interquartile range) of total MP exposure was 17403.7 (14174.8-20995.9) particles/day. Airborne MP exposure exhibited positive associations with depressive symptoms, while no significant association was found between drinking-water MP exposure and depressive symptoms. Compared with participants in the lowest quartile of MP exposure, those in the highest quartile of total MP exposure had 38 % higher odds of experiencing depressive symptoms (odds ratio [OR] = 1.38, 95 % CI: 1.21-1.57). When treated as a continuous variable, each 1000-particle increase in total MP exposure was associated with a 7.0 % increase in the odds of depressive symptoms (OR = 1.07, 95 % CI: 1.04-1.10). Stratified analyses indicated that the association between MP exposure and depressive symptoms was stronger among male students and freshmen. CONCLUSION This study suggests MP exposure is a contributing factor for depressive symptoms in college students.
Collapse
Affiliation(s)
- Jing Luo
- School of Rehabilitation, Jiangsu College of Nursing, Huai'an, Jiangsu 223003, China
| | - Song Lin
- Department of Clinical Nutrition, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| |
Collapse
|
22
|
Harini R, Sandhya K, Sunil CK, Natarajan V. Seaweed as a sink for microplastic contamination: Uptake, identifications and food safety implications. ENVIRONMENTAL RESEARCH 2025; 278:121631. [PMID: 40246268 DOI: 10.1016/j.envres.2025.121631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Microplastics (MPs) are a rising global concern, infiltrating marine ecosystems and food sources, including seaweed, which is widely consumed. This review examines the prevalence of MPs in seaweed, their role as pathways for MPs to enter marine food webs, and the potential risks to marine organisms and human health. Findings indicate that it contributes up to 45.5 % of total dietary microplastic (MP) intake through seaweed, with particularly high levels in South Asian regions, which is concerning. Factors such as seaweeds morphology, surface properties, epibionts, and environmental conditions influence MP uptake. Microplastic contamination in seaweed leads to bioaccumulation and biomagnification, affecting marine organisms through oxidative stress, growth disruption, immune issues, and metabolic disturbances. Seaweeds bioaccumulate heavy metals from seawater, and microplastics (MPs) attract these metals, increasing toxicity might enter food chain posing health risk. Simple methods like water washing can reduce MPs on seaweed surfaces. However, in this case, innovative detection methods and advanced removal technologies are still underexplored. Similarly, Microplastic (MP) contamination presents economic risks to the global seaweed industry, valued at USD 7.0 billion in 2023, with exports reaching 819,100 tonnes worth USD 3.21 billion. By 2024, the industry, dominated by Asian countries, had grown to USD 22.13 billion, but MP contamination threatens further expansion by undermining consumer confidence, reducing market value, and increasing regulatory scrutiny. Asia accounts for 47.9 % of global seafood MP contamination, the economic repercussions could be substantial. Future research should explore the long-term effects of environmental aging on microplastic debris in seaweeds related marine organisms, emphasizing food security and human health. Studies should also focus on the toxicological effects of micro- and Nano plastics (MNPs) from seaweed-based contaminants in human food consumption. Robust government initiatives and policies promoting a circular economy are crucial for effective management.
Collapse
Affiliation(s)
- Ravi Harini
- National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - K Sandhya
- National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - C K Sunil
- National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - Venkatachalapathy Natarajan
- National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India.
| |
Collapse
|
23
|
Breheny C, Colbert DM, Bezerra G, Geever J, Geever LM. Towards Sustainable Food Packaging: Mechanical Recycling Effects on Thermochromic Polymers Performance. Polymers (Basel) 2025; 17:1042. [PMID: 40284305 PMCID: PMC12030586 DOI: 10.3390/polym17081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Integrating thermochromic pigments (TPs) into food packaging offers significant benefits for monitoring temperature variations, improving food safety, and reducing waste. However, the recyclability of such materials remains underexplored, particularly regarding the retention of their optical and mechanical properties after repeated recycling. Addressing this gap, this research aims to evaluate how mechanical recycling affects key properties of polypropylene (PP) blends containing varying TP concentrations. Three formulations, PP100/TP0 (0% TP), PP98/TP2 (2% TP), and PP92/TP8 (8% TP), were subjected to five recycling cycles, with changes in thermal stability, color transition behavior, mechanical integrity, and surface morphology analyzed. The results indicate that PP100/TP0 maintained its mechanical integrity with minimal degradation (6% absolute crystallinity loss; color difference ΔE*ab = 1.45) across recycling cycles. However, blends containing TPs exhibited progressive deterioration. P98/TP2 displayed moderate reductions in mechanical strength (-10.8%) and thermochromic efficiency (color change ΔE*ab = 6.52), while PP92/TP8 showed significant degradation, including increased activation temperatures (+3.8 °C) and color vibrancy loss (42.9% loss in saturation). These effects were attributed to polymer breakdown, pigment aggregation, and altered crystallinity. Despite the limitations of recyclability, this study provides critical insights into the feasibility of TPs in sustainable, intelligent food packaging. Further research is required to enhance TP stability during reprocessing, ensuring long-term functionality in circular packaging systems.
Collapse
Affiliation(s)
- Colette Breheny
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Research Institute, Technological University of the Shannon, University Road, N37 HD68 Athlone, Ireland; (D.M.C.); (G.B.); (J.G.)
| | | | | | | | - Luke M. Geever
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Research Institute, Technological University of the Shannon, University Road, N37 HD68 Athlone, Ireland; (D.M.C.); (G.B.); (J.G.)
| |
Collapse
|
24
|
Li M, Zhao Z, Zhao Z, Li M. Review of Techniques for the Detection, Removal, and Transformation of Environmental Microplastics and Nanoplastics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20560-20589. [PMID: 40152077 DOI: 10.1021/acsami.5c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Plastic residues have emerged as a significant challenge in the environmental sector. Microplastics, which are plastic fragments smaller than 5 mm, have the ability to disperse through the atmosphere, oceans, and land, posing a serious threat to human health by accumulating in the food chain. However, their minuscule size makes it difficult to effectively remove them from the environment using the current technologies. This work provides a comprehensive overview of recent advancements in microplastic detection and removal technologies. For detection methods, we discuss commonly used techniques such as microscopic analysis, thermal analysis, mass spectrometry, spectroscopic analysis, and energy spectrometry. We also emphasize the importance of integrating various analytical and data-processing techniques to achieve efficient and nondestructive detection of microplastics. In terms of removal strategies, we explored innovative methods and technologies for extracting microplastics from the environment. These include physical techniques like filtration, adsorption, and magnetic separation; chemical techniques such as coagulation-flocculation-sedimentation and photocatalytic conversion; and bioseparation methods such as activated sludge and biodegradation. We also highlight the promising potential for converting microplastic contaminants into high-value chemicals. Additionally, we identify current technical challenges and suggest future research directions for the detection and removal of microplastics. We advocate for the development of unified and standardized analytical methods to guide further research on the removal and transformation of microplastics.
Collapse
Affiliation(s)
- Miao Li
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxing Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Bappy MMM, Rahman MM, Hossain MK, Moniruzzaman M, Yu J, Arai T, Paray BA, Hossain MB. Distribution and retention efficiency of micro- and mesoplastics and heavy metals in mangrove, saltmarsh and cordgrass habitats along a subtropical coast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125908. [PMID: 39993705 DOI: 10.1016/j.envpol.2025.125908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Understanding how coastal ecosystems mitigate pollution is essential due to their critical role in safeguarding environmental health, and supporting restoration efforts. This study, for the first time, evaluated the contamination levels and retention capacities of micro- and mesoplastics, and heavy metals across coastal habitats-specifically mangrove (MH), invasive Kikuyu grass (KH), and salt marsh cord grass (SH)-along a subtropical intertidal beach. Of the 120 sediment samples collected, 60 were analyzed for micro- and mesoplastics using wet peroxide oxidation and FTIR spectroscopy, while the remaining 60 were examined for heavy metal concentrations via ICP-MS. Results showed that KH habitats retained the highest plastics (153 ± 10.9 items/kg), followed by MH (112 ± 4.58 items/kg), SH (73.17 ± 6.81 items/kg), and NV (50.83 ± 10.87 items/kg) areas with significantly different retention in MH and KH habitats. Heavy metals followed a decreasing retention order of Mn > Zn > Cu > Cr > Pb > Ni > As > Cd > Hg. Significant difference was observed in Pb, Cr retention by an invasive Kikuyu grass (KH1) station, and Cu retention in two invasive Kikuyu grass stations (KH1 and KH3). However, in general no habitats were significantly different in retaining the metals. Principal Component Analysis and Canonical Correspondence Analysis revealed that micro- and mesoplastics were strongly associated with Zn, Cu, and Pb. KH habitats showed the highest retention efficiency, however, the associated toxicity risk increased with retention levels, indicating a higher risk in KH habitats compared to NV areas. The study highlighted Kikuyu grass habitats as both efficient pollutant sinks and potential ecological risk zones, emphasizing the need for targeted remediation to optimize retention while safeguarding ecosystem health.
Collapse
Affiliation(s)
- Md Maheen Mahmud Bappy
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh
| | - Md Mofizur Rahman
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh
| | - Md Kamal Hossain
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr Qudrat-i-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Mohammad Moniruzzaman
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr Qudrat-i-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Takaomi Arai
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
26
|
Jahedi F, Ravanbakhash M, Jaafarzadeh Haghighi Fard N, Talepour N, Latifi SM, Zahedi A. Spatial mapping and risk assessment of microplastic contamination in drinking water catchments from north of the Persian Gulf. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:455. [PMID: 40116952 DOI: 10.1007/s10661-025-13859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/05/2025] [Indexed: 03/23/2025]
Abstract
Microplastics (MPs) are emerging contaminants in drinking water that raise global concerns due to their health risks and long-term environmental persistence. These tiny plastic particles can accumulate within human bodies and ecosystems, making it essential to understand their presence and behavior in water sources, especially in drinking water. In Khuzestan Province, which is of strategic importance in the Gulf region. This study assesses the concentration and types of MPs entering and leaving these 11 treatment plants. In untreated water, particle size analysis revealed that 50% of MPs were measured under 101 µm, with fibers being the most common type (47%), followed by fragments and pellets. Although treatment processes reduced overall MP concentrations, fibers remained the dominant residual type, making up 71% of the MPs in treated water. The main polymers identified were polyethylene (PE) and polypropylene (PP), with PE accounting for up to 75% of MPs in some areas. In terms of color, black/gray MPs were most prevalent (45%), followed by blue, red/pink, yellow/orange, and white/clear particles. While most treatment plants achieved significant reductions in MP levels, some were less effective, likely due to differences in treatment technologies. Notably, the S10 plant in Bandar Mahshahr had especially high inlet MP levels, possibly due to the region's high industrial and human activities. Estimated daily intake (EDI) for adults was approximately 0.00482 MPs per kg of body weight per day, with children having a higher intake of around 0.01866 MPs per kg per day. These findings highlight the need to enhance treatment technologies, control upstream MP sources, and establish routine monitoring to protect water quality in Khuzestan and the wider Gulf region.
Collapse
Affiliation(s)
- Faezeh Jahedi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Maryam Ravanbakhash
- Department of Environmental Health Engineering, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Neamatollah Jaafarzadeh Haghighi Fard
- Department of Environmental Health Engineering, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran.
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Nastaran Talepour
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Environmental Health Engineering, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Mahmoud Latifi
- Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61157-15794, Iran
| | - Amir Zahedi
- Student Researcher Committee, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
- Department of Environmental Health Engineering, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| |
Collapse
|
27
|
Galahitigama H, Sandamali P, Jayapra T, Abesinghe N, Senavirathna MDHJ, Diola MBL, Tanchuling MA. Assessing the impact of micro and nanoplastics on the productivity of vegetable crops in terrestrial horticulture: a comprehensive review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:404. [PMID: 40095235 PMCID: PMC11914347 DOI: 10.1007/s10661-025-13820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Micro and nano plastics (MNPs) pollution has emerged as a significant environmental issue in recent years. Plastic contamination in the environment poses risks to both human health and other organisms within the ecosystem. This review discusses the overall impact of MNPs on the performance of vegetable crops, including a global perspective on the topic. Bibliometric analysis reveals that most research on this subject has been concentrated in a few countries, although the number of studies has notably increased in recent years. MNPs accumulate in arable lands due to human activities, often altering the soil's physical, chemical, and biological properties in the rhizosphere. Vegetable crops absorb these MNPs mainly through their roots, leading to accumulation in the edible parts of the plants. Consequently, this results in phytotoxic symptoms and poor growth and development. The phytotoxic effects of MNPs are attributed to genetic and metabolic changes within the plant's cellular structure. Current research on MNPs has been limited to a few vegetable cultivars. Future studies should encompass a broader range of vegetable crops under both laboratory and field conditions to advance this burgeoning field of research. Additionally, examining various types of plastics is essential to comprehensively understanding their impact.
Collapse
Affiliation(s)
- Harshana Galahitigama
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama, 338-8570, Japan
| | - Poorni Sandamali
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, P.O. Box 02, Belihuloya, 70140, Sri Lanka
| | - Thilini Jayapra
- Department of Agricultural Technology, Faculty of Technology, University of Colombo, Pitipana, Homagama, Sri Lanka
| | - Nandula Abesinghe
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, P.O. Box 02, Belihuloya, 70140, Sri Lanka
| | | | - Ma Brida Lea Diola
- Institute of Civil Engineering, College of Engineering, University of the Philippines Diliman, Quezon City, Philippines
| | - Maria Antonia Tanchuling
- Institute of Civil Engineering, College of Engineering, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
28
|
Jia S, Feng Z, Lv Z, Yan X, Pan J, Zhang Z, Rao J, Peng P, Peng F. Xylan thermoplastics with closed-loop recyclability. Carbohydr Polym 2025; 352:123161. [PMID: 39843066 DOI: 10.1016/j.carbpol.2024.123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025]
Abstract
Xylan-derived packaging materials have gained considerable popularity owing to their renewability, non-toxicity, and biodegradability. However, thermoforming is challenging owing to its rigid structure and hydrogen-bonding network of the xylan molecular chain, which limits its large-scale production. Herein, a heat-processable xylan derivative, xylan cinnamate (XC), was synthesized via an esterification reaction in ionic liquids. The glass transition temperature of XC can be adjusted by the degree of substitution, ranging from 65 to 150 °C. XC plastics can be obtained by hot pressing and exhibit competitive mechanical properties, excellent water resistance, high transparency, and re-processability. Furthermore, the tensile strength of the XC plastics increased from 25 to 50 MPa after 365 nm ultraviolet (UV) irradiation because the double bonds of the cinnamon substituents were photodimerized under UV irradiation. Compared with commercial polyethylene packaging materials, XC plastics have suitable water vapour and oxygen transmittance, effectively protecting seeds under storage conditions. This study developed a novel strategy for preparing recycled xylan thermoplastics.
Collapse
Affiliation(s)
- Siyu Jia
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zixing Feng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Lv
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xueqing Yan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jing Pan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhiguo Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jun Rao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Pai Peng
- Northwest A&F Univ, College of Forestry, Yangling 712100, Shaanxi, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
29
|
Wang S, Yan K, Dong Y, Chen Y, Song J, Chen Y, Liu X, Qi R, Zhou X, Zhong J, Li J. The influence of microplastics on hypertension-associated cardiovascular injury via the modulation of gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125760. [PMID: 39880356 DOI: 10.1016/j.envpol.2025.125760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/15/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Microplastics (MPs) have been found to interfere with the gut microbiota and compromise the integrity of the gut barrier. Excessive exposure to MPs markedly elevates the risk of cardiovascular disease, yet their influence on hypertension remains elusive, calling for investigation into their potential impacts on blood pressure (BP) regulation. In the present study, an increase in the concentration of MPs was observed in the fecal samples of individuals suffering from hypertension, as compared to the controls. Oral administration of MPs led to obvious increases in systolic, diastolic and mean BP levels in mice. MPs were associated with promoting myocardial hypertrophy, fibrosis, and cardiac remodeling through alterations in gut microbial composition, such as Prevotella and Coprobacillus, or fecal metabolites Betaine and Glycyrrhetinic acid. The hypertensive damage mediated by MPs was significantly mitigated by the high-fiber diet or antibiotics that targeted the gut microbiota. Notablely, fecal microbiota transplantation from mice treated with MPs led to an increase in systolic BP levels and the development of cardiac dysfunction. Our findings offer valuable insights into the complex interplay between MPs and the gut microbiome in the context of hypertension, and suggest potential strategies for reducing the vascular and cardiac injury caused by MPs.
Collapse
Affiliation(s)
- Siyuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kaixin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yihang Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiawei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yufei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing ChaoYang Hospital, Capital Medical University, Beijing, China
| | - Ruiqiang Qi
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinyu Zhou
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
30
|
Ayassamy P. Ocean plastic pollution: a human and biodiversity loop. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:91. [PMID: 40014189 DOI: 10.1007/s10653-025-02373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
This study offers an updated analysis of the effects of ocean plastic accumulation on human health and biodiversity within the food chain, covering the period from 2018 to 2023. Through a comprehensive review of relevant literature, a framework has been developed to visually illustrate the progression of plastics through the food chain. This framework emphasizes the intricate connections among four key elements: humans, plastics, biodiversity, and the food chain. By examining the cycle of challenges encountered during the phases of production, consumption, and disposal, the research reveals how these stages are interrelated. This perspective not only delineates the complexities involved but also identifies potential solutions, particularly by incorporating circular economy principles. Consequently, the study highlights the importance of understanding the impact of plastics on the food chain while proposing strategies grounded in circular economy concepts to mitigate plastic pollution throughout the three stages.
Collapse
Affiliation(s)
- Prisca Ayassamy
- Department of Construction Engineering, École Technologie Supérieure (ETS), 1100 Notre-Dame St W, Montreal, QC, H3C 1K3, Canada.
- Department of Management, Université Laval, 2325 Rue de l'Université, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
31
|
Jancik-Prochazkova A, Ariga K. Nano-/Microrobots for Environmental Remediation in the Eyes of Nanoarchitectonics: Toward Engineering on a Single-Atomic Scale. RESEARCH (WASHINGTON, D.C.) 2025; 8:0624. [PMID: 39995898 PMCID: PMC11848434 DOI: 10.34133/research.0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Nano-/microrobots have been demonstrated as an efficient solution for environmental remediation. Their strength lies in their propulsion abilities that allow active "on-the-fly" operation, such as pollutant detection, capture, transport, degradation, and disruption. Another advantage is their versatility, which allows the engineering of highly functional solutions for a specific application. However, the latter advantage can bring complexity to applications; versatility in dimensionality, morphology, materials, surface decorations, and other modifications has a crucial effect on the resulting propulsion abilities, compatibility with the environment, and overall functionality. Synergy between morphology, materials, and surface decorations and its projection to the overall functionality is the object of nanoarchitectonics. Here, we scrutinize the engineering of nano-/microrobots with the eyes of nanoarchitectonics: we list general concepts that help to assess the synergy and limitations of individual procedures in the fabrication processes and their projection to the operation at the macroscale. The nanoarchitectonics of nano-/microrobots is approached from microscopic level, focusing on the dimensionality and morphology, through the nanoscopic level, evaluating the influence of the decoration with nanoparticles and quantum dots, and moving to the decorations on molecular and single-atomic level to allow very fine tuning of the resulting functionality. The presented review aims to lay general concepts and provide an overview of the engineering of functional advanced nano-/microrobot for environmental remediation procedures and beyond.
Collapse
Affiliation(s)
- Anna Jancik-Prochazkova
- Research Center for Materials Nanoarchitectonics,
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics,
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| |
Collapse
|
32
|
V S, R N. A preliminary assessment of microplastics in the waters and sediments of the second-largest freshwater lagoon in India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:275. [PMID: 39937321 DOI: 10.1007/s10661-025-13714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Pulicat is India's second-largest freshwater lagoon having unique biological ecosystem and economical importance. The lagoon systems are highly polluted by the microplastics (MP) due to anthropogenic activity and microplastics are highly emerging kind of contaminant in the environment. Samples were collected from a part of the lagoon near the mouth region. Morphological identification of microplastics with microscope and polymer identification using ATR-FTIR and Micro-Raman spectroscopy was carried out. From the result, average abundance of the MP particles in surface water ranges 3.12 ± 1.53 particles per 1000 l and 701 ± 198 particles per kg for sediments, respectively. Microplastics < 1 mm (1-1000 microns) are dominant in size. Fibres, fragments and films were most occupied in physical form, respectively, in microplastic samples and polypropylene (PP) and polyethylene (PE) were the predominant polymer types composited in MP particles. This study concludes that Pulicat lagoon is significantly polluted by microplastic, which is mostly contributed by fishing and mismanagement of plastic wastes.
Collapse
Affiliation(s)
- Saichand V
- Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Nagalakshmi R
- Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
33
|
Dileepan AGB, Jeyaram S, Arumugam N, Almansour AI, Santhamoorthy M. Identification and occurrence of microplastics in drinking water bottles and milk packaging consumed by humans daily. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:261. [PMID: 39930057 DOI: 10.1007/s10661-025-13721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/29/2025] [Indexed: 03/11/2025]
Abstract
Microplastic (MP) pollution has become a growing concern due to its potential environmental and health impacts. The present study aimed to investigate the presence of MPs in specific brands of drinking water bottle and milk packets. To identify the MPs, researchers employed microscopic techniques, FTIR spectroscopy, and FESEM with EDS. The types of polymers were determined by comparing the obtained values with reference standards. The study also assessed the potential daily microplastic exposure from drinking water and milk consumption. MPs were detected in the samples in three different shapes: filaments, fibers, and fragments. Four types of polymers were identified: polypropylene (PP), polyamide (PA), polysulfone (PSU), and polyethersulfone (PES). The colors observed included violet, blue, green, red, and black. In the analyzed drinking water samples, a total of 13 MPs sized 1-3 mm and 7 MPs sized 3-6 mm were found. In the milk samples, there were 2 MPs sized 4-5 mm and 4 MPs sized 2-3 mm. The results of the study indicate that MPs are present in the examined drinking water and milk, which are directly consumed by humans. This suggests that microplastic pollution may occur during the manufacturing or packaging processes of these products. The study recommends implementing measures to reduce microplastic contamination at the beginning of the production process for drinking water and milk.
Collapse
Affiliation(s)
- A G Bharathi Dileepan
- Department of Chemistry, School of Arts and Science, Takshashila University, Tamil Nadu, Villupuram, 604 305, India.
| | - S Jeyaram
- Department of Physics, School of Arts and Science, Takshashila University, Villupuram, 604305, Tamil Nadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
34
|
Xu H, Dong C, Xiang T, Shentu X, Yu Z, Xu J, Yu J, Ma D, Xie Y. Microplastic changes during the development of cervical cancer and its effects on the metabolomic profiles of cancer tissues. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136656. [PMID: 39603134 DOI: 10.1016/j.jhazmat.2024.136656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Recent studies have detected microplastics (MPs) in reproductive organs and found that they exert toxic effects on the reproductive system. However, the exact mechanism of action remains unclear. This study evaluates changes in MP levels in patients with cervical cancer as the disease progresses and uses untargeted metabolomics to assess the impact of MP exposure on the metabolomic profiles of cervical invasive cancer tissues. A total of 12 MP types were identified in 101 MP particles, with an average abundance of 2.24 ± 1.61 MP particles/g. Of these, polyethylene (PE, 26.73 %) and polypropylene (PP, 19.80 %) were the most frequently detected. Also, some MPs were observed to have sizes smaller than 20 µm. Notably, MP exposure levels increase as cervical cancer progresses (p < 0.05). Metabolomics analysis revealed that, among the 33 biologically significant metabolites screened, D-Mannose and cis,cis-muconic acid showed the most significant differences. Additionally, the aminosugar and nucleotide sugar metabolism pathways were the most significantly enriched in this experiment, potentially acting as pathways through which MPs may contribute to the pathogenesis of cervical cancer. The metabolites and pathways identified in this study may offer new insights and opportunities for disease research in patients with cervical cancer.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Chunlin Dong
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Tongyue Xiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Xianzhong Shentu
- Centre Testing International Group Co., Ltd., Shenzhen 518000, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Jiang Xu
- Centre Testing International Group Co., Ltd., Shenzhen 518000, China
| | - Jinjin Yu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Ding Ma
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
35
|
Xing F, Duan W, Tang J, Zhou Y, Guo Z, Zhang H, Xiong J, Fan M. Superhydrophobic Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Sensitive Detection of Trace Nanoplastics in Water. Anal Chem 2025; 97:2293-2299. [PMID: 39846335 DOI: 10.1021/acs.analchem.4c05554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nanoplastics, emerging as pervasive environmental pollutants, pose significant threats to ecosystems and human health due to their small size and potential toxicity. However, detecting trace levels of nanoplastics remains challenging because of limitations in the current analytical methods. Herein, we propose a method that combines superhydrophobic enrichment with SERS analysis for detecting trace nanoplastics in aqueous environments. Superhydrophobic SERS substrates were prepared by using a liquid-liquid self-assembly method. The superhydrophobicity facilitated analyte enrichment, and monolayer Au nanoparticles (AuNPs) enhanced the Raman signals. The detection limit for Raman probe crystal violet (CV) using this substrate reached nanomolar (10-9 M), with an RSD of 9.96% across a 40 × 40 μm2 area (441 spots), demonstrating excellent sensitivity and reproducibility. This method successfully detected polystyrene (PS) plastics ranging from 30 to 1000 nm in water with concentrations as low as 0.03 μg/mL. Additionally, nanoscale polyethylene terephthalate (PET) particles were detected in bottled water samples. This approach offers a promising platform for analyzing trace nanoplastics in environmental water samples and addresses the needs of environmental monitoring.
Collapse
Affiliation(s)
- Feiyue Xing
- Faculty of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Weiman Duan
- Faculty of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jiaxi Tang
- Faculty of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Ying Zhou
- Faculty of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Zeji Guo
- Faculty of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Han Zhang
- Faculty of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jian Xiong
- Key Laboratory of Environmental Engineering and Pollution Control on the Plateau of Tibet Autonomous Region, School of Ecology and Environment Tibet University, Lhasa, Xizang 850000, China
| | - Meikun Fan
- Faculty of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
36
|
Ruggieri F, Battistini B, Sorbo A, Senofonte M, Leso V, Iavicoli I, Bocca B. From food-to-human microplastics and nanoplastics exposure and health effects: A review on food, animal and human monitoring data. Food Chem Toxicol 2025; 196:115209. [PMID: 39710246 DOI: 10.1016/j.fct.2024.115209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
This review figures out the overall status on the presence of microplastics (MPs) and nanoplastics (NPs) in food and their bioaccumulation in animal and human tissues, providing critical insights into possible human health impacts. Data are discussed on both in-vivo and ex-vivo animal and human studies, and the role of physicochemical properties in determining the biological fate and toxicological effects of MPs and NPs. Particular attention is given to dietary exposure assessments, specifically evaluating daily intake through the consumption of contaminated food items. The current limitations in the body of knowledge and some considerations for future assessments are also reported. Overall, there is a pressing need to establish more robust biomarker research and develop standardized methodologies, for a better understanding of MPs and NPs fate and associated effects in more realistic scenarios for their safe consumption. The review underscores the importance of integrating the human biomonitoring into monitoring programs and interdisciplinary research to ultimately inform on MPs and NPs real burden in the human body.
Collapse
Affiliation(s)
- Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Sorbo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Senofonte
- Department Chemical Engineering Materials Environment, Sapienza University, Rome, Italy
| | - Veruscka Leso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
37
|
Ceylan L, Arı H, Erdoğan Ş. The role of habitat preference and feeding strategy on exposure to microplastic pollution in freshwater fish species. CHEMOSPHERE 2025; 370:143921. [PMID: 39653191 DOI: 10.1016/j.chemosphere.2024.143921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Microplastic (MP) pollution has been observed in a variety of ecosystems, but there is a limited number of studies on reservoir ecosystems. The aim of this study was to determine the levels of MP contamination in sediment, water and commercially important fish species (Cyprinus carpio, Perca fluviatilis, Atherina boyeri and Sander lucioperca) collected from the Yamula Reservoir in Türkiye. Water samples were collectes at five stations. Four sediment samples were collected from the lake. As sediments from the lake represent a vital element of the lake ecosystem, they function as a historical archive that reflects alterations in land use and the characteristics of the lake over time. The average amounts of MPs observed in sediment and water samples were 0.12 MP/g and 0.58 MP/m3 respectively. The digestive systems of 30 individuals of each fish species were examined. The highest amount of MP was observed for C. carpio (6 ± 5.9 MP/individual), while the lowest amount of MP was observed for A. boyeri (1.8 ± 1.7 MP/individual). MP abundance in S. lucioperca and P. fluviatilis was 2 ± 2.8 and 4.6 ± 6.3 MP per individual. The most commonly observed polymer types were polypropylene (67%), polyvinyl alcohol (13%), polyethylene resin (13%) and high-density polyethylene (7%). The pollution load indexes determined for each fish species from the highest to the lowest were as follows: 1.83 (C. carpio) 1.6 (S. lucioperca) 1.05 (P. fluviatilis) and, 1 (A. boyeri). The findings of the study indicate that all sampling stations, including both sediment and water, are contaminated with MPs. Furthermore, the results demonstrate that all examined fish species ingest MPs. Additionally, the results indicate that fish inhabiting a wide range of habitats and consuming diverse diets are more susceptible to MP contamination.
Collapse
Affiliation(s)
- Levent Ceylan
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Türkiye
| | - Hatice Arı
- Department of Chemistry, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Türkiye
| | - Şeyda Erdoğan
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Türkiye.
| |
Collapse
|
38
|
Lee SH, Han SJ, Wee JH. A mini review of recent advances in environmentally friendly microplastic removal technologies in water systems. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104485. [PMID: 39674083 DOI: 10.1016/j.jconhyd.2024.104485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
The current increase in microplastic (MP) occurrence worldwide is predicted to cause severe environmental crises in the future. Therefore, it is imperative to develop innovative MP removal technologies that can effectively mitigate MP emissions in any given scenario. This review discusses recent environmentally friendly advances in MP removal technologies that aim to overcome the limitations of current technologies, prevent secondary pollution, and utilize low energy. It also explores the potential applicability of these technologies under the current environmental conditions in South Korea. The core principles of these technologies, such as adsorption or flocculation, focus on minimizing the energy required to initiate and sustain these processes and on reducing the usage of adsorbents and flocculants. Employing microalgae as flocculants and triboelectricity for electrophoresis are identified as promising technologies. Incinerating MP-adsorbed materials from the process could be a viable disposal method, potentially serving as a source of heat energy. Consequently, technologies based on biochar or microalgae are especially advantageous in this context. The location where these technologies are applied plays a crucial role in their overall energy consumption. Ideally, implementation should occur as close as possible to points where MPs are found or within wastewater treatment plants. Froth flotation, microalgae flocculation, and triboelectricity-based electrophoresis are suitable methods in this regard. Establishing and enforcing administrative systems, laws, and policies globally to prevent MP occurrence remains critical. However, while these measures are vital, the most effective method for reducing MP occurrence is lowering plastic consumption alongside implementing stringent segregation and collection procedures.
Collapse
Affiliation(s)
- Seung Hyeon Lee
- Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Sang-Jun Han
- Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Jung-Ho Wee
- Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea.
| |
Collapse
|
39
|
Silva DCC, Marques JC, Gonçalves AMM. Microplastics in commercial marine bivalves: Abundance, characterization and main effects of single and combined exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107227. [PMID: 39778426 DOI: 10.1016/j.aquatox.2024.107227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Microplastics (MPs) are persistent and ubiquitous pollutants in marine ecosystems, and they can be ingested and accumulated by marine organisms with economic value to humans, such as marine bivalves, which may pose a threat to the marine food chains and to human health. In this literature review, we summarized the recent findings on the abundance and main characteristics (shape, size, color, polymer) of MPs detected in valuable marine bivalve species. Furthermore, we surveyed the major impacts triggered by MP exposure, alone or in combination with other pollutants, in these organisms. Additionally, we discussed the methodologies, techniques and equipment commonly used by researchers for the determination of the abundance, characterization and effects of the MP particles in these organisms. We verified that MPs have been widely detected in multiple species of commercial marine bivalves, with a great variety of shapes, sizes, colors and polymer types. In general, the methodologies used by researchers to determine the MP abundance in marine bivalves need to be harmonized to facilitate the comparability between studies. So far, previous research showed that the main effects of MPs, either alone or combined with other pollutants, on commercial marine bivalves include the induction of immunological, physiological and behavioral responses, reproductive modifications, genotoxicity and neurotoxicity, which were surveyed by using a wide variety of techniques and analytical equipment. In the future, researchers should focus on less studied bivalve species and should use the most precise and innovative methodologies to assess the effects of MPs and other pollutants on marine bivalves.
Collapse
Affiliation(s)
- Daniela C C Silva
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| | - João C Marques
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Ana M M Gonçalves
- Department of Life Sciences, Marine Resources, Conservation and Technology, CFE-Centre for Functional Ecology: Science for People & Planet, University of Coimbra, Coimbra 3000-456, Portugal; Department of Biology and CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
40
|
Wang YF, Wang XY, Chen BJ, Yang YP, Li H, Wang F. Impact of microplastics on the human digestive system: From basic to clinical. World J Gastroenterol 2025; 31:100470. [PMID: 39877718 PMCID: PMC11718642 DOI: 10.3748/wjg.v31.i4.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/08/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024] Open
Abstract
As a new type of pollutant, the harm caused by microplastics (MPs) to organisms has been the research focus. Recently, the proportion of MPs ingested through the digestive tract has gradually increased with the popularity of fast-food products, such as takeout. The damage to the digestive system has attracted increasing attention. We reviewed the literature regarding toxicity of MPs and observed that they have different effects on multiple organs of the digestive system. The mechanism may be related to the toxic effects of MPs themselves, interactions with various substances in the biological body, and participation in various signaling pathways to induce adverse reactions as a carrier of toxins to increase the time and amount of body absorption. Based on the toxicity mechanism of MPs, we propose specific suggestions to provide a theoretical reference for the government and relevant departments.
Collapse
Affiliation(s)
- Ya-Fen Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Xin-Yi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Bang-Jie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yi-Pin Yang
- First Clinical Medical College, Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Hao Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Fan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
41
|
Huang H, Hou J, Li M, Wei F, Liao Y, Xi B. Microplastics in the bloodstream can induce cerebral thrombosis by causing cell obstruction and lead to neurobehavioral abnormalities. SCIENCE ADVANCES 2025; 11:eadr8243. [PMID: 39841831 PMCID: PMC11753373 DOI: 10.1126/sciadv.adr8243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025]
Abstract
Human health is being threatened by environmental microplastic (MP) pollution. MPs were detected in the bloodstream and multiple tissues of humans, disrupting the regular physiological processes of organs. Nanoscale plastics can breach the blood-brain barrier, leading to neurotoxic effects. How MPs cause brain functional irregularities remains unclear. This work uses high-depth imaging techniques to investigate the MPs within the brain in vivo. We show that circulating MPs are phagocytosed and lead these cells to obstruction in the capillaries of the brain cortex. These blockages as thrombus formation cause reduced blood flow and neurological abnormalities in mice. Our data reveal a mechanism by which MPs disrupt tissue function indirectly through regulation of cell obstruction and interference with local blood circulation, rather than direct tissue penetration. This revelation offers a lens through which to comprehend the toxicological implications of MPs that invade the bloodstream.
Collapse
Affiliation(s)
- Haipeng Huang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- PKU-Nanjing Institute of Translational Medicine, Nanjing Raygen Health, Nanjing, China
| | - Jiaqi Hou
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Mingxiao Li
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fangchao Wei
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yilie Liao
- National University of Singapore, Lower Kent Ridge Road, Singapore, Singapore
| | - Beidou Xi
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
42
|
Song YT, Sitthikitpanya N, Usmanbaha N, Reungsang A, Chu CY. Optimization of polyhydroxyalkanoate (PHA) production from biohythane pilot plant effluent by Cupriavidus necator TISTR 1335. Biodegradation 2025; 36:14. [PMID: 39832017 DOI: 10.1007/s10532-025-10110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Bioplastics, particularly polyhydroxyalkanoates (PHAs), are emerging as promising alternatives to traditional materials due to their biodegradability. This study focuses on the production of PHAs as bioplastics using effluent from hydrogen production in a two-stage Biohythane Pilot Plant, which provides a low-cost substrate. The aim is to optimize production conditions, with Cupriavidus necator TISTR 1335 being used as the PHA producer. Utilizing Response Surface Methodology-Central Composite Design, we explored optimal conditions, revealing peak PHA production at a substrate concentration of 33.51 g COD/L and a pH of 6.87. The predicted optimal PHA concentration was at 3.05 g/L within the established model, closely matching the experimentally validated value of 3.02 g/L, with the overall usage rate of reducing sugars approximately 50-60%. This study underscores the importance of optimizing PHA production conditions and paving the way toward large-scale PHA production.
Collapse
Affiliation(s)
- Yu-Ting Song
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung City, 407102, Taiwan
| | - Napapat Sitthikitpanya
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chen-Yeon Chu
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung City, 407102, Taiwan.
- Institute of Green Products, Feng Chia University, Taichung, 407102, Taiwan.
| |
Collapse
|
43
|
De Domenico M, Allegri L, Caldarelli G, d'Andrea V, Di Camillo B, Rocha LM, Rozum J, Sbarbati R, Zambelli F. Challenges and opportunities for digital twins in precision medicine from a complex systems perspective. NPJ Digit Med 2025; 8:37. [PMID: 39825012 PMCID: PMC11742446 DOI: 10.1038/s41746-024-01402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Digital twins (DTs) in precision medicine are increasingly viable, propelled by extensive data collection and advancements in artificial intelligence (AI), alongside traditional biomedical methodologies. We argue that including mechanistic simulations that produce behavior based on explicitly defined biological hypotheses and multiscale mechanisms is beneficial. It enables the exploration of diverse therapeutic strategies and supports dynamic clinical decision-making through insights from network science, quantitative biology, and digital medicine.
Collapse
Affiliation(s)
- Manlio De Domenico
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy.
- Padua Center for Network Medicine, University of Padua, Padova, Italy.
- Padua Neuroscience Center, University of Padua, Padova, Italy.
- Istituto Nazionale di Fisica Nucleare, sez. di Padova, Italy.
| | - Luca Allegri
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy
| | - Guido Caldarelli
- DSMN and ECLT Ca' Foscari University of Venice, Venezia, Italy
- Institute of Complex Systems (ISC) CNR unit Sapienza University, Rome, Italy
- London Institute for Mathematical Sciences, Royal Institution, London, UK
| | - Valeria d'Andrea
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy
- Istituto Nazionale di Fisica Nucleare, sez. di Padova, Italy
| | - Barbara Di Camillo
- Padua Center for Network Medicine, University of Padua, Padova, Italy
- Department of Information Engineering, University of Padua, Padova, Italy
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| | - Luis M Rocha
- School of Systems Science and Industrial Eng., Binghamton University, Binghamton, NY, USA
- Universidade Católica Portuguesa, Católica Biomedical Research Centre, Lisbon, Portugal
| | - Jordan Rozum
- School of Systems Science and Industrial Eng., Binghamton University, Binghamton, NY, USA
| | - Riccardo Sbarbati
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy
- Istituto Nazionale di Fisica Nucleare, sez. di Padova, Italy
| | - Francesco Zambelli
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy
- Istituto Nazionale di Fisica Nucleare, sez. di Padova, Italy
| |
Collapse
|
44
|
Juntarasakul O, Julapong P, Srichonphaisarn P, Meekoch T, Janjaroen D, Tabelin CB, Phengsaart T. Weave structures of polyester fabric affect the tensile strength and microplastic fiber emission during the laundry process. Sci Rep 2025; 15:2272. [PMID: 39833277 PMCID: PMC11756394 DOI: 10.1038/s41598-025-86866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
This study utilized grab and strip testing methods to examine the relationship between three weave structures-plain, twill, and satin-and their tensile strengths in both warp and weft directions. In addition, microplastic fiber (MPF) emissions from these three weave structures were quantified at different states of the laundry process using filtration and microscopy. The grab and strip tests revealed that twill- and satin-woven fabrics exhibited higher tensile strengths in the warp direction compared to the weft orientation. In contrast, the plain weave structure showed similar tensile strengths in both warp and weft directions. During laundry in the washing machine, MPF emissions in the first drainage were the highest regardless of the weave structure. Moreover, the satin weave pattern released the most MPFs among the three common weave structures at 5054 particles/L. This weave pattern also had the weakest tensile strength of 3.1 N/cm2 in the weft direction of the three weave structures evaluated. The results demonstrated a strong inverse correlation between higher tensile strengths in the weaker direction (warp or weft) and MPF emissions. Among the weave structures investigated, the twill pattern had the lowest MPF emission, followed by plain weave, with the satin-woven fabric emitting the highest levels.
Collapse
Affiliation(s)
- Onchanok Juntarasakul
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pongsiri Julapong
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Mining and Materials Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Palot Srichonphaisarn
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thidarat Meekoch
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dao Janjaroen
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Carlito Baltazar Tabelin
- Department of Materials and Resources Engineering and Technology, College of Engineering, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
- Resource Processing and Technology Center, RIEIT, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Theerayut Phengsaart
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
- Applied Mineral and Petrology Research Unit (AMP RU), Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
45
|
Gao B, Chen L, Wu L, Zhang S, Zhao S, Mo Z, Chen Z, Tu P. Association between microplastics and the functionalities of human gut microbiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117497. [PMID: 39708450 DOI: 10.1016/j.ecoenv.2024.117497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
As an integral part of humans, the gut microbiome plays a significant role in the physiological and pathological processes of the host, and dysbiosis of the gut microbiome is linked to various diseases. The impact of microplastics on the diversity and composition of human gut microbiome has been reported previously. However, effects of microplastics on the functionality of the gut microbiome in humans have not been well studied. In the present study, concentrations of microplastics in human blood were detected through pyrolysis-gas chromatography/mass spectrometry in 39 adults. Five types of microplastics were found in human blood, including polyvinyl chloride, polyethylene, polypropylene, polystyrene, and polyamide 66. Shotgun metagenomic sequencing was further employed to analyze the metagenomes of the human stool samples and fecal samples from mice exposed to microplastics. Associations were found between microplastics and microbial species, as well as microbial genes encoding invasion-related virulence factors, quorum sensing, autoinducer and transporter system, and microplastic biodegradation enzymes. The findings are of significance to improve the understanding of functional changes in the gut microbiome associated with microplastic exposure, as well as raising awareness regarding the health risks of microplastics in the human population.
Collapse
Affiliation(s)
- Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lixia Chen
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lizhi Wu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Shirui Zhang
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Sunan Zhao
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhe Mo
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Zhijian Chen
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Pengcheng Tu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China.
| |
Collapse
|
46
|
Morici E, Cammilleri G, Scirè S, Bonomo FP, Tranchina L, Terracina F, Galluzzo P, Ferrantelli V, Monteverde VP, Galluzzo FG, Davì S, Licciardi M, Dara S. Survey on the presence of floating microplastics, trace metals and metalloids in seawater from Southern Italy to the United States of America. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117507. [PMID: 39701864 DOI: 10.1016/j.ecoenv.2024.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
The presence of microplastics (MPs), trace metals (TM) and metalloids (Ms) in surface seawater is a severe emerging issue of global concern. Information about the distribution of these pollutants is often lacking, and large-scale studies come with uncertainties because of difficult comparisons of results obtained using different methods to collect and process data. This study presents a comprehensive investigation of microplastics (MPs), trace metals (TM) and metalloids (Ms) in surface seawater during two transatlantic sampling campaigns, covering approximately 17,000 nautical miles. The results reveal the presence of MPs in all the samples analyzed and a broad variation in microplastic concentration (230-3320 MPs/L), with filaments or fibers being the most abundant shape. Coastal waters generally exhibit higher MPs, TM and Ms concentrations than open sea waters. The results showed high concentrations of MPs, particularly in the waters near the Faroe Islands, in the Sea of Magdalena department and in the Strait of Gibraltar. The order of the overall metals and metalloids concentrations was: As>Cr>Pb>Cd. High concentrations of Pb and Cr were recorded in the Mediterranean waters whereas high Arsenic (As) were found in the Southern coasts of United States, with values that exceeded the limits considered hazardous for aquatic life (81.55-101.12 µg/L). No significant correlations were found between microplastics, and the heavy metals examined. Here, we emphasize the need for sustainable environmental management actions and policies in a global context to monitoring the growing problem of pollutants in our oceans.
Collapse
Affiliation(s)
- Elisabetta Morici
- Advanced Technologies Network Center (ATeN Center), University of Palermo - Viale Delle Scienze, Edificio 18, Palermo 90128, Italy
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90100, Italy.
| | - Sergio Scirè
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90123, Italy
| | - Francesco Paolo Bonomo
- Advanced Technologies Network Center (ATeN Center), University of Palermo - Viale Delle Scienze, Edificio 18, Palermo 90128, Italy
| | - Luigi Tranchina
- Advanced Technologies Network Center (ATeN Center), University of Palermo - Viale Delle Scienze, Edificio 18, Palermo 90128, Italy
| | - Francesca Terracina
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90123, Italy
| | - Paola Galluzzo
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90100, Italy
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90100, Italy
| | - Vincenzo Paolo Monteverde
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90100, Italy
| | | | - Sergio Davì
- Ciuri Ciuri Mare, Via Domenico Scinà 15, Palermo 90139, Italy
| | - Mariano Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90123, Italy
| | - Salvatore Dara
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90100, Italy
| |
Collapse
|
47
|
Naidu BC, Xavier KAM, Sahana MD, Landge AT, Jaiswar AK, Shukla SP, Ranjeet K, Nayak BB. Temporal variability of microplastics in shrimp (Litopenaeus vannamei), feed, water and sediments of coastal and inland culture ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178173. [PMID: 39709842 DOI: 10.1016/j.scitotenv.2024.178173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Aquaculture, particularly shrimp farming, is crucial for global food security. However, the increasing presence of microplastics (MPs) in marine environments, shrimp feeds, and atmospheric particles has made MP contamination in shrimp tissues inevitable. This study systematically investigates the abundance, characteristics, and temporal trends (from 15th to the 120th day of culture) of MPs contamination in Litopenaeus vannamei, along with associated feed, water, and sediment across 12 shrimp ponds of two major shrimp-producing regions of India. MPs were detected in 93.7 % of shrimp samples and all environmental matrices, with the highest abundance recorded in coastal culture ponds. The overall average MPs abundance in shrimp was 4.07 items/individual (1.24 MPs items/g). MP sizes ranged from 8 μm to 4.22 mm, with MPs smaller than 100 μm being predominant in shrimp samples, though their prevalence decreased over the culture period. Fragments and fibers were the dominant morphotypes across all matrices, with a shift towards larger MPs and an increased proportion of fibers and films over time. Micro FTIR analyses revealed polyethylene (PE) and polypropylene (PP) were the most common polymers detected, indicating their widespread environmental distribution. Feed was identified as the primary source of MPs contamination in shrimp. The presence of MPs in shrimp raises significant concerns for consumer health, food safety, and trade, as shrimp are among the most widely consumed aquatic food products. This study underscores the dynamics of MP contamination in shrimp aquaculture and highlights the urgent need for targeted strategies to mitigate contamination, ensuring consumer safety and industry sustainability.
Collapse
Affiliation(s)
- Bejawada Chanikya Naidu
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India; ICAR - Central Institute of Fisheries Technology, Kochi 682029, Kerala, India
| | - K A Martin Xavier
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India; ICAR - Central Institute of Fisheries Technology, Kochi 682029, Kerala, India.
| | - M D Sahana
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Asha T Landge
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Ashok Kumar Jaiswar
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Satya Prakash Shukla
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - K Ranjeet
- Kerala University of Fisheries and Ocean Studies, Kochi 682506, Kerala, India
| | - Binaya Bhusan Nayak
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| |
Collapse
|
48
|
Gałęcka I, Rychlik A, Całka J. Influence of selected dosages of plastic microparticles on the porcine fecal microbiome. Sci Rep 2025; 15:1269. [PMID: 39779716 PMCID: PMC11711237 DOI: 10.1038/s41598-024-80337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Studies conducted so far have shown that nano- and microplastic may disturb the intestinal microenvironment by interacting with the intestinal epithelium and the gut microbiota. Depending on the research model used, the effect on the microbiome is different-an increase or decrease in selected taxa resulting in the development of dysbiosis. Dysbiosis may be associated with intestinal inflammation, development of mental disorders or diabetes. The aim of the study was to analyze the intestinal microbiome in 15 gilts divided into 3 research groups (n = 5; control group, receiving micropartices at a dose 0.1 g/day (LD) and 1 g/day (HD)). Feaces were collected before and after 28 days of exposure to PET microplastics. The analysis of the intestinal microbiome was performed using next-generation sequencing. Alpha and beta diversity indices were compared, showing, that repetition affected only the abundance indices in the control and LD groups, but not in the HD group. The relationships between the number of reads at the phylum, genus and species level and the microplastic dose were calculated using statistical methods (r-Pearson correlation, generalized regression model, analysis of variance). The statistical analysis revealed, that populations of Family XIII AD3011 group, Coprococcus, V9D2013 group, UCG-010 and Sphaerochaeta increased with increasing MP-PET dose. The above-mentioned taxa are mainly responsible for the production of short-chain fatty acids (SCFA). It may be assumed, that SCFA are one of the mechanisms involved in the response to oral exposure to MP-PET.
Collapse
Affiliation(s)
- Ismena Gałęcka
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Andrzej Rychlik
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-719, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
49
|
Yashwanth A, Huang R, Iepure M, Mu M, Zhou W, Kunadu A, Carignan C, Yegin Y, Cho D, Oh JK, Taylor MT, Akbulut MES, Min Y. Food packaging solutions in the post-per- and polyfluoroalkyl substances (PFAS) and microplastics era: A review of functions, materials, and bio-based alternatives. Compr Rev Food Sci Food Saf 2025; 24:e70079. [PMID: 39680570 DOI: 10.1111/1541-4337.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Food packaging (FP) is essential for preserving food quality, safety, and extending shelf-life. However, growing concerns about the environmental and health impacts of conventional packaging materials, particularly per- and polyfluoroalkyl substances (PFAS) and microplastics, are driving a major transformation in FP design. PFAS, synthetic compounds with dual hydro- and lipophobicity, have been widely employed in food packaging materials (FPMs) to impart desirable water and grease repellency. However, PFAS bioaccumulate in the human body and have been linked to multiple health effects, including immune system dysfunction, cancer, and developmental problems. The detection of microplastics in various FPMs has raised significant concerns regarding their potential migration into food and subsequent ingestion. This comprehensive review examines the current landscape of FPMs, their functions, and physicochemical properties to put into perspective why there is widespread use of PFAS and microplastics in FPMs. The review then addresses the challenges posed by PFAS and microplastics, emphasizing the urgent need for sustainable and bio-based alternatives. We highlight promising advancements in sustainable and renewable materials, including plant-derived polysaccharides, proteins, and waxes, as well as recycled and upcycled materials. The integration of these sustainable materials into active packaging systems is also examined, indicating innovations in oxygen scavengers, moisture absorbers, and antimicrobial packaging. The review concludes by identifying key research gaps and future directions, including the need for comprehensive life cycle assessments and strategies to improve scalability and cost-effectiveness. As the FP industry evolves, a holistic approach considering environmental impact, functionality, and consumer acceptance will be crucial in developing truly sustainable packaging solutions.
Collapse
Affiliation(s)
- Arcot Yashwanth
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Rundong Huang
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Monica Iepure
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Minchen Mu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Wentao Zhou
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Angela Kunadu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Courtney Carignan
- Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Yagmur Yegin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dongik Cho
- Department of Polymer Science and Engineering, Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Matthew T Taylor
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Mustafa E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
- Material Science and Engineering Program, University of California, Riverside, California, USA
| |
Collapse
|
50
|
Estevão XM, Dias APS, Flores-Colen I, Pereira MFC, Mendes MP. Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2698-2712. [PMID: 39812912 DOI: 10.1007/s11356-025-35904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups. This degradation led to the breakdown of the polymer and the release of microplastics and nanoplastics. Controlled abrasion tests, conducted in a Denver ball with water, sand, and ceramic balls for 2 h, confirmed that water is a critical factor for fiber release from DFMs. These tests resulted in the release of 0.26 g of PP fibers from 20 DFMs (weighing 62 g in total) with a diameter of 20 µm. Weathering and abrasion tests indicated rapid release and degradation of microplastics and nanoplastics, underscoring the importance of pursuing actions like reuse. Ecotoxicological tests revealed that leachates from the DFM-incorporated mortars showed no adverse effects on Daphnia magna or Selenastrum capricornutum, unlike the reference mortar, which caused substantial toxicity to Daphnia magna. Incorporating PP fibers from DFMs into cement-based mortars showed promising potential, as indicated by favorable ecotoxicity and chemical leaching test results.
Collapse
Affiliation(s)
- Xiluva Maciel Estevão
- Departaments of Chemical Engineering and Mechanical Engineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Ana Paula Soares Dias
- CERENA - Centro de Estudos em Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- VALORIZA - Research Centre for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, 7300-555, Portalegre, Portugal
| | - Inês Flores-Colen
- CERIS - Civil Engineering Research and Innovation for Sustainability, IST, University of Lisbon, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal
| | - Manuel Francisco Costa Pereira
- CERENA - Centro de Estudos em Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Maria Paula Mendes
- CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.
| |
Collapse
|