1
|
Kanakaraju D, Glass BD, Goh PS. Advanced oxidation process-mediated removal of pharmaceuticals from water: a review of recent advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36547-5. [PMID: 40434594 DOI: 10.1007/s11356-025-36547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Pharmaceutical compounds have raised significant environmental concerns, due to their persistent and non-biodegradable nature. Addressing their presence in the environment has become a priority, leading to the application of various removal treatment techniques. Advanced oxidation processes (AOPs) undoubtedly have emerged as highly effective removal techniques, as evidenced by the growing body of work in this area. This review offers an overview of the recent advances in the development of AOPs for treating pharmaceuticals and their by-products. Current trends and discoveries reported in diverse AOP studies have been scrutinized and are presented. Furthermore, emphasis is placed on the use of TiO2-mediated photocatalysis, which stands out as one of the most explored AOPs for pharmaceutical remediation. Performance aspects of TiO2 photocatalytic treatment are explored and discussed encompassing both commercially available and synthesized TiO2, as well as engineered TiO2-based materials (e.g. activated carbon, polymers, metals and non-metals), all aimed at removal of pharmaceutical compounds from the environment. The review concludes by summarizing key findings and offers insights into directions for future research.
Collapse
Affiliation(s)
- Devagi Kanakaraju
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Beverley D Glass
- Pharmacy, College of Medicine and Dentistry, James Cook University, Townsville, Qld, 4811, Australia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia
| |
Collapse
|
2
|
Uhlhorn J, Ng KT, Barron LP, Ford AT, Miller TH. Chemical profiling of surface water and biota in protected marine harbours impacted by combined sewer overflows. ENVIRONMENT INTERNATIONAL 2025; 199:109417. [PMID: 40194897 DOI: 10.1016/j.envint.2025.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025]
Abstract
Few studies exist that focus on contaminants of emerging concern (CECs) in transitional and coastal waterbodies. This study presents chemical profiling of two protected marine harbours on the South coast of the UK sampled in 2022. Across 21 sites, 105 unique compounds were detected (0.05 ng L-1 --1798 ng L-1, median: 11 ng L-1) in water samples and biota, including 67 pharmaceuticals, 29 pesticides and nine recreational drugs. There were significant differences between campaigns with increased chemical numbers and concentrations that coincided with increased rainfall and combined sewer overflow (CSO) discharges. The comparison with CSO discharges revealed that they were an important source for loading of specific chemicals with concentrations increasing for some cases by three-orders of magnitude. High relative risks were estimated for sites sampled during recorded CSO discharges for five compounds with risk quotients (RQs) ranging from 1.1 up to 9.3, with the highest risk from the neonicotinoid, imidacloprid. To understand the exposure in biota, six species; one macroalgae (Fucus vesiculosus) and five fauna (Hediste diversicolor, Patella vulgate, Crassostrea gigas, Carcinus maenas, Echinogammarus marinus) were analysed (n = 5/species) at a CSO-impacted site. Between eight to 18 compounds were detected with Fucus vesiculosus (seaweed) showing the highest accumulation with mean cumulative burdens reaching up to 343 ± 71 ng g-1. Surface water contamination did not correlate with body burdens. Overall, the work highlights the complexity of the chemical space present in a transitional waterbody showing dynamic contamination patterns that are further influenced by tide, rainfall and salinity. CSOs demonstrated an important but compound specific role for CEC input and pulsing into receiving waters.
Collapse
Affiliation(s)
- Jasmin Uhlhorn
- Centre for Pollution Research & Policy, Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Keng Tiong Ng
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Leon P Barron
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, PO4 9LY, UK.
| | - Thomas H Miller
- Centre for Pollution Research & Policy, Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK.
| |
Collapse
|
3
|
Zhang C, Cabreiro F, Barron LP, Stürzenbaum SR. Carbamazepine-exposed earthworms are characterized by tissue-specific accumulation patterns and transcriptional profiles. ENVIRONMENT INTERNATIONAL 2025; 198:109357. [PMID: 40117686 DOI: 10.1016/j.envint.2025.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/18/2024] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
Pharmaceutically active compounds enter soils via wastewater reuse and biosolid application. A ubiquitous drug present in wastewater is carbamazepine, a frequently prescribed anti-convulsant. Its mode of action is not species-specific and affects the nervous system of non-target organisms, including most likely the soil dwelling earthworms, which in turn has the potential to negatively impact soil quality. In this project, soils were amended with carbamazepine to explore uptake dynamics and resultant changes in molecular and life cycle endpoints of earthworms (Dendrobaena veneta). Earthworms were maintained, under laboratory conditions, for 28 days in soil spiked with either a solvent control, 0.6 mg/kg carbamazepine (encountered in the terrestrial system) or 10 mg/kg carbamazepine (significantly above an environmental hotspot). Carbamazepine concentrations were quantified in soils and worms by liquid chromatography tandem mass spectrometry (LC-MS/MS) which revealed tissue, dose and time-dependent differences in accumulation. Carbamazepine also modulated the make-up of the microbiome in the soil as well as the earthworm's gut. De novo RNA sequencing identified novel transcripts and complex tissue-specific transcriptomic changes, where, for example, the expression of the tubulin polymerisation promoting protein (tppp) was inhibited (9-fold) in the gut but induced (11-fold) in the cerebral ganglion of exposed earthworms. However, the notable absence of a strong cytochrome P450 response across all conditions suggests that the terrestrial earthworm also relies on detoxification pathways that differ to those observed in well-studied aquatic models. The novel finding that carbamazepine exposure triggers tissue-specific impacts in non-target soil organisms highlights the value and need for a more comprehensive understanding of how contaminants of emerging concern behave within an ecotoxicological context. This, in turn, will lead to informed and reliable risk assessments defining the consequences of wastewater and biosolid amendment practices on soil ecology and ecosystem function.
Collapse
Affiliation(s)
- Chubin Zhang
- Analytical, Environmental & Forensic Sciences Department, Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Filipe Cabreiro
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0HS, United Kingdom; University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Genetics, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Leon P Barron
- Analytical, Environmental & Forensic Sciences Department, Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, United Kingdom
| | - Stephen R Stürzenbaum
- Analytical, Environmental & Forensic Sciences Department, Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| |
Collapse
|
4
|
Wilschnack K, Cartmell E, Sundström VJ, Yates K, Petrie B. Enantiomeric fraction evaluation for assessing septic tanks as a pathway for chiral pharmaceuticals entering rivers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:779-793. [PMID: 39989382 DOI: 10.1039/d4em00715h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Septic tanks (STs) are an important pathway for chiral pharmaceuticals entering rivers. Therefore, the enantiospecific compositions of 25 chiral human pharmaceuticals and metabolites were investigated in five community STs over 12 months in Scotland. Large variability in pharmaceutical concentrations and enantiomeric fractions (EFs) were observed in wastewater owing to the small contributing populations. Pharmaceuticals prescribed in enantiopure and racemic forms had the greatest EF variability. For example, citalopram generally had EFs < 0.5 through consumption of the racemate and preferential metabolism of S(+)-citalopram. However, several samples had EFs > 0.7 from comparatively greater use of enantiopure escitalopram. Direct down-the-drain disposal was indicated for citalopram and venlafaxine, where elevated concentrations and pharmaceutical-metabolite-ratios were observed (at least 19-fold). Overall, EF differences between influent and effluent were small, suggesting no enantioselectivity occurred in anaerobic environments of STs. Therefore, EFs in ST effluent were notably different to those from aerobic wastewater treatment works (WWTWs). For instance, naproxen EFs (≥0.990 when both enantiomers detected) were like those of untreated wastewater but outside the range for aerobic WWTWs effluent caused by a lack of inversion from S(+)- to R(-)-naproxen in STs. This suggests naproxen can be used to identify its pathway into the environment, which was strengthened by river water microcosm studies. At the study locations the environmental risk of enantiomers was low due to sufficient dilution of effluents. Nevertheless, greater impact of individual practices towards medicine use and disposal on ST wastewater and receiving water composition demands enantioselective analysis to better appreciate the sources, fate and impact of pharmaceuticals.
Collapse
Affiliation(s)
- Kai Wilschnack
- School of Pharmacy, Applied Sciences and Public Health, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| | - Elise Cartmell
- Scottish Water, 55 Buckstone Terrace, Edinburgh EH10 6XH, UK
| | - Vera Jemina Sundström
- School of Pharmacy, Applied Sciences and Public Health, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| | - Kyari Yates
- School of Pharmacy, Applied Sciences and Public Health, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| | - Bruce Petrie
- School of Pharmacy, Applied Sciences and Public Health, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| |
Collapse
|
5
|
Fady PE, Richardson AK, Barron LP, Mason AJ, Volpe R, Barr MR. Biochar filtration of drug-resistant bacteria and active pharmaceutical ingredients to combat antimicrobial resistance. Sci Rep 2025; 15:1256. [PMID: 39779747 PMCID: PMC11711200 DOI: 10.1038/s41598-024-83825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Antimicrobial resistance (AMR) is a major cause of death worldwide, with 1.27 M direct deaths from bacterial drug-resistant infections as of 2019. Dissemination of multidrug-resistant (MDR) bacteria in the environment, in conjunction with pharmapollution by active pharmaceutical ingredients (APIs), create and foster an environmental reservoir of AMR. Creative solutions are required to mitigate environmental AMR, while taking into consideration other aspects of the planetary "Triple Crisis" of pollution, biodiversity loss, and climate change. Waste lignocellulosic biomass (LCB), a byproduct of agriculture and forestry, is the largest stream of non-edible biomass globally. Through pyrolysis, waste LCB can be converted into biochars, which have excellent attributes for adsorption of pollutants-though no studies have yet reliably correlated production conditions with efficacy, nor considered adsorption of human pathogens. By leveraging a bespoke pyrolysis reactor with precisely controlled parameters, we show that production conditions substantially affect sequestration of clinical bacterial isolates, removing up to 94% of Pseudomonas aeruginosa RP73 and 85% of Staphylococcus aureus EMRSA-15. In addition, we show that chars produced at higher peak pyrolysis temperatures (450 °C) can remove up to 88% of the antibiotic clarithromycin from wastewater, as well as significant proportions of many other APIs with varied physicochemical characteristics. These findings provide a first-in-kind insight into how production conditions affect the ability of biochars to mitigate environmental AMR.
Collapse
Affiliation(s)
- Paul-Enguerrand Fady
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
- Biosecurity Policy Unit, The Centre for Long-Term Resilience, 71-75 Shelton Street, London, WC2H 9JQ, UK
| | - Alexandra K Richardson
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 86 Wood Lane, London, W12 0BZ, UK
- Department of Analytical, Environmental & Forensic Sciences, Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Leon P Barron
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 86 Wood Lane, London, W12 0BZ, UK
- Department of Analytical, Environmental & Forensic Sciences, Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Roberto Volpe
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Meredith R Barr
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
- Division of Chemical & Energy Engineering, School of Engineering, London South Bank University, 103 Borough Rd, London, SE1 0AA, UK.
- Department of Aeronautics, Faculty of Engineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Zhang C, Barron LP, Stürzenbaum SR. Pollution of Soil by Pharmaceuticals: Implications for Metazoan and Environmental Health. Annu Rev Pharmacol Toxicol 2025; 65:547-565. [PMID: 39227350 DOI: 10.1146/annurev-pharmtox-030124-111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The use of pharmaceuticals has grown substantially and their consequential release via wastewaters poses a potential threat to aquatic and terrestrial environments. While transportation prediction models for aquatic environments are well established, they cannot be universally extrapolated to terrestrial systems. Pharmaceuticals and their metabolites are, for example, readily detected in the excreta of terrestrial organisms (including humans). Furthermore, the trophic transfer of pharmaceuticals to and from food webs is often overlooked, which in turn highlights a public health concern and emphasizes the pressing need to elucidate how today's potpourri of pharmaceuticals affect the terrestrial system, their biophysical behaviors, and their interactions with soil metazoans. This review explores the existing knowledge base of pharmaceutical exposure sources, mobility, persistence, (bio)availability, (bio)accumulation, (bio)magnification, and trophic transfer of pharmaceuticals through the soil and terrestrial food chains.
Collapse
Affiliation(s)
- Chubin Zhang
- Department of Analytical, Environmental & Forensic Sciences, Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom;
| | - Leon P Barron
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Analytical, Environmental & Forensic Sciences, Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom;
| | - Stephen R Stürzenbaum
- Department of Analytical, Environmental & Forensic Sciences, Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom;
| |
Collapse
|
7
|
Đurišić-Mladenović N, Živančev J, Antić I, Rakić D, Buljovčić M, Pajin B, Llorca M, Farre M. Occurrence of contaminants of emerging concern in different water samples from the lower part of the Danube River Middle Basin - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125128. [PMID: 39414068 DOI: 10.1016/j.envpol.2024.125128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
This study intends to assess the extent of the occurrence of CECs in different water types based on the literature data reported for the countries from a lower part of the Middle Danube Basin, including those belonging to the Western Balkan (WB) region and two upstream neighboring EU Member States, Croatia and Slovenia. These countries share main freshwater courses important for drinking water supply, agriculture, industry, navigation, tourism, etc, but in some of them there are low rate of wastewater treatment, impacting the chemical status of water resources in the region and probably beyond, if downstream countries are considered. The literature survey revealed 38 investigative studies reporting data on CECs in water matrices sampled in the region in the period 2008-2022. Surface water was the most frequently studied water type in WB countries, while wastewater was the dominant water type studied in Slovenia and Croatia. The most often analyzed compounds in the studies dealing with surface water and wastewater were the anti-epileptic drug carbamazepine, some non-steroidal anti-inflammatory drugs, and antibiotics; pharmaceutically active compounds were also the most analyzed CECs in groundwater and drinking water. Additionally, similarities/dissimilarities among the experimental approaches in these studies were discussed in relation to the state-of-the-art research directions for the CECs surveillance in the European Union, resulting in summarized strengths and gaps in capacities for the wide-range surveillance of CECs in the lower part of the Middle Danube Basin. This is the first integral overview of the studies on CECs in waters from the countries belonging to this part of the Danube Basin, representing a valuable baseline for further enhancement of the relevant monitoring efforts and chemical status of the regional water resources, especially in countries with poor wastewater management.
Collapse
Affiliation(s)
- Nataša Đurišić-Mladenović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Igor Antić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Dušan Rakić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Maja Buljovčić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Biljana Pajin
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Marta Llorca
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, Barcelona, 08034, Spain
| | - Marinella Farre
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, Barcelona, 08034, Spain
| |
Collapse
|
8
|
Chen Z, Xia D, Liu H, Wang R, Huang M, Tang T, Lu G. Tracing contaminants of emerging concern and their transformations in the whole treatment process of a municipal wastewater treatment plant using nontarget screening and molecular networking strategies. WATER RESEARCH 2024; 267:122522. [PMID: 39357164 DOI: 10.1016/j.watres.2024.122522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/24/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
This study employed nontarget screening with high-resolution mass spectrometry and molecular network strategy to characterize the occurrence and tranformation of contaminants of emerging concern (CECs) through a wastewater treatment plant in Guangzhou. We detected 70,631 compounds in positive mode and 14,423 in negative mode in influent, from which 94.5 % of these compounds were successfully eliminated after treatment. Among them, 510 chemicals were identified, with pharmaceuticals being the largest category excluding natural products, accounting for 146 compounds. And 29 CECs were semiquantified with concentrations ranging from 2.80 ng/L (Fluconazole) to 10,351 ng/L (Nicotine). The removal efficiency varied: 60 compounds were easily removable (>90 % removal), 17 were partially removable (40-90 % removal), and 44 were non-degradable (<40 % removal). Additionally, we tentatively identified transformation products (TPs) of CECs using a molecular network analysis, revealing over 20,000 compound pairs sharing common fragments, with 191 compounds potentially linked to 47 level 1 compounds, suggesting their role as TPs of CECs. These findings illuminated the actual treatment efficiency of wastewater treatment plants for CECs and the potential TPs, offering valuable insights for future improvements in wastewater management practices.
Collapse
Affiliation(s)
- Zhenguo Chen
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology, South China Normal University, Guangzhou, 510006, PR China
| | - Di Xia
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Huangrui Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Mingzhi Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology, South China Normal University, Guangzhou, 510006, PR China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Wilschnack K, Cartmell E, Yates K, Petrie B. Septic tanks as a pathway for emerging contaminants to the aquatic environment-Need for alternative rural wastewater treatment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124988. [PMID: 39299635 DOI: 10.1016/j.envpol.2024.124988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Septic tanks (STs) as a decentralised approach to community wastewater treatment were investigated as a pathway for emerging contaminants (ECs) entering the aquatic environment. A broad range of ECs were examined in five community STs (population equivalents 217-475) and receiving rivers in Scotland over 12 months. All 68 studied ECs were detected at least once in ST influent or effluent at a broad concentration range from ng L-1 - μg L-1 which can surpass freshwater predicted no-effect concentrations. Pharmaceuticals with acute use, such as antibiotics and antifungals, had high monthly variability and concentrations can exceed those previously found in centralised wastewater treatment works. Differences between the STs demonstrate the impact of localised prescription and population behaviour on EC concentrations. The similarities in concentrations between influent and effluent, suggest limited or no removal of ECs in STs. Hence, dilution of the discharges is required to mitigate environmental risk. Although the contribution of ECs sorbed to suspended solids to the total EC concentration was generally small (<10%), higher contributions (>30%) were observed for fluoroquinolone antibiotics (ofloxacin and ciprofloxacin), antidepressants (fluoxetine), and antifungals (clotrimazole). A wide range of ECs were also detected in rivers upstream and downstream of the ST discharge points, and concentrations increased by up to 95% downstream. In general, risk quotients (RQs) in the rivers were low, indicating small risk for the environment. However, higher RQs (>1) were found for ibuprofen, diclofenac and ciprofloxacin in a few samples. Therefore, reducing their concentration by improving ST performance or through sustainable medicines use may be needed at low dilution locations to mitigate any risk.
Collapse
Affiliation(s)
- Kai Wilschnack
- School of Pharmacy, Applied Sciences and Public Health, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| | - Elise Cartmell
- Scottish Water, 55 Buckstone Terrace, Edinburgh, EH10 6XH, UK.
| | - Kyari Yates
- School of Pharmacy, Applied Sciences and Public Health, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| | - Bruce Petrie
- School of Pharmacy, Applied Sciences and Public Health, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| |
Collapse
|
10
|
Beltrán de Heredia I, González-Gaya B, Zuloaga O, Garrido I, Acosta T, Etxebarria N, Ruiz-Romera E. Occurrence of emerging contaminants in three river basins impacted by wastewater treatment plant effluents: Spatio-seasonal patterns and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174062. [PMID: 38917906 DOI: 10.1016/j.scitotenv.2024.174062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
The concern on the fate and distribution of contaminants of emerging concern (CECs) is a burning topic due to their widespread occurrence and potential harmful effects. Particularly, antibiotics have received great attention due to their implications in antimicrobial resistance occurrence. The impact of wastewater treatment plants (WWTP) is remarkable, being one of the main pathways for the introduction of CECs into aquatic systems. The combination of novel analytical methodologies and risk assessment strategies is a promising tool to find out environmentally relevant compounds posing major concerns in freshwater ecosystems impacted by those wastewater effluents. Within this context, a multi-target approach was applied in three Spanish river basins affected by different WWTP treated effluents for spatio-temporal monitoring of their chemical status. Solid phase extraction followed by ultra-high-performance liquid chromatography were used for the quantification of a large panel of compounds (n = 270), including pharmaceuticals and other consumer products, pesticides and industrial chemicals. To this end, water samples were collected in four sampling campaigns at three locations in each basin: (i) upstream from the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream from the WWTPs (500 m downriver from the effluent outfall). Likewise, 24-h composite effluent samples from each of the WWTPs were provided in all sampling periods. First the occurrence and distribution of these compounds were assessed. Diverse seasonal trends were observed depending on the group of emerging compounds, though COVID-19 outbreak affected variations of certain pharmaceuticals. Detection frequencies and concentrations in effluents generally exceeded those in river samples and concentrations measured upstream WWTPs were generally low or non-quantifiable. Finally, risks associated with maximum contamination levels were evaluated using two different approaches to account for antibiotic resistance selection as well. From all studied compounds, 89 evidenced environmental risk on at least one occasion in this study.
Collapse
Affiliation(s)
- Irene Beltrán de Heredia
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain.
| | - Belén González-Gaya
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Itziar Garrido
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain
| | - Teresa Acosta
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Estilita Ruiz-Romera
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
11
|
Sadutto D, Picó Y. Validation of LC-MS/MS method for opioid monitoring in Valencia City wastewater: Assessment of synthetic wastewater as potential aid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174382. [PMID: 38955278 DOI: 10.1016/j.scitotenv.2024.174382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
In this study, a comprehensive and sensitive method for the simultaneous detection of 17 opioids (OPs) and their human metabolites in wastewater using high-performance liquid chromatography coupled to tandem mass spectrometry was validated. The chromatographic separations of opioids were carried out on a Kinetex® Biphenyl column (1.7 μm, 100 Å, 50 × 2.1 mm). A synthetic wastewater approach was used for recovery studies to mimic a contaminant-free matrix. Two solid-phase extraction (SPE) sorbents (hydrophilic-lipophilic balance and mixed mode with the previous phase and a weak cationic exchange) were studied to optimize sample treatment and obtain higher recoveries. The mixed mode was chosen because the recoveries of 17 target analytes at three spiked concentrations (25, 50, and 100 ng mL-1) were > 80 % for 75 % of the analytes in a simulated wastewater. The intra- and inter-day relative standard deviations (RSDs) were between ±1 % and ±20 %. The method limits of quantification ranged from 5 to 25 ng L-1, the only exceptions being heroin (275 ng L-1) and morphine-3β-glucuronide (250 ng L-1). Suppression/enhancement is comparable between the synthetic and the influent wastewater. The analytical method was applied to the OPs analysis in twenty-one influent samples collected from the treatment plants treating the wastewater of Valencia City (Spain). Twelve OPs were detected with total daily concentrations ranging from 1 ng L-1 to 2135 ng L-1. The widespread presence of these compounds in water suggests potential widespread exposure, highlighting the need for increased environmental awareness. Furthermore, the estimated daily intake results raise concerns about opioid use as a potential future health and social issue.
Collapse
Affiliation(s)
- Daniele Sadutto
- Centre for the Control and Evaluation of Medicines, Chemical Medicines Unit, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161 Rome, Italy.
| | - Yolanda Picó
- Environmental and Food Safety Research Group of the University of Valencia (SAMA-UV), Research Center on Desertification (CIDE), CSIC-UV-GV, Moncada-Naquera Road km 4.5, 46113 Moncada, Valencia, Spain
| |
Collapse
|
12
|
Kiran PS, Mandal P, Jain M, Ghosal PS, Gupta AK. A comprehensive review on the treatment of pesticide-contaminated wastewater with special emphasis on organophosphate pesticides using constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122163. [PMID: 39182378 DOI: 10.1016/j.jenvman.2024.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Pesticides pose a significant threat to aquatic ecosystems due to their persistent nature and adverse effects on biota. The increased detection of pesticides in various water bodies has prompted research into their toxicological impacts and potential remediation strategies. However, addressing this issue requires the establishment of robust regulatory frameworks to determine safe thresholds for pesticide concentrations in water and the development of effective treatment methods. This assessment underscores the complex ecological risks associated with organophosphate pesticides (OPPs) and emphasizes the urgent need for strategic management and regulatory measures. This study presents a detailed examination of the global prevalence of OPPs and their potential adverse effects on aquatic and human life. A comprehensive risk assessment identifies azinphos-methyl, chlorpyrifos, and profenfos as posing considerable ecological hazard to fathead minnow, daphnia magna, and T. pyriformis. Additionally, this review explores the potential efficacy of constructed wetlands (CWs) as a sustainable approach for mitigating wastewater contamination by diverse pesticide compounds. Furthermore, the review assess the effectiveness of CWs for treating wastewater contaminated with pesticides by critically analyzing the removal mechanism and key factors. The study suggests that the optimal pH range for CWs is 6-8, with higher temperatures promoting microbial breakdown and lower temperatures enhancing pollutant removal through adsorption and sedimentation. The importance of wetland vegetation in promoting sorption, absorption, and degradation processes is emphasized. The study emphasizes the importance of hydraulic retention time (HRT) in designing, operating, and maintaining CWs for pesticide-contaminated water treatment. The removal efficiency of CWs ranges from 38% to 100%, depending on factors like pesticide type, substrate materials, reactor setup, and operating conditions.
Collapse
Affiliation(s)
- Pilla Sai Kiran
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Pubali Mandal
- Department of Civil Engineering, Birla Institute of Technology and Science Pilani, Pilani, 333031, Rajasthan, India.
| | - Mahak Jain
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
13
|
Wang C, Ning X, Wan N, Xu S, Jiang C, Bai Z, Ma J, Zhang X, Wang X, Zhuang X. Season and side-chain length affect the occurrences and behaviors of phthalic acid esters in wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134934. [PMID: 38889463 DOI: 10.1016/j.jhazmat.2024.134934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Emerging pollutants (EPs) are prevalent in aquatic environments globally. Researchers strive to understand their occurrence and behavior prior to their release into the environment. In this study, we examined five wastewater treatment plants (WWTPs), collected 50 wastewater samples and 10 sludge samples. We explored the sources and destinations of phthalic acid esters (PAEs) within these WWTPs using mass balance equations. Wastewater treatment diminished the frequency and concentration of PAEs, and decreased the fraction of short-chain PAEs. We confirmed the increased concentration of PAEs post-primary treatment and modified the mass balance equation. Calculations suggest that weaker "the mix" in winter than in summer and stronger sedimentation in winter than in summer resulted in high efficiency of PAEs removal by winter wastewater treatment. The mass flux of biodegradation was influenced by the combination of biodegradation efficiency and the strength of the particular type of PAEs collected, with no seasonal differences. Mass fluxes for sludge sedimentation were mainly influenced by season and were higher in winter than in summer. This study enhances our understanding of emerging pollutants in manual treatment facilities and offers insights for optimizing wastewater treatment methods for water professionals.
Collapse
Affiliation(s)
- Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Ning
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Na Wan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, Zhejiang, China.
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Ma
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xupo Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
14
|
Li Z, Li J, Hu Y, Yan Y, Tang S, Ma R, Li L. Evaluation of pharmaceutical consumption between urban and suburban catchments in China by wastewater-based epidemiology. ENVIRONMENTAL RESEARCH 2024; 250:118544. [PMID: 38408630 DOI: 10.1016/j.envres.2024.118544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Wastewater-based epidemiology (WBE) is amply used for estimating human consumption of chemicals, yet information on regional variation of pharmaceuticals and their environmental fate are scarce. Thus, this study aims to estimate the consumption of three cardiovascular, four non-steroidal anti-inflammatory pharmaceuticals (NSAIDs), and four psychoactive pharmaceuticals between urban and suburban catchments in China by WBE, and to explore their removal efficiencies and ecological risks. Eleven analytes were detected in both influent and effluent samples. The estimated consumptions ranged from
Collapse
Affiliation(s)
- Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jincheng Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yongxia Hu
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yile Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
15
|
Lentz MP, Graham DJ, van Vliet MTH. Drought impact on pharmaceuticals in surface waters in Europe: Case study for the Rhine and Elbe basins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171186. [PMID: 38408670 DOI: 10.1016/j.scitotenv.2024.171186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/20/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Hydrological droughts are expected to increase in frequency and severity in many regions due to climate change. Over the last two decades, several droughts occurred in Europe, including the 2018-drought, which showed major adverse impacts for nature and different sectoral uses (e.g. irrigation, drinking water). While drought impacts on water quantity are well studied, little understanding exists on the impacts on water quality, particularly regarding pharmaceutical concentrations in surface waters. This study investigates the impact of the 2018-drought on concentrations of four selected pharmaceuticals (carbamazepine, sulfamethoxazole, diclofenac and metoprolol) in surface waters in Europe, with a major focus on the Elbe and Rhine rivers. Monitoring data were analysed for the period of 2010-2020 to estimate the spatiotemporal patterns of pharmaceuticals and assess the concentration responses in rivers during the 2018-drought compared to reference years. Our results indicate an overall deterioration in water quality, which can be attributed to the extremely low flow and higher water temperatures (∼ + 1.5 °C and + 2.0 °C in Elbe and Rhine, respectively) during the 2018-drought. Our results show an increase in the concentrations of carbamazepine, sulfamethoxazole, and metoprolol, but reduced concentrations of diclofenac during the 2018-drought. Significant increases in carbamazepine concentrations (+45 %) were observed at 3/6 monitoring stations in the upstream part of the Elbe, which was mainly attributed to less dilution of chemical loads from wastewater treatment plants under drought conditions. However, reduced diclofenac concentrations could be attributed to increased degradation processes under higher water temperatures (R2 = 0.60). Moreover, the rainfed-dominated Elbe exhibited more severe water quality deterioration than the snowmelt-dominated Rhine river, as the Elbe's reduction in dilution capacity was larger. Our findings highlight the need to account for the impacts of climate change and associated increases in droughts in water quality management plans, to improve the provision of water of good quality for ecosystems and sectoral needs.
Collapse
Affiliation(s)
- Mark P Lentz
- Department of Physical Geography, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands
| | - Duncan J Graham
- Department of Physical Geography, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands
| | - Michelle T H van Vliet
- Department of Physical Geography, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands.
| |
Collapse
|
16
|
Shomar B, Rovira J. Human health risk assessment associated with the reuse of treated wastewater in arid areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123478. [PMID: 38311158 DOI: 10.1016/j.envpol.2024.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Qatar produces more than 850,000 m3/day of highly treated wastewater. The present study aims at characterizing the effluents coming out of three central wastewater treatment plants (WWTPs) of chemical pollutants including metals, metalloids and antibiotics commonly used in the country. Additionally, the study is assessing human health risks associated with the exposure to the treated wastewater (TWW) via dermal and ingestion routes. Although the origin of domestic wastewater is desalinated water (the only source of fresh water), the results show that the targeted parameters in TWW were within the international standards. Concentrations of Cl, F, Br, NO3, NO2, SO4 and PO4, were 389, <0.1, 1.2, 25, <0.1, 346, and 2.8 mg/L, respectively. On the other hand, among all cations, metals and metalloids, only boron (B) was 2.1 mg/L which is higher than the Qatari guidelines for TWW reuse in irrigation of 1.5 mg/L. Additionally, strontium (Sr) and thallium (Tl) were detected with relatively high concentrations of 30 mg/L and 12.5 μg/L, respectively, due to their natural and anthropogenic sources. The study found that the low concentrations of all tested metals and metalloids do not pose any risk to human health. However, Tl presents exposure levels above the 10 % of oral reference dose (HQ = 0.4) for accidental oral ingestion of TWW. The results for antibiotics show that exposure for adults and children to TWW are far below the admissible daily intakes set using minimum therapeutic dose and considering uncertainty factors. Treated wastewater of Qatar can be used safely for irrigation. However, further investigations are still needed to assess microbiological quality.
Collapse
Affiliation(s)
- Basem Shomar
- Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Paisos Catalans Avenue 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut d'Investigació Sanitaria Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain.
| |
Collapse
|
17
|
Iturburu FG, Bertrand L, Soursou V, Scheibler EE, Calderon G, Altamirano JC, Amé MV, Menone ML, Picó Y. Pesticides and PPCPs in aquatic ecosystems of the andean central region: Occurrence and ecological risk assessment in the Uco valley. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133274. [PMID: 38128229 DOI: 10.1016/j.jhazmat.2023.133274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Uco valley (Mendoza, Argentina) suffers the concomitant effect of climate change, anthropic pressure and water scarcity. Moreover chemical pollution to aquatic ecosystems could be another pressuring factor, but it was not studied enough to the present. In this sense, the aim of this study was to assess the occurrence of pesticides, pharmaceuticals and personal care products (PPCPs) in aquatic ecosystems of the Uco Valley and to perform an ecological risk assessment (ERA). The presence of several insecticides (mainly neonicotinoids), herbicides (atrazine, diuron, metolachlor, terbutryn) and fungicides (strobilurins, triazolic and benzimidazolic compounds) in water samples in two seasons, related to crops like vineyards, garlic or fruit trees was associated to medium and high-risk probabilities for aquatic biota. Moreover, PPCPs of the group of non-steroidal anti-inflammatory drugs, parabens and bisphenol A were detected in all the samples and their calculated risk quotients also indicated a high risk. This is the first record of pesticides and PPCPs with an ERA in this growing agricultural oasis. Despite the importance of these findings in Uco Valley for decision makers in the region, this multilevel approach could bring a wide variety of tools for similar regions in with similar productive and environmental conditions, in order to afford actions to reach Sustainable Development Goals. SYNOPSIS: Aquatic ecosystems in arid mountain regions are threatened worldwide. This study reports relevant data about chemical pollution in Central Andes, which could be a useful tool to enhance SDGs' accomplishment.
Collapse
Affiliation(s)
- Fernando G Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Juan B. Justo 2550, 7600 Mar del Plata, Argentina.
| | - Lidwina Bertrand
- Laboratorio de Investigaciones en Contaminación Acuática y Ecotoxicología (LICAE), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Vasiliki Soursou
- Food and Environmental Safety Research Group (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV) University of Valencia, Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Erica E Scheibler
- Laboratorio de Entomología, Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA), CONICET-Universidad Nacional de Cuyo (UNCuyo)-Government of Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina
| | - Gabriela Calderon
- Instituto del Hábitat y del Ambiente (IHAM), Facultad de Arquitectura, Urbanismo y Diseño (FAUD, UNMdP), Dean Funes 3350, 7600 Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorgelina C Altamirano
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, 5500 (P.O. Box 331), Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales (FCEN), UNCuyo, Padre Jorge Contreras 1300, 5502 (P.O. Box 331), Mendoza, Argentina
| | - María V Amé
- Laboratorio de Investigaciones en Contaminación Acuática y Ecotoxicología (LICAE), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Mirta L Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Juan B. Justo 2550, 7600 Mar del Plata, Argentina
| | - Yolanda Picó
- Food and Environmental Safety Research Group (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV) University of Valencia, Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| |
Collapse
|
18
|
Wilkinson JL, Thornhill I, Oldenkamp R, Gachanja A, Busquets R. Pharmaceuticals and Personal Care Products in the Aquatic Environment: How Can Regions at Risk be Identified in the Future? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:575-588. [PMID: 37818878 DOI: 10.1002/etc.5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are an indispensable component of a healthy society. However, they are well-established environmental contaminants, and many can elicit biological disruption in exposed organisms. It is now a decade since the landmark review covering the top 20 questions on PPCPs in the environment (Boxall et al., 2012). In the present study we discuss key research priorities for the next 10 years with a focus on how regions where PPCPs pose the greatest risk to environmental and human health, either now or in the future, can be identified. Specifically, we discuss why this problem is of importance and review our current understanding of PPCPs in the aquatic environment. Foci include PPCP occurrence and what drives their environmental emission as well as our ability to both quantify and model their distribution. We highlight critical areas for future research including the involvement of citizen science for environmental monitoring and using modeling techniques to bridge the gap between research capacity and needs. Because prioritization of regions in need of environmental monitoring is needed to assess future/current risks, we also propose four criteria with which this may be achieved. By applying these criteria to available monitoring data, we narrow the focus on where monitoring efforts for PPCPs are most urgent. Specifically, we highlight 19 cities across Africa, Central America, the Caribbean, and Asia as priorities for future environmental monitoring and risk characterization and define four priority research questions for the next 10 years. Environ Toxicol Chem 2024;43:575-588. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- John L Wilkinson
- Environment and Geography Department, University of York, York, UK
| | - Ian Thornhill
- School of Environment, Education and Development, The University of Manchester, Manchester, UK
| | - Rik Oldenkamp
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam, The Netherlands
| | - Anthony Gachanja
- Department of Food Science and Post-Harvest Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Rosa Busquets
- Department of Chemical and Pharmaceutical Sciences, Kingston University London, Kingston-upon-Thames, UK
| |
Collapse
|
19
|
Ngin P, Haglund P, Proum S, Fick J. Pesticide screening of surface water and soil along the Mekong River in Cambodia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169312. [PMID: 38104830 DOI: 10.1016/j.scitotenv.2023.169312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Widespread use of pesticides globally has led to serious concerns about environmental contamination, particularly with regard to aquatic and soil ecosystems. This work involved investigating concentrations of 64 pesticides in surface-water and soil samples collected in four provinces along the Mekong River in Cambodia during the dry and rainy seasons (276 samples in total), and conducting semi-structured interviews with local farmers about pesticide use. Furthermore, an ecological risk assessment of the detected pesticides was performed. In total, 56 pesticides were detected in surface water and 43 in soil, with individual pesticides reaching maximum concentrations of 1300 ng/L in the surface-water samples (tebufenozide) and 1100 ng/g dry weight in the soil samples (bromophos-ethyl). The semi-structured interviews made it quite evident that the instructions that farmers are provided regarding the use of pesticides are rudimentary, and that overuse is common. The perceived effect of pesticides was seen as an end-point, and there was a limited process of optimally matching pesticides to pests and crops. Several pesticides were used regularly on the same crop, and the period between application and harvest varied. Risk analysis showed that bromophos-ethyl, dichlorvos, and iprobenfos presented a very high risk to aquatic organisms in both the dry and rainy seasons, with risk quotient values of 850 for both seasons, and of 67 in the dry season and 78 in the rainy season for bromophos-ethyl, and 49 in the dry season and 16 in the rainy season for dichlorvos. Overall, this work highlights the occurrence of pesticide residues in surface water and soil along the Mekong River in Cambodia, and emphasizes the urgent need for monitoring and improving pesticide practices and regulations in the region.
Collapse
Affiliation(s)
- Putheary Ngin
- Department of Chemistry, Umeå University, Umeå, Sweden; Department of Chemistry, Royal University of Phnom Penh, Phnom Penh, Cambodia.
| | - Peter Haglund
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Sorya Proum
- Department of Chemistry, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
20
|
Wilschnack K, Homer B, Cartmell E, Yates K, Petrie B. Targeted multi-analyte UHPLC-MS/MS methodology for emerging contaminants in septic tank wastewater, sludge and receiving surface water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:709-720. [PMID: 38214144 DOI: 10.1039/d3ay01201h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Septic tanks treat wastewater of individual houses and small communities (up to 2000 people in Scotland) in rural and semi-urban areas and are understudied sources of surface water contamination. A multi-analyte methodology with solid phase extraction (SPE), ultra-sonic extraction, and direct injection sample preparation methods was developed to analyse a comprehensive range of emerging contaminants (ECs) including prescription and over-the-counter pharmaceuticals and related metabolites, natural and synthetic hormones, and other human wastewater marker compounds in septic tank influent and effluent, river water, suspended solids, and septic tank sludge by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The number of quantifiable compounds in each matrix varied from 68 in septic tank wastewater to 59 in sludge illustrating its applicability across a range of matrices. Method quantification limits were 2.9 × 10-5-1.2 μg L-1 in septic tank influent, effluent and river water, with ≤0.01 μg L-1 achieved for 60% of ECs in all three water matrices, and 0.080-49 μg kg-1 in sludge. The developed method was applied to a septic tank (292 population equivalents) and the receiving river in the North-East of Scotland. Across all samples analysed, 43 of 68 ECs were detected in at least one matrix, demonstrating the method's sensitivity. The effluent concentrations suggest limited removal of ECs in septic tanks and a potential impact to river water quality for some ECs. However, further monitoring is required to better appreciate this. The developed methodology for a wide variety of ECs in a range of liquid and solid phases will allow, for the first time, a comprehensive assessment of ECs fate and removal in septic tanks, and their impact to surface water quality.
Collapse
Affiliation(s)
- Kai Wilschnack
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| | - Bess Homer
- Scottish Water, 55 Buckstone Terrace, Edinburgh EH10 6XH, UK
| | - Elise Cartmell
- Scottish Water, 55 Buckstone Terrace, Edinburgh EH10 6XH, UK
| | - Kyari Yates
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| | - Bruce Petrie
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| |
Collapse
|
21
|
Murgolo S, De Giglio O, De Ceglie C, Triggiano F, Apollonio F, Calia C, Pousis C, Marzella A, Fasano F, Giordano ME, Lionetto MG, Santoro D, Santoro O, Mancini S, Di Iaconi C, De Sanctis M, Montagna MT, Mascolo G. Multi-target assessment of advanced oxidation processes-based strategies for indirect potable reuse of tertiary wastewater: Fate of compounds of emerging concerns, microbial and ecotoxicological parameters. ENVIRONMENTAL RESEARCH 2024; 241:117661. [PMID: 37980992 DOI: 10.1016/j.envres.2023.117661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/29/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Two advanced oxidation processes (AOPs), namely ozone/H2O2 and UV/H2O2, were tested at pilot scale as zero-liquid-discharge alternative treatments for the removal of microbiological (bacteria and viruses), chemical (compounds of emerging concern (CECs)) and genotoxic responses from tertiary municipal wastewater for indirect potable reuse (IPR). The AOP treated effluents were further subjected to granular activated carbon (GAC) adsorption and UV disinfection, following the concept of multiple treatment barriers. As a reference, a consolidated advanced wastewater treatment train consisting of ultrafiltration, UV disinfection, and reverse osmosis (RO) was also employed. The results showed that, for the same electrical energy applied, the ozone/H2O2 treatment was more effective than the UV/H2O2 treatment in removing CECs. Specifically, the ozone/H2O2 treatment, intensified by high pressure and high mixing, achieved an average CECs removal efficiency higher than UV/H2O2 (66.8% with respect to 18.4%). The subsequent GAC adsorption step, applied downstream the AOPs, further improved the removal efficiency of the whole treatment trains, achieving rates of 98.5% and 96.8% for the ozone/H2O2 and UV/H2O2 treatments, respectively. In contrast, the ultrafiltration step of the reference treatment train only achieved a removal percentage of 22.5%, which increased to 99% when reverse osmosis was used as the final step. Microbiological investigations showed that all three wastewater treatment lines displayed good performance in the complete removal of regulated and optional parameters according to both national and the European Directive 2020/2184. Only P. aeruginosa resulted resistant to all treatments with a higher removal by UV/H2O2 when higher UV dose was applied. In addition, E. coli STEC/VTEC and enteric viruses, were found to be completely removed in all tested treatments and no genotoxic activity was detected even after a 1000-fold concentration. The obtained results suggest that the investigated treatments are suitable for groundwater recharge to be used as a potable water source being such a procedure an IPR. The intensified ozone/H2O2 or UV/H2O2 treatments can be conveniently incorporated into a multi-barrier zero-liquid-discharge scheme, thus avoiding the management issues associated with the retentate of the conventional scheme that uses reverse osmosis. By including the chemical cost associated with using 11-12 mg/L of H2O2 in the cost calculations, the overall operational cost (energy plus chemical) required to achieve 50% average CECs removal in tertiary effluent for an hypothetical full-scale plant of 250 m3/h (or 25,000 inhabitants) was 0.183 €/m3 and 0.425 €/m3 for ozone/H2O2 and UV/H2O2 treatment train, respectively.
Collapse
Affiliation(s)
- S Murgolo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy
| | - O De Giglio
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - C De Ceglie
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy
| | - F Triggiano
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - F Apollonio
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - C Calia
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - C Pousis
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - A Marzella
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - F Fasano
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - M E Giordano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100, Lecce, Italy
| | - M G Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100, Lecce, Italy; National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - D Santoro
- Department of Chemical and Biochemical Engineering, Western University, London, N6A 5B9, Ontario, Canada
| | - O Santoro
- AquaSoil S.r.l., Via del Calvario 35, 72015, Fasano, Brindisi, Italy
| | - S Mancini
- AquaSoil S.r.l., Via del Calvario 35, 72015, Fasano, Brindisi, Italy
| | - C Di Iaconi
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy
| | - M De Sanctis
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy
| | - M T Montagna
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - G Mascolo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy; Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca per La Protezione Idrogeologica (IRPI), Via Amendola 122 I, Bari, 70126, Italy.
| |
Collapse
|
22
|
Wu G, Wu T, Chen Y, He X, Liu P, Wang D, Geng J, Zhang XX. A comprehensive insight into the transformation pathways and products of fluoxetine and venlafaxine in wastewater based on molecular networking nontarget screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167727. [PMID: 37864996 DOI: 10.1016/j.scitotenv.2023.167727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
Fluoxetine (FLX) and venlafaxine (VEN) are widely used antidepressant pharmaceuticals and were frequently detected in wastewater. Despite incomplete mineralization during biological wastewater treatment processes has been revealed, little is known about their transformation products (TPs) formed in the biological systems. To fill this gap, batch reactors and molecular networking nontarget screening were employed to identify the TPs and explore the transformation pathways of FLX and VEN in wastewater. On the basis, the concentrations of the TPs in wastewater treatment plants (WWTPs) were determined and their toxicity was predicted. The removal rate constants per unit of biomass of FLX and VEN were up to 0.3192 and 0.1644 L/(gMLSS*d) in batch experiments, respectively. Subsequently, 11 TPs of VEN and 11 TPs of FLX were tentatively identified, among which 9 TPs of FLX and 5 TPs of VEN were newly reported in this study. The proposed transformation pathways provided new insights into the transformation reactions including dehydrogenation, N-formylation and hydroxylation for FLX, and formylation, epoxidation and methylation for VEN. Particularly, N-succinylation and demethylation were the dominant transformation pathways for FLX and VEN during transformation processes. The results of sampling campaigns revealed that the accumulated concentration of TPs were higher than the concentrations of VEN in effluent of WWTPs. In silico prediction results suggested that certain TPs have higher toxicity, persistence and biodegradability than their corresponding parent compounds of FLX and VEN. In addition, VEN-TP264(a) showed higher ecological risks than VEN. This study revealed the transformation processes and fate of FLX and VEN in wastewater, indicating that greater concerns should be exerted on the toxicity detection and control of the TPs of FLX and VEN in the treated wastewater.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Tianshu Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yiran Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China; School of Environment, Hohai University, Nanjing 211100, Jiangsu, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
23
|
Rivera-Vera C, Rodrigo-Rodrigo MA, Saez C, Thiam A, Salazar-González R. Electrogeneration of H 2O 2 through carbon-based ink on Al foam for electro-Fenton treatment of micropollutants in water. CHEMOSPHERE 2024; 348:140764. [PMID: 37992901 DOI: 10.1016/j.chemosphere.2023.140764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
In the present work, the catalytic efficiency of inks based on different carbon materials, namely activated carbon (AC), carbon graphite (CG), and carbon black (CB) was investigated for the oxygen reduction reaction (ORR). Additionally, we explored the feasibility of using this ink as a coating for an Aluminum foam (Alfoam) cathode in an electrochemical cell. The goal was to utilize this setup to produce hydrogen peroxide (H2O2) in the electro-Fenton (EF) process, targeting for treating water contaminated with contaminants of emerging concern (CECs). Among the materials investigated, all of them exhibited the ability to facilitate the ORR. However, AC proved to be the most suitable material due to its optimal balance between physical and electrocatalytic properties, thus enabling the formation of H2O2. When the different inks were applied to the surface of aluminum foam, it was observed that only the ink based on carbon black CB achieved a homogeneous distribution with the same ink quantity. As a result, it was observed that the Alfoam/CB electrode exhibited the highest H2O2 generation capacity, producing 45.6 mg L-1, followed by electro-generation of 5.1 mg L-1 using Alfoam/AC and 11 mg L-1 using Alfoam/CG. Furthermore, the application of Alfoam/CB in EF processes allowed for the almost complete degradation of 15 emerging contaminants of concern (CECs) present in secondary effluent. The innovative outcome of this study positions the developed technology as a promising and effective alternative for the treatment of water contaminated with CECs, demonstrating significant potential for industrial-scale application.
Collapse
Affiliation(s)
- Camilo Rivera-Vera
- Department of Chemical of Materials, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago, Chile; Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| | - Manuel A Rodrigo-Rodrigo
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Cristina Saez
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Abdoulaye Thiam
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago, Chile
| | - Ricardo Salazar-González
- Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
24
|
Schröder S, Ortiz I, San-Román MF. Electrochemical degradation of key drugs to treat COVID-19: Experimental analysis of the toxic by-products formation (PCDD/Fs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167660. [PMID: 37813253 DOI: 10.1016/j.scitotenv.2023.167660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Drug consumption has grown exponentially in recent decades, particularly during the COVID-19 pandemic, leading to their presence in various water sources. In this way, degradation technologies for pollutants, such as electrochemical oxidation (ELOX), have become crucial to safeguard the quality of natural resources. This study has as its starting point a previous research, which demonstrated the efficacy of ELOX in the removal of COVID-19 related-drugs, such as dexamethasone (DEX), paracetamol (PAR), amoxicillin (AMX), and sertraline (STR), using the electrolytes NaCl and Na2SO4. The present research aims to study the potential risks associated with the generation of toxic by-products, during the ELOX of cited drugs, specifically focusing on the highly chlorinated persistent organic pollutants (POPs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Dioxins and furans can be formed potentially in electrochemical systems from precursor molecules or non-precursor molecules in chloride medium. First, the degradation of the parent compounds was found to be complete. At this point, a comprehensive investigation was conducted to identify and analyse the by-products formed during the degradation process; precursors of PCDD/Fs, such as chlorophenols or hydroquinones were identified. Additionally, in continuation of the previous study, PCDD/Fs congeners were investigated, revealing elevated concentrations; the highest concentration obtained was for the congener 1,2,3,4,6,7,8-HpCDF (234.6 pg L-1 in NaCl) during degradation of the AMX. Finally, an assessment of the toxicity based on TEQ values was conducted, with DEX exhibiting the highest concentration among all compounds: 30.1 pg L-1 for NaCl medium. Therefore, the formation of minor by-products should not be underestimated, as they can significantly enhance the toxicity of the final sample, so the selection of the appropriate remediation technology, as well as the optimization of experimental operating variables, is determining in the treatment of pharmaceutical-contaminated waters.
Collapse
Affiliation(s)
- Sophie Schröder
- Departamento de Ingenierías Química y Biomolecular, ETSIIyT, Universidad de Cantabria, Avda. de los Castros, 39005 Santander, Spain
| | - Inmaculada Ortiz
- Departamento de Ingenierías Química y Biomolecular, ETSIIyT, Universidad de Cantabria, Avda. de los Castros, 39005 Santander, Spain
| | - Ma-Fresnedo San-Román
- Departamento de Ingenierías Química y Biomolecular, ETSIIyT, Universidad de Cantabria, Avda. de los Castros, 39005 Santander, Spain.
| |
Collapse
|
25
|
Leopold M, Krlovic N, Schagerl M, Schelker J, Kirschner AKT. Short-term impacts of a large cultural event on the microbial pollution status of a pre-alpine river. JOURNAL OF WATER AND HEALTH 2023; 21:1898-1907. [PMID: 38153719 PMCID: wh_2023_232 DOI: 10.2166/wh.2023.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Rivers are impacted by microbial faecal pollution from various sources. We report on a short-term faecal pollution event at the pre-alpine Austrian river Traisen caused by the large cultural event FM4 Frequency music festival, with around 200,000 visitors over 4 days. We observed a massive increase of the faecal indicator bacteria (FIB) intestinal enterococci during the event, while Escherichia coli concentrations were only slightly elevated. This increase poses a significant potential health threat to visitors and people recreating downstream of the festival area. A plausible explanation for the uncoupling of the two FIBs may have been a differential persistence caused by a combination of factors including water temperature, solar radiation, and the excessive presence of personal care products (PCPs) in the river water. However, a potential impact of PCPs on FIB assay performance cannot be ruled out. Our observations are relevant for other intensively used bathing sites; detailed investigations on persistence and assay performance of the FIB in response to different ingredients of PCPs are highly recommended. We conclude that for future festivals at this river or other festivals taking place under similar settings, a more effective management is necessary to reduce deterioration in water quality and minimise health risks.
Collapse
Affiliation(s)
- Melanie Leopold
- Karl Landsteiner University of Health Sciences, Division Water Quality and Health, Krems, Austria; Inter-University Cooperation Centre Water & Health, www.waterandhealth.at, Austria; Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Vienna, Austria; The authors have equally contributed to the manuscript. E-mail:
| | - Nikola Krlovic
- Technische Universität Wien, Institute for Water Quality and Resource Management, Wien, Austria; The authors have equally contributed to the manuscript
| | - Michael Schagerl
- University of Vienna, Department of Functional and Evolutionary Ecology, Vienna, Austria
| | - Jakob Schelker
- WasserCluster Lunz - Biologische Station GmbH, Lunz am See, Austria; Biotop P&P International GmbH, Weidling, Austria
| | - Alexander K T Kirschner
- Karl Landsteiner University of Health Sciences, Division Water Quality and Health, Krems, Austria; Inter-University Cooperation Centre Water & Health, www.waterandhealth.at, Austria; Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Microbiology, Vienna, Austria
| |
Collapse
|
26
|
Yalin D, Craddock HA, Assouline S, Ben Mordechay E, Ben-Gal A, Bernstein N, Chaudhry RM, Chefetz B, Fatta-Kassinos D, Gawlik BM, Hamilton KA, Khalifa L, Kisekka I, Klapp I, Korach-Rechtman H, Kurtzman D, Levy GJ, Maffettone R, Malato S, Manaia CM, Manoli K, Moshe OF, Rimelman A, Rizzo L, Sedlak DL, Shnit-Orland M, Shtull-Trauring E, Tarchitzky J, Welch-White V, Williams C, McLain J, Cytryn E. Mitigating risks and maximizing sustainability of treated wastewater reuse for irrigation. WATER RESEARCH X 2023; 21:100203. [PMID: 38098886 PMCID: PMC10719582 DOI: 10.1016/j.wroa.2023.100203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 12/17/2023]
Abstract
Scarcity of freshwater for agriculture has led to increased utilization of treated wastewater (TWW), establishing it as a significant and reliable source of irrigation water. However, years of research indicate that if not managed adequately, TWW may deleteriously affect soil functioning and plant productivity, and pose a hazard to human and environmental health. This review leverages the experience of researchers, stakeholders, and policymakers from Israel, the United-States, and Europe to present a holistic, multidisciplinary perspective on maximizing the benefits from municipal TWW use for irrigation. We specifically draw on the extensive knowledge gained in Israel, a world leader in agricultural TWW implementation. The first two sections of the work set the foundation for understanding current challenges involved with the use of TWW, detailing known and emerging agronomic and environmental issues (such as salinity and phytotoxicity) and public health risks (such as contaminants of emerging concern and pathogens). The work then presents solutions to address these challenges, including technological and agronomic management-based solutions as well as source control policies. The concluding section presents suggestions for the path forward, emphasizing the importance of improving links between research and policy, and better outreach to the public and agricultural practitioners. We use this platform as a call for action, to form a global harmonized data system that will centralize scientific findings on agronomic, environmental and public health effects of TWW irrigation. Insights from such global collaboration will help to mitigate risks, and facilitate more sustainable use of TWW for food production in the future.
Collapse
Affiliation(s)
- David Yalin
- A Department of Earth and Planetary Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hillary A. Craddock
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Shmuel Assouline
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Evyatar Ben Mordechay
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Ben-Gal
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization (ARO) – The Volcani Institute, Gilat Reseach Center, Israel
| | - Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | | | - Benny Chefetz
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering, NIREAS-International Water Research Center, University of Cyprus, Nicosia, Cyprus
| | - Bernd M. Gawlik
- Ocean and Water Unit, Joint Research Centre, European Commission, Ispra, Italy
| | - Kerry A. Hamilton
- The School of Sustainable Engineering and the Built Environment and The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Leron Khalifa
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Isaya Kisekka
- Department of Land Air and Water Resources, University of California, Davis, California, USA
| | - Iftach Klapp
- Institute of Agricultural engineering, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | | | - Daniel Kurtzman
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Guy J. Levy
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Roberta Maffettone
- Ocean and Water Unit, Joint Research Centre, European Commission, Ispra, Italy
| | - Sixto Malato
- CIEMAT-Plataforma Solar de Almería, Ctra. Sen´es km 4, 04200 Tabernas, Almería, Spain
| | - Célia M. Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Kyriakos Manoli
- NIREAS-International Water Research Center, University of Cyprus, Nicosia, Cyprus
| | - Orah F. Moshe
- Department of Soil Conservation, Soil Erosion Research Center, Ministry of Agriculture, Rishon LeZion, Israel
| | - Andrew Rimelman
- PG Environmental. 1113 Washington Avenue, Suite 200. Golden, CO 80401, USA
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - David L. Sedlak
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Maya Shnit-Orland
- Extension Service, Ministry of Agriculture and Rural Development, Israel
| | - Eliav Shtull-Trauring
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Jorge Tarchitzky
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Clinton Williams
- US Arid-Land Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Maricopa, AZ, USA
| | - Jean McLain
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
27
|
Gualda-Alonso E, Pichel N, Soriano-Molina P, Olivares-Ligero E, Cadena-Aponte FX, Agüera A, Sánchez Pérez JA, Casas López JL. Continuous solar photo-Fenton for wastewater reclamation in operational environment at demonstration scale. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132101. [PMID: 37487332 DOI: 10.1016/j.jhazmat.2023.132101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
For the first time, a continuous flow solar photo-Fenton demonstration plant has been assessed for wastewater reclamation according to the EU 2020/741 regulation. The treated water qualities achieved under two operating strategies (acidic and neutral pH) in a 100-m2 raceway pond reactor were explored in terms of liquid depth, iron source, reagent concentrations, and hydraulic residence time over three consecutive days of operation. The results obtained at acidic pH showed removal percentages of contaminants of emerging concern (CECs) > 75% and water quality classes B, C and D according to EU regulation at both assessed operating conditions, with treatment capacities up to 1.92 m3 m-2 d-1. At neutral pH with ferric nitrilotriacetate (Fe3+-NTA), 50% of CEC removal and only water quality class D were achieved with the most oxidizing condition assessed, giving a treatment capacity of 0.80 m3 m-2 d-1. The treatment capacities obtained in this work, which have never been achieved with solar water treatments, demonstrate the potential of this technology for commercial-scale application.
Collapse
Affiliation(s)
- E Gualda-Alonso
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - N Pichel
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - P Soriano-Molina
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - E Olivares-Ligero
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - F X Cadena-Aponte
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Department of Chemistry and Physics, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - A Agüera
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Department of Chemistry and Physics, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - J A Sánchez Pérez
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - J L Casas López
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120 Almería, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain.
| |
Collapse
|
28
|
Egli M, Rapp-Wright H, Oloyede O, Francis W, Preston-Allen R, Friedman S, Woodward G, Piel FB, Barron LP. A One-Health environmental risk assessment of contaminants of emerging concern in London's waterways throughout the SARS-CoV-2 pandemic. ENVIRONMENT INTERNATIONAL 2023; 180:108210. [PMID: 37778289 DOI: 10.1016/j.envint.2023.108210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
The SARS-CoV-2 pandemic had huge impacts on global urban populations, activity and health, yet little is known about attendant consequences for urban river ecosystems. We detected significant changes in occurrence and risks from contaminants of emerging concern (CECs) in waterways across Greater London (UK) during the pandemic. We were able to rapidly identify and monitor large numbers of CECs in n = 390 samples across 2019-2021 using novel direct-injection liquid chromatography-mass spectrometry methods for scalable targeted analysis, suspect screening and prioritisation of CEC risks. A total of 10,029 measured environmental concentrations (MECs) were obtained for 66 unique CECs. Pharmaceutical MECs decreased during lockdown in 2020 in the R. Thames (p ≤ 0.001), but then increased significantly in 2021 (p ≤ 0.01). For the tributary rivers, the R. Lee, Beverley Brook, R. Wandle and R. Hogsmill were the most impacted, primarily via wastewater treatment plant effluent and combined sewer overflows. In the R. Hogsmill in particular, pharmaceutical MEC trends were generally correlated with NHS prescription statistics, likely reflecting limited wastewater dilution. Suspect screening of ∼ 1,200 compounds tentatively identified 25 additional CECs at the five most impacted sites, including metabolites such as O-desmethylvenlafaxine, an EU Watch List compound. Lastly, risk quotients (RQs) ≥ 0.1 were calculated for 21 compounds across the whole Greater London freshwater catchment, of which seven were of medium risk (RQ ≥ 1.0) and three were in the high-risk category (RQ ≥ 10), including imidacloprid (RQ = 19.6), azithromycin (15.7) and diclofenac (10.5). This is the largest spatiotemporal dataset of its kind for any major capital city globally and the first for Greater London, representing ∼ 16 % of the population of England, and delivering a foundational One-Health case study in the third largest city in Europe across a global pandemic.
Collapse
Affiliation(s)
- Melanie Egli
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, Sir Michael Uren Hub, 86 Wood Lane, London W12 0BZ, UK; MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Helena Rapp-Wright
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, Sir Michael Uren Hub, 86 Wood Lane, London W12 0BZ, UK; MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Olukemi Oloyede
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, Sir Michael Uren Hub, 86 Wood Lane, London W12 0BZ, UK; MRC Centre for Environment and Health, Imperial College London, London, UK
| | - William Francis
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, Sir Michael Uren Hub, 86 Wood Lane, London W12 0BZ, UK; UK Small Area Health Statistics Unit (SAHSU), Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Rhys Preston-Allen
- Georgina Mace Centre for the Living Planet, Dept. Life Sciences, Imperial College London, Silwood Park, Brackhurst Road SL5 7PY, UK
| | - Stav Friedman
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, Sir Michael Uren Hub, 86 Wood Lane, London W12 0BZ, UK; MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Dept. Life Sciences, Imperial College London, Silwood Park, Brackhurst Road SL5 7PY, UK
| | - Frédéric B Piel
- UK Small Area Health Statistics Unit (SAHSU), Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, UK; MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Leon P Barron
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, Sir Michael Uren Hub, 86 Wood Lane, London W12 0BZ, UK; Dept. Analytical & Environmental Sciences, King's College London, 150 Stamford St., London SE1 9NH, UK; MRC Centre for Environment and Health, Imperial College London, London, UK.
| |
Collapse
|
29
|
Rapp-Wright H, Rodríguez-Mozaz S, Álvarez-Muñoz D, Barceló D, Regan F, Barron LP, White B. International Comparison, Risk Assessment, and Prioritisation of 26 Endocrine Disrupting Compounds in Three European River Catchments in the UK, Ireland, and Spain. Molecules 2023; 28:5994. [PMID: 37630246 PMCID: PMC10458904 DOI: 10.3390/molecules28165994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Endocrine-disrupting compounds (EDCs) constitute a wide variety of chemistries with diverse properties that may/can pose risks to both humans and the environment. Herein, a total of 26 compounds, including steroids, flame retardants, and plasticizers, were monitored in three major and heavily urbanized river catchments: the R. Liffey (Ireland), the R. Thames (UK), and the R. Ter (Spain), by using a single solid-phase extraction liquid chromatography-mass spectrometry (SPE-LC-MS/MS) method. Occurrence and frequency rates were investigated across all locations over a 10-week period, with the highest concentration obtained for the flame retardant tris(2-chloroethyl) phosphate (TCEP) at 4767 ng∙L-1 in the R. Thames in Central London. Geographical variations were observed between sites and were partially explained using principal component analysis (PCA) and hierarchical cluster analysis (HCA). In particular, discrimination between the R. Ter and the R. Thames was observed based on the presence and concentration of flame retardants, benzotriazole, and steroids. Environmental risk assessment (ERA) across sites showed that caffeine, a chemical marker, and bisphenol A (BPA), a plasticizer, were classified as high-risk for the R. Liffey and R. Thames, based on relative risk quotients (rRQs), and that caffeine was classified as high-risk for the R. Ter, based on RQs. The total risks at each location, namely ΣRQriver, and ΣrRQriver, were: 361, 455, and 723 for the rivers Liffey, Thames, and Ter, respectively. Caffeine, as expected, was ubiquitous in all 3 urban areas, though with the highest RQ observed in the R. Ter. High contributions of BPA were also observed across the three matrices. Therefore, these two compounds should be prioritized independently of location. This study represents a comprehensive EDC monitoring comparison between different European cities based on a single analytical method, which allowed for a geographically independent ERA prioritization to be performed.
Collapse
Affiliation(s)
- Helena Rapp-Wright
- DCU Water Institute, Water Hub SG57, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland; (F.R.); (B.W.)
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, Wood Lane, London W12 0BZ, UK
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003 Girona, Spain; (S.R.-M.); (D.Á.-M.); (D.B.)
- University of Girona (UdG), 17004 Girona, Spain
| | - Diana Álvarez-Muñoz
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003 Girona, Spain; (S.R.-M.); (D.Á.-M.); (D.B.)
- University of Girona (UdG), 17004 Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003 Girona, Spain; (S.R.-M.); (D.Á.-M.); (D.B.)
- University of Girona (UdG), 17004 Girona, Spain
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Fiona Regan
- DCU Water Institute, Water Hub SG57, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland; (F.R.); (B.W.)
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Leon P. Barron
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, Wood Lane, London W12 0BZ, UK
| | - Blánaid White
- DCU Water Institute, Water Hub SG57, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland; (F.R.); (B.W.)
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| |
Collapse
|
30
|
Carbon nitride – PVDF photocatalytic membranes for visible-light degradation of venlafaxine as emerging water micropollutant. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|