1
|
Lee YS, Lee JJ, Lee S, Kang J, Kim KT, Kim C. A cost-effective and efficient fluorescence staining agent for the identification of microplastics in environmental samples and zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138365. [PMID: 40267718 DOI: 10.1016/j.jhazmat.2025.138365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Microplastics (MPs) are recognized as a significant environmental hazardous material. Therefore, identifying and tracking microplastics are crucial to understand their harmfulness. Herein, we introduce (Z)-N'-(pyren-1-ylmethylene)pyrazine-2-carbohydrazide (PPC) as a cost-effective and efficient fluorescence staining agent. Unique properties of PPC, including aggregation-induced emission (AIE) and solvatochromism, were verified by spectroscopic studies and theoretical calculations. PPC selectively stained eight types of MPs with green fluorescence in water/tetrahydrofuran (THF) solution (97/3, v/v). Interestingly, only polyurethane (PU) was selectively stained both in green and blue channel using 50 % ethanol (EtOH) treatment. Moreover, with 30 % EtOH treatment, PU and polyethylene terephthalate (PET) were distinctly stained in the blue channel, highlighting their selective fluorescence. These results suggested that changes in solvent polarity induced by different EtOH amounts might alter the binding strength between PPC and MPs, resulting in varying fluorescence responses. In addition, the adsorption interaction of PPC to MPs was proposed, based on thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and non-covalent interaction (NCI) analysis. PPC could identify MPs without any influence in the size, aging and pH difference. Successfully, PPC could stain eight types of MPs and selectively PU and PET in artificial environmental samples like seawater, river water and soil. Moreover, PPC-labeled MPs could be tracked in biological system such as Danio rerio (zebrafish) to monitor the transit and accumulation of MPs. These results underscore the potential of PPC for efficient detection of MPs in environmental and biological systems.
Collapse
Affiliation(s)
- Yun-Seo Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Jae Jun Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Sooseong Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Jiyun Kang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea.
| |
Collapse
|
2
|
Yang L, Yang W, Li Q, Zhao Z, Zhou H, Wu P. Microplastics in Agricultural Soils: Sources, Fate, and Interactions with Other Contaminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12548-12562. [PMID: 40377166 DOI: 10.1021/acs.jafc.5c03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Microplastics (MPs) are recognized as emerging soil contaminants. However, the potential risks of MPs to agroecosystems have not been fully revealed, especially the compound toxic effects of MPs with co-existing organic or inorganic pollutants (OPs/IPs) in agricultural fields. In this study, we quantified the contributions of different agronomic practices to the sources of MPs in soil and highlighted the important influences of long-term tillage and fertilization on the migration and aging of MPs in agricultural fields. In addition, the antagonistic and synergistic interactions between MPs and OPs/IPs in soil were explored. We emphasized that the degree of adsorption of MPs and soil particles to OPs/IPs is a key determinant of the co-toxicity of those contaminants in soil. Finally, several directions for future research are proposed, and these knowledge gaps provide an important basis for understanding the contamination process of MPs in agricultural soils.
Collapse
Affiliation(s)
- Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Qihang Li
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Zhang D, Chen Q, Xu T, Yin D. Current research status on the distribution and transport of micro(nano)plastics in hyporheic zones and groundwater. J Environ Sci (China) 2025; 151:387-409. [PMID: 39481947 DOI: 10.1016/j.jes.2024.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 11/03/2024]
Abstract
Micro(nano)plastics, as an emerging environmental pollutant, are gradually discovered in hyporheic zones and groundwater worldwide. Recent studies have focused on the origin and spatial/temporal distribution of micro(nano)plastics in regional groundwater, together with the influence of their properties and effects of environmental factors on their transport. However, the transport of micro(nano)plastics in the whole hyporheic zone-groundwater system and the behavior of co-existing substances still lack a complete theoretical interpretation. To provide systematic theoretical support for that, this review summarizes the current pollution status of micro(nano)plastics in the hyporheic zone-groundwater system, provides a comprehensive introduction of their sources and fate, and classifies the transport mechanisms into mechanical transport, physicochemical transport and biological processes assisted transport from the perspectives of mechanical stress, physicochemical reactions, and bioturbation, respectively. Ultimately, this review proposes to advance the understanding of the multi-dimensional hydrosphere transport of micro(nano)plastics centered on groundwater, the microorganisms-mediated synergistic transformation and co-transport involving the intertidal circulation. Overall, this review systematically dissects the presence and transport cycles of micro(nano)plastics within the hyporheic zone-groundwater system and proposes prospects for future studies based on the limitations of current studies.
Collapse
Affiliation(s)
- Dongming Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Song C, Lee JJ, Lee S, Jin H, Kang J, Kim KT, Kim C. An AIE-based fluorescent dye for selective staining of polyamide microplastics without pretreatment: Applications to environmental samples and zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136680. [PMID: 39612879 DOI: 10.1016/j.jhazmat.2024.136680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
A novel staining dye, BEM ((1E,1'E)-1,1'-([2,2'-bithiophene]-5,5'-diyl)bis(N-(9-ethyl-9H-carbazol-3-yl)methanimine)) was synthesized for selective identification of polyamide (PA) micrplastics. BEM showed unique photophysical properties such as solvatochromism, intramolecular charge transfer (ICT), and aggregation induced emission (AIE) which were demonstrated through spectroscopic analysis and density functional theory (DFT) calculations. The optimal staining conditions for selective staining of PA by BEM were established by evaluating the staining efficiency according to the variation of the solvent compositions, concentrations of BEM, and staining durations. BEM demonstrated outstanding selective staining of PA among 11 types of microplastics (MPs) and 5 types of non-plastics through the emission of green fluorescence. BEM successfully identified PA without any noticeable influence on the size change of PA, aging of PA, and pH alteration of the solvent. In addition, BEM was practically applied to environmental samples like river water, seawater, and soil for selective identification of PA without pretreatment. In particular, the cost-effective technique of BEM-labeled PA allowed to monitor the location and accumulation of PA in living zebrafish. The interaction between PA and BEM was investigated through scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), which suggested that BEM might be adsorbed onto the surface of PA. Moreover, non-covalent interaction (NCI) analysis demonstrated that the intermolecular hydrogen bonds and van der Waals interactions would play a significant role in the adsorption process between PA and BEM.
Collapse
Affiliation(s)
- Chanwoo Song
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul 01088, South Korea
| | - Jae Jun Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul 01088, South Korea
| | - Sooseong Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul 01088, South Korea
| | - Hohyun Jin
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea
| | - Jiyun Kang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul 01088, South Korea.
| |
Collapse
|
5
|
Luo H, Chang L, Ju T, Li Y. Factors Influencing the Vertical Migration of Microplastics up and down the Soil Profile. ACS OMEGA 2024; 9:50064-50077. [PMID: 39741809 PMCID: PMC11683605 DOI: 10.1021/acsomega.4c04083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Soil ecosystems are under serious threat from microplastics (MPs), and this is causing worldwide concern. The relationship between soil and MPs has become a popular research topic, and the vertical migration of soil MPs is of increasing interest. This Review summarizes the current status of research into the factors affecting the vertical migration of soil MPs. Published research shows that the characteristics of MPs and the physicochemical properties of the soil affect the infiltration process. Soil organisms play a key role in the vertical migration by acting as vectors or as a result of adsorption. Dissolved organic matter and metal oxides transfer MPs by adsorption-desorption. In addition, rainfall and dry-wet cycles alter the mobility of soil MPs, leading to changes in migration processes. Agricultural activities such as tillage and irrigation may distribute MPs throughout the topsoil. Vertical migration of soil MPs is a process influenced by a combination of factors, and the role of these factors in MP deposition needs to be explored further.
Collapse
Affiliation(s)
- Han Luo
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| | - Lei Chang
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| | - Tianhang Ju
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| | - Yuefen Li
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| |
Collapse
|
6
|
Xu J, Zuo R, Wu G, Liu J, Liu J, Huang C, Wang Z. Global distribution, drivers, and potential hazards of microplastics in groundwater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176194. [PMID: 39270874 DOI: 10.1016/j.scitotenv.2024.176194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Since microplastics (MPs) were first detected in groundwater, an increasing number of studies have focused on groundwater pollution by MPs. However, knowledge of the global properties of groundwater MPs: distribution, concentration, composition, and morphology remains limited, while potential factors regulating their transport and distribution in groundwater, especially the hydrogeological background and climate warming conditions, have been omitted from most analyses. Furthermore, previous field investigations did not assess the risks posed by groundwater MPs to the environment and to human health, a necessary preliminary to remediation. In this work, to promote future MP pollution studies and remediation policies, we assimilated and synthesized the current knowledge on this topic. We reviewed current data on global groundwater pollution by MPs, analyzed the driving factors of their transport and distribution, and summarized the ecological and health hazards posed by MPs, before discussing current knowledge limits and suggesting perspectives for future work.
Collapse
Affiliation(s)
- Jun Xu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Rui Zuo
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Guanlan Wu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Jingchao Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Jiawei Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Chenxi Huang
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Zhiwen Wang
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| |
Collapse
|
7
|
Horta MJ, Seetha N. Experimental and mathematical investigation of cotransport of clay and microplastics in saturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176739. [PMID: 39378934 DOI: 10.1016/j.scitotenv.2024.176739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Microplastics in the subsurface cause groundwater contamination, thereby posing potential risks to human health and the ecosystem. Clay particles are ubiquitous in the subsurface and can interact and alter the transport behavior of microplastics. Hence, it is essential to understand the effect of clays on the transport behavior of microplastics to estimate the groundwater contamination potential. This study investigated the individual transport and cotransport of clay and microplastics under different pore-water velocities and sand types in saturated porous media through column experiments and mathematical modeling. Copresence of suspended microplastics retarded the transport of clay due to the preferential attachment of clay over microplastics on grain surfaces and the formation of clay-microplastic heteroaggregates which have a greater retention in sand than free clay and free microplastics. However, in contrast, cotransport with clay enhanced the transport of microplastics due to the lower affinity of microplastics than clay for deposition on grain surfaces and the lesser mass fraction of microplastics than clay in the heteroaggregates. The cotransport of clay and microplastics was successfully simulated using a two-way coupled model, which accounted for the retention of free clay and free microplastics in the sand, kinetics of clay-microplastics heteroaggregation, and heteroaggregate retention in the sand. The rates of heteroaggregation and heteroaggregate retention in sand decreased with increasing velocity and grain size, resulting in increased transport of clay and microplastics.
Collapse
Affiliation(s)
- Mahima John Horta
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - N Seetha
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India.
| |
Collapse
|
8
|
Qiao X, Qian S, Dong S, Zhu DZ, Feng J, Xu H, Zhang P. Real-Time Visualization of Infiltration and Retention of Microplastics with Different Shapes in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21037-21045. [PMID: 39404448 DOI: 10.1021/acs.est.4c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Infiltration and retention of microplastics in porous media are important for understanding their fate in environments and formulating treatment measures. Given porous media opacity, knowledge is usually obtained indirectly by monitoring microplastic concentration in the effluent and measuring microplastic distribution after removing grains in layers. In this study, real-time visualization of infiltration and retention of microplastics in porous media under vertical water flow is performed using an improved reflective index matching method, considering the different shapes and densities of microplastics and size ratios between microplastics and grains. The spherical microplastics have the largest infiltration depths, with trajectories closest to vertical and accompanied by long acceleration durations and low deceleration frequencies. The cylindrical microplastics deviate from vertical and have stronger transverse oscillations and more frequent decelerations, while the flaky microplastics have the most significant transverse displacements. The infiltration depth can be improved by reducing the size ratio between microplastics and grains and increasing the vertical flow rate, while the density of microplastics has a relatively limited effect. Sliding and rotating of microplastics after collision with grains are observed, responsible for deceleration and transverse displacements. Different retention patterns are found, with the number of types being inversely proportional to the number of principal dimensions of the shape.
Collapse
Affiliation(s)
- Xuyang Qiao
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
| | - Shangtuo Qian
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
- College of Hydraulic and Civil Engineering, XiZang Agriculture and Animal Husbandry College, Linzhi 860000, China
| | - Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - David Z Zhu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
- School of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Jiangang Feng
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - Hui Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - Pei Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| |
Collapse
|
9
|
Dong S, Su X, Sheng L, Yu Q, Yu Y, Sun Y, Wu J, Gao B. Pore-Scale Visualized Transport and Retention of Fibrous and Fragmental Microplastics in Porous Media under Various Surfactant Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21058-21067. [PMID: 39527491 DOI: 10.1021/acs.est.4c10405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
For advancing current knowledge on the transport of microplastics (MPs) in the environment, this study used a real-time pore-scale visualization and quantitative system to examine the motions and mobility of fibrous and fragmental MPs under various surfactant (AEO, CTAC, and AES) and electrolyte conditions. The videos showed that fibrous MPs formed tangles through entanglement, which moved in an axial direction aligned with the flow streamline. Both fibrous and fragmental MPs showed suspended movement as well as surface movement (e.g., sliding, rolling, and saltating) in the porous media. Some deposited fibrous MPs showed flexible deformation due to shear flow. Compared to fragmental MPs, fibrous MPs showed lower mobility due to the tendency to deposit and clog the porous media. The mobility of fragmental MPs was enhanced in the presence of AEO but remained relatively unchanged with AES. In the presence of CTAC, the mobility of fragmental MPs was slightly inhibited under low ionic strength (IS) conditions but remarkably enhanced under high IS conditions. However, the mobility of fibrous MPs was largely unaffected by the surfactants. Both the numerical model and FDLVO calculations effectively described the transport and deposition of MPs in porous media.
Collapse
Affiliation(s)
- Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Xiaoting Su
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Liting Sheng
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Qianhui Yu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Yulu Yu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yuanyuan Sun
- School Earth Science & Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- School Earth Science & Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 United States
| |
Collapse
|
10
|
Chanda M, Bathi JR, Khan E, Katyal D, Danquah M. Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122492. [PMID: 39307085 DOI: 10.1016/j.jenvman.2024.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 11/17/2024]
Abstract
Microplastics (MPs), particles under 5 mm, pervade water, soil, sediment, and air due to increased plastic production and improper disposal, posing global environmental and health risks. Examining their distribution, quantities, fate, and transport is crucial for effective management. Several studies have explored MPs' sources, distribution, transport, and biological impacts, primarily focusing on the marine environment. However, there is a need for a comprehensive review of all environmental systems together for enhanced pollution control. This review critically examines the occurrence, distribution, fate, and transport of MPs in the following environments: freshwater, marine, and terrestrial ecosystems. The concentration of MPs is highly variable in the environment, ranging from negligible to significant amounts (0.003-519.223 items/liter in water and 0-18,000 items/kg dry weight sediment, respectively). Predominantly, these MPs manifest as fibers and fragments, with primary polymer types including polypropylene, polystyrene, polyethylene, and polyethylene terephthalate. A complex interplay of natural and anthropogenic actions, including wastewater treatment plant discharges, precipitation, stormwater runoff, inadequate plastic waste management, and biosolid applications, influences MPs' presence and distribution. Our critical synthesis of existing literature underscores the significance of factors such as wind, water flow rates, settling velocities, wave characteristics, plastic morphology, density, and size in determining MPs' transport dynamics in surface and subsurface waters. Furthermore, this review identifies research gaps, both in experimental and simulation, and outlines pivotal avenues for future exploration in the realm of MPs.
Collapse
Affiliation(s)
- Mithu Chanda
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States
| | - Jejal Reddy Bathi
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, United States
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Michael Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
11
|
Wu Y, Wu M, Cheng Z, Hao Y, Mo C, Li Q, Wu J, Wu J, Hu BX, Lu G. Impact of diatomit on the transport behavior of unmodified and carboxyl-modified nanoplastics in saturated porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124758. [PMID: 39154881 DOI: 10.1016/j.envpol.2024.124758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Due to the extensive use of plastic products and unreasonable disposal, nanoplastics contamination has become one of the important environmental problems that mankind must face. The composition and structure of porous media can determine the complexity and diversity of the transport behavior of nanoplastics. In this study, the influence of diatomite (DIA) on the nanoplastics transport in porous media is investigated by column experiments combined with XDLVO interaction energy and transport model. Results suggest that the recovery rates of unmodified polystyrene nanoparticles (PSNPs) and carboxyl-modified polystyrene nanoparticles (PSNPs-COOH) in the porous media containing DIA decreases compared with that in the pure quartz sand (QS), and the BTCs showed a "blocking" pattern. The presence of DIA inhibits the transport of both PSNPs and PSNPs-COOH, but the inhibition is not significant. This may be because the presence of DIA provides more favorable deposition sites for PSNPs and PSNPs-COOH to some extent. However, since DIA itself carries a certain negative charge, this can only play a role in compressing the double electric layer for PSNPs and PSNPs-COOH with the same negative charge, and cannot destabilize them. The migration capacity of PSNPs and PSNPs-COOH is strongest in the DIA-QS porous media at pH = 7, and is weak at pH = 9 and pH = 5. The inhibition of migration at pH = 9 can be attributed to the dissolution of the DIA surface under alkaline conditions and the formation of pore and defect structures, which provide more deposition sites for PSNPs and PSNPs-COOH. The presence of humic acid (HA) leads to an increase in the mobility of PSNPs and PSNPs-COOH, and the mobility is enhanced with HA concentration. The mobility of PSNPs and PSNPs-COOH in DIA-QS decreases with ionic valence and ionic strength, and PSNPs-COOH is more significantly inhibited compared to PSNPs.
Collapse
Affiliation(s)
- Yuheng Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Zhou Cheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qusheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Bill X Hu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Guoping Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
12
|
Zhou D, Cai Y, Yang Z. Transport of polystyrene microplastics in bare and iron oxide-coated quartz sand: Effects of ionic strength, humic acid, and co-existing graphene oxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174270. [PMID: 38925391 DOI: 10.1016/j.scitotenv.2024.174270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
This research explored the effects of widely utilized nanomaterial graphene oxide (GO) and organic matter humic acid (HA) on the transport of microplastics under different ionic solution strengths in bare sand and iron oxide-coated sand. The results found transport of polystyrene microplastics (PS) did not respond to the presence of HA in sand that contains large amounts of iron oxide. Compared to bare quartz sand, ionic strength had little effect: <20 % of PS passed through Fe sand columns. There was a significant promotion of PS transport in the presence of GO, however, which can be attributed to the increased surface electronegativity of PS and steric hindrance. Moreover, GO combined with HA significantly promoted the transport of PS in the Fe sand, and transport further increased when the concentration of HA increased from 5 to 10 mg/L. Interestingly, the degree of this increase exactly corresponded to the change in the surface charge of the microplastics, demonstrating that electrostatic interaction dominated the PS transport. Further results indicated that co-existing pollutants had significant impacts on the transport of microplastics under various conditions by altering the surface characteristics of the plastic particles and the spatial steric hindrance within porous media. This research will offer insights into predicting the transport and fate of microplastics in complex environments.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
13
|
Gao S, Zhang S, Feng Z, Lu J, Fu G, Yu W. The ecological risk and fate of microplastics in the environmental matrices of marine ranching area in coastal water. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134570. [PMID: 38772105 DOI: 10.1016/j.jhazmat.2024.134570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The debate surrounding "source" and "sink" of microplastics (MPs) in coastal water has persisted for decades. While the transportation of MPs is influenced by surface runoff and currents, the precise transport patterns remain inadequately defined. In this study, the typical coastal habitat - marine ranching in Haizhou Bay (Jiangsu Province, China) were selected as a case study to assess the ecological risk of MPs. An enhanced framework was employed to assess the entire community characteristics of MPs in various environmental compartments, including surface water (SW), middle water (MW), bottom water (BW), sea bottom sediment (SS), and intertidal sediment (IS). The results of the assessment showed a low risk in the water column and a high risk in the sediment. PERMANOVA based on size and polymer of MPs revealed significant differences between IS and other compartments (SW, MW, BW, and SS) (P < 0.001). The co-occurrence network analysis for MP size indicated that most sites occupied central positions, while the analysis for MP polymer suggested that sites near the marine ranching area held more central positions, with sites in MW, BW, and SS being somewhat related to IS. Generalized additive model (GAM) demonstrated that MP concentration in the water correlated with Chla and nutrients, whereas MPs in sediment exhibited greater susceptibility to dissolved oxygen (DO) and salinity. We believe that except for the natural sedimentation and re-suspension of MPs in the vertical direction, MPs in bottom water may migrate to the surface water due to upwelling mediated by artificial reefs. Additionally, under the combined influence of surface runoff, currents, and tides, MPs may migrate horizontally, primarily occurring between middle and bottom water and sediments. The study recommends limiting and reducing wastewater and sewage discharge, as well as regulating fishing and aquaculture activities to control the sources and sinks of MPs in coastal water. Moreover, it advocates the implementation and strengthening of marine monitoring activities to gain a better understanding of the factors driving MP pollution in marine ranching area.
Collapse
Affiliation(s)
- Shike Gao
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Shuo Zhang
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China.
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jikun Lu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China
| | - Guanghui Fu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China
| | - Wenwen Yu
- Jiangsu Research Institute of Marine Fisheries, Nantong 226007, China
| |
Collapse
|
14
|
Heinze WM, Steinmetz Z, Klemmensen NDR, Vollertsen J, Cornelis G. Vertical distribution of microplastics in an agricultural soil after long-term treatment with sewage sludge and mineral fertiliser. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124343. [PMID: 38852659 DOI: 10.1016/j.envpol.2024.124343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Sewage sludge applications release contaminants to agricultural soils, such as potentially toxic metals and microplastics (MPs). However, factors determining the subsequent mobility of MPs in long-term field conditions are poorly understood. This study aimed to understand the vertical distribution of MPs in soils amended with sewage sludge in comparison to conventional mineral fertiliser for 24 years. The depth-dependent MP mass and number concentrations, plastic types, sizes and shapes were compared with the distribution of organic carbon and metals to provide insights into potentially transport-limiting factors. Polyethylene, polypropylene and polystyrene mass concentrations were screened down to 90 cm depth via pyrolysis-gas chromatography/mass spectrometry. MP number concentrations, additional plastic types, sizes, and shapes were analysed down to 40 cm depth using micro-Fourier transform-infrared imaging. Across all depths, MP numbers were twice and mass concentrations 8 times higher when sewage sludge was applied, with a higher share of textile-related plastics, more fibres and on average larger particles than in soil receiving mineral fertiliser. Transport of MPs beyond the plough layer (0-20 cm) is often assumed negligible, but substantial MP numbers (42 %) and mass (52 %) were detected down to 70 cm in sewage sludge-amended soils. The initial mobilization of MPs was shape- and size-dependent, because the fractions of fragmental-shaped and relatively small MPs increased directly below the plough layer, but not at greater depths. The sharp decline of total MP concentrations between 20 and 40 cm depth resembled that of metals and organic matter suggesting similar transport limitations. We hypothesize that the effect of soil management, such as ploughing, on soil compactness and subsequent transport by bioturbation and via macropores drives vertical MP distribution over long time scales. Risk assessment in soils should therefore account for considerable MP displacement to avoid underestimating soil exposure.
Collapse
Affiliation(s)
- Wiebke Mareile Heinze
- Swedish University of Agricultural Sciences, Department of Soil and Environment, Box 7014, 75007, Uppsala, Sweden.
| | - Zacharias Steinmetz
- RPTU Kaiserslautern-Landau, iES Landau, Institute for Environmental Sciences, Environmental and Soil Chemistry Lab, Fortstraße 7, 76829, Landau, Germany.
| | - Nanna Dyg Rathje Klemmensen
- Aalborg University, Department of the Built Environment, Division of Civil and Environmental Engineering, Thomas Manns Vej 23, 9220, Aalborg, Denmark.
| | - Jes Vollertsen
- Aalborg University, Department of the Built Environment, Division of Civil and Environmental Engineering, Thomas Manns Vej 23, 9220, Aalborg, Denmark.
| | - Geert Cornelis
- Swedish University of Agricultural Sciences, Department of Soil and Environment, Box 7014, 75007, Uppsala, Sweden.
| |
Collapse
|
15
|
Xu L, Wang Y, Wei F, Dai Z, Zhang M. Transport behavior of microplastics in soil‒water environments and its dependence on soil components. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123542. [PMID: 38355087 DOI: 10.1016/j.envpol.2024.123542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Microplastic (MP) pollution has become a global concern, and the transport behavior of MPs in soil-water systems is vital in determining their distribution and potential risks to the subsurface environment. To reveal the role of various soil components on MP migration, the downward transport behavior of polystyrene (PS) MPs were explored in this study via column experiments with mono or multi-soil components as porous media. Compared with the selected soil mineral volcanic rock (VR) and fine river sand (RS), condensed soil organic matter (SOM) resulted in higher transport efficiencies for PS microparticles, with greater than 90% total mass recovery under the experimental conditions. The more surface charges of SOM than minerals contribute to the high migration efficiency of PS MPs, and electrostatic repulsion is assumed a significant driving mechanism in the migration of negatively charged PS particles in soils. The ionic strength of porewater influenced the PS migration behaviors by altering the electrostatic interactions between the MPs and soil grains. The uniform mixing of SOM with mineral grains significantly enhanced the transport efficiency of PS MPs in the columns. The results provide supports for the prediction and prevention of the risks of MPs to the subsurface environment.
Collapse
Affiliation(s)
- Liheng Xu
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China.
| | - Yuhao Wang
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Fang Wei
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Zhixi Dai
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
16
|
Lee JJ, Kang J, Kim C. A low-cost TICT-based staining agent for identification of microplastics: Theoretical studies and simple, cost-effective smartphone-based fluorescence microscope application. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133168. [PMID: 38104521 DOI: 10.1016/j.jhazmat.2023.133168] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
A novel staining agent, (5-(4-(diethylamino)benzylidene)- 1,3-dimethylpyrimidine-2,4,6(1 H,3 H,5 H)-trione) (DDB) was developed for the effective detection of environmentally harmful microplastics. DDB has competitive cost advantages, namely its facile synthesis and high yield, over Nile Red (NR), which is commonly used for microplastic staining. The unique photophysical properties of DDB, including emissive twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE), were corroborated via spectroscopic investigations and density functional theory (DFT) calculations. Notably, DDB demonstrated superior selectivity for staining microplastics (polyethylene (PE), polyurethane (PU), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), and polyethylene terephthalate (PET)) over non-plastic materials in water. Furthermore, modulation of the solvent environment during the staining process yielded distinct fluorescence in both the green and red channels for specific types of plastic with the interplay between locally excited (LE) and TICT states. Treatment with 5% ethanol results in the selective staining of PE and PET with the emission of red fluorescence, whereas treatment with 30% ethanol facilitates the selective staining of PU, PVC, and PET with the emission of green fluorescence. Additionally, DDB could selectively stain microplastics in spiked soil and river water samples. Furthermore, a smartphone-based fluorescence microscope was developed at a cost below $100, validating the effective detection of microplastics stained with the newly synthesized DDB. The outcomes of this research demonstrate the potential of DDB as an economical and efficient agent for selective microplastic detection.
Collapse
Affiliation(s)
- Jae Jun Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, South Korea
| | - Jiyun Kang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, South Korea.
| |
Collapse
|
17
|
Liu K, Zhu L, Wei N, Li D. Underappreciated microplastic galaxy biases the filter-based quantification. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132897. [PMID: 37935065 DOI: 10.1016/j.jhazmat.2023.132897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 11/09/2023]
Abstract
Long-term environmental loading of microplastics (MPs) causes alarming exposure risks for a variety of species worldwide, considered a planetary threat to the well-being of ecosystems. Robust quantitative estimates of MP extents and featured diversity are the basis for comprehending their environmental implications precisely, and of these methods, membrane-based characterizations predominate with respect to MP inspections. However, though crucial to filter-based MP quantification, aggregation statuses of retained MPs on these substrates remain poorly understood, leaving us a "blind box" that exaggerates uncertainty in quantitive strategies of preselected areas without knowing overview loading structure. To clarify this uncertainty and estimate their impacts on MP counting, using MP imaging data assembled from peer-reviewed studies through a systematic review, here we analyze the particle-specific profiles of MPs retained on various substrates according to their centre of mass with a fast-random forests algorithm. We visualize the formation of distinct galaxy-like MP aggregation-similar to the solar system and Milky Way System comprised of countless stars-across the pristine and environmental samples by leveraging two spatial parameters developed in this study. This unique pattern greatly challenges the homogeneously or randomly distributed MP presumption adopted extensively for simplified membrane-based quantification purposes and selective ROI (region of interest) estimates for smaller-sized plastics down to the nano-range, as well as the compatibility theory using pristine MPs as the standard to quantify the presence of environmental MPs. Furthermore, our evaluation with exemplified numeration cases confirms these location-specific and area-dependent biases in many imaging analyses of a selective filter area, ascribed to the minimum possibility of reaching an ideal turnover point for the selective quantitive strategies. Consequently, disproportionate MP schemes on loading substrates yield great uncertainty in their quantification processing, highlighting the prompt need to include pattern-resolved calibration prior to quantification. Our findings substantially advance our understanding of the structure, behavior, and formation of these MP aggregating statuses on filtering substrates, addressing a fundamental question puzzling scientists as to why reproducible MP quantification is barely achievable even for subsamples. This study inspires the following studies to reconsider the impacts of aggregating patterns on the effective counting protocols and target-specific removal of retained MP aggregates through membrane separation techniques.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Marine and Environmental Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Nian Wei
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Norwegian Institute for Water Research, 94 Økernveien, Oslo 0579, Norway
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
18
|
Pan J, Zhang Q, Zhang K, Zhang Z, Guo X. Occurrence of microplastics in agricultural soils in ecologically fragile areas of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166350. [PMID: 37591376 DOI: 10.1016/j.scitotenv.2023.166350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023]
Abstract
The pollution caused by microplastics (MPs), an emerging pollutant, has been receiving continuous concern. However, the distribution characteristics of MPs in ecologically fragile areas (EFAs), which are sensitive to environmental change and pollution, are still unclear. Here, the abundance and pollution characteristics of MPs in agricultural soils in four typical EFAs in China, namely semiarid farming-pastoral area (SFPA), desert-oasis interlaced area (DOIA), plateau composite erosion area (PCEA) and southwest karst area (SWKA) were investigated. MPs were detected in all agricultural soil samples with a mean abundance of 2685 ± 938 n/kg. DOIA (3193 ± 630 n/kg) had the largest abundance of MPs in agricultural soils, followed by SWKA (2948 ± 819 n/kg), SFPA (2920 ± 935 n/kg), and PCEA (1680 ± 320 n/kg). MPs in four EFAs were mostly small size (0-0.49 mm), accounted for 81.71 %. Fragmented and pelleted MPs were the main shapes, occupying for 51.26 % and 28.53 %, respectively. In addition, Fourier transform infrared (FTIR) was applied to determine the polymer types of MPs and to assess the pollution risk of MPs, which ranged from 157 to 938, indicating a moderate to high risk. The results revealed that EFAs located in remote inland areas were considerably polluted by MPs, close to the developed coastal areas. This study provided systematic data on MPs pollution of EFAs, which is crucial in preventing further environmental degradation and promoting ecological restoration.
Collapse
Affiliation(s)
- Jianrui Pan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qi Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenming Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550003, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Park S, Kim I, Jeon WH, Moon HS. Exploring the vertical transport of microplastics in subsurface environments: Lab-scale experiments and field evidence. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 257:104215. [PMID: 37348415 DOI: 10.1016/j.jconhyd.2023.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
Microplastics (MPs) defined as smaller 5 mm plastic particles have received increasing attention due to their global occurrence and potential toxicity. This study investigated the effects of environmental factors (rainfall intensity, 13 and 29 mm/h) and MP characteristics (morphology (fiber, flake, and film), polymer type (polypropylene (PP), polyethylene terephthalate (PET), and polystyrene (PS)) and size (100-300, 300-500, and 500-1000 μm)) on the vertical transport of MP in unsaturated soil conditions using lab-scale column experiments. Additionally, the occurrence and characteristics of MP detected in soil/sediment (total 13 samples) and groundwater samples (total 6 samples) were explored in the field study. Laboratory-scale column experiments revealed that heavy rainfall intensity (29 mm/h) increased the degree of MP vertical transport in unsaturated soil conditions and MP fibers showed the greatest vertical mobility among the various morphologies of MPs assessed. For the polymer type and size, the lighter PP polymer or the larger size of MP (500-1000 μm) showed higher mobility. In the field study, a statistical difference in MP abundance was observed depending on the population density and degree of urban development in both soil and groundwater samples. Comparing to the two different types of environmental media samples obtained from the same site, there was a significant difference in the composition of polymer types present while statistically no difference in MP abundance was observed between the two media samples (i.e., soil or sediment and groundwater). In addition, MP fibers and polyethylene (PE) were predominantly detected in our two study areas. These results suggest that various types of MP can pass through the unsaturated zone by water infiltration, even if it takes a long time to reach groundwater. Overall, we found that the degree of vertical transport of the MPs was highly sensitive to environmental conditions and MP characteristics.
Collapse
Affiliation(s)
- Saerom Park
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Gyeonggi-do 10223, Republic of Korea
| | - Ilho Kim
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Gyeonggi-do 10223, Republic of Korea; Civil and Environmental Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Woo-Hyun Jeon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Hee Sun Moon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea; Geological Science, University of Science Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
20
|
Rong H, Qin J, He L, Tong M. Cotransport of different electrically charged microplastics with PFOA in saturated porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121862. [PMID: 37220863 DOI: 10.1016/j.envpol.2023.121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023]
Abstract
The fate and transport behavior of microplastics (MPs), emerging colloidal contaminant ubiquitous in natural environments, would be greatly affected by other copresent pollutants. PFOA (emerging surfactant pollutant) would interact with MPs after encounter with them in natural environments, which could alter the transport behavior of both pollutants. Relevant knowledge is still lacking, affecting accurate prediction the fate and distribution of these two emerging contaminants in natural porous media. The cotransport behavior of different surface charged MPs (negatively/positively charged, CMPs/AMPs) with PFOA (three concentrations ranged from 0.1 to 10 mg/L) in porous media in both 10 and 50 mM NaCl solutions thus was investigated in the present study. We found PFOA inhibited CMPs transport in porous media, while enhanced AMPs transport. The mechanisms leading to the altered transport of CMPs/AMPs caused by PFOA were found to be different. The decreased electrostatic repulsion between CMPs-sand induced by the decreased CMPs negative zeta potentials via the adsorption of PFOA led to the inhibited transport of CMPs in CMPs-PFOA suspension. The enhanced electrostatic repulsion between AMPs-sand due to the decreased positive charge of AMPs via the adsorption of PFOA together with steric repulsion induced by suspended PFOA resulted in the increased transport of AMPs in AMPs-PFOA suspension. Meanwhile, we found that the adsorption onto MPs surfaces also impacted the transport of PFOA. Due to the lower mobility of MPs than PFOA, the presence of MPs despite their surface charge decreased the transport of PFOA of all examined concentrations in quartz sand columns. This study demonstrates that when MPs and PFOA are co-existing in environments, their interaction with each other will alter the fate and transport behavior of both pollutants in porous media and the alteration is highly correlated with the amount of PFOA adsorbed onto MPs and original surface properties of MPs.
Collapse
Affiliation(s)
- Haifeng Rong
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Jianmei Qin
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Lei He
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|