1
|
Choi SJ, Lee MH, Liang Y, Lin EC, Khanthaphixay B, Leigh PJ, Hwang DS, Yoon JY. Machine learning classification of quorum sensing-induced bacterial aggregation using flow rate assays on paper chips toward bacterial species identification in potable water sources. Biosens Bioelectron 2025; 284:117563. [PMID: 40349566 DOI: 10.1016/j.bios.2025.117563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Preventing waterborne disease caused by bacteria is especially important in low-resource settings, where skilled personnel and laboratory equipment are scarce. This work reports a straightforward method for classifying bacterial species by monitoring the capillary flow rates on a multi-channel paper microfluidic chip, where quorum sensing (QS)-induced bacterial aggregation leads to measurable changes in flow rates, enabling species differentiation. It required no fluorescent molecules, microscope, particles, covalent conjugation, or surface immobilization. Five representative QS molecules and control were added to each bacterial sample, and their different extents of bacterial aggregation resulted in varied flow rates. Flow rates were collected for the duration of the flow to build the learning database, and the XGBoost machine learning algorithm predicted the accuracy for classifying ten bacterial species, including 7 gram-negative and 3 gram-positive species. Three different algorithms were developed for high, medium, and low bacterial concentration ranges, and the classification accuracies of all the algorithms exceeded 75.0 %. Using XGBoost and the previously established database, we tested bacteria in the field water samples and successfully predicted the dominant species. The technology developed in this study, using only QS molecules and a paper microfluidic chip, offers a simple system for detecting microorganisms in drinking water to help prevent waterborne diseases.
Collapse
Affiliation(s)
- Seung-Ju Choi
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, United States; Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min Hee Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Yan Liang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, United States
| | - Ethan C Lin
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Bradley Khanthaphixay
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Preston J Leigh
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus I-CREATE, Incheon, 21983, Republic of Korea.
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, United States; Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, United States; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
2
|
Acharya-Patel N, Cram K, Groenwold ET, Lee H, Keller AG, Bomback B, Lyons S, Warren RL, Coombe L, Lowe CJ, Bergman LC, Bishay F, Birol I, Macdonald TA, Helbing CC. Monitoring marine pollution effects through targeted environmental DNA (eDNA) testing in the Pacific northwest. MARINE POLLUTION BULLETIN 2025; 216:118036. [PMID: 40294512 DOI: 10.1016/j.marpolbul.2025.118036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/06/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Globally, coastal waters experience degradation from pollution associated with multiple discharges, including industrial and agricultural runoff, and municipal wastewater. Certain benthic infaunal taxa are tolerant of high nutrient input and anoxic conditions, while others are sensitive to these conditions. Using these indicator taxa as proxies for assessing organic enrichment is well established to characterize subsequent pollution impacts. Conventional assessment of macroinfauna involves the detailed analysis of each individual specimen within a sample by taxonomic experts, a resource intensive process. As an alternative, we developed sensitive quantitative polymerase chain reaction (qPCR) assays to detect these indicator taxa in a scalable and reliable way. Using whole genome shotgun sequencing, we generated full mitogenome sequences of selected indicator macroinfaunal polychaetes routinely used for monitoring programs in Pacific Northwest marine environments. These sequences were used to design five new, rigorously validated environmental DNA (eDNA) assays capable of detecting low levels of DNA that can be isolated from environmental samples. For nine sites at a wastewater treatment plant outfall in Vancouver, British Columbia, we tested three eDNA sample collection types: active filtration, a passive dip filter from water containing collected macroinfauna, and active filtration from water collected near the sea floor. Generalized linear models indicated that eDNA signal strength correlated with organism count particularly with passive dip sample collection type. eDNA occupancy modelling techniques estimated detection probabilities corresponding with organism count. The present study emphasizes the value of integrating eDNA into marine outfall monitoring efforts to enhance the assessment of environmental effects.
Collapse
Affiliation(s)
- Neha Acharya-Patel
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia (BC) V8P 2C2, Canada
| | - Karen Cram
- Biologica Environmental Services Ltd., Victoria, BC V8T 5H2, Canada
| | - Emma T Groenwold
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia (BC) V8P 2C2, Canada
| | - Hajeong Lee
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia (BC) V8P 2C2, Canada
| | - Abigail G Keller
- Department of Environment Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Breanna Bomback
- Biologica Environmental Services Ltd., Victoria, BC V8T 5H2, Canada
| | - Shirley Lyons
- Capital Regional District, Victoria, BC V8W 2S6, Canada
| | - Rene L Warren
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Lauren Coombe
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | | | - Lauren C Bergman
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia (BC) V8P 2C2, Canada
| | | | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Tara A Macdonald
- Biologica Environmental Services Ltd., Victoria, BC V8T 5H2, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia (BC) V8P 2C2, Canada.
| |
Collapse
|
3
|
Timana‐Mendoza C, Reyes‐Calderón A, Venail P, Britzke R, Santa‐Maria MC, Araújo‐Flores JM, Silman M, Fernandez LE. Hydrological Connectivity Enhances Fish Biodiversity in Amazonian Mining Ponds: Insights From eDNA and Traditional Sampling. Mol Ecol 2025; 34:e17784. [PMID: 40344616 PMCID: PMC12100589 DOI: 10.1111/mec.17784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Artisanal and small-scale gold mining (ASGM) expansion in the Madre de Dios region of the Peruvian Amazon has transformed primary forests into a novel wetland complex of thousands of abandoned mining ponds. Despite their ecological relevance, post-mining recovery of these systems remains understudied, particularly regarding fish biodiversity and recolonisation. In this study, we evaluate fish community richness and composition in mining ponds of different dimensions, years post abandonment, physicochemical properties and degree of pulse flood connectivity using traditional collection-based methods and environmental DNA (eDNA) with the 12S and COI markers. We compared these two methods of biodiversity inventory and contrasted results from ASGM waterbodies with those obtained from nearby pristine oxbow lakes. Overall, we registered more fish richness at all sites using eDNA versus traditional methods, especially with the 12S marker. We identified 14 and 13 unique genera using traditional methods and eDNA, respectively, with 40 genera detected by both approaches, evidencing their complementarity. Notably, we found that the degree of pulse flooding connectivity was the main predictor of species richness among the abandoned mining ponds (p-value < 0.05). We registered 11-22, 23-71 and 56 morphospecies in non-flooded mining ponds, pulse flooded mining ponds and nearby oxbow lakes, respectively. Furthermore, the fish community composition of mining ponds most influenced by pulse flooding was similar to that of pristine lakes. Our findings highlight the role of hydrological connectivity in ecological recovery within mining-impacted wetlands. Future restoration efforts should enhance aquatic connectivity to accelerate recovery in post-mining environments.
Collapse
Affiliation(s)
- Camila Timana‐Mendoza
- Centro de Innovación Científica Amazónica – CINCIAPuerto MaldonadoMadre de DiosPeru
- Sabin Center for Environment and SustainabilityWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Alonso Reyes‐Calderón
- Centro de Investigación y Tecnología del Agua – CITAUniversidad de Ingenieria y Tecnologia – UTECLimaPeru
| | - Patrick Venail
- Microbiology Research Center – CIMIC, Department of Biological SciencesUniversidad de los AndesBogotáColombia
- Inka Terra Asociación – ITALimaPeru
| | - Ricardo Britzke
- Departamento de IctiologíaMuseo de Historia Natural, Universidad Nacional Mayor de San MarcosLimaPeru
| | - Monica C. Santa‐Maria
- Centro de Investigación y Tecnología del Agua – CITAUniversidad de Ingenieria y Tecnologia – UTECLimaPeru
- Departamento de Ingeniería AmbientalUniversidad de Ingenieria y Tecnologia – UTECLimaPeru
| | - Julio M. Araújo‐Flores
- Centro de Innovación Científica Amazónica – CINCIAPuerto MaldonadoMadre de DiosPeru
- Sabin Center for Environment and SustainabilityWake Forest UniversityWinston‐SalemNorth CarolinaUSA
- Colección Científica de IctiologíaUniversidad Nacional Amazónica de Madre de DiosPuerto MaldonadoMadre de DiosPeru
| | - Miles Silman
- Centro de Innovación Científica Amazónica – CINCIAPuerto MaldonadoMadre de DiosPeru
- Sabin Center for Environment and SustainabilityWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Luis E. Fernandez
- Centro de Innovación Científica Amazónica – CINCIAPuerto MaldonadoMadre de DiosPeru
- Sabin Center for Environment and SustainabilityWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
4
|
Procházka J, Bartoníček Z, Leontovyč R, Horák P, Macháček T. Molecular detection and identification of Trichobilharzia: development of a LAMP, qPCR, and multiplex PCR toolkit. Parasit Vectors 2025; 18:195. [PMID: 40448150 DOI: 10.1186/s13071-025-06822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/29/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Cercarial dermatitis (CD), or swimmer's itch, is a water-borne allergic skin reaction caused by the penetration of the larval stages of bird schistosomes (cercariae) into the skin. Members of the genus Trichobilharzia are the primary causative agents of CD worldwide. Due to the increasing number of cases, CD is regarded as a (re)emerging disease. Outbreaks in recreational waters can significantly impact public health and local economies. Environmental monitoring of Trichobilharzia is crucial for outbreak prediction and public health management. However, conventional methods, such as cercarial shedding and snail dissections, are labour-intensive and lack sensitivity. To overcome these limitations, we present a molecular toolkit that combines loop-mediated isothermal amplification (LAMP), quantitative polymerase chain reaction (qPCR), and multiplex PCR for rapid, sensitive, and accurate detection and identification of Trichobilharzia spp. from various biological samples. METHODS Tricho-LAMP and Tricho-qPCR were designed and optimised for Trichobilharzia DNA detection. A multiplex PCR assay was also developed and optimised to identify the three main species causing CD in Europe (Trichobilharzia franki, T. szidati, and T. regenti). RESULTS Tricho-LAMP specifically detected T. regenti and T. franki at 10-3 ng, and T. szidati at 10-2 ng per reaction with genomic DNA. Using gBlocks synthetic DNA, Tricho-LAMP achieved 100% amplification at 10,000 copies and 85% amplification at 1000 copies, with decreasing success at lower concentrations. Tricho-qPCR showed the highest sensitivity, detecting all species down to 10-4 ng per reaction and showing a limit of detection at 10 copies of synthetic DNA in the reaction. Multiplex PCR allowed reliable species differentiation via gel electrophoresis of the PCR products, but the assay had the lowest sensitivity. CONCLUSIONS We provide a molecular toolkit consisting of LAMP, qPCR, and multiplex PCR. By exhibiting high sensitivity, Tricho-LAMP and Tricho-qPCR assays are potentially suitable for environmental DNA (eDNA)-based environmental monitoring of bird schistosomes, by both researchers and public health authorities. Multiplex PCR can be used for species determination without the need for further sequencing.
Collapse
|
5
|
Rubel V, Filker S, Lanzén A, Abad IL, Stoeck T. Exploiting taxonomic information from metagenomes to infer bacterial bioindicators and environmental quality at salmon aquaculture installations. MARINE POLLUTION BULLETIN 2025; 218:118173. [PMID: 40414102 DOI: 10.1016/j.marpolbul.2025.118173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
Environmental DNA (eDNA) metabarcoding has emerged as a powerful method for assessing the environmental impacts of marine Atlantic salmon aquaculture by identifying bacterial bioindicators and inferring biotic indices. However, because this approach relies on the PCR amplification of 16S rRNA gene fragments, it may introduce errors that compromise bioindicator reliability. In contrast, metagenomic analysis which captures the complete set of genetic material directly extracted from environmental samples circumvents biases inherent to PCR amplification. We hypothesized that metagenomic data could offer superior assessments of benthic environmental impacts associated with salmon aquaculture compared to metabarcoding. To test this, we compared bacterial community structures derived from both metabarcoding and metagenomic analyses of 68 sediment samples obtained from aquaculture installation sites characterized by varying degrees of benthic impact as determined by macroinvertebrate inventories. Bacterial bioindicators were identified from each dataset, and Random Forest models were used to predict the degrees of benthic impacts. Metagenomics identified a greater number of bioindicators at both the family and individual sequence variant levels, resulting in higher predictive accuracy for impact assessments. Notably, only a few bioindicators were common to both methods, suggesting that methodological limitations and distorted abundance patterns in metabarcoding data may lead to spurious indicators. These findings highlight both the challenges and potential advantages of employing metagenomics for reliable environmental impact assessments.
Collapse
Affiliation(s)
- Verena Rubel
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Ecology Group, D-67663 Kaiserslautern, Germany
| | - Sabine Filker
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Ecology Group, D-67663 Kaiserslautern, Germany
| | - Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ion Luis Abad
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Spain
| | - Thorsten Stoeck
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Ecology Group, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
6
|
Gava SG, de Carvalho IR, Sato MO, Sato M, Fava NDMN, Parreiras PM, de Oliveira AA, Teixeira SSF, Lourenço AJ, Carvalho ODS, Montresor LC, Mourão MM, Caldeira RL. Advancing schistosomiasis surveillance: standardization and application of an environmental DNA (eDNA)-based approach for detecting Schistosoma mansoni in Brazil. BMC Infect Dis 2025; 25:703. [PMID: 40375164 PMCID: PMC12079815 DOI: 10.1186/s12879-025-11069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Schistosoma sp. transmission is linked to water bodies, poor sanitation, and the presence of intermediate hosts. Nevertheless, parasite detection in snails is hampered by challenges in snail sampling and low infection rates, mainly in moderate and low-endemic areas, as well as requiring specialized personnel and being time-consuming. Thus, there is a need to improve tools to assist schistosomiasis surveillance and an environmental DNA (eDNA) approach may help to overcome these limitations. Here, we standardized and used an eDNA-based approach to monitor Schistosoma mansoni occurrence in two schistosomiasis endemic areas from Minas Gerais, Brazil. METHODS The eDNA approach was standardized for local conditions by evaluating the specificity of the qPCR assay in detecting the parasite DNA. Water from snail breeding tanks containing Biomphalaria glabrata, either infected or not with S. mansoni, was used to standardize the eDNA filtration and extraction protocols. Three molecular techniques- Low-Stringency PCR (LS-PCR), Loop-mediated isothermal amplification (LAMP), and quantitative PCR (qPCR)- were applied to investigate samples from snail tanks and two field surveys. Additionally, malacological surveys and measurements of water physicochemical and microbiological parameters were conducted at the same locations to know the species of mollusks present and the ideal environmental conditions to identify hotspots. RESULTS The qPCR assay was specifically amplified Schistosoma sp. DNA without amplifying other trematodes presents in Brazil, ensuring accurate detection without cross-amplification. All three molecular assays efficiently detected S. mansoni DNA only from eDNA samples from tanks with infected snails. The eDNA approach, associated with LAMP and qPCR assays, successfully identified S. mansoni DNA at the same collection points where snails releasing cercariae were found and at one additional site, that was missed by traditional methods, underscoring its sensitivity. CONCLUSIONS This study illustrates the potential of employing eDNA sampling combined with molecular techniques as an effective strategy for monitoring and identifying potential schistosomiasis transmission foci in endemic areas. This approach aligns with the WHO's roadmap for schistosomiasis elimination by 2030 and has implications for public health interventions and control measures.
Collapse
Affiliation(s)
- Sandra Grossi Gava
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou- Fiocruz Minas, Fundação Oswaldo Cruz- Fiocruz, Belo Horizonte, Minas Gerais, Brazil.
| | - Isadora Rodrigues de Carvalho
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou- Fiocruz Minas, Fundação Oswaldo Cruz- Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Marcello Otake Sato
- Division of Global Environment Parasitology - Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Megumi Sato
- Graduate School of Medical Sciences, Niigata University, Niigata, Japan
| | - Natália de Melo Nasser Fava
- Grupo de Pesquisa em Políticas Públicas e Direitos Humanos, Instituto René Rachou- Fiocruz Minas, Fundação Oswaldo Cruz- Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia Martins Parreiras
- Instituto René Rachou- Fiocruz Minas, Fundação Oswaldo Cruz- Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Aureo Almeida de Oliveira
- Grupo de Pesquisa em Diagnóstico e Terapia de Doenças Infecciosas e Câncer, Instituto René Rachou- Fiocruz Minas, Fundação Oswaldo Cruz- Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Sueleny Silva Ferreira Teixeira
- Grupo de Pesquisa em Diagnóstico e Terapia de Doenças Infecciosas e Câncer, Instituto René Rachou- Fiocruz Minas, Fundação Oswaldo Cruz- Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Adelina Junia Lourenço
- Grupo de Pesquisa em Diagnóstico e Terapia de Doenças Infecciosas e Câncer, Instituto René Rachou- Fiocruz Minas, Fundação Oswaldo Cruz- Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Omar Dos Santos Carvalho
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou- Fiocruz Minas, Fundação Oswaldo Cruz- Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Lângia Colli Montresor
- Moluscário Lobato Paraense, Instituto René Rachou- Fiocruz Minas, Fundação Oswaldo Cruz- Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Marina Moraes Mourão
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou- Fiocruz Minas, Fundação Oswaldo Cruz- Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Roberta Lima Caldeira
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou- Fiocruz Minas, Fundação Oswaldo Cruz- Fiocruz, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Xiao Z, Dong S, Zhang Z, Qi S, Wan Y, Song Z. Spatio-temporal distribution of environmental DNA from amphibian and turtle species in a pond ecosystem. ENVIRONMENTAL RESEARCH 2025; 279:121834. [PMID: 40359612 DOI: 10.1016/j.envres.2025.121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/17/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
Environmental DNA (eDNA) analysis has emerged as a transformative tool for biodiversity monitoring and conservation. However, uncertainties in the ecological processes of eDNA in aquatic environments decrease the reliability of eDNA-based surveys. Understanding the distribution and persistence patterns of eDNA is essential to effectively correlate eDNA data with species occurrence across spatial and temporal scales. Here, we investigated the spatio-temporal distribution of eDNA from amphibian and turtle species in a pond ecosystem, by establishing controlled eDNA sources from American bullfrogs (Lithobates catesbeianus) and red-eared sliders (Trachemys scripta elegans), and quantifying eDNA concentrations from different water layers and sediment samples using droplet digital PCR. Our results showed that eDNA from both species was highly concentrated within 2-5 m of the biological sources, with dispersal distance independent of the duration of organism' presence in the pond and exhibiting a vertically increasing trend over time. eDNA concentration and persistence varied significantly depending on species and substrate type, with bullfrogs showing notably higher eDNA detectability. The average eDNA concentration in sediment was 1.4 × 104 times higher than in water, and eDNA persisted approximately one week longer. Our findings demonstrate that the strong aggregation patterns of eDNA can provide valuable insights into the spatial distribution of amphibians and turtles in pond systems. eDNA from surface water showed greater timeliness for biodiversity monitoring and aquatic invasive species management. The specificity of target taxa and the temporal complementarity of sedimentary eDNA should be carefully considered in future eDNA sampling designs.
Collapse
Affiliation(s)
- Zehua Xiao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China; Key Laboratory of Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shanshan Dong
- Key Laboratory of Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Zhenhua Zhang
- Key Laboratory of Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shanze Qi
- Key Laboratory of Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yaqiong Wan
- Key Laboratory of Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Varrella S, Livi S, Corinaldesi C, Castriota L, Maggio T, Vivona P, Pindo M, Fava S, Danovaro R, Dell'Anno A. A comprehensive assessment of non-indigenous species requires the combination of multi-marker eDNA metabarcoding with classical taxonomic identification. ENVIRONMENT INTERNATIONAL 2025; 199:109489. [PMID: 40288285 DOI: 10.1016/j.envint.2025.109489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
In marine environment, non-indigenous species (NIS) can alter natural habitats and cause biodiversity loss with important consequences for ecosystems and socio-economic activities. With more than 1000 NIS introduced over the last century, the Mediterranean Sea is one of the most threatened regions worldwide, requiring an early identification of newly entered alien species for a proper environmental management. Here, we carried out environmental-DNA (eDNA) metabarcoding analyses, using multiple molecular markers (i.e., 18S rRNA, COI, and rbcL) and different genetic databases (i.e., NCBI, PR2, SILVA, MIDORI2, MGZDB, and BOLD), on seawater and sediment samples collected on a seasonal basis in three Mediterranean ports located in the North Adriatic, Ionian and Tyrrhenian Sea to identify marine species, and particularly NIS. The use of the multi-marker eDNA metabarcoding allowed the identification of a higher number of species compared to the morphological analyses (1484 vs. 752 species), with a minor portion of species shared by both approaches. Overall, only 4 NIS were consistently identified by both morphological and molecular approaches, whereas 27 and 17 NIS were exclusively detected by using eDNA metabarcoding and classical taxonomic analyses, respectively. The eDNA metabarcoding allowed also identifying the genetic signatures of 5 NIS never reported in the Italian waters. We conclude that eDNA metabarcoding can represent a highly sensitive tool for the early identification of NIS, but a comprehensive census of the NIS requires the combination of molecular and morphological approaches.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Biodiversity Future Centre, 90133 Palermo, Italy.
| | - Silvia Livi
- Italian Institute for Environmental Protection and Research (ISPRA), Department for the Monitoring and Protection of the Environment and for the Conservation of Biodiversity Via Brancati 48, 00144 Rome, Italy
| | - Cinzia Corinaldesi
- National Biodiversity Future Centre, 90133 Palermo, Italy; Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Luca Castriota
- Italian Institute for Environmental Protection and Research (ISPRA), Department for the Monitoring and Protection of the Environment and for the Conservation of Biodiversity, Unit for Conservation Management and Sustainable Use of Fish and Marine Resources, 90149 Palermo, Italy
| | - Teresa Maggio
- Italian Institute for Environmental Protection and Research (ISPRA), Department for the Monitoring and Protection of the Environment and for the Conservation of Biodiversity, Unit for Conservation Management and Sustainable Use of Fish and Marine Resources, 90149 Palermo, Italy
| | - Pietro Vivona
- Italian Institute for Environmental Protection and Research (ISPRA), Department for the Monitoring and Protection of the Environment and for the Conservation of Biodiversity, Unit for Conservation Management and Sustainable Use of Fish and Marine Resources, 90149 Palermo, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Sebastiano Fava
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Biodiversity Future Centre, 90133 Palermo, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Biodiversity Future Centre, 90133 Palermo, Italy
| |
Collapse
|
9
|
Copoț O, Runnel K, Kohv M, Hagh-Doust N, Lõhmus A. Sampling eDNA at outflows from artificial drainage systems: what is the potential to monitor landscape degradation? ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:602. [PMID: 40285942 DOI: 10.1007/s10661-025-14047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Wetlands have been drained extensively for productive land use, transforming the biodiversity of whole landscapes. Such transformation primarily affects the huge biodiversity across the terrestrial and aquatic environments that is difficult to observe directly, especially in the case of microorganisms. We explored whether environmental DNA (eDNA) from the flowing water could serve as a data source for characterizing the level of biological degradation of drained and managed forest-wetland landscapes. We took spatially and seasonally replicated samples from nine hydrologically monitored outflows at small drained catchments in Estonia in order to understand the variation in their eDNA-based diversity. Using PacBio long-read sequencing, we detected a large taxonomic diversity of eukaryotes (approx. 6000 operational taxonomic units (OTUs)), which was spatially and seasonally structured, but also highly variable within individual ditches. Even in fungi (the best-represented taxon group), the OTU accumulation curves did not level off despite high volumes of filtered water; however, many interesting species records were obtained (particularly on pathogenic microorganisms). We conclude that eDNA can provide valuable insights into the biodiversity of hydrologically drained areas, but our results indicate high heterogeneity among samples (apparently due to both actual assemblage differences and sampling errors) as a major problem for standard environmental assessment. Combining eDNA methods with other ecological assessment techniques is a priority for further research in these systems.
Collapse
Affiliation(s)
- Ovidiu Copoț
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Kadri Runnel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Marko Kohv
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Niloufar Hagh-Doust
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Asko Lõhmus
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
10
|
Cananzi G, Tatini I, Li T, Montagna M, Serra V, Petroni G. Active or passive? A multi-marker approach to compare active and passive eDNA sampling in riverine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179247. [PMID: 40154087 DOI: 10.1016/j.scitotenv.2025.179247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Environmental DNA (eDNA) is increasingly used in biodiversity monitoring with several collection techniques proposed. Those applied to aquatic eDNA can now be divided into two categories: active and passive sampling. Active sampling involves the deliberate and controlled collection of environmental samples, and the most common method is water filtration. Passive sampling is a more recent technique that involves capturing eDNA by relying on its adsorption to samplers, which can be fabricated from various materials, and submerged for minutes, hours or weeks. In this study, we compared the performance of water filtration and Passive eDNA Sampling (PEDS) with granular active carbon in terms of detected taxa collected from four different sites of the same river system. eDNA samples were amplified for three molecular markers for 18S rRNA, 12S rRNA and COI genes, with primers according to the literature that target invertebrates and vertebrates. The study revealed that PEDS detected on average more species in 18S rRNA and 12S rRNA assays, with 18S rRNA results presenting a significantly higher homogeneity of read variances between samples. Biological communities captured differed between PEDS and filters. The former method retrieved a significant number of microinvertebrates and chironomids (Chironomidae, Diptera), detecting a similar number of vertebrates to filters, but with lower performance in the detection of fish. Notably, both methods performed well with amphibians, successfully identifying all species linked to lotic environments in the studied area. Compared to PEDS, the eDNA capture protocol using filters yielded more sequences identified as ephemeropterans, trichopterans, and acarines. In addition, PEDS was more cost-effective and environmentally sustainable. These findings imply that there is no definitive superior eDNA sampling method. Consequently, in conjunction with studies proposing new methods of eDNA sampling, studies comparing their performance with a broad taxonomic representation will be pivotal.
Collapse
Affiliation(s)
| | - Irene Tatini
- Department of Biology, University of Pisa, Pisa, Italy
| | - Tianshi Li
- Department of Biology, University of Pisa, Pisa, Italy
| | - Matteo Montagna
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Valentina Serra
- Department of Biology, University of Pisa, Pisa, Italy; Centro Interdipartimentale di Microscopia Elettronica (CIME), Università di Pisa, Pisa, Italy; CISUP, Centro per l'Integrazione Della Strumentazione (CISUP), Università di Pisa, Pisa, Italy.
| | - Giulio Petroni
- Department of Biology, University of Pisa, Pisa, Italy; Centro Interdipartimentale di Microscopia Elettronica (CIME), Università di Pisa, Pisa, Italy; CISUP, Centro per l'Integrazione Della Strumentazione (CISUP), Università di Pisa, Pisa, Italy
| |
Collapse
|
11
|
Mac Loughlin C, Valdivia-Carrillo T, El Khattabi S, Valenzuela-Quiñonez F, Reyes-Bonilla H, Munguia-Vega A. Contrasting the contributions of 12S eDNA metabarcoding, visual surveys and anaesthetic collections to the historical regional diversity of cryptobenthic and conspicuous fish. JOURNAL OF FISH BIOLOGY 2025. [PMID: 40251957 DOI: 10.1111/jfb.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/21/2025]
Abstract
Taxonomic gaps in community biodiversity assessments are now commonly addressed by combining traditional monitoring methods and environmental DNA (eDNA) metabarcoding, widely recognized for having the ability to uncover rare and cryptic diversity. However, only a few studies have assessed the efficacy of this novel technique for detecting cryptobenthic fishes and tested the limitations of incomplete genetic reference availability for a historically neglected component of fish communities. Our goals were (i) to compare cryptobenthic and conspicuous fish detections by 12S eDNA metabarcoding, visual surveys and anaesthetic fish collections, and (ii) to compare emerging regional diversity patterns against a long-term historical record for the Gulf of California. Despite adding new local references for 36 cryptobenthic fishes, 12S eDNA metabarcoding detected only seven taxa. Visual surveys provided similar results, highlighting fish collections as the primary source, with 57 cryptobenthic fishes recovered. Conspicuous fishes had an equal and highly complementary contribution by 12S eDNA and visual surveys. When combining contemporary detections from all methods, we recovered 43% of cryptobenthic and 16% of conspicuous fishes, relative to the historical records. The spatial community structure for detected cryptobenthic fishes differed from historical expectations and conspicuous fishes, showing no differences in community richness nor composition between Northern and Central Gulf communities. Our study highlights the limitations of eDNA for monitoring cryptobenthic fishes, and that their patterns of community structuring are driven by distinct factors compared to conspicuous fishes.
Collapse
Affiliation(s)
| | - Tania Valdivia-Carrillo
- Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, México
| | | | | | | | - Adrian Munguia-Vega
- Applied Genomics Lab, La Paz, Mexico
- Conservation Genetics Laboratory, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
12
|
Bayer PE, Bennett A, Nester G, Corrigan S, Raes EJ, Cooper M, Ayad ME, McVey P, Kardailsky A, Pearce J, Fraser MW, Goncalves P, Burnell S, Rauschert S. A Comprehensive Evaluation of Taxonomic Classifiers in Marine Vertebrate eDNA Studies. Mol Ecol Resour 2025:e14107. [PMID: 40243260 DOI: 10.1111/1755-0998.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 12/05/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Environmental DNA (eDNA) metabarcoding is a widely used tool for surveying marine vertebrate biodiversity. To this end, many computational tools have been released and a plethora of bioinformatic approaches are used for eDNA-based community composition analysis. Simulation studies and careful evaluation of taxonomic classifiers are essential to establish reliable benchmarks to improve the accuracy and reproducibility of eDNA-based findings. Here we present a comprehensive evaluation of nine taxonomic classifiers exploring three widely used mitochondrial markers (12S rDNA, 16S rDNA and COI) in Australian marine vertebrates. Curated reference databases and exclusion database tests were used to simulate diverse species compositions, including three positive control and two negative control datasets. Using these simulated datasets ranging from 36 to 302 marker genes, we were able to identify between 19% and 89% of marine vertebrate species using mitochondrial markers. We show that MMSeqs2 and Metabuli generally outperform BLAST with 10% and 11% higher F1 scores for 12S and 16S rDNA markers, respectively, and that Naive Bayes Classifiers such as Mothur outperform sequence-based classifiers except MMSeqs2 for COI markers by 11%. Database exclusion tests reveal that MMSeqs2 and BLAST are less susceptible to false positives compared to Kraken2 with default parameters. Based on these findings, we recommend that MMSeqs2 is used for taxonomic classification of marine vertebrates given its ability to improve species-level assignments while reducing the number of false positives. Our work contributes to the establishment of best practices in eDNA-based biodiversity analysis to ultimately increase the reliability of this monitoring tool in the context of marine vertebrate conservation.
Collapse
Affiliation(s)
- Philipp E Bayer
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Adam Bennett
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Georgia Nester
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Shannon Corrigan
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Eric J Raes
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Madalyn Cooper
- Minderoo Foundation, Perth, Western Australia, Australia
| | - Marcelle E Ayad
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Philip McVey
- Minderoo Foundation, Perth, Western Australia, Australia
| | - Anya Kardailsky
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jessica Pearce
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Matthew W Fraser
- Minderoo Foundation, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Priscila Goncalves
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Stephen Burnell
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sebastian Rauschert
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
13
|
Jo TS. Parameterizing the particle size distribution of environmental DNA provides insights into its improved availability from the water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:519. [PMID: 40198460 DOI: 10.1007/s10661-025-13998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Previous studies estimated the particle size distribution (PSD) of environmental DNA (eDNA) to infer its persistence state in the water and to determine the size fraction in which eDNA particles are concentrated. These results, however, depend on the combination of filter pore sizes and may not necessarily provide the proper implications for the eDNA state and availability in the water. To address this issue, the present study proposes parameterizing the PSD using the Weibull distribution model, which has been widely used for various materials. Re-analyses of previous datasets show the Weibull parameters (representing the PSD profiles) significantly depend on species traits, marker types, temperature, and time passages after the removal of the individuals. The results allowed for calculating the proportion of eDNA captured using a given filter pore size and the filter pore size required to collect a given percentage of eDNA particles under various study designs and environmental conditions. The results also posed caveats indicating that the strategy for a sufficient eDNA collection method is not always uniform across experimental and environmental conditions. The findings contribute to a better understanding of the eDNA state and improved eDNA availability, refining eDNA-based biodiversity and ecosystem monitoring.
Collapse
Affiliation(s)
- Toshiaki S Jo
- Research Fellow of Japan Society for the Promotion of Science, 5 - 3- 1 Kojimachi, Chiyoda-Ku, Tokyo, 102 - 0083, Japan.
- Graduate School of Informatics, Kyoto University, 36- 1, Yoshida-honmachi, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan.
- Faculty of Advanced Science and Technology, Ryukoku University, 1 - 5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520 - 2194, Japan.
| |
Collapse
|
14
|
Scriver M, Zaiko A, Pochon X, Stanton JAL, Belonovich O, Jeunen GJ, Thomas AC, Gemmell NJ, von Ammon U. Biodiversity monitoring in remote marine environments: Advancing environmental DNA/RNA sampling workflows. MARINE ENVIRONMENTAL RESEARCH 2025; 206:107041. [PMID: 40043465 DOI: 10.1016/j.marenvres.2025.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Understanding biodiversity is crucial for protecting unique environments, but acquiring this knowledge is challenging in isolated areas due to limited availability of easy-to-implement biomonitoring tools. To determine optimal sampling strategies in remote regions, environmental DNA and RNA (eDNA and eRNA) sampling workflows were evaluated at 12 sites in three fiords within Fiordland National Park, Aotearoa-New Zealand. For filtration comparison, a modified cruising speed net was used to concentrate eDNA/eRNA onto 20 μm nylon filters, while water from the net's cod-end was filtered through a 5 μm Smith-Root self-preserving filter using the eDNA Citizen Scientist Sampler. To compare preservation methods, Smith-Root filters were cut in half, with one half preserved in the self-preserving unit and the other in DNA/RNA Shield™ buffer. Biodiversity screening was performed by sequencing the 18S rRNA gene for eukaryotes and two mitochondrial 16S rRNA genes for fish and marine vertebrates. Comparable amplicon sequence variant (ASVs) richness was observed between methods, yet samples preserved with buffer showed higher richness of fish and marine vertebrate taxa and higher PCR amplification success. There was little variation in community composition, except for 16S rRNA targeting fish, where distinct patterns emerged based on preservation methods. Overall, sampling workflows showed similar community composition and alpha diversity across both nucleic acids. These results confirm that enhancing eDNA/eRNA yields for sparse taxa requires consideration of collection and preservation methods. However, abundant taxa biodiversity is captured consistently, allowing for adjustments without compromising robustness. These insights support streamlined eDNA/eRNA sampling, emphasizing adaptive strategies based on targeted taxa.
Collapse
Affiliation(s)
- Michelle Scriver
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand; Institute of Marine Science, University of Auckland, Auckland, New Zealand; Sequench Ltd, Nelson, New Zealand.
| | - Anastasija Zaiko
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand; Sequench Ltd, Nelson, New Zealand
| | - Xavier Pochon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand; Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Gert-Jan Jeunen
- Department of Marine Science, University of Otago, Dunedin, 9016, New Zealand
| | | | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ulla von Ammon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
15
|
von Ammon U, Jeunen GJ, Laroche O, Pochon X, Gemmell NJ, Stanton JAL, Zaiko A. Investigating passive eDNA samplers and submergence times for marine surveillance. PeerJ 2025; 13:e19043. [PMID: 40061223 PMCID: PMC11890302 DOI: 10.7717/peerj.19043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/03/2025] [Indexed: 05/13/2025] Open
Abstract
Passive environmental DNA (eDNA) samplers offer a cost-effective and scalable approach to marine biodiversity monitoring, potentially aiding detections of non-indigenous species. This study explored the efficiency of passive eDNA samplers to detect a variety of globally problematic marine invasive species in field conditions: Sabella spallanzanii, Styela clava, Bugula neritina and Undaria pinnatifida. Four passive sampler substrates, nylon filters, positively charged nylon discs, nylon mesh, and artificial sponges, were tested across six submergence times, ranging from 10 to 720 min, against standard filtration-based approaches. Our results demonstrated that passive samplers could achieve comparable or even higher eDNA yields than traditional active filtration methods, indicating their potential for biosecurity surveillance. Species-specific droplet-digital PCR (ddPCR) assays provided sensitive and quantifiable eDNA signals, though assay validation remains crucial to avoid false negatives. Significant variation in eDNA signal detection highlighted the importance of considering both material selection and submersion time, depending on the targeted organisms. Furthermore, 18S rRNA metabarcoding was undertaken to assess how the overall detected biodiversity might interfere with species-specific detections. Certain sessile organisms, such as ascidians and polychaetes, dominated early representation on the passive filters but did not interfere with species-specific detection. By optimizing material selection, submersion time, and assay validation, passive eDNA sampling can enhance the sensitivity and reliability of eDNA-based monitoring, contributing to improved marine biosecurity and conservation efforts.
Collapse
Affiliation(s)
- Ulla von Ammon
- Marine Biosecurity, Cawthron Institute, Nelson, Tasman, New Zealand
| | - Gert-Jan Jeunen
- Department of Marine Science, University of Otago, Dunedin, Otago, New Zealand
| | - Olivier Laroche
- Marine Biosecurity, Cawthron Institute, Nelson, Tasman, New Zealand
| | - Xavier Pochon
- Marine Biosecurity, Cawthron Institute, Nelson, Tasman, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, Tasman, New Zealand
| | - Neil J. Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Jo-Ann L. Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | | |
Collapse
|
16
|
Bessey C, Martini A, Currie A, Ponsonby W, Tyndall A, Crossing R, Salazar VW, Dawkins KL, Pogonoski JJ, Moore G, Mortimer N, Keesing JK. Design and Validation of an Open-Close Device for Integrated Environmental DNA Sampling Detects A Depth Gradient in Indian Ocean Deep-Sea Fish Assemblages. Ecol Evol 2025; 15:e70902. [PMID: 39896778 PMCID: PMC11775381 DOI: 10.1002/ece3.70902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Advances in methods for collecting environmental DNA (eDNA) are revolutionizing biomonitoring capabilities. The goal of this study was to leverage existing survey technology to design and test an eDNA sampler that captures an integrated eDNA sample over the length of a deep-water transect. We manufactured a 300 × 100 × 100 mm mountable, open-ended box made of high-density polyethylene that could be attached to the frame of a preexisting deep tow camera system. The box (OCD; open-close device) was equipped with an actuator that attached to hinged doors at both ends, enabling it to be opened and closed remotely at depths up to 6000 m through preexisting communications, thereby exposing the internal chamber to the surrounding water upon activation. A sterile active carbon sponge was inserted into the internal chamber for eDNA capture during each deployment. The OCD sampler was field tested during a voyage to the Gascoyne Marine Park region off northwest Australia. We compared three different methods for processing the captured eDNA from the sampler: filtering OCD water, extracting eDNA from sponge pieces, and filtering sponge rinse water. Using fish as our example organism, we also compared the identities of fishes from eDNA detections with bottom trawl survey data collected during the same survey, and the known regional species pool, to confirm the eDNA identifications were plausible. A large number of fishes (193 taxa, from 87 families) were detected, and the majority were found within their expected depth ranges (> 75%), and in the trawl catches (60%). We discuss design and manufacturing lessons, ideas for increased eDNA capture efficiency for improved methodologies in sample processing, and how to establish appropriate field controls. We also discuss how this technology could advance our scientific understanding in ocean studies in terms of ecological metrics provided and the trade-offs compared to other sampling tools.
Collapse
Affiliation(s)
- Cindy Bessey
- Commonwealth Scienctific and Industrial Research OrganisationIndian Ocean Marine Research CentreCrawleyWestern AustraliaAustralia
| | - Andrew Martini
- Commonwealth Scientific and Industrial Research OrganisationNational Collection and Marine InfrastructureHobartTasmaniaAustralia
| | - Alasdair Currie
- Commonwealth Scientific and Industrial Research OrganisationNational Collection and Marine InfrastructureHobartTasmaniaAustralia
| | - Will Ponsonby
- Commonwealth Scientific and Industrial Research OrganisationNational Collection and Marine InfrastructureHobartTasmaniaAustralia
| | - Aaron Tyndall
- Commonwealth Scientific and Industrial Research OrganisationNational Collection and Marine InfrastructureHobartTasmaniaAustralia
| | - Ryan Crossing
- Commonwealth Scientific and Industrial Research OrganisationNational Collection and Marine InfrastructureCrawleyWestern AustraliaAustralia
| | | | - Kathryn L. Dawkins
- eDNA Frontiers, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - John J. Pogonoski
- Commonwealth Scientific and Industrial Research OrganisationAustralian National Fish CollectionHobartTasmaniaAustralia
| | - Glenn Moore
- Fish Section, Department of Aquatic ZoologyWestern Australian MuseumWelshpoolWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaNedlandsWestern AustraliaAustralia
| | - Nick Mortimer
- Commonwealth Scienctific and Industrial Research OrganisationIndian Ocean Marine Research CentreCrawleyWestern AustraliaAustralia
| | - John K. Keesing
- Commonwealth Scienctific and Industrial Research OrganisationIndian Ocean Marine Research CentreCrawleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
17
|
Kardailsky A, Durán-Vinet B, Nester G, Ayad ME, Raes EJ, Jeunen GJ, Miller AK, McVey P, Corrigan S, Fraser M, Goncalves P, Burnell S, Bennett A, Rauschert S, Bayer PE. Monitoring the Land and Sea: Enhancing Efficiency Through CRISPR-Cas Driven Depletion and Enrichment of Environmental DNA. CRISPR J 2025; 8:5-12. [PMID: 39761113 DOI: 10.1089/crispr.2024.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Characterizing biodiversity using environmental DNA (eDNA) represents a paradigm shift in our capacity for biomonitoring complex environments, both aquatic and terrestrial. However, eDNA biomonitoring is limited by biases toward certain species and the low taxonomic resolution of current metabarcoding approaches. Shotgun metagenomics of eDNA enables the collection of whole ecosystem data by sequencing all molecules present, allowing characterization and identification. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated proteins (Cas)-based methods have the potential to improve the efficiency of eDNA metagenomic sequencing of low-abundant target organisms and simplify data analysis by enrichment of target species or nontarget DNA depletion before sequencing. Implementation of CRISPR-Cas in eDNA has been limited due to a lack of interest and support in the past. This perspective synthesizes current approaches of CRISPR-Cas to study underrepresented taxa and advocate for further application and optimization of depletion and enrichment methods of eDNA using CRISPR-Cas, holding promise for eDNA biomonitoring.
Collapse
Affiliation(s)
| | | | - Georgia Nester
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Marcelle E Ayad
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Eric J Raes
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Gert-Jan Jeunen
- Marine Science Department, The University of Otago, Dunedin, New Zealand
| | - Allison K Miller
- Anatomy Department, The University of Otago, Dunedin, New Zealand
| | - Philip McVey
- OceanOmics, The Minderoo Foundation, Perth, Australia
| | - Shannon Corrigan
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Matthew Fraser
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Priscila Goncalves
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Stephen Burnell
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Adam Bennett
- OceanOmics, The Minderoo Foundation, Perth, Australia
| | - Sebastian Rauschert
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Philipp E Bayer
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| |
Collapse
|
18
|
Cook LSJ, Briscoe AG, Fonseca VG, Boenigk J, Woodward G, Bass D. Microbial, holobiont, and Tree of Life eDNA/eRNA for enhanced ecological assessment. Trends Microbiol 2025; 33:48-65. [PMID: 39164135 DOI: 10.1016/j.tim.2024.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024]
Abstract
Microbial environmental DNA and RNA (collectively 'eNA') originate from a diverse and abundant array of microbes present in environmental samples. These eNA signals, largely representing whole organisms, serve as a powerful complement to signals derived from fragments or remnants of larger organisms. Integrating microbial data into the toolbox of ecosystem assessments and biotic indices therefore has the potential to transform how we use eNA data to understand biodiversity dynamics and ecosystem functions, and to inform the next generation of environmental monitoring. Incorporating holobiont and Tree of Life approaches into eNA analyses offers further holistic insight into the range of ecological interactions between microbes and other organisms, paving the way for advancing our understanding of, and ultimately manipulating ecosystem properties pertinent to environmental management, conservation, wildlife health, and food production.
Collapse
Affiliation(s)
- Lauren S J Cook
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK; Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Andrew G Briscoe
- Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; NatureMetrics, Surrey Research Park, Guildford GU2 7HJ, UK
| | - Vera G Fonseca
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK; Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
19
|
Hettiarachchi E, Grassian VH. Impact of Surface Adsorption on DNA Structure and Stability: Implications for Environmental DNA Interactions with Iron Oxide Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27194-27205. [PMID: 39699067 PMCID: PMC11697337 DOI: 10.1021/acs.langmuir.4c02501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Environmental DNA (eDNA), i.e., DNA found in the environment, can interact with various geochemical surfaces, yet little is known about these interactions. Mineral surfaces may alter the structure, stability, and reactivity of eDNA, impacting the cycling of genetic information and the reliability of eDNA-based detection tools. Understanding how eDNA interacts with surfaces is crucial for predicting its fate in the environment. In this study, we examined the surface interaction and stability of herring testes DNA, a model system for eDNA, on two common iron oxide phases present in the environment: α-FeOOH (goethite) and α-Fe2O3 (hematite). Utilizing spectroscopic probes, including attenuated total reflection Fourier-transform infrared (ATR-FTIR) and UV-vis spectroscopy, we quantified the DNA adsorption capacity at pH 5 and determined its secondary structure. DNA adsorbed irreversibly at pH 5 and 25 °C, primarily through its phosphate groups, and retained the solution-phase B-form structure. However, the infrared data also indicated some distortion of the B-form likely due to additional interactions between nitrogenous bases when adsorbed on the α-Fe2O3 particle surfaces. The distortion in the double helical structure of adsorbed DNA on α-Fe2O3 led to a lower melting temperature (Tm) of 60 °C compared to 70 °C for DNA in solution. In contrast, DNA adsorbed on α-FeOOH melted at higher temperatures relative to solution-phase DNA and in two distinct phases. Upon testing adsorbed DNA stability at higher pH values, there were distinct differences between the two iron oxide phases. For α-FeOOH, nearly 50% of the DNA desorbed from the surface when the solution pH changed from 5 to 8, while less than 5% desorbed from α-Fe2O3 under the same conditions. Overall, these findings underscore the importance of mineral-specific eDNA-surface interactions and their role in adsorbed eDNA stability, in terms of DNA melting and the impact of solution-phase pH changes.
Collapse
Affiliation(s)
- Eshani Hettiarachchi
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
20
|
Bálint M, Tumusiime J, Nakintu J, Baranski D, Schardt L, Romahn J, Dusabe MC, Tolo CU, Kagoro GR, Ssenkuba F, Junginger A, Albrecht C. Environmental DNA barcoding reveals general biodiversity patterns in the large tropical rift Lake Albert. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177308. [PMID: 39521085 DOI: 10.1016/j.scitotenv.2024.177308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Lake Albert, Africa's seventh-largest lake and a biodiversity hotspot, faces significant environmental challenges, including unregulated anthropogenic pressure and a lack of comprehensive biological studies. To address the scarcity of biodiversity data, we utilized environmental DNA (eDNA) metabarcoding to assess the lake's eukaryotic and metazoan communities. Surface water samples were collected at three distinct locations: close to the southern inflow of the Semliki River, the central part of the lake, and close to the northern inflow of the Victoria Nile and outflow of the Albert Nile. We aimed to study ecological patterns across the lake, focusing on sequence variant richness and community composition, testing for differences among locations and between shoreline and pelagic zones. Consistent with previous morphology-based observations, our results revealed differences in community composition among the three sites, with cyclopoid copepods dominating the communities. Distance from shore was a significant factor influencing community composition, confirming expectations about the effects of nutrient and oxygen availability gradients. However, the lack of comprehensive reference sequence data limited accurate taxonomic assignments. Despite these limitations, our study demonstrates that eDNA metabarcoding is highly useful for assessing biodiversity in underexplored tropical freshwater ecosystems. We advocate for urgent efforts to generate reference sequences from tropical regions to enhance the utility of eDNA for biodiversity monitoring and conservation. Our findings underscore the potential of eDNA in providing insights into ecological patterns of entire communities and emphasize the need for comprehensive studies addressing the full taxonomic spectrum in tropical freshwater ecosystems.
Collapse
Affiliation(s)
- Miklós Bálint
- Institute of Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26, 35392 Gießen, Germany; Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| | - Julius Tumusiime
- Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda; Institute of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Justine Nakintu
- Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| | - Damian Baranski
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Leonie Schardt
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Juliane Romahn
- Institute of Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26, 35392 Gießen, Germany; Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Marie-Claire Dusabe
- Institute of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Casim Umba Tolo
- Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| | | | - Francis Ssenkuba
- Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| | - Annett Junginger
- Department of Geosciences, Eberhard Karls University, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Christian Albrecht
- Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda; Institute of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| |
Collapse
|
21
|
Osawa R, Jo TS, Nakamura R, Futami K, Itayama T, Chadeka EA, Ngetich B, Nagi S, Kikuchi M, Njenga SM, Ouma C, Sonye GO, Hamano S, Minamoto T. Methodological assessment for efficient collection of Schistosoma mansoni environmental DNA and improved schistosomiasis surveillance in tropical wetlands. Acta Trop 2024; 260:107402. [PMID: 39270921 DOI: 10.1016/j.actatropica.2024.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Schistosomiasis, caused by trematodes of genus Schistosoma, is among the most seriously neglected tropical diseases. Although rapid surveillance of risk areas for Schistosoma transmission is vital to control schistosomiasis, the habitat and infection status of this parasite are difficult to assess. Environmental DNA (eDNA) analysis, involving the detection of extra-organismal DNA in water samples, facilitates cost-efficient and sensitive biomonitoring of aquatic environments and is a promising tool to identify Schistosoma habitat and infection risk areas. However, in tropical wetlands, highly turbid water causes filter clogging, thereby decreasing the filtration volume and increasing the risk of false negatives. Therefore, in this study, we aimed to conduct laboratory experiments and field surveys in Lake Victoria, Mbita, to determine the appropriate filter pore size for S. mansoni eDNA collection in terms of particle size and filtration volume. In the laboratory experiment, aquarium water was sequentially filtered using different pore size filters. Targeting >3 µm size fraction was found to be sufficient to capture S. mansoni eDNA particles, regardless of their life cycle stage (egg, miracidia, and cercaria). In the field surveys, GF/D (2.7 µm nominal pore size) filter yielded 2.5-times the filtration volume obtained with a smaller pore size filter and pre-filtration methods under the same time constraints. Moreover, a site-occupancy model was applied to the field detection results to estimate S. mansoni eDNA occurrence and detection probabilities and assess the number of water samples and PCR replicates necessary for efficient eDNA detection. Overall, this study reveals an effective method for S. mansoni eDNA detection in turbid water, facilitating the rapid and sensitive monitoring of its distribution and cost-effective identification of schistosomiasis transmission risk areas.
Collapse
Affiliation(s)
- Ryosuke Osawa
- Graduate School of Human Development and Environment, Kobe University: 3-11, Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Toshiaki S Jo
- Graduate School of Human Development and Environment, Kobe University: 3-11, Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan; Research Fellow of Japan Society for the Promotion of Science: 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Faculty of Advanced Science and Technology, Ryukoku University: 1-5, Yokotani, Oe-cho, Seta, Otsu City, Shiga 520-2194, Japan
| | - Risa Nakamura
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Kyoko Futami
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Tomoaki Itayama
- Graduate School of Engineering, Nagasaki University: 1-12-4, Bunkyo-cyo, Nagasaki, 852-8131, Japan
| | - Evans Asena Chadeka
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Institute of Tropical Medicine (NUITM), Kenya Medical Research Institute (KEMRI): P O Box 19993-00202, Nairobi, Kenya
| | - Benard Ngetich
- Institute of Tropical Medicine (NUITM), Kenya Medical Research Institute (KEMRI): P O Box 19993-00202, Nairobi, Kenya
| | - Sachiyo Nagi
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Department of Hygiene and Public Health, Tokyo Women's Medical University: 8-1 Kawada-machi, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Mihoko Kikuchi
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Sammy M Njenga
- Eastern and Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI): P O Box 19993-00202, Nairobi, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University: Maseno, Kenya
| | - George O Sonye
- Ability to solve by Knowledge (ASK) Community Based Organization: P.O. Box 30, Mbita, Kenya
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University: 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan; Institute of Tropical Medicine (NUITM), Kenya Medical Research Institute (KEMRI): P O Box 19993-00202, Nairobi, Kenya
| | - Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University: 3-11, Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
22
|
Hassan S, Bali BS, Yaseen A, Zaman M, Muneer W, Ganiee SA, Shah AJ, Ganai BA. Bridging the gaps through environmental DNA: A review of critical considerations for interpreting the biodiversity data in coral reef ecosystems. MARINE POLLUTION BULLETIN 2024; 209:117242. [PMID: 39509908 DOI: 10.1016/j.marpolbul.2024.117242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
Coral reefs, the rainforests of the sea, are vital hotspots for marine biodiversity. However, the persistent challenge of climate change directly threatens the delicate balance of coral reef ecosystems, impacting myriad species and critical ecosystem services. Therefore, this comprehensive review critically discusses the associated challenges in assessing and preserving coral reef diversity, emphasizing the need for novel biomonitoring techniques due to the elusive and cryptic nature of many reef organisms. The review focuses on environmental DNA (eDNA) analysis as a non-invasive tool for coral species monitoring at various ecological levels. The review highlights that using eDNA in coral reef monitoring requires careful consideration of multiple factors, such as strategic assay development, optimization, and marker selection, substrate selection, and sample volume, which are critical for maximizing the probability of species detection. Moreover, integrating environmental RNA (eRNA) provides additional insights into temporal aspects advancing the coral reef biodiversity research and conservation efforts.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India.
| | - Bikram Singh Bali
- Department of Earth Science, University of Kashmir, Srinagar 190006, India
| | - Aarif Yaseen
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India
| | - Muzafar Zaman
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India
| | - Wani Muneer
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India
| | - Shahid Ahmad Ganiee
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
23
|
Thompson S, Jarman S, Griffin K, Spencer C, Cummins G, Partridge J, Langlois T. Novel Drop-Sampler for Simultaneous Collection of Stereo-Video, Environmental DNA and Oceanographic Data. Ecol Evol 2024; 14:e70705. [PMID: 39717650 PMCID: PMC11664325 DOI: 10.1002/ece3.70705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
There is an increasing interest in environmental DNA (eDNA) as a method to survey marine biota, enhancing traditional survey methods, and a need to ground truth eDNA-based interpretations with visual surveys to understand biases in both the eDNA and visual datasets. We designed and tested a rapidly deployable, robust method pairing water sampling for eDNA collection and stereo-video imagery, comparing inferred fish assemblages with interspersed baited remote underwater video (stereo-BRUV) samples. The system is capable of rapidly collecting simultaneous wide-field stereo-video imagery, oceanographic measurements and multiple water samples across a range of habitats and depths (up to 600 m). A platform demonstration was conducted in a no-take National Park Zone of the Ningaloo Marine Park, Western Australia, with samples being collected whilst the system is resting on the seafloor. Combining simultaneous visual survey data with eDNA species estimates increased the total diversity of the fish assemblage by ca. 6.5% over eDNA estimates alone, whilst the analysis of the assemblage composition sampled by each method revealed significant differences. The platform demonstration highlights the biases of each sampling method and their complementarity to one another. We suggest that these biases will be better understood by advancements that allow eDNA metabarcoding to discriminate the abundance and life stage of marine biota. Furthermore, investigation of the relationship between eDNA metabarcoding data and concomitant imagery-derived length, age and habitat data is needed.
Collapse
Affiliation(s)
- Samuel Thompson
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
- School of Molecular and Life SciencesCurtin UniversityPerthWAAustralia
| | - Simon Jarman
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
- School of Molecular and Life SciencesCurtin UniversityPerthWAAustralia
| | - Kingsley Griffin
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
| | - Claude Spencer
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
| | - Gabrielle Cummins
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
| | - Julian Partridge
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
| | - Tim Langlois
- School of Biological SciencesThe University of Western AustraliaPerthWAAustralia
- UWA Oceans InstituteThe University of Western AustraliaPerthWAAustralia
| |
Collapse
|
24
|
Nester GM, Suter L, Kitchener JA, Bunce M, Polanowski AM, Wasserman J, Deagle B. Long-distance Southern Ocean environmental DNA (eDNA) transect provides insights into spatial marine biota and invasion pathways for non-native species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175657. [PMID: 39173769 DOI: 10.1016/j.scitotenv.2024.175657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/04/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
The Southern Ocean surrounding Antarctica harbours some of the most pristine marine environments remaining, but is increasingly vulnerable to anthropogenic pressures, climate change, and invasion by non-native species. Monitoring biotic responses to cumulative impacts requires temporal and spatial baselines and ongoing monitoring - traditionally, this has been obtained by continuous plankton recorder (CPR) surveys. Here, we conduct one of the longest environmental DNA (eDNA) transects yet, spanning over 3000 nautical miles from Hobart (Australia) to Davis Station (Antarctica). We evaluate eDNA sampling strategies for long-term open ocean biomonitoring by comparing two water volume and filter pore size combinations: large (12 l with 20 μm) and small (2 l with 0.45 μm). Employing a broad COI metabarcoding assay, we found the large sample/pore combination was better suited to open ocean monitoring, detecting more target DNA and rare or low abundance species. Comparisons with four simultaneously conducted CPR transects revealed that eDNA detections were more diverse than CPR, with 7 (4 unique) and 4 (1 unique) phyla detections respectively. While both methods effectively delineated biodiversity patterns across the Southern Ocean, eDNA enables surveys in the presence of sea-ice where CPR cannot be conducted. Accordingly, 16 species of concern were detected along the transect using eDNA, notably in the Antarctic region (south of 60°S). These were largely attributed to hull biofouling, a recognized pathway for marine introductions into Antarctica. Given the vulnerability of Antarctic environments to potential introductions in a warming Southern Ocean, this work underscores the importance of continued biosecurity vigilance. We advocate integrating eDNA metabarcoding with long-term CPR surveys in the Southern Ocean, emphasising the urgency of its implementation. We anticipate temporal and spatial interweaving of CPR, eDNA, and biophysical data will generate a more nuanced picture of Southern Ocean ecosystems, with significant implications for the conservation and preservation of Antarctic ecosystems.
Collapse
Affiliation(s)
- Georgia M Nester
- TrEnD Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Leonie Suter
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia.
| | - John A Kitchener
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia.
| | - Michael Bunce
- TrEnD Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia; Department of Conservation, New Zealand
| | - Andrea M Polanowski
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia.
| | - Johan Wasserman
- Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Perth, WA 6150, Australia
| | - Bruce Deagle
- Australian National Fish Collection, National Research Collections Australia, Commonwealth Scientific and Industrial Research Organisation, Tasmania, Battery Point, Australia.
| |
Collapse
|
25
|
Leugger F, Schmidlin M, Lüthi M, Kontarakis Z, Pellissier L. Scanning amplicons with CRISPR-Dx detects endangered amphibians in environmental DNA. Mol Ecol Resour 2024; 24:e14009. [PMID: 39152661 DOI: 10.1111/1755-0998.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
More efficient methods for extensive biodiversity monitoring are required to support rapid measures to address the biodiversity crisis. While environmental DNA (eDNA) metabarcoding and quantitative PCR (qPCR) methods offer advantages over traditional monitoring approaches, their large-scale application is limited by the time and labour required for developing assays and/or for analysis. CRISPR (clustered regularly interspaced short palindromic repeats) diagnostic technologies (Dx) may overcome some of these limitations, but they have been used solely with species-specific primers, restricting their versatility for biodiversity monitoring. Here, we demonstrate the feasibility of designing species-specific CRISPR-Dx assays in silico within a short metabarcoding fragment using a general primer set, a methodology we term 'ampliscanning', for 18 of the 22 amphibian species in Switzerland. We sub-selected nine species, including three classified as regionally endangered, to test the methodology using eDNA sampled from ponds at nine sites. We compared the ampliscanning detections to data from traditional monitoring at these sites. Ampliscanning was successful at detecting target species with different prevalences across the landscape. With only one visit, we detected more species per site than three traditional monitoring visits (visual and acoustic detections by trained experts), in particular more elusive species and previously undocumented but expected populations. Ampliscanning detected 25 species/site combinations compared to 12 with traditional monitoring. Sensitivity analyses showed that larger numbers of field visits and PCR replicates are more important for reliable detection than many technical replicates at the CRISPR-Dx assay level. Given the reduced sampling and analysis effort, our results highlight the benefits of eDNA and CRISPR-Dx combined with universal primers for large-scale monitoring of multiple endangered species across landscapes to inform conservation measures.
Collapse
Affiliation(s)
- Flurin Leugger
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Michel Schmidlin
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Martina Lüthi
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Zacharias Kontarakis
- Genome Engineering and Measurement Lab, Functional Genomic Center Zurich, ETH Zürich, Zürich, Switzerland
| | - Loïc Pellissier
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| |
Collapse
|
26
|
Afonso L, Costa J, Correia AM, Valente R, Lopes E, Tomasino MP, Gil Á, Oliveira-Rodrigues C, Sousa Pino I, López A, Suarez-Bregua P, Magalhães C. Environmental DNA as a complementary tool for biodiversity monitoring: A multi-technique and multi-trophic approach to investigate cetacean distribution and feeding ecology. PLoS One 2024; 19:e0300992. [PMID: 39413078 PMCID: PMC11482729 DOI: 10.1371/journal.pone.0300992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/29/2024] [Indexed: 10/18/2024] Open
Abstract
The use of environmental DNA (eDNA) to assess the presence of biological communities has emerged as a promising monitoring tool in the marine conservation landscape. Moreover, advances in Next-Generation Sequencing techniques, such as DNA metabarcoding, enable multi-species detection in mixed samples, allowing the study of complex ecosystems such as oceanic ones. We aimed at using these molecular-based techniques to characterize cetacean communities, as well as potential prey on the northern coast of Mainland Portugal. During four seasonal campaigns (summer 2021 to winter 2022/2023), seawater samples were collected along with visual records of cetacean occurrence. The eDNA isolated from 64 environmental samples was sequenced in an Illumina platform, with universal primers targeting marine vertebrates. Five cetacean species were identified by molecular detection: common dolphin (Delphinus delphis), bottlenose dolphin (Tursiops truncatus), Risso's dolphin (Grampus griseus), harbor porpoise (Phocoena phocoena) and fin whale (Balaenoptera physalus). Overall, except for the latter (not sighted during the campaigns), this cetacean community composition was similar to that obtained through visual monitoring, and the complementary results suggest their presence in the region all year round. In addition, the positive molecular detections of Balaenoptera physalus are of special relevance since there are no records of this species reported on scientific bibliography in the area. The detection of multiple known prey of the identified dolphins indicates an overlap between predator and prey in the study area, which suggests that these animals may use this coastal area for feeding purposes. While this methodological approach remains in a development stage, the present work highlights the benefits of using eDNA to study marine communities, with specific applications for research on cetacean distribution and feeding ecology.
Collapse
Affiliation(s)
- Luís Afonso
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Biology, UA–University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Joana Costa
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Ana Mafalda Correia
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Biology, FCUP–Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Raul Valente
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Biology, FCUP–Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Eva Lopes
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Biology, FCUP–Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Maria Paola Tomasino
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Ágatha Gil
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Biology and Environment, CITAB–Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- IIM-CSIC–Institute of Marine Research of the Spanish National Research Council, Vigo, Pontevedra, Spain
| | - Cláudia Oliveira-Rodrigues
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Biology, FCUP–Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Isabel Sousa Pino
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Biology, FCUP–Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Alfredo López
- Department of Biology, UA–University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM–Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- CEMMA–Coordinator for the Study of Marine Mammals, Nigrán, Spain
| | - Paula Suarez-Bregua
- IEO-CSIC–Spanish Institute of Oceanography of the Spanish National Research Council, Vigo, Pontevedra, Spain
| | - Catarina Magalhães
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Biology, FCUP–Faculty of Sciences of the University of Porto, Porto, Portugal
| |
Collapse
|
27
|
Cai W, MacDonald B, Korabik M, Gradin I, Neave EF, Harper LR, Kenchington E, Riesgo A, Whoriskey FG, Mariani S. Biofouling sponges as natural eDNA samplers for marine vertebrate biodiversity monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174148. [PMID: 38906285 DOI: 10.1016/j.scitotenv.2024.174148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Environmental DNA (eDNA) analysis has now become a core approach in marine biodiversity research, which typically involves the collection of water or sediment samples. Yet, recently, filter-feeding organisms have received much attention for their potential role as natural eDNA samplers. While the indiscriminate use of living organisms as 'sampling tools' might in some cases raise conservation concerns, there are instances in which highly abundant sessile organisms may become a nuisance as biofouling on artificial marine structures. Here we demonstrate how a sea sponge species that colonizes the moorings of the world's largest curtain of hydroacoustic receivers can become a powerful natural collector of fish biodiversity information. By sequencing eDNA extracted from Vazella pourtalesii retrieved from moorings during routine biofouling maintenance, we detected 23 species of marine fish and mammals, compared to 19 and 15 species revealed by surface and bottom water eDNA respectively, and 28 species captured by groundfish survey in the surrounding area, which are more ecologically impactful and involve higher additional costs. Sponge-based species inventories proved at least as informative as those obtained by traditional survey methods, and are also able to detect seasonal differences in fish assemblages. We conclude that opportunistic sampling of marine sponge biofouling may become an efficient way to document and monitor biodiversity in our rapidly changing oceans.
Collapse
Affiliation(s)
- Wang Cai
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Barry MacDonald
- Ocean and Ecosystem Sciences Division, Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada
| | - Michelle Korabik
- Ocean and Ecosystem Sciences Division, Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada
| | - Iago Gradin
- Ocean Tracking Network, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2, Canada
| | - Erika F Neave
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK
| | - Lynsey R Harper
- The Freshwater Biological Association, The Hedley Wing, YMCA North Campus, Lakeside, Newby Bridge, Cumbria LA12 8BD, UK
| | - Ellen Kenchington
- Ocean and Ecosystem Sciences Division, Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada
| | - Ana Riesgo
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK; Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Frederick G Whoriskey
- Ocean Tracking Network, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2, Canada
| | - Stefano Mariani
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
28
|
Jeunen GJ, Mills S, Mariani S, Treece J, Ferreira S, Stanton JAL, Durán-Vinet B, Duffy GA, Gemmell NJ, Lamare M. Streamlining large-scale oceanic biomonitoring using passive eDNA samplers integrated into vessel's continuous pump underway seawater systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174354. [PMID: 38955269 DOI: 10.1016/j.scitotenv.2024.174354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Passive samplers are enabling the scaling of environmental DNA (eDNA) biomonitoring in our oceans, by circumventing the time-consuming process of water filtration. Designing a novel passive sampler that does not require extensive sample handling time and can be connected to ocean-going vessels without impeding normal underway activities has potential to rapidly upscale global biomonitoring efforts onboard the world's oceanic fleet. Here, we demonstrate the utility of an artificial sponge sampler connected to the continuous pump underway seawater system as a means to enable oceanic biomonitoring. We compared the performance of this passive sampling protocol with standard water filtration at six locations during a research voyage from New Zealand to Antarctica in early 2023. Eukaryote metabarcoding of the mitochondrial COI gene revealed no significant difference in phylogenetic α-diversity between sampling methods and both methods delineated a progressive reduction in number of Zero-Radius Operational Taxonomic Units (ZOTUs) with increased latitudes. While both sampling methods revealed comparable trends in geographical community compositions, distinct clusters were identified for passive samplers and water filtration at each location. Additionally, greater variability between replicates was observed for passive samplers, resulting in an increased estimated level of replication needed to recover 90 % of the biodiversity. Furthermore, traditional water filtration failed to detect three phyla observed by passive samplers and extrapolation analysis estimated passive samplers recover a larger number of ZOTUs compared to water filtration for all six locations. Our results demonstrate the potential of this passive eDNA sampler protocol and highlight areas where this emerging technology could be improved, thereby enabling large-scale offshore marine eDNA biomonitoring by leveraging the world's oceanic fleet without interfering with onboard activities.
Collapse
Affiliation(s)
- Gert-Jan Jeunen
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand.
| | - Sadie Mills
- National Institute of Water and Atmospheric Research, Wellington 6021, New Zealand
| | - Stefano Mariani
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Jackson Treece
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Sara Ferreira
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Benjamín Durán-Vinet
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Grant A Duffy
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Miles Lamare
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
29
|
Jeunen GJ, Mills S, Lamare M, Duffy GA, Knapp M, Stanton JAL, Mariani S, Treece J, Ferreira S, Durán-Vinet B, Zavodna M, Gemmell NJ. Unlocking Antarctic molecular time-capsules - Recovering historical environmental DNA from museum-preserved sponges. Mol Ecol Resour 2024; 24:e14001. [PMID: 39051108 DOI: 10.1111/1755-0998.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Marine sponges have recently emerged as efficient natural environmental DNA (eDNA) samplers. The ability of sponges to accumulate eDNA provides an exciting opportunity to reconstruct contemporary communities and ecosystems with high temporal and spatial precision. However, the use of historical eDNA, trapped within the vast number of specimens stored in scientific collections, opens up the opportunity to begin to reconstruct the communities and ecosystems of the past. Here, we define the term 'heDNA' to denote the historical environmental DNA that can be obtained from the recent past with high spatial and temporal accuracy. Using a variety of Antarctic sponge specimens stored in an extensive marine invertebrate collection, we were able to recover information on Antarctic fish biodiversity from specimens up to 20 years old. We successfully recovered 64 fish heDNA signals from 27 sponge specimens. Alpha diversity measures did not differ among preservation methods, but sponges stored frozen had a significantly different fish community composition compared to those stored dry or in ethanol. Our results show that we were consistently and reliably able to extract the heDNA trapped within marine sponge specimens, thereby enabling the reconstruction and investigation of communities and ecosystems of the recent past with a spatial and temporal resolution previously unattainable. Future research into heDNA extraction from other preservation methods, as well as the impact of specimen age and collection method, will strengthen and expand the opportunities for this novel resource to access new knowledge on ecological change during the last century.
Collapse
Affiliation(s)
- Gert-Jan Jeunen
- Department of Marine Science, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sadie Mills
- National Institute of Water & Atmospheric Research, Wellington, New Zealand
| | - Miles Lamare
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Grant A Duffy
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Michael Knapp
- Coastal People: Southern Skies Centre of Research Excellence, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Jackson Treece
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sara Ferreira
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Monika Zavodna
- Otago Genomics Facility, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Oliver JC, Shum P, Mariani S, Sink KJ, Palmer R, Matcher GF. Enhancing African coelacanth monitoring using environmental DNA. Biol Lett 2024; 20:20240415. [PMID: 39439356 PMCID: PMC11496946 DOI: 10.1098/rsbl.2024.0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Coelacanths are rare, elusive, ancient lobe-finned fish species, residing in poorly accessible tropical marine caves and requiring close monitoring and protection. Environmental DNA (eDNA) approaches are being increasingly applied in the detection of rare and threatened species. Here we devise an eDNA approach to detect the presence of African coelacanths (Latimeria chalumnae) off the eastern coast of South Africa. Novel coelacanth-specific primers were designed to avoid cross-amplification with other fish lineages and validated for specificity. These primers were tested on field samples in conjunction with remotely operated vehicle (ROV) visual surveys. Samples were collected from a known coelacanth habitat and two adjacent slope habitats a few kilometres apart. Coelacanth DNA was detected from three of 15 samples collected. Two of these positive eDNA detections occurred in the presence of coelacanths, as evidenced by ROV footage, while the third positive detection was at a station where coelacanths had not been previously observed. eDNA detections are discussed in relation to the species' metabolic rate, movement patterns and population size, as well as the local oceanographic features. We demonstrate that eDNA can provide a non-invasive method to extend the knowledge of coelacanth distribution ranges and boost research efforts around these iconic fishes.
Collapse
Affiliation(s)
- Jody-Carynn Oliver
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, South Africa
| | - Peter Shum
- School of Biological and Environmental Sciences, Liverpool John Moores University, LiverpoolL3 3AF, UK
| | - Stefano Mariani
- School of Biological and Environmental Sciences, Liverpool John Moores University, LiverpoolL3 3AF, UK
| | - Kerry Jennifer Sink
- South African National Biodiversity Institute (SANBI), Cape Town, South Africa
- Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha (Port Elizabeth), South Africa
| | - Ryan Palmer
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, South Africa
| | - Gwynneth Felicity Matcher
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, South Africa
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| |
Collapse
|
31
|
Oliveira Carvalho C, Pazirgiannidi M, Ravelomanana T, Andriambelomanana F, Schrøder-Nielsen A, Stuart Ready J, de Boer H, Fusari CE, Mauvisseau Q. Multi-method survey rediscovers critically endangered species and strengthens Madagascar's freshwater fish conservation. Sci Rep 2024; 14:20427. [PMID: 39227484 PMCID: PMC11372049 DOI: 10.1038/s41598-024-71398-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Freshwater ecosystems are crucial for global biodiversity through supporting plant and animal species and providing essential resources. These ecosystems are under significant threat, particularly in island environments such as Madagascar. Our study focuses on the Amboaboa River basin, home to the rare and endemic fish species Rheocles derhami, last recorded in 2013. To assess the status of this and other threatened fish species including Ptychochromis insolitus and Paretroplus gymnopreopercularis, and to understand freshwater fish population dynamics in this biodiversity hotspot, we conducted a comprehensive survey using both environmental DNA (eDNA) and traditional fishing methods. While traditional methods effectively captured a diverse range of species, including several invasive aliens and the critically endangered endemic species that were the focus of this study, the eDNA approach detected only a fraction of these introduced species and struggled to identify some critically endangered endemics at the species level. This highlights the value of combining methods to enhance species detection. We also investigated the trade-offs associated with multi-primer assessments in eDNA analysis, focusing on three different primer combinations targeting the 12S mitochondrial gene: MiFish, Tele02, and Riaz. Additionally, we provided 12S reference barcodes for 10 species across 9 genera of fishes from the region to increase the coverage of the public reference databases. Overall, our study elucidates the current state of freshwater biodiversity in the Amboaboa River basin and underscores the value of employing multiple methods for effective conservation strategies.
Collapse
Affiliation(s)
- Cintia Oliveira Carvalho
- Natural History Museum, University of Oslo, Oslo, Norway
- Group for Integrated Biological Investigation, Center for Advanced Studies of Biodiversity, Federal University of Pará, Belém, Brazil
| | | | - Tsilavina Ravelomanana
- Biology of Aquatic Population Laboratory, Antananarivo University, Antananarivo, Madagascar.
| | | | | | - Jonathan Stuart Ready
- Group for Integrated Biological Investigation, Center for Advanced Studies of Biodiversity, Federal University of Pará, Belém, Brazil
| | - Hugo de Boer
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
32
|
Di Capua I, Luise F, Zampicinini G, Roncalli V, Carotenuto Y, Piredda R. Integrative approach to monitoring metazoan diversity and distribution in two Mediterranean coastal sites through morphology and organismal eDNA. Sci Rep 2024; 14:19291. [PMID: 39164301 PMCID: PMC11336219 DOI: 10.1038/s41598-024-69520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
Marine and coastal ecosystems respond to climate change in various ways, such as the type of ecosystem, the species composition, interactions, and distribution, and the effect of local stressors. Metazoan organisms, particularly zooplankton, are important indicators for monitoring the effects climate-driven warming in marine coastal ecosystems over the long term. In this study, the diversity and distribution of zooplankton communities in the Mediterranean Sea (Canyon Dohrn and LTER-MareChiara, Gulf of Naples), a known biodiversity and climate changes hotspot, have been assessed using the integration of morphological-based identification and organismal eDNA. Our findings showed that the multi-locus strategy including the mitochondrial cytochrome c oxidase I (COI) gene and the hypervariable region V9 of the 18S rDNA (18S V9) as targets, improved the taxonomic overview, with the COI gene being more effective than the 18S V9 region for metazoans at the species level. However, appendicularians were detected only with the 18S V9 region. Overall, organismal eDNA is a powerful approach for revealing hidden biodiversity, especially for gelatinous and meroplankton components, and provided new insights into biodiversity patterns. The ecological importance of calanoid copepods in coastal ecosystems has been confirmed. In contrast, the discovery of 13 new metazoan records in the Mediterranean Sea, including two non-indigenous copepod species, suggested that local stressors affect zooplankton community structure and resilience, highlighting the importance of biomonitoring and protecting marine coastal ecosystems.
Collapse
Affiliation(s)
- Iole Di Capua
- Marine Organism Taxonomy Core Facility - MOTax, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy.
| | | | | | - Vittoria Roncalli
- Marine Organism Taxonomy Core Facility - MOTax, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Ylenia Carotenuto
- Marine Organism Taxonomy Core Facility - MOTax, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Roberta Piredda
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
33
|
Nolan KP, Grunspan DZ, Myler E, Brimble N, Heyland A, Hanner RH. DNA at the whim of the water: environmental DNA as a course-based undergraduate research experience. Genome 2024; 67:256-266. [PMID: 38593476 DOI: 10.1139/gen-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Course-based undergraduate research experiences (CUREs) increase student access to high impact research experiences. CUREs engage students in the scientific process by learning how to pose scientific questions, develop hypotheses, and generate data to test them. Environmental DNA (eDNA) is a growing field of research that is gaining accessibility through decreasing laboratory costs, which can make a foundation for multiple, engaging CUREs. This manuscript describes three case studies that used eDNA in an upper year undergraduate course. The first focusses on a systematic literature review of eDNA metadata reporting. The second describes the biomonitoring of brook trout in southern Ontario using eDNA. The third involves eDNA metabarcoding for freshwater fish detection in southern Ontario. Undergraduates were involved in the development and execution of experiments, scientific communication, the peer review process, and fundraising. Through this manuscript, we show the novel application of eDNA CUREs and provide a roadmap for other instructors interested in implementing similar projects. Interviews with seven students from these courses indicate the benefits experienced from taking these courses. We argue that the use of eDNA in CUREs should be expanded in undergraduate biology programs due to the benefit to students and the increasing accessibility of this technology.
Collapse
Affiliation(s)
- Kathleen P Nolan
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Daniel Z Grunspan
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Erika Myler
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Nava Brimble
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Robert H Hanner
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
34
|
Jarman S, Alexander JB, Dawkins KL, Lukehurst SS, Nester GM, Wilkinson S, Marnane MJ, McDonald JI, Elsdon TS, Harvey ES. Marine eDNA sampling from submerged surfaces with paint rollers. Mar Genomics 2024; 76:101127. [PMID: 38905943 DOI: 10.1016/j.margen.2024.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Environmental DNA (eDNA) analyses of species present in marine environments is the most effective biological diversity measurement tool currently available. eDNA sampling methods are an intrinsically important part of the eDNA biodiversity analysis process. Identification and development of eDNA sampling methods that are as rapid, affordable, versatile and practical as possible will improve rates of detection of marine species. Optimal outcomes of eDNA biodiversity surveys come from studies employing high levels of sampling replication, so any methods that make sampling faster and cheaper will improve scientific outcomes. eDNA sampling methods that can be applied more widely will also enable sampling from a greater range of marine surface micro-habitats, resulting in detection of a wider range of organisms. In this study, we compared diversity detection by several methods for sampling eDNA from submerged marine surfaces: polyurethane foam, nylon swabs, microfibre paint rollers, and sediment scoops. All of the methods produced a diverse range of species identifications, with >250 multicellular species represented by eDNA at the study site. We found that widely-available small paint rollers were an effective, readily available and affordable method for sampling eDNA from underwater marine surfaces. This approach enables the sampling of marine eDNA using extended poles, or potentially by remotely operated vehicles, where surface sampling by hand is impractical.
Collapse
Affiliation(s)
- Simon Jarman
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; eDNA Frontiers, Curtin University, Bentley, WA, Australia.
| | - Jason B Alexander
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | | | | | - Georgia M Nester
- Minderoo-UWA Deep Sea Research Centre, University of Western Australia, Crawley, WA, Australia
| | - Shaun Wilkinson
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Wilderlab, Miramar, Wellington, New Zealand
| | - Michael J Marnane
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Chevron Technical Center, Perth, Western Australia, Australia
| | - Justin I McDonald
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Sustainability and Biosecurity, Department of Primary Industries and Regional Development (DPIRD), Hillarys, 6025, Western Australia, Australia
| | - Travis S Elsdon
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Chevron Technical Center, Perth, Western Australia, Australia
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
35
|
Blackman RC, Carraro L, Keck F, Altermatt F. Measuring the state of aquatic environments using eDNA-upscaling spatial resolution of biotic indices. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230121. [PMID: 38705183 PMCID: PMC11070250 DOI: 10.1098/rstb.2023.0121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/10/2023] [Indexed: 05/07/2024] Open
Abstract
Aquatic macroinvertebrates, including many aquatic insect orders, are a diverse and ecologically relevant organismal group yet they are strongly affected by anthropogenic activities. As many of these taxa are highly sensitive to environmental change, they offer a particularly good early warning system for human-induced change, thus leading to their intense monitoring. In aquatic ecosystems there is a plethora of biotic monitoring or biomonitoring approaches, with more than 300 assessment methods reported for freshwater taxa alone. Ultimately, monitoring of aquatic macroinvertebrates is used to calculate ecological indices describing the state of aquatic systems. Many of the methods and indices used are not only hard to compare, but especially difficult to scale in time and space. Novel DNA-based approaches to measure the state and change of aquatic environments now offer unprecedented opportunities, also for possible integration towards commonly applicable indices. Here, we first give a perspective on DNA-based approaches in the monitoring of aquatic organisms, with a focus on aquatic insects, and how to move beyond traditional point-based biotic indices. Second, we demonstrate a proof-of-concept for spatially upscaling ecological indices based on environmental DNA, demonstrating how integration of these novel molecular approaches with hydrological models allows an accurate evaluation at the catchment scale. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Rosetta C. Blackman
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, Zürich 8057, Switzerland
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Luca Carraro
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, Zürich 8057, Switzerland
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - François Keck
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, Zürich 8057, Switzerland
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, Zürich 8057, Switzerland
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| |
Collapse
|
36
|
DiBattista JD, Fowler AM, Shalders TC, Williams RJ, Wilkinson S. Tree of life metabarcoding can serve as a biotic benchmark for shifting baselines in urbanized estuaries. ENVIRONMENTAL RESEARCH 2024; 258:119454. [PMID: 38906450 DOI: 10.1016/j.envres.2024.119454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Urbanization of estuaries drastically changed existing shorelines and bathymetric contours, in turn modifying habitat for marine foundational species that host critical biodiversity. And yet we lack approaches to characterize a significant fraction of the biota that inhabit these ecosystems on time scales that align with rates of urbanization. Environmental DNA (or eDNA) metabarcoding that combines multiple assays targeting a broad range of taxonomic groups can provide a solution, but we need to determine whether the biological communities it detects ally with different habitats in these changing aquatic environments. In this study, we tested whether tree of life metabarcoding (ToL-metabarcoding) data extracted from filtered seawater samples correlated with four known geomorphic habitat zones across a heavily urbanized estuary (Sydney Harbour, Australia). Using this method, we substantially expanded our knowledge on the composition and spatial distribution of marine biodiversity across the tree of life in Sydney Harbour, particularly for organisms where existing records are sparse. Excluding terrestrial DNA inputs, we identified significant effects of both distance from the mouth of Sydney Harbour and geomorphic zone on biological community structure in the ToL-metabarcoding dataset (entire community), as well as in each of the taxonomic subgroups that we considered (fish, macroinvertebrates, algae and aquatic plants, bacteria). This effect appeared to be driven by taxa as a collective versus a few individual taxa, with each taxon explaining no more than 0.62% of the variation between geomorphic zones. Similarly, taxonomic richness was significantly higher within geomorphic zones with large sample sizes, but also decreased by 1% with each additional kilometer from the estuary mouth, a result consistent with a reduction in tidal inputs and available habitat in upper catchments. Based on these results, we suggest that ToL-metabarcoding can be used to benchmark biological monitoring in other urbanized estuaries globally, and in Sydney Harbour at future time points based on detection of bioindicators across the tree of life. We also suggest that robust biotic snapshots can be archived following extensive curation of taxonomic assignments that incorporates ecological affinities, supported by records from relevant and regional biodiversity repositories.
Collapse
Affiliation(s)
- Joseph D DiBattista
- School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia; Australian Museum Research Institute, Australian Museum, Sydney, NSW, 2010, Australia.
| | - Ashley M Fowler
- New South Wales Department of Primary Industries, Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia.
| | - Tanika C Shalders
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia.
| | - Robert J Williams
- New South Wales Department of Primary Industries, Fisheries (retired), Australia.
| | - Shaun Wilkinson
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.
| |
Collapse
|
37
|
Valsecchi E, Gabbiadini A. An Observatory to monitor range extension of the Mediterranean monk seal based on its eDNA traces: collecting data and delivering results in the "Open Science" era. Biodivers Data J 2024; 12:e120201. [PMID: 38883207 PMCID: PMC11176811 DOI: 10.3897/bdj.12.e120201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
The monk seal is the most endangered pinniped in the world and the only one found in the Mediterranean, where its distribution and abundance have suffered a drastic decline in the last few decades. Data on its status are scattered due to both its rarity and evasiveness and records are biased towards occasional, mostly coastal encounters. Nowadays, molecular techniques allow us to detect and quantify minute amounts of DNA traces released into the environment (eDNA) by any organism. A species-specific molecular assay is now available for detecting the recent presence of the monk seal in the water column through the analysis of sea-water samples collected from the sea surface. The project "Spot the Monk" uses this non-invasive detection tool to monitor monk seal occurrence in Mediterranean waters by means of eDNA analysis. The simplicity in the acquisition of samples together with the need to collect samples in multiple points simultaneously made the project well suited to the involvement of the general public. Up to today, about 350 samples have been collected and analysed in the central-western Mediterranean by researchers and a multifarious range of citizen scientists - from recreational sailing organisations, both amateur and competitive sportsmen, to fishermen. This work announces the launch of an open-source Observatory (https://www.spot-the-monk-observatory.com/) where the project outcomes are publicly accessible as soon as they are produced. Embracing the principles of Open Science, we believe that such an approach can contribute to filling the knowledge gap about the distribution of this charismatic species in our seas, providing, at the same time, a proof of concept on how data collected by a variety of actors can be returned to the scientific and non-scientific communities in an innovative format for immediate consultation.
Collapse
Affiliation(s)
- Elena Valsecchi
- University of Milano-Bicocca, Milano, Italy University of Milano-Bicocca Milano Italy
- MaRHE Center, Magoodhoo, Maldives MaRHE Center Magoodhoo Maldives
| | - Alessandro Gabbiadini
- University of Milano-Bicocca, Milano, Italy University of Milano-Bicocca Milano Italy
| |
Collapse
|
38
|
Blackman R, Couton M, Keck F, Kirschner D, Carraro L, Cereghetti E, Perrelet K, Bossart R, Brantschen J, Zhang Y, Altermatt F. Environmental DNA: The next chapter. Mol Ecol 2024; 33:e17355. [PMID: 38624076 DOI: 10.1111/mec.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Molecular tools are an indispensable part of ecology and biodiversity sciences and implemented across all biomes. About a decade ago, the use and implementation of environmental DNA (eDNA) to detect biodiversity signals extracted from environmental samples opened new avenues of research. Initial eDNA research focused on understanding population dynamics of target species. Its scope thereafter broadened, uncovering previously unrecorded biodiversity via metabarcoding in both well-studied and understudied ecosystems across all taxonomic groups. The application of eDNA rapidly became an established part of biodiversity research, and a research field by its own. Here, we revisit key expectations made in a land-mark special issue on eDNA in Molecular Ecology in 2012 to frame the development in six key areas: (1) sample collection, (2) primer development, (3) biomonitoring, (4) quantification, (5) behaviour of DNA in the environment and (6) reference database development. We pinpoint the success of eDNA, yet also discuss shortfalls and expectations not met, highlighting areas of research priority and identify the unexpected developments. In parallel, our retrospective couples a screening of the peer-reviewed literature with a survey of eDNA users including academics, end-users and commercial providers, in which we address the priority areas to focus research efforts to advance the field of eDNA. With the rapid and ever-increasing pace of new technical advances, the future of eDNA looks bright, yet successful applications and best practices must become more interdisciplinary to reach its full potential. Our retrospect gives the tools and expectations towards concretely moving the field forward.
Collapse
Affiliation(s)
- Rosetta Blackman
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Marjorie Couton
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - François Keck
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Dominik Kirschner
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Ecosystems and Landscape Evolution, ETH Zürich, Zürich, Switzerland
- Department of Landscape Dynamics & Ecology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Luca Carraro
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Eva Cereghetti
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Kilian Perrelet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Department of Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Urban Water Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Raphael Bossart
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jeanine Brantschen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Yan Zhang
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
39
|
Combe M, Cherif E, Deremarque T, Rivera-Ingraham G, Seck-Thiam F, Justy F, Doudou JC, Carod JF, Carage T, Procureur A, Gozlan RE. Wastewater sequencing as a powerful tool to reveal SARS-CoV-2 variant introduction and spread in French Guiana, South America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171645. [PMID: 38479523 DOI: 10.1016/j.scitotenv.2024.171645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
The origin of introduction of a new pathogen in a country, the evolutionary dynamics of an epidemic within a country, and the role of cross-border areas on pathogen dynamics remain complex to disentangle and are often poorly understood. For instance, cross-border areas represent the ideal location for the sharing of viral variants between countries, with international air travel, land travel and waterways playing an important role in the cross-border spread of infectious diseases. Unfortunately, monitoring the point of entry and the evolutionary dynamics of viruses in space and time within local populations remain challenging. Here we tested the efficiency of wastewater-based epidemiology and genotyping in monitoring Covid-19 epidemiology and SARS-CoV-2 variant dynamics in French Guiana, a tropical country located in South America. Our results suggest that wastewater-based epidemiology and genotyping are powerful tools to monitor variant introduction and disease evolution within a tropical country but the inclusion of both clinical and wastewater samples could still improve our understanding of genetic diversity co-circulating. Wastewater sequencing also revealed the cryptic transmission of SARS-CoV-2 variants within the country. Interestingly, we found some amino acid changes specific to the variants co-circulating in French Guiana, suggesting a local evolution of the SARS-CoV-2 variants after their introduction. More importantly, our results showed that the proximity to bordering countries was not the origin of the emergence of the French Guianese B.1.160.25 variant, but rather that this variant emerged from an ancestor B.1.160 variant introduced by European air plane travelers, suggesting thus that air travel remains a significant risk for cross-border spread of infectious diseases. Overall, we suggest that wastewater-based epidemiology and genotyping provides a cost effective and non-invasive approach for pathogen monitoring and an early-warning tool for disease emergence and spread within a tropical country.
Collapse
Affiliation(s)
- Marine Combe
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France.
| | - Emira Cherif
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | | - Georgina Rivera-Ingraham
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France; Centre IRD de Cayenne, Guyane Française, France
| | | | | | | | - Jean-François Carod
- Laboratoire et Pôle Appui aux Fonctions Cliniques, Centre Hospitalier de l'Ouest Guyanais (CHOG), 97320 Saint-Laurent du Maroni, Guyane Française, France
| | - Thierry Carage
- Laboratoire de Biologie Médicale Carage de Kourou, 6 avenue Leopold Heder, 97310 Kourou, Guyane Française, France
| | - Angélique Procureur
- Laboratoire de Biologie Médicale Carage de Kourou, 6 avenue Leopold Heder, 97310 Kourou, Guyane Française, France
| | | |
Collapse
|
40
|
Carvalho CO, Gromstad W, Dunthorn M, Karlsen HE, Schrøder-Nielsen A, Ready JS, Haugaasen T, Sørnes G, de Boer H, Mauvisseau Q. Harnessing eDNA metabarcoding to investigate fish community composition and its seasonal changes in the Oslo fjord. Sci Rep 2024; 14:10154. [PMID: 38698067 PMCID: PMC11065990 DOI: 10.1038/s41598-024-60762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
In the face of global ecosystem changes driven by anthropogenic activities, effective biomonitoring strategies are crucial for mitigating impacts on vulnerable aquatic habitats. Time series analysis underscores a great significance in understanding the dynamic nature of marine ecosystems, especially amidst climate change disrupting established seasonal patterns. Focusing on Norway's Oslo fjord, our research utilises eDNA-based monitoring for temporal analysis of aquatic biodiversity during a one year period, with bi-monthly sampling along a transect. To increase the robustness of the study, a taxonomic assignment comparing BLAST+ and SINTAX approaches was done. Utilising MiFish and Elas02 primer sets, our study detected 63 unique fish species, including several commercially important species. Our findings reveal a substantial increase in read abundance during specific migratory cycles, highlighting the efficacy of eDNA metabarcoding for fish composition characterization. Seasonal dynamics for certain species exhibit clear patterns, emphasising the method's utility in unravelling ecological complexities. eDNA metabarcoding emerges as a cost-effective tool with considerable potential for fish community monitoring for conservation purposes in dynamic marine environments like the Oslo fjord, contributing valuable insights for informed management strategies.
Collapse
Affiliation(s)
- Cintia Oliveira Carvalho
- Natural History Museum, University of Oslo, Oslo, Norway
- Group for Integrated Biological Investigation, Center for Advanced Studies of Biodiversity, Federal University of Pará, Belém, Brazil
| | | | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | | - Jonathan Stuart Ready
- Group for Integrated Biological Investigation, Center for Advanced Studies of Biodiversity, Federal University of Pará, Belém, Brazil
| | - Torbjørn Haugaasen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Grete Sørnes
- Marine Research Station Drøbak, University of Oslo, Oslo, Norway
| | - Hugo de Boer
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
41
|
Schenekar T, Baxter J, Phukuntsi MA, Sedlmayr I, Weckworth B, Mwale M. Optimizing waterborne eDNA capture from waterholes in savanna systems under remote field conditions. Mol Ecol Resour 2024; 24:e13942. [PMID: 38390664 DOI: 10.1111/1755-0998.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Environmental DNA (eDNA) is used for biodiversity assessments in a variety of ecosystems across the globe, whereby different eDNA concentration, preservation and extraction methods can outperform others depending on the sampling conditions and environment. Tropical and subtropical ecosystems in Africa are among the less studied systems concerning eDNA-based monitoring. Waterholes in arid parts of southern Africa represent important agglomeration points for terrestrial mammals, and the eDNA shed into such waterbodies provides a powerful source of information for monitoring mammalian biodiversity in the surrounding area. However, the applied methods for eDNA sampling, preservation and filtering in different freshwater systems vary greatly, and rigorous protocol testing in African freshwater systems is still lacking. This study represents the first attempt to examine variations in eDNA concentration, preservation and extraction methods under remote field conditions using waterborne eDNA in a savanna system. Collected samples were heavily affected by microalgal and bacterial growth, impeding eDNA capture and PCR success. We demonstrate clear effects of the methodological choices, which also depend on the state of eDNA. A preliminary metabarcoding run showed little taxonomic overlap in mammal species detection between two metabarcoding primers tested. We recommend water filtering (using filters with pore sizes >1 μm) over centrifugation for eDNA concentration, Longmire's solution for ambient temperature sample preservation and Qiagen's DNeasy PowerSoil Pro Kit for DNA extraction of these inhibitor-prone samples. Furthermore, at least two independent metabarcoding markers should be utilized in order to maximize species detections in metabarcoding studies.
Collapse
Affiliation(s)
| | - Janine Baxter
- South African National Biodiversity Institute, National Zoological Gardens, Pretoria, South Africa
| | - Metlholo Andries Phukuntsi
- South African National Biodiversity Institute, National Zoological Gardens, Pretoria, South Africa
- South African Environmental Observation Network, Egagasini Node, South African Environmental Observation Network, Cape Town, South Africa
| | | | | | - Monica Mwale
- South African National Biodiversity Institute, National Zoological Gardens, Pretoria, South Africa
- NRF-South African Institute for Aquatic Biodiversity, Makhanda (Grahamstown), South Africa
| |
Collapse
|
42
|
Pont D. Predicting downstream transport distance of fish eDNA in lotic environments. Mol Ecol Resour 2024; 24:e13934. [PMID: 38318749 DOI: 10.1111/1755-0998.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
Environmental DNA (eDNA) is an effective tool for describing fish biodiversity in lotic environments, but the downstream transport of eDNA released by organisms makes it difficult to interpret species detection at the local scale. In addition to biophysical degradation and exchanges at the water-sediment interface, hydrological conditions control the transport distance. A new eDNA transport model described in this paper considers downstream retention and degradation processes in combination with hydraulic conditions and assumes that the sedimentation rate of very fine particles is a correct estimate of the eDNA deposition rate. Based on meta-analyses of available studies, the particle size distribution of fish eDNA (PSD), the relationship between the sedimentation rate and the size of very fine particles in suspension, and the influence of temperature on the degradation rate of fish eDNA were successively modelled. After combining the results in a mechanistic-based model, the eDNA uptake distances (distance required to retain 63.21% of the eDNA particles in the riverbed) observed in a compilation of previous experimental studies were correctly simulated. eDNA degradation is negligible at low flow and temperature but has a comparable influence to background transfer when hydraulic conditions allow a long uptake distance. The wide prediction intervals associated with the simulations reflect the complexity of the processes acting on eDNA after shedding. This model can be useful for estimating eDNA detection distance downstream from a source point and discussing the possibility of false positive detection in eDNA samples, as shown in an example.
Collapse
Affiliation(s)
- Didier Pont
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
43
|
Wilkinson SP, Gault AA, Welsh SA, Smith JP, David BO, Hicks AS, Fake DR, Suren AM, Shaffer MR, Jarman SN, Bunce M. TICI: a taxon-independent community index for eDNA-based ecological health assessment. PeerJ 2024; 12:e16963. [PMID: 38426140 PMCID: PMC10903356 DOI: 10.7717/peerj.16963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Global biodiversity is declining at an ever-increasing rate. Yet effective policies to mitigate or reverse these declines require ecosystem condition data that are rarely available. Morphology-based bioassessment methods are difficult to scale, limited in scope, suffer prohibitive costs, require skilled taxonomists, and can be applied inconsistently between practitioners. Environmental DNA (eDNA) metabarcoding offers a powerful, reproducible and scalable solution that can survey across the tree-of-life with relatively low cost and minimal expertise for sample collection. However, there remains a need to condense the complex, multidimensional community information into simple, interpretable metrics of ecological health for environmental management purposes. We developed a riverine taxon-independent community index (TICI) that objectively assigns indicator values to amplicon sequence variants (ASVs), and significantly improves the statistical power and utility of eDNA-based bioassessments. The TICI model training step uses the Chessman iterative learning algorithm to assign health indicator scores to a large number of ASVs that are commonly encountered across a wide geographic range. New sites can then be evaluated for ecological health by averaging the indicator value of the ASVs present at the site. We trained a TICI model on an eDNA dataset from 53 well-studied riverine monitoring sites across New Zealand, each sampled with a high level of biological replication (n = 16). Eight short-amplicon metabarcoding assays were used to generate data from a broad taxonomic range, including bacteria, microeukaryotes, fungi, plants, and animals. Site-specific TICI scores were strongly correlated with historical stream condition scores from macroinvertebrate assessments (macroinvertebrate community index or MCI; R2 = 0.82), and TICI variation between sample replicates was minimal (CV = 0.013). Taken together, this demonstrates the potential for taxon-independent eDNA analysis to provide a reliable, robust and low-cost assessment of ecological health that is accessible to environmental managers, decision makers, and the wider community.
Collapse
Affiliation(s)
- Shaun P. Wilkinson
- Wilderlab NZ Ltd., Wellington, New Zealand
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | | | | | - Joshua P. Smith
- School of Science, The University of Waikato, Hamilton, Waikato, New Zealand
- Waikato Regional Council, Hamilton, Waikato, New Zealand
| | - Bruno O. David
- Waikato Regional Council, Hamilton, Waikato, New Zealand
| | - Andy S. Hicks
- Ministry for the Environment, Wellington, New Zealand
- Hawke’s Bay Regional Council, Napier, Hawke’s Bay, New Zealand
| | - Daniel R. Fake
- Hawke’s Bay Regional Council, Napier, Hawke’s Bay, New Zealand
| | - Alastair M. Suren
- Bay of Plenty Regional Council, Tauranga, Bay of Plenty, New Zealand
| | - Megan R. Shaffer
- School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America
| | - Simon N. Jarman
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Michael Bunce
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- Department of Conservation, Wellington, New Zealand
- School of Biomedical Sciences, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
44
|
Rossouw EI, Landschoff J, Ndhlovu A, Neef G, Miya M, Courtaillac KL, Brokensha R, von der Heyden S. Detecting kelp-forest associated metazoan biodiversity with eDNA metabarcoding. NPJ BIODIVERSITY 2024; 3:4. [PMID: 39242726 PMCID: PMC11332002 DOI: 10.1038/s44185-023-00033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/28/2023] [Indexed: 09/09/2024]
Abstract
Environmental DNA (eDNA) metabarcoding is a promising tool for monitoring marine biodiversity, but remains underutilised in Africa. In this study, we evaluated the ability of aquatic eDNA metabarcoding as a tool for detecting biodiversity associated with a South African kelp forest, an ecosystem that harbours high diversity of species, many of which are endemic, but are also sensitive to changing environmental conditions and anthropogenic pressures. Using fine-scale spatial (1 m and 8 m) and temporal (every four hours for 24 h) sampling of aquatic environmental DNA and targeting two gene regions (mtDNA COI and 12S rRNA), metabarcoding detected 880 OTUs representing 75 families in the broader metazoan community with 44 OTUs representing 24 fish families. We show extensive variability in the eDNA signal across space and time and did not recover significant spatio-temporal structure in OTU richness and community assemblages. Metabarcoding detected a broad range of taxonomic groups, including arthropods, ascidians, cnidarians, echinoderms, ctenophores, molluscs, polychaetes, ichthyofauna and sponges, as well as Placozoa, previously not reported from South Africa. Fewer than 3% of OTUs could be identified to species level using available databases (COI = 19 OTUs, 12S = 11 OTUs). Our study emphasizes that kelp-forest associated biodiversity in South Africa is understudied, but that with careful consideration for sampling design in combination with increased barcoding efforts and the construction of regional databases, eDNA metabarcoding will become a powerful biomonitoring tool of kelp-forest associated biodiversity.
Collapse
Affiliation(s)
- Emma I Rossouw
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Jannes Landschoff
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
- Sea Change Project, Sea Change Trust, 6 Buxton Avenue, Oranjezicht, 8001, Cape Town, South Africa
| | - Andrew Ndhlovu
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
- School of Climate Studies, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Götz Neef
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Masaki Miya
- Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682, Japan
| | - Kira-Lee Courtaillac
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Rouane Brokensha
- Sea Change Project, Sea Change Trust, 6 Buxton Avenue, Oranjezicht, 8001, Cape Town, South Africa
| | - Sophie von der Heyden
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
- School of Climate Studies, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
45
|
Stein ED, Jerde CL, Allan EA, Sepulveda AJ, Abbott CL, Baerwald MR, Darling J, Goodwin KD, Meyer RS, Timmers MA, Thielen PM. Critical considerations for communicating environmental DNA science. ENVIRONMENTAL DNA (HOBOKEN, N.J.) 2024; 6:1-12. [PMID: 38784600 PMCID: PMC11110536 DOI: 10.1002/edn3.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/17/2023] [Indexed: 05/25/2024]
Abstract
The economic and methodological efficiencies of environmental DNA (eDNA) based survey approaches provide an unprecedented opportunity to assess and monitor aquatic environments. However, instances of inadequate communication from the scientific community about confidence levels, knowledge gaps, reliability, and appropriate parameters of eDNA-based methods have hindered their uptake in environmental monitoring programs and, in some cases, has created misperceptions or doubts in the management community. To help remedy this situation, scientists convened a session at the Second National Marine eDNA Workshop to discuss strategies for improving communications with managers. These include articulating the readiness of different eDNA applications, highlighting the strengths and limitations of eDNA tools for various applications or use cases, communicating uncertainties associated with specified uses transparently, and avoiding the exaggeration of exploratory and preliminary findings. Several key messages regarding implementation, limitations, and relationship to existing methods were prioritized. To be inclusive of the diverse managers, practitioners, and researchers, we and the other workshop participants propose the development of communication workflow plans, using RACI (Responsible, Accountable, Consulted, Informed) charts to clarify the roles of all pertinent individuals and parties and to minimize the chance for miscommunications. We also propose developing decision support tools such as Structured Decision-Making (SDM) to help balance the benefits of eDNA sampling with the inherent uncertainty, and developing an eDNA readiness scale to articulate the technological readiness of eDNA approaches for specific applications. These strategies will increase clarity and consistency regarding our understanding of the utility of eDNA-based methods, improve transparency, foster a common vision for confidently applying eDNA approaches, and enhance their benefit to the monitoring and assessment community.
Collapse
Affiliation(s)
- Eric D. Stein
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Christopher L. Jerde
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | | | - Adam J. Sepulveda
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, USA
| | | | - Melinda R. Baerwald
- Division of Integrated Science and Engineering, California Department of Water Resources, West Sacramento, California, USA
| | - John Darling
- U.S. Environmental Protection Agency, Environmental Genomics Branch, Watershed and Ecosystem Characterization Division, Research Triangle Park, North Carolina, USA
| | - Kelly D. Goodwin
- National Oceanic and Atmospheric Administration, NOAA Ocean Exploration, Stationed at SWFSC/NMFS, La Jolla, California, USA
| | - Rachel S. Meyer
- Department of Ecology and Evolutionary Biology, University of Santa Cruz, Santa Cruz, California, USA
| | - Molly A. Timmers
- Pristine Seas, National Geographic Society, Washington, DC, USA
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, Hawaii, USA
| | - Peter M. Thielen
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| |
Collapse
|
46
|
Sun X, Guo N, Gao J, Xiao N. Using eDNA to survey amphibians: Methods, applications, and challenges. Biotechnol Bioeng 2024; 121:456-471. [PMID: 37986625 DOI: 10.1002/bit.28592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
In recent years, environmental DNA (eDNA) has received attention from biologists due to its sensitivity, convenience, labor and material efficiency, and lack of damage to organisms. The extensive application of eDNA has opened avenues for the monitoring and biodiversity assessment of amphibians, which are frequently small and difficult to observe in the field, in areas such as biodiversity survey assessment and detection of specific, rare and threatened, or alien invasive species. However, the accuracy of eDNA can be influenced by factors such as ambient temperature, pH, and false positives or false negatives, which makes eDNA an adjunctive tool rather than a replacement for traditional surveys. This review provides a concise overview of the eDNA method and its workflow, summarizes the differences between applying eDNA for detecting amphibians and other organisms, reviews the research progress in eDNA technology for amphibian monitoring, identifies factors influencing detection efficiency, and discusses the challenges and prospects of eDNA. It aims to serve as a reference for future research on the application of eDNA in amphibian detection.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Ningning Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jianan Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- Collage of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Nengwen Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
47
|
Curd EE, Gal L, Gallego R, Silliman K, Nielsen S, Gold Z. rCRUX: A Rapid and Versatile Tool for Generating Metabarcoding Reference libraries in R. ENVIRONMENTAL DNA (HOBOKEN, N.J.) 2024; 6:e489. [PMID: 38370872 PMCID: PMC10871694 DOI: 10.1002/edn3.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/19/2023] [Indexed: 02/20/2024]
Abstract
The sequencing revolution requires accurate taxonomic classification of DNA sequences. Key to making accurate taxonomic assignments are curated, comprehensive reference barcode databases. However, the generation and curation of such databases has remained challenging given the large and continuously growing volumes of both DNA sequence data and novel reference barcode targets. Monitoring and research applications require a greater diversity of specialized gene regions and targeted taxa then are currently curated by professional staff. Thus there is a growing need for an easy to implement computational tool that can generate comprehensive metabarcoding reference libraries for any bespoke locus. We address this need by reimagining CRUX from the Anacapa Toolkit and present the rCRUX package in R which, like it's predecessor, relies on sequence homology and PCR primer compatibility instead of keyword-searches to avoid limitations of user-defined metadata. The typical workflow involves searching for plausible seed amplicons (get_seeds_local() or get_seeds_remote()) by simulating in silico PCR to acquire a set of sequences analogous to PCR products containing a user-defined set of primer sequences. Next, these seeds are used to iteratively blast search seed sequences against a local copy of the National Center for Biotechnology Information (NCBI) formatted nt database using a taxonomic-rank based stratified random sampling approach ( blast_seeds() ). This results in a comprehensive set of sequence matches. This database is dereplicated and cleaned (derep_and_clean_db()) by identifying identical reference sequences and collapsing the taxonomic path to the lowest taxonomic agreement across all matching reads. This results in a curated, comprehensive database of primer-specific reference barcode sequences from NCBI. Databases can then be compared (compare_db()) to determine read and taxonomic overlap. We demonstrate that rCRUX provides more comprehensive reference databases for the MiFish Universal Teleost 12S, Taberlet trnl, fungal ITS, and Leray CO1 loci than CRABS, MetaCurator, RESCRIPt, and ecoPCR reference databases. We then further demonstrate the utility of rCRUX by generating 24 reference databases for 20 metabarcoding loci, many of which lack dedicated reference database curation efforts. The rCRUX package provides a simple to use tool for the generation of curated, comprehensive reference databases for user-defined loci, facilitating accurate and effective taxonomic classification of metabarcoding and DNA sequence efforts broadly.
Collapse
Affiliation(s)
- Emily E. Curd
- Vermont Biomedical Research Network, University of Vermont, VT, USA
| | - Luna Gal
- Landmark College, VT, USA
- California Cooperative Oceanic Fisheries Investigations (CalCOFI), Scripps Institution of Oceanography, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Ramon Gallego
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Katherine Silliman
- Northern Gulf Institute, Mississippi State University, Starkville, MS, USA
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA
| | | | - Zachary Gold
- California Cooperative Oceanic Fisheries Investigations (CalCOFI), Scripps Institution of Oceanography, University of California San Diego (UCSD), La Jolla, CA, USA
- NOAA Pacific Marine Environmental Laboratory, Seattle, WA, USA
| |
Collapse
|
48
|
Saccò M, Mammola S, Altermatt F, Alther R, Bolpagni R, Brancelj A, Brankovits D, Fišer C, Gerovasileiou V, Griebler C, Guareschi S, Hose GC, Korbel K, Lictevout E, Malard F, Martínez A, Niemiller ML, Robertson A, Tanalgo KC, Bichuette ME, Borko Š, Brad T, Campbell MA, Cardoso P, Celico F, Cooper SJB, Culver D, Di Lorenzo T, Galassi DMP, Guzik MT, Hartland A, Humphreys WF, Ferreira RL, Lunghi E, Nizzoli D, Perina G, Raghavan R, Richards Z, Reboleira ASPS, Rohde MM, Fernández DS, Schmidt SI, van der Heyde M, Weaver L, White NE, Zagmajster M, Hogg I, Ruhi A, Gagnon MM, Allentoft ME, Reinecke R. Groundwater is a hidden global keystone ecosystem. GLOBAL CHANGE BIOLOGY 2024; 30:e17066. [PMID: 38273563 DOI: 10.1111/gcb.17066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024]
Abstract
Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.
Collapse
Affiliation(s)
- Mattia Saccò
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Stefano Mammola
- Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research Council, Verbania Pallanza, Italy
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
- National Biodiversity Future Center, Palermo, Italy
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Roman Alther
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Rossano Bolpagni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Anton Brancelj
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
- Department for Environmental Science, University of Nova Gorica, Nova Gorica, Slovenia
| | - David Brankovits
- Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research Council, Verbania Pallanza, Italy
| | - Cene Fišer
- SubBio Lab, Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Vasilis Gerovasileiou
- Faculty of Environment, Department of Environment, Ionian University, Zakynthos, Greece
- Biotechnology and Aquaculture (IMBBC), Thalassocosmos, Institute of Marine Biology, Hellenic Centre for Marine Research (HCMR), Heraklion, Greece
| | - Christian Griebler
- Department of Functional & Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Simone Guareschi
- Estación Biologica de Doñana (EBD-CSIC), Seville, Spain
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Grant C Hose
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kathryn Korbel
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Elisabeth Lictevout
- International Groundwater Resources Assessment Center (IGRAC), Delft, The Netherlands
| | - Florian Malard
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Univ Lyon, Villeurbanne, France
| | - Alejandro Martínez
- Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research Council, Verbania Pallanza, Italy
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Anne Robertson
- School of Life and Health Sciences, Roehampton University, London, UK
| | - Krizler C Tanalgo
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, Cotabato, Philippines
| | - Maria Elina Bichuette
- Laboratory of Subterranean Studies (LES), Department of Ecology and Evolutionary Biology, Federal University of São Carlos, São Carlos, Brazil
| | - Špela Borko
- SubBio Lab, Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Traian Brad
- Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Matthew A Campbell
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Fulvio Celico
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Steven J B Cooper
- South Australian Museum, North Terrace, Adelaide, South Australia, Australia
- Department of Ecology and Evolutionary Biology, School of Biological Sciences and Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - David Culver
- Department of Environmental Science, American University, Washington, DC, USA
| | - Tiziana Di Lorenzo
- National Biodiversity Future Center, Palermo, Italy
- Research Institute on Terrestrial Ecosystems of the National Research Council of Italy (IRET CNR), Florence, Italy
| | - Diana M P Galassi
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, Italy
| | - Michelle T Guzik
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adam Hartland
- Lincoln Agritech Ltd, Ruakura, Kirikiriroa, Aotearoa, New Zealand
| | - William F Humphreys
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Western Australian Museum, Welshpool, Western Australia, Australia
| | - Rodrigo Lopes Ferreira
- Centro de Estudos em Biologia Subterrânea, Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Enrico Lunghi
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, Italy
| | - Daniele Nizzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Perina
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Rajeev Raghavan
- Department of Fisheries Resource Management, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - Zoe Richards
- Coral Conservation and Research Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Ana Sofia P S Reboleira
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Melissa M Rohde
- Rohde Environmental Consulting, LLC, Seattle, Washington, USA
- Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA
| | | | - Susanne I Schmidt
- Department of Lake Research, Helmholtz Centre for Environmental Research, Magdeburg, Germany
| | - Mieke van der Heyde
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Louise Weaver
- Water & Environment Group, Institute of Environmental Science & Research Ltd., Christchurch, New Zealand
| | - Nicole E White
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Maja Zagmajster
- SubBio Lab, Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ian Hogg
- School of Science, University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, Nunavut, Canada
| | - Albert Ruhi
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California, USA
| | - Marthe M Gagnon
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert Reinecke
- Institute of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
49
|
Wang L, Bin Q, Liu H, Zhang Y, Wang S, Luo S, Chen Z, Zhang M, Yu K. New insights into the on-site monitoring of probiotics eDNA using biosensing technology for heat-stress relieving in coral reefs. Biosens Bioelectron 2024; 243:115790. [PMID: 37906999 DOI: 10.1016/j.bios.2023.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Coral probiotics can improve the tolerance of corals to heat stress, thus mitigating the process of coral thermal bleaching. Sensitive and specific detection of coral probiotics at low abundances is highly desirable but remains challenging, especially for rapid and on-site detection of coral probiotics. Since the electrochemical biosensor has been recently used in the field of environmental DNA (eDNA) detection, herein, an efficient electrochemical biosensor was developed based on CoS2/CoSe2-NC HNCs electrode material with a specific DNA probe for the C. marina detection. After optimization, the lower limit of detection (LOD) values of such biosensors for the target DNA and genomic DNA were 1.58 fM and 6.5 pM, respectively. On this basis, a portable device was constructed for the practical detection of C. marina eDNA, and its reliability and accuracy were verified by comparison with the ddPCR method (P > 0.05). For each analysis, the average cost was only ∼ $1.08 and could be completed within 100 min with reliable sensitivity and specificity. Overall, the biosensor could reflect the protective effect of probiotics on coral heat stress, and the proposed technique will put new insights into the rapid and on-site detection of coral probiotics to assist corals against global warming.
Collapse
Affiliation(s)
- Liwei Wang
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China; Guangxi, Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Qi Bin
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Hongjie Liu
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yibo Zhang
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Shaopeng Wang
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Songlin Luo
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Zhenghua Chen
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China
| | - Man Zhang
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China.
| | - Kefu Yu
- School of Marine Sciences, School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
50
|
Jo TS. Validating post-enrichment steps in environmental RNA analysis for improving its availability from water samples. Funct Integr Genomics 2023; 23:338. [PMID: 37975936 DOI: 10.1007/s10142-023-01269-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Environmental RNA (eRNA) analysis is expected to inclusively provide the physiological information of a population and community without individual sampling, having the potential for the improved monitoring of biodiversity and ecosystem function. Protocol development for maximizing eRNA availability is crucial to interpret its detection and quantification results with high accuracy and reliability, but the methodological validation and improvement of eRNA collection and processing methods are scarce. In this study, the technical steps after eRNA extraction, including genomic DNA (gDNA) removal and reverse transcription, were focused on and their performances were compared by zebrafish (Danio rerio) aquarium experiments. Additionally, this study also focused on the eRNA quantification variabilities between replicates and compared them between the PCR and sample levels. Results showed that (i) there was a trade-off between gDNA removal approaches and eRNA yields and an excess gDNA removal could lead to the false-negative eRNA detection, (ii) the use of the gene-specific primers for reverse transcription could increase the eRNA yields for multiple mitochondrial and nuclear genes compared with the random hexamer primers, and (iii) the coefficient of variation (CV) values of eRNA quantifications between PCR replicates were substantially lower for those between samples. Including the study, further knowledge for the sensitive and precise detection of macro-organismal eRNA should be needed for increasing the reliability and robustness of eRNA-based biomonitoring.
Collapse
Affiliation(s)
- Toshiaki S Jo
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, 102-0083, Japan.
- Ryukoku Center for Biodiversity Science, 1-5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520-2194, Japan.
- Faculty of Advanced Science and Technology, Ryukoku University, 1-5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520-2194, Japan.
| |
Collapse
|