1
|
Daskalova E, Pencheva M, Delchev S, Vladimirova-Kitova L, Kitov S, Markov S, Baruh D, Denev P. Black Chokeberry ( Aronia melanocarpa) Juice Supplementation Affects Age-Related Myocardial Remodeling in Rats. Life (Basel) 2024; 15:23. [PMID: 39859963 PMCID: PMC11766457 DOI: 10.3390/life15010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Cardiac aging is associated with myocardial remodeling and reduced angiogenesis. Counteracting these changes with natural products is a preventive strategy with great potential. The aim of this study was to evaluate the effect of Aronia melanocarpa fruit juice (AMJ) supplementation on age-related myocardial remodeling in aged rat hearts. METHODS Healthy male Wistar rats (n = 24) were divided into three groups: (1) young controls (CY)-age 2 months; (2) old controls (CO)-age 27 months; (3) AMJ group-27-month-old animals, supplemented with Aronia melanocarpa juice (AMJ) at a dose of 10 mL∙kg-1 for 105 days. After this period, the hearts of the animals were fixed, embedded in paraffin, and immunohistochemical and morphometric analyses were performed. RESULTS A higher vascular and capillary density was found in the hearts of the AMJ group, as compared to CO. The mean number of CD34+ cells in the myocardium increased by 18.6% in the AMJ group, as compared to CO (p < 0.05). Furthermore, the angiotensin converting enzyme 2 (ACE2) immunoexpression in the myocardium increased by 37% (p < 0.05) and the Proto-oncogene Mas receptor (MAS1) immunoexpression increased by 6% (p < 0.05) in the AMJ group, as compared to CO. CONCLUSIONS As a result of the application of AMJ, noticeable neovascularization was found, which indicates improved myocardial nourishment. The present study demonstrates for the first time that polyphenol-rich AMJ can positively influence age-related microvascular myocardial remodeling in rats, thus outlining its potential as a preventive agent for healthy cardiac aging.
Collapse
Affiliation(s)
- Elena Daskalova
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria;
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University, 4000 Plovdiv, Bulgaria
| | - Slavi Delchev
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria;
| | - Lyudmila Vladimirova-Kitova
- I-st Department of Internal Diseases, Cardiology Section Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria; (L.V.-K.); (S.K.)
| | - Spas Kitov
- I-st Department of Internal Diseases, Cardiology Section Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria; (L.V.-K.); (S.K.)
| | - Stoyan Markov
- Department of Otorhinolaryngology, Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria;
| | - David Baruh
- Department of Software Engineering, Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
| | - Petko Denev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Laboratory of Biologically Active Substances, 4000 Plovdiv, Bulgaria
| |
Collapse
|
2
|
Bauer L, Alkotub B, Ballmann M, Hasanzadeh Kafshgari M, Rammes G, Multhoff G. Cannabidiol (CBD) Protects Lung Endothelial Cells from Irradiation-Induced Oxidative Stress and Inflammation In Vitro and In Vivo. Cancers (Basel) 2024; 16:3589. [PMID: 39518030 PMCID: PMC11544820 DOI: 10.3390/cancers16213589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Objective: Radiotherapy, which is commonly used for the local control of thoracic cancers, also induces chronic inflammatory responses in the microvasculature of surrounding normal tissues such as the lung and heart that contribute to fatal radiation-induced lung diseases (RILDs) such as pneumonitis and fibrosis. In this study, we investigated the potential of cannabidiol (CBD) to attenuate the irradiation damage to the vasculature. Methods: We investigated the ability of CBD to protect a murine endothelial cell (EC) line (H5V) and primary lung ECs isolated from C57BL/6 mice from irradiation-induced damage in vitro and lung ECs (luECs) in vivo, by measuring the induction of oxidative stress, DNA damage, apoptosis (in vitro), and induction of inflammatory and pro-angiogenic markers (in vivo). Results: We demonstrated that a non-lethal dose of CBD reduces the irradiation-induced oxidative stress and early apoptosis of lung ECs by upregulating the expression of the cytoprotective mediator heme-oxygenase-1 (HO-1). The radiation-induced increased expression of inflammatory (ICAM-2, MCAM) and pro-angiogenic (VE-cadherin, Endoglin) markers was significantly reduced by a continuous daily treatment of C57BL/6 mice with CBD (i.p. 20 mg/kg body weight), 2 weeks before and 2 weeks after a partial irradiation of the lung (less than 20% of the lung volume) with 16 Gy. Conclusions: CBD has the potential to improve the clinical outcome of radiotherapy by reducing toxic side effects on the microvasculature of the lung.
Collapse
Affiliation(s)
- Lisa Bauer
- Department of Radiation Oncology, TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany;
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany;
| | - Bayan Alkotub
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München (HMGU), 85764 Neuherberg, Germany;
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany
| | - Markus Ballmann
- Department of Anesthesiology and Intensive Care Medicine, TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany; (M.B.); (G.R.)
| | - Morteza Hasanzadeh Kafshgari
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany;
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine, TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany; (M.B.); (G.R.)
| | - Gabriele Multhoff
- Department of Radiation Oncology, TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany;
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany;
| |
Collapse
|
3
|
Scrobota I, Tig IA, Marcu AO, Potra Cicalau GI, Sachelarie L, Iova G. Evaluation of Immunohistochemical Biomarkers in Diabetic Wistar Rats with Periodontal Disease. J Pers Med 2024; 14:527. [PMID: 38793109 PMCID: PMC11121950 DOI: 10.3390/jpm14050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The association of periodontal disease and diabetes is a subject of intense research in terms of etiopathology and treatment options. This research aimed to evaluate the modulation of the local inflammatory status by two natural extracts, curcumin (Cu) and rutin (R), in an experimentally induced diabetes and periodontal disease in Wistar rats. METHODS Fifty Wistar albino rats were randomly assigned to five groups: Control (C), Diabetes-associated Periodontal Disease (DP), Diabetes-associated Periodontal Disease treated with Curcumin (DPCu), Diabetes-associated Periodontal Disease treated with Rutin (DPR), and Diabetes-associated Periodontal Disease treated with both Curcumin and Rutin (DPCuR). Gingival samples were collected from all rats, and immunohistochemical markers CD3, CD20, and CD34 were evaluated to assess the local inflammatory infiltrate. Descriptive statistics were applied (SPSS24 Software, Armonk, NY, USA). RESULTS Rutin, alone or combined with Curcumin, reduced CD3-positive cell levels. Curcumin demonstrated superior efficacy in reducing CD20-positive cells. The combination of Curcumin and Rutin had the most important impact on both markers. Curcumin notably increased immature CD34-positive cell levels. CONCLUSIONS Curcumin and Rutin, either alone or together, hold potential for reducing local inflammation in diabetes-induced periodontal disease in Wistar rats.
Collapse
Affiliation(s)
- Ioana Scrobota
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (I.A.T.); (G.I.P.C.); (G.I.)
| | - Ioan Andrei Tig
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (I.A.T.); (G.I.P.C.); (G.I.)
| | - Andrea Olivia Marcu
- Preclinics Department, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Georgiana Ioana Potra Cicalau
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (I.A.T.); (G.I.P.C.); (G.I.)
| | - Liliana Sachelarie
- Preclinics Department, Faculty of Medicine, Apollonia University, 700511 Iasi, Romania
| | - Gilda Iova
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (I.A.T.); (G.I.P.C.); (G.I.)
| |
Collapse
|
4
|
Moghimi V, Rahvarian J, Esmaeilzadeh Z, Mohammad-Pour N, Babaki D, Sadeghifar F, Esfehani RJ, Bidkhori HR, Roshan NM, Momeni-Moghaddam M, Naderi-Meshkin H. Adipose-derived human mesenchymal stem cells seeded on denuded or stromal sides of the amniotic membrane improve angiogenesis and collagen remodeling and accelerate healing of the full-thickness wound. Acta Histochem 2023; 125:152027. [PMID: 37062121 DOI: 10.1016/j.acthis.2023.152027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Several strategies have been proposed to enhance wound healing results. Along with other forms of wound dressing, the human amniotic membrane (HAM) has long been regarded as a biological wound dressing that decreases infection and enhances healing. This study investigates the feasibility and effectiveness of wound healing using decellularized HAM (dAM) and stromal HAM (sAM) in combination with adipose-derived human mesenchymal stem cells (AdMSCs). The dAM and sAM sides of HAM were employed as wound dressing scaffolds, and AdMSCs were seeded on top of either dAM or sAM. Sixty healthy Wistar rats were randomly divided into three groups: untreated wound, dAM/AdMSCs group, and sAM/AdMSCs group. The gene expression of VEGF and COL-I was measured in vitro. Wound healing was examined after wounding on days 3, 7, 14, and 21. The expression level of VEGF was significantly higher in sAM/AdMSCs than dAM/AdMSCs (P ≤ 0.05), but there was no significant difference in COL-I expression (P ≥ 0.05). In vivo research revealed that on day 14, wounds treated with sAM/AdMSCs had more vascularization than wounds treated with dAM/AdMSCs (P ≤ 0.01) and untreated wound groups on days 7 (P ≤ 0.05) and 14 (P ≤ 0.0001), respectively. On days 14 (P < 0.05 for sAM/AdMSCs, P < 0.01 for dAM/AdMSCs), and 21 (P < 0.05 for sAM/AdMSCs, P < 0.01 for dAM/AdMSCs), the collagen deposition in the wound bed was significantly thicker in the sAM/AdMSCs and dAM/AdMSCs groups compared to untreated wounds. The study demonstrated that the combination of sAM and AdMSCs promotes wound healing by enhancing angiogenesis and collagen remodeling.
Collapse
Affiliation(s)
- Vahid Moghimi
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran; Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Jeiran Rahvarian
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran; Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zohreh Esmaeilzadeh
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Najmeh Mohammad-Pour
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran; Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Danial Babaki
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Fatemeh Sadeghifar
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Reza Jafarzadeh Esfehani
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran; Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran; Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi, Mashhad, Iran
| | | | | | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran; Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK.
| |
Collapse
|
5
|
Sharma D, Srivastava S, Kumar S, Sharma PK, Hassani R, Dailah HG, Khalid A, Mohan S. Biodegradable Electrospun Scaffolds as an Emerging Tool for Skin Wound Regeneration: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:325. [PMID: 37259465 PMCID: PMC9965065 DOI: 10.3390/ph16020325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 12/25/2023] Open
Abstract
Skin is designed to protect various tissues, and because it is the largest and first human bodily organ to sustain damage, it has an incredible ability to regenerate. On account of extreme injuries or extensive surface loss, the normal injury recuperating interaction might be inadequate or deficient, bringing about risky and disagreeable circumstances that request the utilization of fixed adjuvants and tissue substitutes. Due to their remarkable biocompatibility, biodegradability, and bioactive abilities, such as antibacterial, immunomodulatory, cell proliferative, and wound mending properties, biodegradable polymers, both synthetic and natural, are experiencing remarkable progress. Furthermore, the ability to convert these polymers into submicrometric filaments has further enhanced their potential (e.g., by means of electrospinning) to impersonate the stringy extracellular grid and permit neo-tissue creation, which is a basic component for delivering a mending milieu. Together with natural biomaterial, synthetic polymers are used to solve stability problems and make scaffolds that can dramatically improve wound healing. Biodegradable polymers, commonly referred to as biopolymers, are increasingly used in other industrial sectors to reduce the environmental impact of material and energy usage as they are fabricated using renewable biological sources. Electrospinning is one of the best ways to fabricate nanofibers and membranes that are very thin and one of the best ways to fabricate continuous nanomaterials with a wide range of biological, chemical, and physical properties. This review paper concludes with a summary of the electrospinning (applied electric field, needle-to-collector distance, and flow rate), solution (solvent, polymer concentration, viscosity, and solution conductivity), and environmental (humidity and temperature) factors that affect the production of nanofibers and the use of bio-based natural and synthetic electrospun scaffolds in wound healing.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan 45142, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum P.O. Box 2404, Sudan
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Science, Saveetha Dental College, Saveetha University, Chennai 600077, India
| |
Collapse
|
6
|
Hassanpour M, Salybekov AA, Kobayashi S, Asahara T. CD34 positive cells as endothelial progenitor cells in biology and medicine. Front Cell Dev Biol 2023; 11:1128134. [PMID: 37138792 PMCID: PMC10150654 DOI: 10.3389/fcell.2023.1128134] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
CD34 is a cell surface antigen expressed in numerous stem/progenitor cells including hematopoietic stem cells (HSCs) and endothelial progenitor cells (EPCs), which are known to be rich sources of EPCs. Therefore, regenerative therapy using CD34+ cells has attracted interest for application in patients with various vascular, ischemic, and inflammatory diseases. CD34+ cells have recently been reported to improve therapeutic angiogenesis in a variety of diseases. Mechanistically, CD34+ cells are involved in both direct incorporation into the expanding vasculature and paracrine activity through angiogenesis, anti-inflammatory, immunomodulatory, and anti-apoptosis/fibrosis roles, which support the developing microvasculature. Preclinical, pilot, and clinical trials have well documented a track record of safety, practicality, and validity of CD34+ cell therapy in various diseases. However, the clinical application of CD34+ cell therapy has triggered scientific debates and controversies in last decade. This review covers all preexisting scientific literature and prepares an overview of the comprehensive biology of CD34+ cells as well as the preclinical/clinical details of CD34+ cell therapy for regenerative medicine.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell Therapy and Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Amankeldi A. Salybekov
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell Therapy and Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Shuzo Kobayashi
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell Therapy and Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- *Correspondence: Takayuki Asahara,
| |
Collapse
|
7
|
DPSC Products Accelerate Wound Healing in Diabetic Mice through Induction of SMAD Molecules. Cells 2022; 11:cells11152409. [PMID: 35954256 PMCID: PMC9368341 DOI: 10.3390/cells11152409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/17/2022] Open
Abstract
Despite advances in diabetic wound care, many amputations are still needed each year due to their diabetic wounds, so a more effective therapy is warranted. Herein, we show that the dental pulp-derived stem cell (DPSC) products are effective in wound healing in diabetic NOD/SCID mice. Our results showed that the topical application of DPSC secretory products accelerated wound closure by inducing faster re-epithelialization, angiogenesis, and recellularization. In addition, the number of neutrophils producing myeloperoxidase, which mediates persisting inflammation, was also reduced. NFκB and its downstream effector molecules like IL-6 cause sustained pro-inflammatory activity and were reduced after the application of DPSC products in the experimental wounds. Moreover, the DPSC products also inhibited the activation of NFκB, and its translocation to the nucleus, by which it initiates the inflammation. Furthermore, the levels of TGF-β, and IL-10, potent anti-inflammatory molecules, were also increased after the addition of DPSC products. Mechanistically, we showed that this wound-healing process was mediated by the upregulation and activation of Smad 1 and 2 molecules. In sum, we have defined the cellular and molecular mechanisms by which DPSC products accelerated diabetic wound closure, which can be used to treat diabetic wounds in the near future.
Collapse
|
8
|
Azari Z, Nazarnezhad S, Webster TJ, Hoseini SJ, Brouki Milan P, Baino F, Kargozar S. Stem Cell-Mediated Angiogenesis in Skin Tissue Engineering and Wound Healing. Wound Repair Regen 2022; 30:421-435. [PMID: 35638710 PMCID: PMC9543648 DOI: 10.1111/wrr.13033] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
The timely management of skin wounds has been an unmet clinical need for centuries. While there have been several attempts to accelerate wound healing and reduce the cost of hospitalisation and the healthcare burden, there remains a lack of efficient and effective wound healing approaches. In this regard, stem cell‐based therapies have garnered an outstanding position for the treatment of both acute and chronic skin wounds. Stem cells of different origins (e.g., embryo‐derived stem cells) have been utilised for managing cutaneous lesions; specifically, mesenchymal stem cells (MSCs) isolated from foetal (umbilical cord) and adult (bone marrow) tissues paved the way to more satisfactory outcomes. Since angiogenesis plays a critical role in all four stages of normal wound healing, recent therapeutic approaches have focused on utilising stem cells for inducing neovascularisation. In fact, stem cells can promote angiogenesis via either differentiation into endothelial lineages or secreting pro‐angiogenic exosomes. Furthermore, particular conditions (e.g., hypoxic environments) can be applied in order to boost the pro‐angiogenic capability of stem cells before transplantation. For tissue engineering and regenerative medicine applications, stem cells can be combined with specific types of pro‐angiogenic biocompatible materials (e.g., bioactive glasses) to enhance the neovascularisation process and subsequently accelerate wound healing. As such, this review article summarises such efforts emphasising the bright future that is conceivable when using pro‐angiogenic stem cells for treating acute and chronic skin wounds.
Collapse
Affiliation(s)
- Zoleikha Azari
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Ishida Y, Nosaka M, Kondo T. Bone Marrow-Derived Cells and Wound Age Estimation. Front Med (Lausanne) 2022; 9:822572. [PMID: 35155503 PMCID: PMC8828650 DOI: 10.3389/fmed.2022.822572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022] Open
Abstract
Appropriate technology as well as specific target cells and molecules are key factors for determination of wound vitality or wound age in forensic practice. Wound examination is one of the most important tasks for forensic pathologists and is indispensable to distinguish antemortem wounds from postmortem damage. For vital wounds, estimating the age of the wound is also essential in determining how the wound is associated with the cause of death. We investigated bone marrow-derived cells as promising markers and their potential usefulness in forensic applications. Although examination of a single marker cannot provide high reliability and objectivity in estimating wound age, evaluating the appearance combination of bone marrow-derived cells and the other markers may allow for a more objective and accurate estimation of wound age.
Collapse
Affiliation(s)
- Yuko Ishida
- *Correspondence: Yuko Ishida ; orcid.org/0000-0001-6104-7599
| | | | | |
Collapse
|
10
|
Pamu D, Tallapaneni V, Karri VVSR, Singh SK. Biomedical applications of electrospun nanofibers in the management of diabetic wounds. Drug Deliv Transl Res 2022; 12:158-166. [PMID: 33748878 DOI: 10.1007/s13346-021-00941-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 01/07/2023]
Abstract
Diabetes mellitus (DM) is a complex disease that affects almost all the body's vital organs. Around 415 million people have been diagnosed with DM worldwide, and most of them are due to type 2 DM. The incidence of DM is estimated to increase by 642 million individuals by 2040. DM is considered to have many complications among which diabetic wound (DW) is one of the most distressing complication. DW affects 15% of people with diabetes and is triggered by the loss of glycaemic control, peripheral neuropathy, vascular diseases, and immunosuppression. For timely treatment, early detection, debridement, offloading, and controlling infection are crucial. Even though several treatments are available, the understanding of overlying diabetes-related wound healing mechanisms as therapeutic options has increased dramatically over the past decades. Conventional dressings are cost-effective; however, they are not productive enough to promote the overall process of DW healing. Thanks to tissue engineering developments, one of the promising current trends in innovative wound dressings such as hydrocolloids, hydrogels, scaffolds, films, and nanofibers which merges traditional healing agents and modern products/practices. Nanofibers prepared by electrospinning with enormous porosity, excellent absorption of moisture, the better exchange rate of oxygen, and antibacterial activities have increased interest. The application of these nanofibers can be extended by starting with a careful selection of polymers, loading with active therapeutic moieties such as peptides, proteins, active pharmaceutical ingredients (API), and stem cells, etc. to make them as potential dosage forms in the management of DWs. This review explains the potential applications of electrospun nanofibers in DW healing. A schematic view of role of nanofibers in diabetic wounds.
Collapse
Affiliation(s)
- Divya Pamu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Vyshnavi Tallapaneni
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
11
|
Emmert S, Pantermehl S, Foth A, Waletzko-Hellwig J, Hellwig G, Bader R, Illner S, Grabow N, Bekeschus S, Weltmann KD, Jung O, Boeckmann L. Combining Biocompatible and Biodegradable Scaffolds and Cold Atmospheric Plasma for Chronic Wound Regeneration. Int J Mol Sci 2021; 22:9199. [PMID: 34502107 PMCID: PMC8430875 DOI: 10.3390/ijms22179199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Skin regeneration is a quite complex process. Epidermal differentiation alone takes about 30 days and is highly regulated. Wounds, especially chronic wounds, affect 2% to 3% of the elderly population and comprise a heterogeneous group of diseases. The prevailing reasons to develop skin wounds include venous and/or arterial circulatory disorders, diabetes, or constant pressure to the skin (decubitus). The hallmarks of modern wound treatment include debridement of dead tissue, disinfection, wound dressings that keep the wound moist but still allow air exchange, and compression bandages. Despite all these efforts there is still a huge treatment resistance and wounds will not heal. This calls for new and more efficient treatment options in combination with novel biocompatible skin scaffolds. Cold atmospheric pressure plasma (CAP) is such an innovative addition to the treatment armamentarium. In one CAP application, antimicrobial effects, wound acidification, enhanced microcirculations and cell stimulation can be achieved. It is evident that CAP treatment, in combination with novel bioengineered, biocompatible and biodegradable electrospun scaffolds, has the potential of fostering wound healing by promoting remodeling and epithelialization along such temporarily applied skin replacement scaffolds.
Collapse
Affiliation(s)
- Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (A.F.); (O.J.)
| | - Sven Pantermehl
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (A.F.); (O.J.)
| | - Aenne Foth
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (A.F.); (O.J.)
| | - Janine Waletzko-Hellwig
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Georg Hellwig
- Clinic and Policlinic for Orthopedics, University Medical Center Rostock, 18057 Rostock, Germany; (G.H.); (R.B.)
| | - Rainer Bader
- Clinic and Policlinic for Orthopedics, University Medical Center Rostock, 18057 Rostock, Germany; (G.H.); (R.B.)
| | - Sabine Illner
- Institute for Biomedical Engineering, University Medical Center Rostock, 18119 Rostock, Germany; (S.I.); (N.G.)
| | - Niels Grabow
- Institute for Biomedical Engineering, University Medical Center Rostock, 18119 Rostock, Germany; (S.I.); (N.G.)
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (S.B.); (K.-D.W.)
| | - Klaus-Dieter Weltmann
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (S.B.); (K.-D.W.)
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (A.F.); (O.J.)
| | - Lars Boeckmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (A.F.); (O.J.)
| |
Collapse
|
12
|
Local and Remote Effects of Mesenchymal Stem Cell Administration on Skin Wound Regeneration. PATHOPHYSIOLOGY 2021; 28:355-372. [PMID: 35366280 PMCID: PMC8830469 DOI: 10.3390/pathophysiology28030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Wound healing is an important medical problem. We evaluated the efficacy of locally administered mesenchymal stem cells (MSCs) isolated from human umbilical cords on the dynamics of skin wound healing. The study was conducted on the backs of Wistar rats, where two square wounds were created by removing all layers of the skin. Four groups were studied in two series of experiments: (1) a Control_NaCl group (the wounds were injected with 0.9% NaCl solution) and a Control_0 group (intact wounds on the opposite side of the same rat's back); (2) an MSC group (injected MSCs, local effect) and a Control_sc group (intact wounds on the opposite side of the back, remote MSC effect). The area and temperature of the wounds and the microcirculation of the wound edges were measured. Histological and morphometric studies were performed on days 3 and 7 after the wounds were created. The results showed that the injection trauma (Control_NaCl) slowed the regeneration process. In both MSC groups (unlike in either control group), we observed no increase in the area of the wounds; in addition, we observed inhibition of the inflammatory process and improved wound regeneration on days 1-3 in the remote group and days 1-5 in the local (injected) group. The MSC and Control_sc groups demonstrated improved microcirculation and suppression of leukocyte infiltration on day 3. On day 7, all the studied parameters of the wounds of the Control_0 group were the same as those of the wounds that received cell therapy, although in contrast to the results of the Control_ NaCl group, fibroblast proliferation was greater in the MSC and Control_sc groups. The dynamics of the size of the wounds were comparable for both local and remote application of MSCs. Thus, even a one-time application of MSCs was effective during the first 3-5 days after injury due to anti-inflammatory processes, which improved the regeneration process. Remote application of MSC, as opposed to direct injection, is advisable, especially in the case of multiple wounds, since the results were indistinguishable between the groups and injection trauma was shown to slow healing.
Collapse
|
13
|
Barakat M, DiPietro LA, Chen L. Limited Treatment Options for Diabetic Wounds: Barriers to Clinical Translation Despite Therapeutic Success in Murine Models. Adv Wound Care (New Rochelle) 2021; 10:436-460. [PMID: 33050829 PMCID: PMC8236303 DOI: 10.1089/wound.2020.1254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Significance: Millions of people worldwide suffer from diabetes mellitus and its complications, including chronic diabetic wounds. To date, there are few widely successful clinical therapies specific to diabetic wounds beyond general wound care, despite the vast number of scientific discoveries in the pathogenesis of defective healing in diabetes. Recent Advances: In recent years, murine animal models of diabetes have enabled the investigation of many possible therapeutics for diabetic wound care. These include specific cell types, growth factors, cytokines, peptides, small molecules, plant extracts, microRNAs, extracellular vesicles, novel wound dressings, mechanical interventions, bioengineered materials, and more. Critical Issues: Despite many research discoveries, few have been translated from their success in murine models to clinical use in humans. This massive gap between bench discovery and bedside application begs the simple and critical question: what is still missing? The complexity and multiplicity of the diabetic wound makes it an immensely challenging therapeutic target, and this lopsided progress highlights the need for new methods to overcome the bench-to-bedside barrier. How can laboratory discoveries in animal models be effectively translated to novel clinical therapies for human patients? Future Directions: As research continues to decipher deficient healing in diabetes, new approaches and considerations are required to ensure that these discoveries can become translational, clinically usable therapies. Clinical progress requires the development of new, more accurate models of the human disease state, multifaceted investigations that address multiple critical components in wound repair, and more innovative research strategies that harness both the existing knowledge and the potential of new advances across disciplines.
Collapse
Affiliation(s)
- May Barakat
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Luisa A. DiPietro
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Chen
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Development of Cutaneous Wound in Diabetic Immunocompromised Mice and Use of Dental Pulp-Derived Stem Cell Product for Healing. Methods Mol Biol 2021. [PMID: 32808255 DOI: 10.1007/978-1-0716-0845-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Chronic nonhealing wounds impact nearly 15% of Medicare beneficiaries (8.2 million) in the United States costing $28-$32 billion annually. Despite advancement in wound management, approximately 8% of diabetic Medicare beneficiaries have a foot ulcer and 1.8% will have an amputation. The development of a regenerative approach is warranted to save these before-mentioned amputations. To this extent, herein, we describe the detailed methods in generating a type 1 diabetes mellitus (T1DM) condition in immunocompromised mice, inducing cutaneous wound, and application of dental pulp stem cell-derived secretory products for therapeutic assessment. This model helps in evaluating the efficacy of stem cell-based therapy and helps with the investigation of involved mechanisms in impaired cutaneous wound healing caused by hyperglycemic stress due to type 1 diabetes.
Collapse
|
15
|
Mankuzhy PD, Ramesh ST, Thirupathi Y, Mohandas PS, Chandra V, Sharma TG. The preclinical and clinical implications of fetal adnexa derived mesenchymal stromal cells in wound healing therapy. Wound Repair Regen 2021; 29:347-369. [PMID: 33721373 DOI: 10.1111/wrr.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/06/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Mesenchymal stromal cells (MSCs) isolated from fetal adnexa namely amniotic membrane/epithelium, amniotic fluid and umbilical cord have hogged the limelight in recent times, as a proposed alternative to MSCs from conventional sources. These cells which are identified as being in a developmentally primitive state have many advantages, the most important being the non-invasive nature of their isolation procedures, absence of ethical concerns, proliferation potential, differentiation abilities and low immunogenicity. In the present review, we are focusing on the potential preclinical and clinical applications of different cell types of fetal adnexa, in wound healing therapy. We also discuss the isolation-culture methods, cell surface marker expression, multi-lineage differentiation abilities, immune-modulatory capabilities and their homing property. Different mechanisms involved in the wound healing process and the role of stromal cells in therapeutic wound healing are highlighted. Further, we summarize the findings of the cell delivery systems in skin lesion models and paracrine functions of their secretome in the wound healing process. Overall, this holistic review outlines the research findings of fetal adnexa derived MSCs, their usefulness in wound healing therapy in human as well as in veterinary medicine.
Collapse
Affiliation(s)
- Pratheesh D Mankuzhy
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Sreekumar T Ramesh
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Yasotha Thirupathi
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Ponny S Mohandas
- Consultant Gynecologist, Department of Gynecology and Obstetrics, Meditrina Hospital, Ayathil, Kollam, Kerala, India
| | - Vikash Chandra
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Taru Guttula Sharma
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| |
Collapse
|
16
|
Buchade S, Desai S, Bhonde R, Kazi H, Sainani S, Rode K. Stem Cells: A Golden Therapy for Diabetic Wounds. Curr Diabetes Rev 2021; 17:156-160. [PMID: 32674735 DOI: 10.2174/1573399816666200716200450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is the 7th leading cause of death worldwide. Diabetes can affect the organ systems and lead to serious complications, majorly categorized as macrovascular complications, microvascular complications, and diabetic wounds. Foot ulcer develops in 15-25% diabetic patients. In diabetic wound, there is an impairment in growth factor, neuropeptide, matrix metalloproteinases, angiogenesis, and immune system. Many approaches are being experimented to manage this major complication of diabetic foot, but unfortunately with lower success rate. Stem cell is an upcoming field which is being explored in the world of diabetes. Hence, this review is designed to understand the basic pathogenesis and complications of types of diabetes and the role of stem cells in a diabetic wound and the benefits related to it.
Collapse
Affiliation(s)
- Shubhangi Buchade
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Shivani Desai
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | | | - Heena Kazi
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Shivani Sainani
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Ketki Rode
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| |
Collapse
|
17
|
Yi H, Wang Y, Yang Z, Xie Z. Efficacy assessment of mesenchymal stem cell transplantation for burn wounds in animals: a systematic review. Stem Cell Res Ther 2020; 11:372. [PMID: 32859266 PMCID: PMC7456061 DOI: 10.1186/s13287-020-01879-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Clinically, severe burns remain one of the most challenging issues, but an ideal treatment is yet absent. Our purpose is to compare the efficacy of stem cell therapy in a preclinical model of burn wound healing. METHODS Research reports on mesenchymal stem cells (MSCs) for burn wound healing were retrieved from 5 databases: PubMed, Embase, MEDLINE, Web of Science, and the Cochrane Library. The primary outcomes reported in this article include the un-healing rate of the wound area, the closure rate, and the wound area. Secondary outcomes included CD-31, vascular density, interleukin (IL)-10, thickness of eschar tissue, vascular endothelial growth factor (VEGF), and white blood cell count. Finally, a subgroup analysis was conducted to explore heterogeneity that potentially impacted the primary outcomes. A fixed-effects model with a 95% confidence interval (CI) was performed when no significant heterogeneity existed. Otherwise, a random-effects model was used. All data analysis was conducted by using Engauge Digitizer 10.8 and R software. RESULTS Twenty eligible articles were finally included in the analysis. Stem cell therapy greatly improved the closure rate (2.00, 95% CI 0.52 to 3.48, p = 0.008) and compromised the wound area (- 2.36; 95% CI - 4.90 to 0.18; p = 0.069) rather than the un-healing rate of the wound area (- 11.10, 95% CI - 32.97 to 10.78, p = 0.320). Though p was 0.069, there was a trend toward shrinkage of the burn wound area after stem cell therapy. Vascular density (4.69; 95% CI 0.06 to 9.31; p = 0.047) and thickness of eschar tissue (6.56, 95% CI 1.15 to 11.98, p = 0.017) were also discovered to be significantly improved in the burn site of stem cell-treated animals. Moreover, we observed that animals in the stem cell group had an increased white blood cell count (0.84, 95% CI 0.01 to 1.66, p = 0.047) 5 days post treatment. Other indicators, such as VEGF (p = 0.381), CD-31 (p = 0.335) and IL-10 (p = 0.567), were not significantly impacted. CONCLUSIONS Despite limited data from preclinical trials, this meta-analysis suggests that stem cell therapy is curative in decreasing the burn wound area and provides some insights into future clinical studies of stem cell therapy for burns.
Collapse
Affiliation(s)
- Hanxiao Yi
- The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, JiangXi Province China
| | - Yang Wang
- Spine Surgery, Third Affiliated Hospital of Sun-Yat Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong Province China
| | - Zhen Yang
- The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, JiangXi Province China
| | - Zhiqin Xie
- The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, JiangXi Province China
| |
Collapse
|
18
|
Fei J, Ling YM, Zeng MJ, Zhang KW. Shixiang Plaster, a Traditional Chinese Medicine, Promotes Healing in a Rat Model of Diabetic Ulcer Through the receptor for Advanced Glycation End Products (RAGE)/Nuclear Factor kappa B (NF-κB) and Vascular Endothelial Growth Factor (VEGF)/Vascular Cell Adhesion Molecule-1 (VCAM-1)/Endothelial Nitric Oxide Synthase (eNOS) Signaling Pathways. Med Sci Monit 2019; 25:9446-9457. [PMID: 31825949 PMCID: PMC6925528 DOI: 10.12659/msm.918268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Shixiang plaster is a traditional Chinese medicine has been used to treat chronic ulcers, including diabetic ulcers. Aminoguanidine is a hydrazine derivative that inhibits the formation of advanced glycosylation end products (AGEs). This study aimed to investigate the effects of shixiang plaster and aminoguanidine on wound healing in the streptozotocin-induced rat model of diabetes and the molecular mechanisms involved. Material/Methods Sprague-Dawley rats treated with intraperitoneal streptozotocin and given surgical wounds were divided into the untreated chronic ulcer group (n=10), the aminoguanidine group (n=10), the shixiang plaster group (n=10), and the control group with sham surgery (n=10). Granulation tissue samples underwent light microscopy to evaluate angiogenesis and immunohistochemistry to identify AGE, vascular endothelial growth factor (VEGF), and CD34 expression. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot measured mRNA and protein expression of receptor for advanced glycation end products (RAGE), vascular cell adhesion molecule-1 (VCAM-1), nuclear factor kappa B (NF-κB) and endothelial nitric oxide synthase (eNOS). Results The shixiang plaster group showed a significant increase in angiogenesis in ulcer granulation tissue, significantly reduced expression of AGEs and increased expression of VEGF and CD34 expression in granulation tissue compared with the untreated chronic ulcer group (p<0.05). The shixiang plaster group showed significantly down-regulated expression of RAGE and VCAM-1 compared with the untreated chronic ulcer group (p<0.05). Shixiang plaster promoted angiogenesis by activating the NF-κB p65 associated pathway and eNOS activation. Conclusions Shixiang plaster promoted healing in a rat model of diabetic ulcer through the RAGE/NF-κB and VEGF/VCAM-1/eNOS signaling pathways.
Collapse
Affiliation(s)
- Ji Fei
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (mainland)
| | - Yi-Ming Ling
- Department of Orthopedics, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China (mainland)
| | - Man-Jie Zeng
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (mainland)
| | - Kai-Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (mainland)
| |
Collapse
|
19
|
Coalson E, Bishop E, Liu W, Feng Y, Spezia M, Liu B, Shen Y, Wu D, Du S, Li AJ, Ye Z, Zhao L, Cao D, Li A, Hagag O, Deng A, Liu W, Li M, Haydon RC, Shi L, Athiviraham A, Lee MJ, Wolf JM, Ameer GA, He TC, Reid RR. Stem cell therapy for chronic skin wounds in the era of personalized medicine: From bench to bedside. Genes Dis 2019; 6:342-358. [PMID: 31832514 PMCID: PMC6888708 DOI: 10.1016/j.gendis.2019.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
With the significant financial burden of chronic cutaneous wounds on the healthcare system, not to the personal burden mention on those individuals afflicted, it has become increasingly essential to improve our clinical treatments. This requires the translation of the most recent benchtop approaches to clinical wound repair as our current treatment modalities have proven insufficient. The most promising potential treatment options rely on stem cell-based therapies. Stem cell proliferation and signaling play crucial roles in every phase of the wound healing process and chronic wounds are often associated with impaired stem cell function. Clinical approaches involving stem cells could thus be utilized in some cases to improve a body's inhibited healing capacity. We aim to present the laboratory research behind the mechanisms and effects of this technology as well as current clinical trials which showcase their therapeutic potential. Given the current problems and complications presented by chronic wounds, we hope to show that developing the clinical applications of stem cell therapies is the rational next step in improving wound care.
Collapse
Affiliation(s)
- Elam Coalson
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Elliot Bishop
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mia Spezia
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bo Liu
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, Changsha 410011, China
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Scott Du
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ling Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chongqing General Hospital, Chongqing 400013, China
| | - Alissa Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ofir Hagag
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alison Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Winny Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Mingyang Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60616, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL 60208, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL 60208, USA
| | - Russell R. Reid
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL 60208, USA
| |
Collapse
|
20
|
Nanofiber-expanded human CD34 + cells heal cutaneous wounds in streptozotocin-induced diabetic mice. Sci Rep 2019; 9:8415. [PMID: 31182750 PMCID: PMC6557810 DOI: 10.1038/s41598-019-44932-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/28/2019] [Indexed: 12/29/2022] Open
Abstract
Despite advances in diabetic wound care, the significant number of amputations that occur every year demands more effective therapeutics. Herein, we offer an aminated polyethersulfone nanofiber-expanded human umbilical cord blood-derived CD34+ cells (henceforth CD34+ cells) effective therapy, tested in cutaneous wounds developed in streptozotocin-induced diabetic NOD/SCID mice. We show that systemic administration of CD34+ cells homed to the wound site and significantly accelerated wound closure. Wound closure was associated with improved re-epithelialization and increased neovascularization; and with decreased sustained pro-inflammatory activity of NF-κB and its downstream effector molecules TNF-α, IL-1β, and IL-6 at the wound bed. This finding was further supported by the observation of a decreased number of myeloperoxidase positive neutrophils, and concomitantly increased levels of IL-10. In addition, improved granulation tissue formation was observed along with higher collagen deposition and myofibroblasts and decreased expressions of MMP-1. Mechanistically, CD34+ cells reduced the level of MMP-1 expression by inhibiting recruitment of NF-κB to the MMP-1 promoter site in dermal fibroblasts. In summary, we provide evidence of a novel nanofiber-expanded CD34+ stem cell therapeutic development for treating diabetic wounds by defining their cellular and molecular mechanisms.
Collapse
|
21
|
Novel trends in application of stem cells in skin wound healing. Eur J Pharmacol 2018; 843:307-315. [PMID: 30537490 DOI: 10.1016/j.ejphar.2018.12.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/28/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022]
Abstract
The latest findings indicate the huge therapeutic potential of stem cells in regenerative medicine, including the healing of chronic wounds. Main stem cell types involved in wound healing process are: epidermal and dermal stem cells, mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and hematopoietic stem cells (HSCs). In the therapy of chronic wounds, they can be administrated either topically or using different matrix like hydrogels, scaffolds, dermal substitutes and extracellular matrix (ECM) derivatives. Stem cells are proven to positively influence wound healing by different direct and indirect mechanisms including residing cells stimulation, biomolecules release, inflammation control and ECM remodelling. MSCs are especially worth mentioning as they can be easily derived from bone-marrow or adipose tissue. Apart from traditional approach of administering living stem cells to wounds, new trends have emerged in recent years. Good healing results are obtained using stem cell secretome alone, for example exosomes or conditioned media. There are also attempts to improve healing potential of stem cells by their co-culture with other cell types as well as by their genetic modifications or pretreatment using different chemicals or cell media. Moreover, stem cells have been tested for novel therapeutic purposes like for example acute burns and have been used in experiments on large animal models including pigs and sheep. In this review we discuss the role of stem cells in skin wound healing acceleration. In addition, we analyse possible new strategies of stem cells application in treatment of chronic wounds.
Collapse
|
22
|
Advances of Stem Cell Therapeutics in Cutaneous Wound Healing and Regeneration. Mediators Inflamm 2017; 2017:5217967. [PMID: 29213192 PMCID: PMC5682068 DOI: 10.1155/2017/5217967] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/14/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022] Open
Abstract
Cutaneous wound healing is a complex multiple phase process, which overlaps each other, where several growth factors, cytokines, chemokines, and various cells interact in a well-orchestrated manner. However, an imbalance in any of these phases and factors may lead to disruption in harmony of normal wound healing process, resulting in transformation towards chronic nonhealing wounds and abnormal scar formation. Although various therapeutic interventions are available to treat chronic wounds, current wound-care has met with limited success. Progenitor stem cells possess potential therapeutic ability to overcome limitations of the present treatments as it offers accelerated wound repair with tissue regeneration. A substantial number of stem cell therapies for cutaneous wounds are currently under development as a result of encouraging preliminary findings in both preclinical and clinical studies. However, the mechanisms by which these stem cells contribute to the healing process have yet to be elucidated. In this review, we emphasize on the major treatment modalities currently available for the treatment of the wound, role of various interstitial stem cells and exogenous adult stem cells in cutaneous wound healing, and possible mechanisms involved in the healing process.
Collapse
|
23
|
Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:747-765. [DOI: 10.1016/j.msec.2016.05.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022]
|
24
|
Mahadevaiah S, Robinson KG, Kharkar PM, Kiick KL, Akins RE. Decreasing matrix modulus of PEG hydrogels induces a vascular phenotype in human cord blood stem cells. Biomaterials 2015; 62:24-34. [PMID: 26016692 DOI: 10.1016/j.biomaterials.2015.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 05/04/2015] [Accepted: 05/14/2015] [Indexed: 01/12/2023]
Abstract
Adult and congenital cardiovascular diseases are significant health problems that are often managed using surgery. Bypass grafting is a principal therapy, but grafts fail at high rates due to hyperplasia, fibrosis, and atherosclerosis. Biocompatible, cellularized materials that attenuate these complications and encourage healthy microvascularization could reduce graft failure, but an improved understanding of biomaterial effects on human stem cells is needed to reach clinical utility. Our group investigates stem-cell-loaded biomaterials for placement along the adventitia of at-risk vessels and grafts. Here, the effects of substrate modulus on human CD34+ stem cells from umbilical cord blood were evaluated. Cells were isolated by immunomagnetic separation and encapsulated in 3, 4, and 6 weight% PEG hydrogels containing 0.032% gelatin and 0.0044% fibronectin. Gels reached moduli of 0.34, 4.5, and 9.1 kPa. Cell viability approached 100%. Cell morphologies appeared similar across gels, but proliferation was significantly lower in 6 wt% gels. Expression profiling using stem cell signaling arrays indicated enhanced self-renewal and differentiation into vascular endothelium among cells in the lower weight percent gels. Thus, modulus was associated with cell proliferation and function. Gels with moduli in the low kilopascal range may be useful in stimulating cell engraftment and microvascularization of graft adventitia.
Collapse
Affiliation(s)
- Shruthi Mahadevaiah
- Nemours - Alfred I. duPont Hospital for Children, Department of Biomedical Research, 1600 Rockland Road, Wilmington, DE 19803, United States; Nemours - Alfred I. duPont Hospital for Children, Critical Care Department, 1600 Rockland Road, Wilmington, DE 19803, United States
| | - Karyn G Robinson
- Nemours - Alfred I. duPont Hospital for Children, Department of Biomedical Research, 1600 Rockland Road, Wilmington, DE 19803, United States
| | - Prathamesh M Kharkar
- Department of Materials Science and Engineering, University of Delaware, 201 Du Pont Hall, Newark, DE 19716, United States
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 Du Pont Hall, Newark, DE 19716, United States
| | - Robert E Akins
- Nemours - Alfred I. duPont Hospital for Children, Department of Biomedical Research, 1600 Rockland Road, Wilmington, DE 19803, United States.
| |
Collapse
|
25
|
Batnyam O, Shimizu H, Saito K, Ishida T, Suye SI, Fujita S. Biohybrid hematopoietic niche for expansion of hematopoietic stem/progenitor cells by using geometrically controlled fibrous layers. RSC Adv 2015. [DOI: 10.1039/c5ra13332g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biohybrid hematopoietic niche for expansion of hematopoietic stem/progenitor cells.
Collapse
Affiliation(s)
- Onon Batnyam
- Department of Frontier Fiber Technology and Science
- Graduate School of Engineering
- University of Fukui
- Fukui
- Japan
| | - Harue Shimizu
- Department of Frontier Fiber Technology and Science
- Graduate School of Engineering
- University of Fukui
- Fukui
- Japan
| | - Koichi Saito
- Research Center for Regenerative Medicine
- EIL Inc
- Tokyo 174-0051
- Japan
| | - Tomohiko Ishida
- Department of Obstetrics and Gynaecology
- Itabashi Chuo Medical Center
- Tokyo 174-0051
- Japan
| | - Shin-ichiro Suye
- Department of Frontier Fiber Technology and Science
- Graduate School of Engineering
- University of Fukui
- Fukui
- Japan
| | - Satoshi Fujita
- Department of Frontier Fiber Technology and Science
- Graduate School of Engineering
- University of Fukui
- Fukui
- Japan
| |
Collapse
|
26
|
Joseph M, Das M, Kanji S, Lu J, Aggarwal R, Chakroborty D, Sarkar C, Yu H, Mao HQ, Basu S, Pompili VJ, Das H. Retention of stemness and vasculogenic potential of human umbilical cord blood stem cells after repeated expansions on PES-nanofiber matrices. Biomaterials 2014; 35:8566-75. [PMID: 25002260 PMCID: PMC4131920 DOI: 10.1016/j.biomaterials.2014.06.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/19/2014] [Indexed: 12/26/2022]
Abstract
Despite recent advances in cardiovascular medicine, ischemic diseases remain a major cause of morbidity and mortality. Although stem cell-based therapies for the treatment of ischemic diseases show great promise, limited availability of biologically functional stem cells mired the application of stem cell-based therapies. Previously, we reported a PES-nanofiber based ex vivo stem cell expansion technology, which supports expansion of human umbilical cord blood (UCB)-derived CD133(+)/CD34(+) progenitor cells ∼225 fold. Herein, we show that using similar technology and subsequent re-expansion methods, we can achieve ∼5 million-fold yields within 24 days of the initial seeding. Interestingly, stem cell phenotype was preserved during the course of the multiple expansions. The high level of the stem cell homing receptor, CXCR4 was expressed in the primary expansion cells, and was maintained throughout the course of re-expansions. In addition, re-expanded cells preserved their multi-potential differential capabilities in vitro, such as, endothelial and smooth muscle lineages. Moreover, biological functionality of the re-expanded cells was preserved and was confirmed by a murine hind limb ischemia model for revascularization. These cells could also be genetically modified for enhanced vasculogenesis. Immunohistochemical evidences support enhanced expression of angiogenic factors responsible for this enhanced neovascularization. These data further confirms that nanofiber-based ex-vivo expansion technology can generate sufficient numbers of biologically functional stem cells for potential clinical applications.
Collapse
Affiliation(s)
- Matthew Joseph
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Manjusri Das
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Suman Kanji
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Jingwei Lu
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Reeva Aggarwal
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Debanjan Chakroborty
- Department of Pathology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Chandrani Sarkar
- Department of Pathology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Hongmei Yu
- Department of Pathology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Hai-Quan Mao
- Department of Materials Science and Engineering & Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Sujit Basu
- Department of Pathology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Vincent J Pompili
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Hiranmoy Das
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA.
| |
Collapse
|