1
|
Deng A, Zhang F, Wang M, Jiang D, Cen J, Xue M, Wang Y, Dou X, Wu Q, Yang X, Chen S. A novel KMT2A::DCP1A fusion gene in acute myeloid leukemia. Leuk Res 2025; 149:107645. [PMID: 39823765 DOI: 10.1016/j.leukres.2025.107645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Affiliation(s)
- Ailing Deng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Fenghong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Man Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Dongyun Jiang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Jiannong Cen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Mengxing Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Yun Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Xueqing Dou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Qian Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Xiaofei Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, PR China.
| |
Collapse
|
2
|
Kreissig S, Windisch R, Wichmann C. Deciphering Acute Myeloid Leukemia Associated Transcription Factors in Human Primary CD34+ Hematopoietic Stem/Progenitor Cells. Cells 2023; 13:78. [PMID: 38201282 PMCID: PMC10777941 DOI: 10.3390/cells13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hemato-oncological diseases account for nearly 10% of all malignancies and can be classified into leukemia, lymphoma, myeloproliferative diseases, and myelodysplastic syndromes. The causes and prognosis of these disease entities are highly variable. Most entities are not permanently controllable and ultimately lead to the patient's death. At the molecular level, recurrent mutations including chromosomal translocations initiate the transformation from normal stem-/progenitor cells into malignant blasts finally floating the patient's bone marrow and blood system. In acute myeloid leukemia (AML), the so-called master transcription factors such as RUNX1, KMT2A, and HOX are frequently disrupted by chromosomal translocations, resulting in neomorphic oncogenic fusion genes. Triggering ex vivo expansion of primary human CD34+ stem/progenitor cells represents a distinct characteristic of such chimeric AML transcription factors. Regarding oncogenic mechanisms of AML, most studies focus on murine models. However, due to biological differences between mice and humans, findings are only partly transferable. This review focuses on the genetic manipulation of human CD34+ primary hematopoietic stem/progenitor cells derived from healthy donors to model acute myeloid leukemia cell growth. Analysis of defined single- or multi-hit human cellular AML models will elucidate molecular mechanisms of the development, maintenance, and potential molecular intervention strategies to counteract malignant human AML blast cell growth.
Collapse
Affiliation(s)
| | | | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (S.K.)
| |
Collapse
|
3
|
Wang L, Qiu F, Shen Y, Chen S, Si P. Co-existence of KMT2A:: SEPTIN6 fusion and DIS3 variant in a pediatric case with acute myeloid leukemia: a case report and literature review. Front Oncol 2023; 13:1308786. [PMID: 38152368 PMCID: PMC10751303 DOI: 10.3389/fonc.2023.1308786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
The lysine(K)-specific methyltransferase 2A gene (KMT2A), previously known as mixed lineage leukemia (MLL), frequently rearranged in acute leukemia, belongs to one of the most promiscuous genes and has been found fused to more than 80 different partners. KMT2A::SEPTIN6 fusion is a relatively uncommon rearrangement observed in pediatric acute myeloid leukemia (AML) patients, some of which may harbor other mutations. We herein report a case of AML-M4-infant with KMT2A::SEPTIN6 fusion and DIS3 variant. The 8-month-old girl presented with leukocytosis, anemia and thrombocytopenia. A bone marrow smear disclosed that 64% of the total nucleated cells were blasts. Karyotype analysis showed 46,X,t(X;11)(q24;q23)[10]/46,XX[10]. Fluorescence in situ hybridization analysis suggested a possible break in the KMT2A gene. After whole transcriptome sequencing, Exon 9 of KMT2A was fused in-frame with Exon 2 of SEPTIN6. This is a typical type of chromosomal rearrangement leading to the KMT2A::SEPTIN6 fusion. Meanwhile, DIS3 variant [c.2065C>T, p.R689X, variant allele frequency (VAF): 39.8%] was identified. KMT2A::SEPTIN6 fusion has been associated with the pathogenesis of AML, whereas DIS3 variants are relatively rare genetic events in pediatric AML. Regrettably, the relatives disagreed with the combination chemotherapy, and the patient eventually died of progressive disease. In conclusion, our findings provide a foundation for a better understanding of the genotypic profile of KMT2A::SEPTIN6 associated AML, and the co-existence of KMT2A::SEPTIN6 and DIS3 variant might contribute to the disease progression and transformation of AML.
Collapse
Affiliation(s)
- Liang Wang
- Department of Clinical Laboratory, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| | - Fangzhou Qiu
- Department of Clinical Laboratory, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| | - Yongming Shen
- Department of Clinical Laboratory, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| | - Sen Chen
- Department of Hematology, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| | - Ping Si
- Department of Clinical Laboratory, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Meyer C, Larghero P, Almeida Lopes B, Burmeister T, Gröger D, Sutton R, Venn NC, Cazzaniga G, Corral Abascal L, Tsaur G, Fechina L, Emerenciano M, Pombo-de-Oliveira MS, Lund-Aho T, Lundán T, Montonen M, Juvonen V, Zuna J, Trka J, Ballerini P, Lapillonne H, Van der Velden VHJ, Sonneveld E, Delabesse E, de Matos RRC, Silva MLM, Bomken S, Katsibardi K, Keernik M, Grardel N, Mason J, Price R, Kim J, Eckert C, Lo Nigro L, Bueno C, Menendez P, Zur Stadt U, Gameiro P, Sedék L, Szczepański T, Bidet A, Marcu V, Shichrur K, Izraeli S, Madsen HO, Schäfer BW, Kubetzko S, Kim R, Clappier E, Trautmann H, Brüggemann M, Archer P, Hancock J, Alten J, Möricke A, Stanulla M, Lentes J, Bergmann AK, Strehl S, Köhrer S, Nebral K, Dworzak MN, Haas OA, Arfeuille C, Caye-Eude A, Cavé H, Marschalek R. The KMT2A recombinome of acute leukemias in 2023. Leukemia 2023; 37:988-1005. [PMID: 37019990 PMCID: PMC10169636 DOI: 10.1038/s41375-023-01877-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023]
Abstract
Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5'-KMT2A, two patients had a 5'-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival.
Collapse
Affiliation(s)
- C Meyer
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
| | - P Larghero
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
| | - B Almeida Lopes
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - T Burmeister
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - D Gröger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - R Sutton
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - N C Venn
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - G Cazzaniga
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - L Corral Abascal
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - G Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - L Fechina
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - M Emerenciano
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | | | - T Lund-Aho
- Laboratory of Clinical Genetics, Fimlab Laboratories, Tampere, Finland
| | - T Lundán
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - M Montonen
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - V Juvonen
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - J Zuna
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Trka
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - P Ballerini
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - H Lapillonne
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - V H J Van der Velden
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - E Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - E Delabesse
- Institut Universitaire du Cancer de Toulouse, Toulouse Cedex 9, France
| | - R R C de Matos
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - M L M Silva
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - S Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - K Katsibardi
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - M Keernik
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - N Grardel
- Department of Hematology, CHU Lille, France
| | - J Mason
- Northern Institute for Cancer Research, Newcastle University and the Great North Children's West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, United Kingdom
| | - R Price
- Northern Institute for Cancer Research, Newcastle University and the Great North Children's West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, United Kingdom
| | - J Kim
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
- Department of Laboratory Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - C Eckert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology/Hematology, Berlin, Germany
| | - L Lo Nigro
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico", Catania, Italy
| | - C Bueno
- Josep Carreras Leukemia Research Institute. Barcelona, Spanish Network for Advanced Therapies (RICORS-TERAV, ISCIII); Spanish Collaborative Cancer Network (CIBERONC. ISCIII); University of Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute. Barcelona, Spanish Network for Advanced Therapies (RICORS-TERAV, ISCIII); Spanish Collaborative Cancer Network (CIBERONC. ISCIII); Department of Biomedicine. University of Barcelona; and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - P Menendez
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico", Catania, Italy
| | - U Zur Stadt
- Pediatric Hematology and Oncology and CoALL Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P Gameiro
- Instituto Português de Oncologia, Departament of Hematology, Lisbon, Portugal
| | - L Sedék
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - T Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - A Bidet
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - V Marcu
- Hematology Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - K Shichrur
- Molecular Oncology Laboratory, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - S Izraeli
- Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H O Madsen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - B W Schäfer
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - S Kubetzko
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - R Kim
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, INSERM/CNRS U944/UMR7212, Institut de recherche Saint-Louis, Paris, France
| | - E Clappier
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, INSERM/CNRS U944/UMR7212, Institut de recherche Saint-Louis, Paris, France
| | - H Trautmann
- Laboratory for Specialized Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - M Brüggemann
- Laboratory for Specialized Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - P Archer
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
| | - J Hancock
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
| | - J Alten
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Möricke
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - M Stanulla
- Department of Pediatrics, MHH, Hanover, Germany
| | - J Lentes
- Institute of Human Genetics, Medical School Hannover, Hannover, Germany
| | - A K Bergmann
- Institute of Human Genetics, Medical School Hannover, Hannover, Germany
| | - S Strehl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - S Köhrer
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - K Nebral
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - M N Dworzak
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - O A Haas
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - C Arfeuille
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
| | - A Caye-Eude
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, Paris, France
| | - H Cavé
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, Paris, France
| | - R Marschalek
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany.
| |
Collapse
|
5
|
Blatter M, Meylan C, Cléry A, Giambruno R, Nikolaev Y, Heidecker M, Solanki JA, Diaz MO, Gabellini D, Allain FHT. RNA binding induces an allosteric switch in Cyp33 to repress MLL1-mediated transcription. SCIENCE ADVANCES 2023; 9:eadf5330. [PMID: 37075125 PMCID: PMC10115415 DOI: 10.1126/sciadv.adf5330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mixed-lineage leukemia 1 (MLL1) is a transcription activator of the HOX family, which binds to specific epigenetic marks on histone H3 through its third plant homeodomain (PHD3) domain. Through an unknown mechanism, MLL1 activity is repressed by cyclophilin 33 (Cyp33), which binds to MLL1 PHD3. We determined solution structures of Cyp33 RNA recognition motif (RRM) free, bound to RNA, to MLL1 PHD3, and to both MLL1 and the histone H3 lysine N6-trimethylated. We found that a conserved α helix, amino-terminal to the RRM domain, adopts three different positions facilitating a cascade of binding events. These conformational changes are triggered by Cyp33 RNA binding and ultimately lead to MLL1 release from the histone mark. Together, our mechanistic findings rationalize how Cyp33 binding to MLL1 can switch chromatin to a transcriptional repressive state triggered by RNA binding as a negative feedback loop.
Collapse
Affiliation(s)
- Markus Blatter
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Corresponding author. (F.H.-T.A.); (M.B.)
| | - Charlotte Meylan
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Antoine Cléry
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Roberto Giambruno
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Yaroslav Nikolaev
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Michel Heidecker
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Jessica Arvindbhai Solanki
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago Medical Center, University of Chicago, Chicago, IL, USA
| | - Manuel O. Diaz
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago Medical Center, University of Chicago, Chicago, IL, USA
| | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Frédéric H.-T. Allain
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Corresponding author. (F.H.-T.A.); (M.B.)
| |
Collapse
|
6
|
Li X, Yao Y, Wu F, Song Y. A proteolysis-targeting chimera molecule selectively degrades ENL and inhibits malignant gene expression and tumor growth. J Hematol Oncol 2022; 15:41. [PMID: 35395864 PMCID: PMC8994274 DOI: 10.1186/s13045-022-01258-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
Background Chromosome translocations involving mixed lineage leukemia 1 (MLL1) cause acute leukemia in most infants and 5–10% children/adults with dismal clinical outcomes. Most frequent MLL1-fusion partners AF4/AFF4, AF9/ENL and ELL, together with CDK9/cyclin-T1, constitute super elongation complexes (SEC), which promote aberrant gene transcription, oncogenesis and maintenance of MLL1-rearranged (MLL1-r) leukemia. Notably, ENL, but not its paralog AF9, is essential for MLL1-r leukemia (and several other cancers) and therefore a drug target. Moreover, recurrent ENL mutations are found in Wilms tumor, the most common pediatric kidney cancer, and play critical roles in oncogenesis. Methods Proteolysis-Targeting Chimera (PROTAC) molecules were designed and synthesized to degrade ENL. Biological activities of these compounds were characterized in cell and mouse models of MLL1-r leukemia and other cancers. Results Compound 1 efficiently degraded ENL with DC50 of 37 nM and almost depleted it at ~ 500 nM in blood and solid tumor cells. AF9 (as well as other proteins in SEC) was not significantly decreased. Compound 1-mediated ENL reduction significantly suppressed malignant gene signatures, selectively inhibited cell proliferation of MLL1-r leukemia and Myc-driven cancer cells with EC50s as low as 320 nM, and induced cell differentiation and apoptosis. It exhibited significant antitumor activity in a mouse model of MLL1-r leukemia. Compound 1 can also degrade a mutant ENL in Wilms tumor and suppress its mediated gene transcription. Conclusion Compound 1 is a novel chemical probe for cellular and in vivo studies of ENL (including its oncogenic mutants) and a lead compound for further anticancer drug development. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01258-8.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yuan Yao
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fangrui Wu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Meriç N, Kocabaş F. The Historical Relationship Between Meis1 and Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:127-144. [DOI: 10.1007/5584_2021_705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martínez L, Encarnación-Guevara S. Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 2021; 18:949-975. [PMID: 34791964 DOI: 10.1080/14789450.2021.2007766] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Collapse
Affiliation(s)
- Orlando Morales-Tarré
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramiro Alonso-Bastida
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bolivar Arcos-Encarnación
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
9
|
Chebly A, Djambas Khayat C, Yammine T, Korban R, Semaan W, Bou Zeid J, Farra C. Pediatric M5 acute myeloid leukemia with MLL-SEPT6 fusion and a favorable outcome. Leuk Res Rep 2021; 16:100277. [PMID: 34760618 PMCID: PMC8566899 DOI: 10.1016/j.lrr.2021.100277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) patients with MLL-SEPT6 fusion represent a small subset of AML. The uncommon MLL-SEPT6 rearrangement results from t(X;11) or other variants like ins(X;11), and it is usually associated with complex cytogenetic abnormalities. We herein report a case of AML-M5-infant with ins(X;11)(q24;q23q13) and MLL-SEPT6. The one-year-old boy presented with leukocytosis, anemia and thrombocytopenia. He had a favorable response to chemotherapy according to ELAM02protocol and is currently in complete remission. We here, highlight the occurrence of MLL-SEPT6 as the sole abnormality in a pediatric-AML-M5 case, discuss the prognostic implication of this genetic variant, while reviewing previously reported AML-MLL-SEPT6 cases.
Collapse
Affiliation(s)
- Alain Chebly
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | | | - Tony Yammine
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Rima Korban
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Warde Semaan
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Jessica Bou Zeid
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Chantal Farra
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.,Department of Genetics, Hotel Dieu de France Medical Center, Beirut, Lebanon
| |
Collapse
|
10
|
Wu F, Nie S, Yao Y, Huo T, Li X, Wu X, Zhao J, Lin YL, Zhang Y, Mo Q, Song Y. Small-molecule inhibitor of AF9/ENL-DOT1L/AF4/AFF4 interactions suppresses malignant gene expression and tumor growth. Theranostics 2021; 11:8172-8184. [PMID: 34373735 PMCID: PMC8344022 DOI: 10.7150/thno.56737] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Chromosome translocations involving mixed lineage leukemia (MLL) gene cause acute leukemia with a poor prognosis. MLL is frequently fused with transcription cofactors AF4 (~35%), AF9 (25%) or its paralog ENL (10%). The AHD domain of AF9/ENL binds to AF4, its paralog AFF4, or histone-H3 lysine-79 (H3K79) methyltransferase DOT1L. Formation of AF9/ENL/AF4/AFF4-containing super elongation complexes (SEC) and the catalytic activity of DOT1L are essential for MLL-rearranged leukemia. Protein-protein interactions (PPI) between AF9/ENL and DOT1L/AF4/AFF4 are therefore a potential drug target. Methods: Compound screening followed by medicinal chemistry was used to find inhibitors of such PPIs, which were examined for their biological activities against MLL-rearranged leukemia and other cancer cells. Results: Compound-1 was identified to be a novel small-molecule inhibitor of the AF9/ENL-DOT1L/AF4/AFF4 interaction with IC50s of 0.9-3.5 µM. Pharmacological inhibition of the PPIs significantly reduced SEC and DOT1L-mediated H3K79 methylation in the leukemia cells. Gene profiling shows compound-1 significantly suppressed the gene signatures related to onco-MLL, DOT1L, HoxA9 and Myc. It selectively inhibited proliferation of onco-MLL- or Myc-driven cancer cells and induced cell differentiation and apoptosis. Compound-1 exhibited strong antitumor activity in a mouse model of MLL-rearranged leukemia. Conclusions: The AF9/ENL-DOT1L/AF4/AFF4 interactions are validated to be an anticancer target and compound-1 is a useful in vivo probe for biological studies as well as a pharmacological lead for further drug development.
Collapse
|
11
|
Fioretti T, Cevenini A, Zanobio M, Raia M, Sarnataro D, Cattaneo F, Ammendola R, Esposito G. Nuclear FGFR2 Interacts with the MLL-AF4 Oncogenic Chimera and Positively Regulates HOXA9 Gene Expression in t(4;11) Leukemia Cells. Int J Mol Sci 2021; 22:ijms22094623. [PMID: 33924850 PMCID: PMC8124917 DOI: 10.3390/ijms22094623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
The chromosomal translocation t(4;11) marks an infant acute lymphoblastic leukemia associated with dismal prognosis. This rearrangement leads to the synthesis of the MLL-AF4 chimera, which exerts its oncogenic activity by upregulating transcription of genes involved in hematopoietic differentiation. Crucial for chimera’s aberrant activity is the recruitment of the AF4/ENL/P-TEFb protein complex. Interestingly, a molecular interactor of AF4 is fibroblast growth factor receptor 2 (FGFR2). We herein analyze the role of FGFR2 in the context of leukemia using t(4;11) leukemia cell lines. We revealed the interaction between MLL-AF4 and FGFR2 by immunoprecipitation, western blot, and immunofluorescence experiments; we also tested the effects of FGFR2 knockdown, FGFR2 inhibition, and FGFR2 stimulation on the expression of the main MLL-AF4 target genes, i.e., HOXA9 and MEIS1. Our results show that FGFR2 and MLL-AF4 interact in the nucleus of leukemia cells and that FGFR2 knockdown, which is associated with decreased expression of HOXA9 and MEIS1, impairs the binding of MLL-AF4 to the HOXA9 promoter. We also show that stimulation of leukemia cells with FGF2 increases nuclear level of FGFR2 in its phosphorylated form, as well as HOXA9 and MEIS1 expression. In contrast, preincubation with the ATP-mimetic inhibitor PD173074, before FGF2 stimulation, reduced FGFR2 nuclear amount and HOXA9 and MEIS1 transcript level, thereby indicating that MLL-AF4 aberrant activity depends on the nuclear availability of FGFR2. Overall, our study identifies FGFR2 as a new and promising therapeutic target in t(4;11) leukemia.
Collapse
Affiliation(s)
- Tiziana Fioretti
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
| | - Armando Cevenini
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Mariateresa Zanobio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Maddalena Raia
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
| | - Daniela Sarnataro
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Gabriella Esposito
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
- Correspondence: ; Tel.: +30-0817463146
| |
Collapse
|
12
|
Li X, Song Y. Structure, function and inhibition of critical protein-protein interactions involving mixed lineage leukemia 1 and its fusion oncoproteins. J Hematol Oncol 2021; 14:56. [PMID: 33823889 PMCID: PMC8022399 DOI: 10.1186/s13045-021-01057-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Mixed lineage leukemia 1 (MLL1, also known as MLL or KMT2A) is an important transcription factor and histone-H3 lysine-4 (H3K4) methyltransferase. It is a master regulator for transcription of important genes (e.g., Hox genes) for embryonic development and hematopoiesis. However, it is largely dispensable in matured cells. Dysregulation of MLL1 leads to overexpression of certain Hox genes and eventually leukemia initiation. Chromosome translocations involving MLL1 cause ~ 75% of acute leukemia in infants and 5–10% in children and adults with a poor prognosis. Targeted therapeutics against oncogenic fusion MLL1 (onco-MLL1) are therefore needed. Onco-MLL1 consists of the N-terminal DNA-interacting domains of MLL1 fused with one of > 70 fusion partners, among which transcription cofactors AF4, AF9 and its paralog ENL, and ELL are the most frequent. Wild-type (WT)- and onco-MLL1 involve numerous protein–protein interactions (PPI), which play critical roles in regulating gene expression in normal physiology and leukemia. Moreover, WT-MLL1 has been found to be essential for MLL1-rearranged (MLL1-r) leukemia. Rigorous studies of such PPIs have been performed and much progress has been achieved in understanding their structures, structure–function relationships and the mechanisms for activating gene transcription as well as leukemic transformation. Inhibition of several critical PPIs by peptides, peptidomimetic or small-molecule compounds has been explored as a therapeutic approach for MLL1-r leukemia. This review summarizes the biological functions, biochemistry, structure and inhibition of the critical PPIs involving MLL1 and its fusion partner proteins. In addition, challenges and perspectives of drug discovery targeting these PPIs for the treatment of MLL1-r leukemia are discussed.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Panagopoulos I, Andersen K, Eilert-Olsen M, Zeller B, Munthe-Kaas MC, Buechner J, Osnes LTN, Micci F, Heim S. Therapy-induced Deletion in 11q23 Leading to Fusion of KMT2A With ARHGEF12 and Development of B Lineage Acute Lymphoplastic Leukemia in a Child Treated for Acute Myeloid Leukemia Caused by t(9;11)(p21;q23)/ KMT2A-MLLT3. Cancer Genomics Proteomics 2021; 18:67-81. [PMID: 33419897 DOI: 10.21873/cgp.20242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Fusion of histone-lysine N-methyltransferase 2A gene (KMT2A) with the Rho guanine nucleotide exchange factor 12 gene (ARHGEF12), both located in 11q23, was reported in some leukemic patients. We report a KMT2A-ARHGEF12 fusion occurring during treatment of a pediatric acute myeloid leukemia (AML) with topoisomerase II inhibitors leading to a secondary acute lymphoblastic leukemia (ALL). MATERIALS AND METHODS Multiple genetic analyses were performed on bone marrow cells of a girl initially diagnosed with AML. RESULTS At the time of diagnosis with AML, the t(9;11)(p21;q23)/KMT2A-MLLT3 genetic abnormality was found. After chemotherapy resulting in AML clinical remission, a 2 Mb deletion in 11q23 was found generating a KMT2A-ARHGEF12 fusion gene. When the patient later developed B lineage ALL, a t(14;19)(q32;q13), loss of one chromosome 9, and KMT2A-ARHGEF12 were detected. CONCLUSION The patient sequentially developed AML and ALL with three leukemia-specific genomic abnormalities in her bone marrow cells, two of which were KMT2A-rearrangements.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Martine Eilert-Olsen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bernward Zeller
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Monica Cheng Munthe-Kaas
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Liv T N Osnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Crosstalk between 14-3-3θ and AF4 enhances MLL-AF4 activity and promotes leukemia cell proliferation. Cell Oncol (Dordr) 2019; 42:829-845. [PMID: 31493143 DOI: 10.1007/s13402-019-00468-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 01/14/2023] Open
Abstract
PURPOSE The t(4;11)(q21;q23) translocation characterizes a form of acute lymphoblastic leukemia with a poor prognosis. It results in a fusion gene encoding a chimeric transcription factor, MLL-AF4, that deregulates gene expression through a variety of still controversial mechanisms. To provide new insights into these mechanisms, we examined the interaction between AF4, the most common MLL fusion partner, and the scaffold protein 14-3-3θ, in the context of t(4;11)-positive leukemia. METHODS Protein-protein interactions were analyzed using immunoprecipitation and in vitro binding assays, and by fluorescence microscopy in t(4;11)-positive RS4;11 and MV4-11 leukemia cells and in HEK293 cells. Protein and mRNA expression levels were determined by Western blotting and RT-qPCR, respectively. A 5-bromo-2'-deoxyuridine assay and an annexin V/propidium iodide assay were used to assess proliferation and apoptosis rates, respectively, in t(4;11)-positive and control cells. Chromatin immunoprecipitation was performed to assess binding of 14-3-3θ and AF4 to a specific promoter element. RESULTS We found that AF4 and 14-3-3θ are nuclear interactors, that 14-3-3θ binds Ser588 of AF4 and that 14-3-3θ forms a complex with MLL-AF4. In addition, we found that in t(4;11)-positive cells, 14-3-3θ knockdown decreased the expression of MLL-AF4 target genes, induced apoptosis and hampered cell proliferation. Moreover, we found that 14-3-3θ knockdown impaired the recruitment of AF4, but not of MLL-AF4, to target chromatin. Overall, our data indicate that the activity of the chimeric transcription factor MLL-AF4 depends on the cellular availability of 14-3-3θ, which triggers the transactivating function and subsequent degradation of AF4. CONCLUSIONS From our data we conclude that the scaffold protein 14-3-3θ enhances the aberrant activity of the chimeric transcription factor MLL-AF4 and, therefore, represents a new player in the molecular pathogenesis of t(4;11)-positive leukemia and a new promising therapeutic target.
Collapse
|
15
|
Duan YT, Sangani CB, Liu W, Soni KV, Yao Y. New Promises to Cure Cancer and Other Genetic Diseases/Disorders: Epi-drugs Through Epigenetics. Curr Top Med Chem 2019; 19:972-994. [DOI: 10.2174/1568026619666190603094439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/05/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
All the heritable alterations in gene expression and chromatin structure due to chemical modifications that do not involve changes in the primary gene nucleotide sequence are referred to as epigenetics. DNA methylation, histone modifications, and non-coding RNAs are distinct types of epigenetic inheritance. Epigenetic patterns have been linked to the developmental stages, environmental exposure, and diet. Therapeutic strategies are now being developed to target human diseases such as cancer with mutations in epigenetic regulatory genes using specific inhibitors. Within the past two decades, seven epigenetic drugs have received regulatory approval and many others show their candidature in clinical trials. The current article represents a review of epigenetic heritance, diseases connected with epigenetic alterations and regulatory approved epigenetic drugs as future medicines.
Collapse
Affiliation(s)
- Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat, 362024, India
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Kunjal V. Soni
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat, 362024, India
| | - Yongfang Yao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
16
|
Fu JF, Yen TH, Huang YJ, Shih LY. Ets1 Plays a Critical Role in MLL/EB1-Mediated Leukemic Transformation in a Mouse Bone Marrow Transplantation Model. Neoplasia 2019; 21:469-481. [PMID: 30974389 PMCID: PMC6458341 DOI: 10.1016/j.neo.2019.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 11/18/2022]
Abstract
Leukemogenic potential of MLL fusion with the coiled-coil domain-containing partner genes and the downstream target genes of this type of MLL fusion have not been clearly investigated. In this study, we demonstrated that the coiled-coil-four-helix bundle structure of EB1 that participated in the MLL/EB1 was required for immortalizing mouse bone marrow (BM) cells and producing myeloid, but not lymphoid, cell lines. Compared to MLL/AF10, MLL/EB1 had low leukemogenic ability. The MLL/EB1 cells grew more slowly owing to increased apoptosis in vitro and induced acute monocytic leukemia with an incomplete penetrance and longer survival in vivo. A comparative analysis of transcriptome profiling between MLL/EB1 and MLL/AF10 cell lines revealed that there was an at least two-fold difference in the induction of 318 genes; overall, 51.3% (163/318) of the genes were known to be bound by MLL, while 15.4% (49/318) were bound by both MLL and MLL/AF9. Analysis of the 318 genes using Gene Ontology-PANTHER overrepresentation test revealed significant differences in several biological processes, including cell differentiation, proliferation/programmed cell death, and cell homing/recruitment. The Ets1 gene, bound by MLL and MLL/AF9, was involved in several biological processes. We demonstrated that Ets1 was selectively upregulated by MLL/EB1. Short hairpin RNA knockdown of Ets1 in MLL/EB1 cells reduced the expression of CD115, apoptosis rate, competitive engraftment to BM and spleen, and incidence of leukemia and prolonged the survival of the diseased mice. Our results demonstrated that MLL/EB1 upregulated Ets1, which controlled the balance of leukemia cells between apoptosis and BM engraftment/clonal expansion. Novelty and impact of this study The leukemogenic potential of MLL fusion with cytoplasmic proteins containing coiled-coil dimerization domains and the downstream target genes of this type of MLL fusion remain largely unknown. Using a retroviral transduction/transplantation mouse model, we demonstrated that MLL fusion with the coiled-coil-four-helix bundle structure of EB1 has low leukemogenic ability; Ets1, which is upregulated by MLL/EB1, plays a critical role in leukemic transformation by balance between apoptosis and BM engraftment/clonal expansion.
Collapse
Key Words
- aa, amino acid
- all, acute lymphoblastic leukemia
- aml, acute myeloid leukemia
- amol, acute monocytic leukemia
- apc, allophycocyanin
- bd, dna-binding domain
- bm, bone marrow
- cbc, complete blood cell
- cc, coiled-coil
- cdna, complementary dna
- cfc, colony forming capacity
- ctd, c-terminal domain
- dapi, 4′,6-diamidino-2-phenylindole
- fhb, four-helix bundle
- gm-csf, granulocyte-monocyte colony stimulating factor
- h&e, hematoxylin and eosin
- il, interleukin
- ip, intraperitoneally
- pb, peripheral blood
- pbs, phosphate-buffered saline
- pcr, polymerase chain reaction
- pe, phycoerythrin
- pi, propidium iodide
- rt, reverse transcription
- scf, stem cell factor
- shrna, short hairpin rna
- wbc, white blood cell
- 5-fu, 5-florouracil
Collapse
MESH Headings
- Animals
- Apoptosis
- Bone Marrow Transplantation
- Cell Differentiation
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Monocytic, Acute/metabolism
- Leukemia, Monocytic, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- NIH 3T3 Cells
- Oncogene Proteins, Fusion
- Proto-Oncogene Protein c-ets-1/genetics
- Proto-Oncogene Protein c-ets-1/metabolism
Collapse
Affiliation(s)
- Jen-Fen Fu
- Department of Medical Research, Chang Gung Memorial Hospital, and Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| | - Tzung-Hai Yen
- Department of Nephrology and Poison Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ying-Jung Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
17
|
The PAF complex regulation of Prmt5 facilitates the progression and maintenance of MLL fusion leukemia. Oncogene 2017; 37:450-460. [PMID: 28945229 PMCID: PMC5785415 DOI: 10.1038/onc.2017.337] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) is a disease associated with epigenetic dysregulation. 11q23 translocations involving the H3K4 methyltransferase MLL1 (KMT2A) generate oncogenic fusion proteins with deregulated transcriptional potential. The Polymerase Associated Factor complex (PAFc) is an epigenetic co-activator complex that makes direct contact with MLL fusion proteins and is involved in AML, however its functions are not well understood. Here, we explored the transcriptional targets regulated by the PAFc that facilitate leukemia by performing RNA-sequencing after conditional loss of the PAFc subunit Cdc73. We found Cdc73 promotes expression of an early hematopoietic progenitor gene program that prevents differentiation. Among the target genes, we confirmed the protein arginine methyltransferase Prmt5 is a direct target that is positively regulated by a transcriptional unit that includes the PAFc, MLL1, HOXA9 and STAT5 in leukemic cells. We observed reduced PRMT5-mediated H4R3me2s following excision of Cdc73 placing this histone modification downstream of the PAFc and revealing a novel mechanism between the PAFc and Prmt5. Knock down or pharmacologic inhibition of Prmt5 causes a G1 arrest and reduced proliferation resulting in extended leukemic disease latency in vivo. Overall, we demonstrate the PAFc regulates Prmt5 to facilitate leukemic progression and is a potential therapeutic target for AMLs.
Collapse
|
18
|
Meyer C, Burmeister T, Gröger D, Tsaur G, Fechina L, Renneville A, Sutton R, Venn NC, Emerenciano M, Pombo-de-Oliveira MS, Barbieri Blunck C, Almeida Lopes B, Zuna J, Trka J, Ballerini P, Lapillonne H, De Braekeleer M, Cazzaniga G, Corral Abascal L, van der Velden VHJ, Delabesse E, Park TS, Oh SH, Silva MLM, Lund-Aho T, Juvonen V, Moore AS, Heidenreich O, Vormoor J, Zerkalenkova E, Olshanskaya Y, Bueno C, Menendez P, Teigler-Schlegel A, Zur Stadt U, Lentes J, Göhring G, Kustanovich A, Aleinikova O, Schäfer BW, Kubetzko S, Madsen HO, Gruhn B, Duarte X, Gameiro P, Lippert E, Bidet A, Cayuela JM, Clappier E, Alonso CN, Zwaan CM, van den Heuvel-Eibrink MM, Izraeli S, Trakhtenbrot L, Archer P, Hancock J, Möricke A, Alten J, Schrappe M, Stanulla M, Strehl S, Attarbaschi A, Dworzak M, Haas OA, Panzer-Grümayer R, Sedék L, Szczepański T, Caye A, Suarez L, Cavé H, Marschalek R. The MLL recombinome of acute leukemias in 2017. Leukemia 2017; 32:273-284. [PMID: 28701730 PMCID: PMC5808070 DOI: 10.1038/leu.2017.213] [Citation(s) in RCA: 506] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
Chromosomal rearrangements of the human MLL/KMT2A gene are associated with infant, pediatric, adult and therapy-induced acute leukemias. Here we present the data obtained from 2345 acute leukemia patients. Genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and 11 novel TPGs were identified. Thus, a total of 135 different MLL rearrangements have been identified so far, of which 94 TPGs are now characterized at the molecular level. In all, 35 out of these 94 TPGs occur recurrently, but only 9 specific gene fusions account for more than 90% of all illegitimate recombinations of the MLL gene. We observed an age-dependent breakpoint shift with breakpoints localizing within MLL intron 11 associated with acute lymphoblastic leukemia and younger patients, while breakpoints in MLL intron 9 predominate in AML or older patients. The molecular characterization of MLL breakpoints suggests different etiologies in the different age groups and allows the correlation of functional domains of the MLL gene with clinical outcome. This study provides a comprehensive analysis of the MLL recombinome in acute leukemia and demonstrates that the establishment of patient-specific chromosomal fusion sites allows the design of specific PCR primers for minimal residual disease analyses for all patients.
Collapse
Affiliation(s)
- C Meyer
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia (DCAL), Goethe-University, Frankfurt/Main, Germany
| | - T Burmeister
- Charité-Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - D Gröger
- Charité-Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - G Tsaur
- Regional Children Hospital 1, Research Institute of Medical Cell Technologies, Pediatric Oncology and Hematology Center, Ural Federal University, Ekaterinburg, Russia
| | - L Fechina
- Regional Children Hospital 1, Research Institute of Medical Cell Technologies, Pediatric Oncology and Hematology Center, Ural Federal University, Ekaterinburg, Russia
| | - A Renneville
- Laboratory of Hematology, Biology and Pathology Center, CHRU of Lille; INSERM, UMR-S 1172, Cancer Research Institute of Lille, Lille, France
| | - R Sutton
- Children's Cancer Institute Australia, Uinversity of NSW Sydney, Sydney, New South Wales, Australia
| | - N C Venn
- Children's Cancer Institute Australia, Uinversity of NSW Sydney, Sydney, New South Wales, Australia
| | - M Emerenciano
- Pediatric Hematology-Oncology Program-Research Center, Instituto Nacional de Cancer Rio de Janeiro, Rio de Janeiro, Brazil
| | - M S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program-Research Center, Instituto Nacional de Cancer Rio de Janeiro, Rio de Janeiro, Brazil
| | - C Barbieri Blunck
- Pediatric Hematology-Oncology Program-Research Center, Instituto Nacional de Cancer Rio de Janeiro, Rio de Janeiro, Brazil
| | - B Almeida Lopes
- Pediatric Hematology-Oncology Program-Research Center, Instituto Nacional de Cancer Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Zuna
- CLIP, Department of Paediatric Haematology/Oncology, Charles University Prague, 2nd Faculty of Medicine, Prague, Czech Republic
| | - J Trka
- CLIP, Department of Paediatric Haematology/Oncology, Charles University Prague, 2nd Faculty of Medicine, Prague, Czech Republic
| | - P Ballerini
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - H Lapillonne
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - M De Braekeleer
- Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Laboratoire d'Histologie, Embryologie et Cytogénétique & INSERM-U1078, Brest, France
| | - G Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica Univ. Milano Bicocca, Monza, Italy
| | - L Corral Abascal
- Centro Ricerca Tettamanti, Clinica Pediatrica Univ. Milano Bicocca, Monza, Italy
| | | | - E Delabesse
- CHU Purpan, Laboratoire d'Hématologie, Toulouse, France
| | - T S Park
- Department of Laboratory Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - S H Oh
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea
| | - M L M Silva
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - T Lund-Aho
- Laboratory of Clinical Genetics, Fimlab Laboratories, Tampere, Finland
| | - V Juvonen
- Department of Clinical Chemistry and TYKSLAB, University of Turku and Turku University Central Hospital, Turku, Finland
| | - A S Moore
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - O Heidenreich
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - J Vormoor
- The Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - E Zerkalenkova
- Dmitry Rogachev National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology, Moscow
| | - Y Olshanskaya
- Dmitry Rogachev National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology, Moscow
| | - C Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,CIBER de Cancer (CIBERONC), ISCIII, Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - P Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,CIBER de Cancer (CIBERONC), ISCIII, Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - A Teigler-Schlegel
- Department of Experimental Pathology and Cytology, Institute of Pathology, Giessen, Germany
| | - U Zur Stadt
- Center for Diagnostic, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - J Lentes
- Department of Human Genetics, Hannover Medical School, Hanover, Germany
| | - G Göhring
- Department of Human Genetics, Hannover Medical School, Hanover, Germany
| | - A Kustanovich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Republic of Belarus
| | - O Aleinikova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Republic of Belarus
| | - B W Schäfer
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - S Kubetzko
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - H O Madsen
- Department of Clinical Immunology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - B Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - X Duarte
- Department of Pediatrics, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | - P Gameiro
- Hemato-Oncology Laboratory, UIPM, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | - E Lippert
- Hématologie Biologique, CHU de Brest and INSERM U1078, Université de Bretagne Occidentale, Brest, France
| | - A Bidet
- Hématologie Biologique, CHU de Brest and INSERM U1078, Université de Bretagne Occidentale, Brest, France
| | - J M Cayuela
- Laboratoire d'hématologie, AP-HP Saint-Louis, Paris Diderot University, Paris, France
| | - E Clappier
- Laboratoire d'hématologie, AP-HP Saint-Louis, Paris Diderot University, Paris, France
| | - C N Alonso
- Hospital Nacional de Pediatría Prof Dr J. P. Garrahan, Servcio de Hemato-Oncología, Buenos Aires, Argentina
| | - C M Zwaan
- Department of Pediatric Oncology/Hematology, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - M M van den Heuvel-Eibrink
- Department of Pediatric Oncology/Hematology, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - S Izraeli
- The Chaim Sheba Medical Center, Department of Pediatric Hemato-Oncology and the Cancer Research Center, Tel Aviv, Israel.,Sackler Medical School Tel Aviv University, Tel Aviv, Israel
| | - L Trakhtenbrot
- The Chaim Sheba Medical Center, Department of Pediatric Hemato-Oncology and the Cancer Research Center, Tel Aviv, Israel.,Sackler Medical School Tel Aviv University, Tel Aviv, Israel
| | - P Archer
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - J Hancock
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - A Möricke
- Department of Pediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - J Alten
- Department of Pediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - M Schrappe
- Department of Pediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - M Stanulla
- Department of Pediatrics, MHH, Hanover, Germany
| | - S Strehl
- Children's Cancer Research Institute and St Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - A Attarbaschi
- Children's Cancer Research Institute and St Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - M Dworzak
- Children's Cancer Research Institute and St Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - O A Haas
- Children's Cancer Research Institute and St Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - R Panzer-Grümayer
- Children's Cancer Research Institute and St Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - L Sedék
- Department of Microbiology and Immunology, Medical University of Silesia, Zabrze, Poland
| | - T Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - A Caye
- Department of Genetics, AP-HP Robert Debré, Paris Diderot University, Paris, France
| | - L Suarez
- Department of Genetics, AP-HP Robert Debré, Paris Diderot University, Paris, France
| | - H Cavé
- Department of Genetics, AP-HP Robert Debré, Paris Diderot University, Paris, France
| | - R Marschalek
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia (DCAL), Goethe-University, Frankfurt/Main, Germany
| |
Collapse
|
19
|
Gil J, Ramírez-Torres A, Encarnación-Guevara S. Lysine acetylation and cancer: A proteomics perspective. J Proteomics 2016; 150:297-309. [PMID: 27746255 DOI: 10.1016/j.jprot.2016.10.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 12/17/2022]
Abstract
Lysine acetylation is a reversible modification controlled by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Acetylated lysine residues are recognized by bromodomains, a family of evolutionarily conserved domains. The use of high-resolution mass spectrometry-based proteomics, in combination with the enrichment of acetylated peptides through immunoprecipitation with anti-acetyl-lysine antibodies, has expanded the number of acetylated proteins from histones and a few nuclear proteins to more than 2000 human proteins. Because acetylation targets almost all cellular processes, this modification has been associated with cancer. Several KATs, KDACs and bromodomain-containing proteins have been linked to cancer development. Many small molecules targeting some of these proteins have been or are being tested as potential cancer therapies. The stoichiometry of lysine acetylation has not been explored in cancer, representing a promising field in which to increase our knowledge of how this modification is affected in cancer. In this review, we will focus on the strategies that can be used to go deeper in the characterization of the protein lysine acetylation emphasizing in cancer research.
Collapse
Affiliation(s)
- Jeovanis Gil
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas-UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| | - Alberto Ramírez-Torres
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas-UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico
| | - Sergio Encarnación-Guevara
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas-UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| |
Collapse
|
20
|
Mll-AF4 Confers Enhanced Self-Renewal and Lymphoid Potential during a Restricted Window in Development. Cell Rep 2016; 16:1039-1054. [PMID: 27396339 PMCID: PMC4967476 DOI: 10.1016/j.celrep.2016.06.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/27/2016] [Accepted: 06/09/2016] [Indexed: 01/15/2023] Open
Abstract
MLL-AF4+ infant B cell acute lymphoblastic leukemia is characterized by an early onset and dismal survival. It initiates before birth, and very little is known about the early stages of the disease’s development. Using a conditional Mll-AF4-expressing mouse model in which fusion expression is targeted to the earliest definitive hematopoietic cells generated in the mouse embryo, we demonstrate that Mll-AF4 imparts enhanced B lymphoid potential and increases repopulation and self-renewal capacity during a putative pre-leukemic state. This occurs between embryonic days 12 and 14 and manifests itself most strongly in the lymphoid-primed multipotent progenitor population, thus pointing to a window of opportunity and a potential cell of origin. However, this state alone is insufficient to generate disease, with the mice succumbing to B cell lymphomas only after a long latency. Future analysis of the molecular details of this pre-leukemic state will shed light on additional events required for progression to acute leukemia. Mll-AF4 confers enhanced B cell potential and causes an expansion of pro-B cells Mll-AF4 increases self-renewal potential Mll-AF4 exerts its effects in a restricted developmental window The LMPP is a potential cell of origin for Mll-AF4-associated disease
Collapse
|
21
|
Song Y, Wu F, Wu J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J Hematol Oncol 2016; 9:49. [PMID: 27316347 PMCID: PMC4912745 DOI: 10.1186/s13045-016-0279-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
Post-translational methylation of histone lysine or arginine residues plays important roles in gene regulation and other physiological processes. Aberrant histone methylation caused by a gene mutation, translocation, or overexpression can often lead to initiation of a disease such as cancer. Small molecule inhibitors of such histone modifying enzymes that correct the abnormal methylation could be used as novel therapeutics for these diseases, or as chemical probes for investigation of epigenetics. Discovery and development of histone methylation modulators are in an early stage and undergo a rapid expansion in the past few years. A number of highly potent and selective compounds have been reported, together with extensive preclinical studies of their biological activity. Several compounds have been in clinical trials for safety, pharmacokinetics, and efficacy, targeting several types of cancer. This review summarizes the biochemistry, structures, and biology of cancer-relevant histone methylation modifying enzymes, small molecule inhibitors and their preclinical and clinical antitumor activities. Perspectives for targeting histone methylation for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Fangrui Wu
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jingyu Wu
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
22
|
Feng Z, Yao Y, Zhou C, Chen F, Wu F, Wei L, Liu W, Dong S, Redell M, Mo Q, Song Y. Pharmacological inhibition of LSD1 for the treatment of MLL-rearranged leukemia. J Hematol Oncol 2016; 9:24. [PMID: 26970896 PMCID: PMC4789278 DOI: 10.1186/s13045-016-0252-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/02/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mixed lineage leukemia (MLL) gene translocations are found in ~75% infant and 10% adult acute leukemia, showing a poor prognosis. Lysine-specific demethylase 1 (LSD1) has recently been implicated to be a drug target for this subtype of leukemia. More studies using potent LSD1 inhibitors against MLL-rearranged leukemia are needed. METHODS LSD1 inhibitors were examined for their biochemical and biological activities against LSD1 and MLL-rearranged leukemia as well as other cancer cells. RESULTS Potent LSD1 inhibitors with biochemical IC50 values of 9.8-77 nM were found to strongly inhibit proliferation of MLL-rearranged leukemia cells with EC50 of 10-320 nM, while these compounds are generally non-cytotoxic to several other tumor cells. LSD1 inhibition increased histone H3 lysine 4 (H3K4) methylation, downregulated expression of several leukemia-relevant genes, induced apoptosis and differentiation, and inhibited self-renewal of stem-like leukemia cells. Moreover, LSD1 inhibitors worked synergistically with inhibition of DOT1L, a histone H3 lysine 79 (H3K79) methyltransferase, against MLL-rearranged leukemia. The most potent LSD1 inhibitor showed significant in vivo activity in a systemic mouse model of MLL-rearranged leukemia without overt toxicities. Mechanistically, LSD1 inhibitors caused significant upregulation of several pathways that promote hematopoietic differentiation and apoptosis. CONCLUSIONS LSD1 is a drug target for MLL-rearranged leukemia, and LSD1 inhibitors are potential therapeutics for the malignancy.
Collapse
Affiliation(s)
- Zizhen Feng
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yuan Yao
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Chao Zhou
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fengju Chen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fangrui Wu
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Liping Wei
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Wei Liu
- Department of Pediatrics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Texas Children's Cancer and Hematology Centers, 1102 Bates Street, Houston, TX, 77030, USA
| | - Shuo Dong
- Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Michele Redell
- Department of Pediatrics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Texas Children's Cancer and Hematology Centers, 1102 Bates Street, Houston, TX, 77030, USA
| | - Qianxing Mo
- Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Raj U, Kumar H, Gupta S, Varadwaj PK. Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study. Asian Pac J Cancer Prev 2016; 16:3817-25. [PMID: 25987043 DOI: 10.7314/apjcp.2015.16.9.3817] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. MATERIALS AND METHODS Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. RESULTS The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1L's active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligand's behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. CONCLUSIONS The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.
Collapse
Affiliation(s)
- Utkarsh Raj
- Bioinformatics, Information Technology, Indian Institute of Information Technology, Allahabad, India E-mail :
| | | | | | | |
Collapse
|
24
|
Aggressive MLL gene rearranged CD7+ CD56+ myeloid / natural killer cell precursor acute leukaemia with extramedullary relapse in the uterus and breast. Pathology 2015; 47:588-91. [PMID: 26308138 DOI: 10.1097/pat.0000000000000310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Abstract
DNA methylation and histone modification are epigenetic mechanisms that result in altered gene expression and cellular phenotype. The exact role of methylation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remains unclear. However, aberrations (e.g. loss-/gain-of-function or up-/down-regulation) in components of epigenetic transcriptional regulation in general, and of the methylation machinery in particular, have been implicated in the pathogenesis of these diseases. In addition, many of these components have been identified as therapeutic targets for patients with MDS/AML, and are also being assessed as potential biomarkers of response or resistance to hypomethylating agents (HMAs). The HMAs 5-azacitidine (AZA) and 2'-deoxy-5-azacitidine (decitabine, DAC) inhibit DNA methylation and have shown significant clinical benefits in patients with myeloid malignancies. Despite being viewed as mechanistically similar drugs, AZA and DAC have differing mechanisms of action. DAC is incorporated 100% into DNA, whereas AZA is incorporated into RNA (80-90%) as well as DNA (10-20%). As such, both drugs inhibit DNA methyltransferases (DNMTs; dependently or independently of DNA replication) resulting in the re-expression of tumor-suppressor genes; however, AZA also has an impact on mRNA and protein metabolism via its inhibition of ribonucleotide reductase, resulting in apoptosis. Herein, we first give an overview of transcriptional regulation, including DNA methylation, post-translational histone-tail modifications, the role of micro-RNA and long-range epigenetic gene silencing. We place special emphasis on epigenetic transcriptional regulation and discuss the implication of various components in the pathogenesis of MDS/AML, their potential as therapeutic targets, and their therapeutic modulation by HMAs and other substances (if known). The main focus of this review is laid on dissecting the rapidly evolving knowledge of AZA and DAC with a special focus on their differing mechanisms of action, and the effect of HMAs on transcriptional regulation.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Hospital Salzburg, Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute , Salzburg , Austria
| | | |
Collapse
|
26
|
Willer A, Jakobsen JS, Ohlsson E, Rapin N, Waage J, Billing M, Bullinger L, Karlsson S, Porse BT. TGIF1 is a negative regulator of MLL-rearranged acute myeloid leukemia. Leukemia 2014; 29:1018-31. [PMID: 25349154 DOI: 10.1038/leu.2014.307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 11/09/2022]
Abstract
Members of the TALE (three-amino-acid loop extension) family of atypical homeodomain-containing transcription factors are important downstream effectors of oncogenic fusion proteins involving the mixed lineage leukemia (MLL) gene. A well-characterized member of this protein family is MEIS1, which orchestrates a transcriptional program required for the maintenance of MLL-rearranged acute myeloid leukemia (AML). TGIF1/TGIF2 are relatively uncharacterized TALE transcription factors, which, in contrast to the remaining family, have been shown to act as transcriptional repressors. Given the general importance of this family in malignant hematopoiesis, we therefore tested the potential function of TGIF1 in the maintenance of MLL-rearranged AML. Gene expression analysis of MLL-rearranged patient blasts demonstrated reduced TGIF1 levels, and, in accordance, we find that forced expression of TGIF1 in MLL-AF9-transformed cells promoted differentiation and cell cycle exit in vitro, and delayed leukemic onset in vivo. Mechanistically, we show that TGIF1 interferes with a MEIS1-dependent transcriptional program by associating with MEIS1-bound regions in a competitive manner and that the MEIS1:TGIF1 ratio influence the clinical outcome. Collectively, these findings demonstrate that TALE family members can act both positively and negatively on transcriptional programs responsible for leukemic maintenance and provide novel insights into the regulatory gene expression circuitries in MLL-rearranged AML.
Collapse
Affiliation(s)
- A Willer
- 1] The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark [2] Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark [3] Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J S Jakobsen
- 1] The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark [2] Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark [3] Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - E Ohlsson
- 1] The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark [2] Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark [3] Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - N Rapin
- 1] The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark [2] Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark [3] Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark [4] The Bioinformatic Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Waage
- 1] The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark [2] Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark [3] Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark [4] The Bioinformatic Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Billing
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund, Sweden
| | - L Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - S Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund, Sweden
| | - B T Porse
- 1] The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark [2] Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark [3] Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Gaikwad A, Bonifant CL, Cubbage M, Goltsova T, Mudannayake M, Ringrose J, Punia J, Lopez-Terrada D, Sheehan AM. Detection of Lymphoid and Myeloid Lineages in Infantile B-Cell Acute Lymphoblastic Leukemia With Mixed-Lineage Leukemia Rearrangement by Use of Flow Cytometry and Cytogenetic Analysis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 14 Suppl:S2-5. [DOI: 10.1016/j.clml.2014.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/03/2014] [Accepted: 06/04/2014] [Indexed: 11/25/2022]
|
28
|
Kudithipudi S, Jeltsch A. Role of somatic cancer mutations in human protein lysine methyltransferases. Biochim Biophys Acta Rev Cancer 2014; 1846:366-79. [PMID: 25123655 DOI: 10.1016/j.bbcan.2014.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/26/2014] [Accepted: 08/06/2014] [Indexed: 12/17/2022]
Abstract
Methylation of lysine residues is an important post-translational modification of histone and non-histone proteins, which is introduced by protein lysine methyltransferases (PKMTs). An increasing number of reports demonstrate that aberrant lysine methylation plays a central role in carcinogenesis that is often correlated with abnormal expression of PKMTs. Recent whole genome and whole transcriptome sequencing projects have also discovered several somatic mutations in PKMTs that frequently appear in various tumors. These include chromosomal translocations that lead to aberrant expression or mistargeting of PKMTs and nonsense or frameshift mutations, which cause the loss of the protein function. Another type of mutations are missense mutations which may lead to the loss of enzyme activity, but may also alter the properties of PKMTs either by changing the product or substrate specificity or by increasing the enzymatic activity finally leading to a gain-of-function phenotype. In this review, we provide an overview of the roles of EZH2, SETD2, NSD family, SMYD family, MLL family and DOT1L PKMTs in cancer focusing on the effects of somatic cancer mutations in these enzymes. Investigation of the effect of somatic cancer mutations in PKMTs is pivotal to understand the general role of this important class of enzymes in carcinogenesis and to improve and develop more individualized cancer therapies.
Collapse
Affiliation(s)
- Srikanth Kudithipudi
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| |
Collapse
|
29
|
Montes R, Ayllón V, Prieto C, Bursen A, Prelle C, Romero-Moya D, Real PJ, Navarro-Montero O, Chillón C, Marschalek R, Bueno C, Menendez P. Ligand-independent FLT3 activation does not cooperate with MLL-AF4 to immortalize/transform cord blood CD34+ cells. Leukemia 2013; 28:666-74. [PMID: 24240202 DOI: 10.1038/leu.2013.346] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 10/18/2013] [Accepted: 11/08/2013] [Indexed: 01/11/2023]
Abstract
MLL-AF4 fusion is hallmark in high-risk infant pro-B-acute lymphoblastic leukemia (pro-B-ALL). Our limited understanding of MLL-AF4-mediated transformation reflects the absence of human models reproducing this leukemia. Hematopoietic stem/progenitor cells (HSPCs) constitute likely targets for transformation. We previously reported that MLL-AF4 enhanced hematopoietic engraftment and clonogenic potential in cord blood (CB)-derived CD34+ HSPCs but was not sufficient for leukemogenesis, suggesting that additional oncogenic lesions are required for MLL-AF4-mediated transformation. MLL-AF4+ pro-B-ALL display enormous levels of FLT3, and occasionally FLT3-activating mutations, thus representing a candidate cooperating event in MLL-AF4+ pro-B-ALL. We have explored whether FLT3.TKD (tyrosine kinase domain) mutation or increased expression of FLT3.WT (wild type) cooperates with MLL-AF4 to immortalize/transform CB-CD34+ HSPCs. In vivo, FLT3.TKD/FLT3.WT alone, or in combination with MLL-AF4, enhances hematopoietic repopulating function of CB-CD34+ HSPCs without impairing migration or hematopoietic differentiation. None of the animals transplanted with MLL-AF4+FLT3.TKD/WT-CD34+ HSPCs showed any sign of disease after 16 weeks. In vitro, enforced expression of FLT3.TKD/FLT3.WT conveys a transient overexpansion of MLL-AF4-expressing CD34+ HSPCs associated to higher proportion of cycling cells coupled to lower apoptotic levels, but does not augment clonogenic potential nor confer stable replating. Together, FLT3 activation does not suffice to immortalize/transform MLL-AF4-expressing CB-CD34+ HSPCs, suggesting the need of alternative (epi)-genetic cooperating oncogenic lesions.
Collapse
Affiliation(s)
- R Montes
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - V Ayllón
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - C Prieto
- 1] GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain [2] Faculty of Medicine, Department of Stem Cells, Development and Cancer, Cell Therapy Program of the University of Barcelona, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - A Bursen
- Institute of Pharmaceutical Biology/ZAFES/DCAL, Goethe-University of Frankfurt, Biocenter, Frankfurt, Germany
| | - C Prelle
- Institute of Pharmaceutical Biology/ZAFES/DCAL, Goethe-University of Frankfurt, Biocenter, Frankfurt, Germany
| | - D Romero-Moya
- 1] GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain [2] Faculty of Medicine, Department of Stem Cells, Development and Cancer, Cell Therapy Program of the University of Barcelona, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - P J Real
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - O Navarro-Montero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - C Chillón
- Hospital Universitario de Salamanca, Servicio de Hematología, Salamanca, Spain
| | - R Marschalek
- Institute of Pharmaceutical Biology/ZAFES/DCAL, Goethe-University of Frankfurt, Biocenter, Frankfurt, Germany
| | - C Bueno
- 1] GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain [2] Faculty of Medicine, Department of Stem Cells, Development and Cancer, Cell Therapy Program of the University of Barcelona, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - P Menendez
- 1] GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain [2] Faculty of Medicine, Department of Stem Cells, Development and Cancer, Cell Therapy Program of the University of Barcelona, Josep Carreras Leukemia Research Institute, Barcelona, Spain [3] Instituciò Catalana de Reserca i Estudis Avançats (ICREA)
| |
Collapse
|
30
|
Anglin JL, Song Y. A medicinal chemistry perspective for targeting histone H3 lysine-79 methyltransferase DOT1L. J Med Chem 2013; 56:8972-83. [PMID: 23879463 DOI: 10.1021/jm4007752] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Histone H3 lysine79 (H3K79) methyltransferase DOT1L plays an important role in the activation and maintenance of gene transcription. It is essential for embryonic development as well as normal functions of the hematopoietic system, heart, and kidney in adults. DOT1L has been found to be a drug target for acute leukemia with mixed lineage leukemia (MLL) gene translocations. The rearranged onco-MLL can recruit DOT1L, causing aberrant H3K79 methylation, overexpression of leukemia relevant genes, and eventually leukemogenesis. Potent DOT1L inhibitors possess selective activity against this type of leukemia in cell-based and animal studies, with the most advanced compound being in clinical trials. In the medicinal chemistry point of view, we review the biochemistry, cancer biology, and current inhibitors of DOT1L, as well as biophysical (including X-ray crystallographic) investigation of DOT1L-inhibitor interactions. Potential future directions in the context of drug discovery and development targeting DOT1L are discussed.
Collapse
Affiliation(s)
- Justin L Anglin
- Department of Pharmacology, Baylor College of Medicine , 1 Baylor Plaza, Houston, Texas 77030, United States
| | | |
Collapse
|
31
|
|
32
|
Launay E, Henry C, Meyer C, Chappé C, Taque S, Boulland ML, Ben Abdelali R, Dugay F, Marschalek R, Bastard C, Fest T, Gandemer V, Belaud-Rotureau MA. MLL-SEPT5 fusion transcript in infant acute myeloid leukemia with t(11;22)(q23;q11). Leuk Lymphoma 2013; 55:662-7. [PMID: 23725386 DOI: 10.3109/10428194.2013.809528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chromosomal rearrangements involving the MLL gene at band 11q23 are the most common genetic alteration encountered in infant acute myeloid leukemia. Reciprocal translocation represents the most frequent form of MLL rearrangement. Currently, more than 60 partner genes have been identified. We report here a case of de novo acute myeloid leukemia with a t(11;22)(q23;q11) in a 23-month-old child. Fluorescence in situ hybridization study revealed that the 3'MLL segment was translocated onto the derivative chromosome 22 and the breakpoint on chromosome 22 was located in or near the SEPT5 gene at 22q11.21. Long distance inverse-polymerase chain reaction was used to identify precisely the MLL partner gene and confirmed the MLL-SEPT5 fusion transcript. Involvement of the SEPT5 gene in MLL rearrangement occurs very rarely. Clinical, cytogenetic and molecular features of acute myeloid leukemia with a MLL-SEPT5 fusion gene are reviewed.
Collapse
Affiliation(s)
- Erika Launay
- Service de Cytogénétique et de Biologie Cellulaire
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bywater MJ, Pearson RB, McArthur GA, Hannan RD. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer 2013; 13:299-314. [PMID: 23612459 DOI: 10.1038/nrc3496] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations that directly affect transcription by RNA polymerases rank among the most central mediators of malignant transformation, but the frequency of new anticancer drugs that selectively target defective transcription apparatus entering the clinic has been limited. This is because targeting the large protein-protein and protein-DNA interfaces that control both generic and selective aspects of RNA polymerase transcription has proved extremely difficult. However, recent technological advances have led to a 'quantum leap' in our comprehension of the structure and function of the core RNA polymerase components, how they are dysregulated in a broad range of cancers and how they may be targeted for 'transcription therapy'.
Collapse
Affiliation(s)
- Megan J Bywater
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne 8006, Victoria, Australia
| | | | | | | |
Collapse
|
34
|
The MLL recombinome of acute leukemias in 2013. Leukemia 2013; 27:2165-76. [PMID: 23628958 PMCID: PMC3826032 DOI: 10.1038/leu.2013.135] [Citation(s) in RCA: 343] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 12/23/2022]
Abstract
Chromosomal rearrangements of the human MLL (mixed lineage leukemia) gene are associated with high-risk infant, pediatric, adult and therapy-induced acute leukemias. We used long-distance inverse-polymerase chain reaction to characterize the chromosomal rearrangement of individual acute leukemia patients. We present data of the molecular characterization of 1590 MLL-rearranged biopsy samples obtained from acute leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and novel TPGs identified. All patients were classified according to their gender (852 females and 745 males), age at diagnosis (558 infant, 416 pediatric and 616 adult leukemia patients) and other clinical criteria. Combined data of our study and recently published data revealed a total of 121 different MLL rearrangements, of which 79 TPGs are now characterized at the molecular level. However, only seven rearrangements seem to be predominantly associated with illegitimate recombinations of the MLL gene (≈ 90%): AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10, ELL, partial tandem duplications (MLL PTDs) and MLLT4/AF6, respectively. The MLL breakpoint distributions for all clinical relevant subtypes (gender, disease type, age at diagnosis, reciprocal, complex and therapy-induced translocations) are presented. Finally, we present the extending network of reciprocal MLL fusions deriving from complex rearrangements.
Collapse
|
35
|
Ali H, Daser A, Dear P, Wood H, Rabbitts P, Rabbitts T. Nonreciprocal chromosomal translocations in renal cancer involve multiple DSBs and NHEJ associated with breakpoint inversion but not necessarily with transcription. Genes Chromosomes Cancer 2013; 52:402-9. [PMID: 23341332 DOI: 10.1002/gcc.22038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 11/10/2022] Open
Abstract
Chromosomal translocations and other abnormalities are central to the initiation of cancer in all cell types. Understanding the mechanism is therefore important to evaluate the evolution of cancer from the cancer initiating events to overt disease. Recent work has concentrated on model systems to develop an understanding of the molecular mechanisms of translocations but naturally occurring events are more ideal case studies since biological selection is absent from model systems. In solid tumours, nonreciprocal translocations are most commonly found, and accordingly we have investigated the recurrent nonreciprocal t(3;5) chromosomal translocations in renal carcinoma to better understand the mechanism of these naturally occurring translocations in cancer. Unexpectedly, the junctions of these translocations can be associated with site-specific, intrachromosomal inversion involving at least two double strand breaks (DSB) in cis and rejoining by nonhomologous end joining or micro-homology end joining. However, these translocations are not necessarily associated with transcribed regions questioning accessibility per se in controlling these events. In addition, intrachromosomal deletions also occur. We conclude these naturally occurring, nonreciprocal t(3;5) chromosomal translocations occur after complex and multiple unresolved intrachromosomal DSBs leading to aberrant joining with concurrent interstitial inversion and that clonal selection of cells is the critical element in cancer development emerging from a plethora of DSBs that may not always be pathogenic.
Collapse
Affiliation(s)
- Hanif Ali
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | | | | | | | | | | |
Collapse
|
36
|
Zhang C, Zhang X, Chen XH, Gao L, Gao L, Liu Y, Kong PY, Zeng DF, Peng XG, Sun AH. Features and clinical outcomes in 40 patients with mixed-lineage acute leukemia in a single center. ACTA ACUST UNITED AC 2013; 18:309-14. [PMID: 23510508 DOI: 10.1179/1607845413y.0000000077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Mixed-lineage acute leukemia (MAL) is characterized as acute leukemia involving acute myeloid cells and lymphoid cells at the same time. It is easily misdiagnosed because of the dual characteristics involving both lymphoid and myeloid cells and has a poor prognosis. We retrospectively analyzed the features and treatment effectiveness in a single center in 40 patients with MAL. The morphology was consistent with acute lymphoblastic leukemia (ALL) (47.5%) or acute myeloid leukemia (AML) (20%) or was inconclusive (32.5%). Twenty-two patients were characterized as B/myeloid, and 18 patients as T/myeloid. Cytogenetics showed t(9;22)/(Ph(+)) (12.5%) and 11q23/MLL rearrangements (6.25%). The rate of first complete remission for patients undergoing chemotherapy based on the features of both ALL and AML and of either ALL or AML was 71.4 and 42.9%, respectively. The 1-year overall survival rates were 37.5 and 60.0% for chemotherapy and chemotherapy followed by haploidentical hematopoietic stem cell transplantation (HSCT), respectively. The 1-year disease-free survival rates were 25.0 and 50.0% for chemotherapy and chemotherapy followed by HSCT, respectively. These results showed that MAL is confirmed to be a poor-risk disease. The chemotherapy for remission induction should be based on both myeloid cells and lymphoid cells. Transplantation should be performed after the first remission.
Collapse
Affiliation(s)
- Cheng Zhang
- The Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Transcription factors critical for normal hematopoietic stem cell functions are frequently mutated in acute leukemia leading to an aberrant re-programming of normal hematopoietic progenitor/stem cells into leukemic stem cells. Among them, re-arrangements of the mixed lineage leukemia gene (MLL), including chimeric fusion, partial tandem duplication (PTD), amplification and internal exonic deletion, represent one of the most common recurring oncogenic events and associate with very poor prognosis in human leukemias. Extensive research on wild type MLL and MLL-fusions has significant advanced our knowledge about their functions in normal and malignant hematopoiesis, which also provides a framework for the underlying pathogenic role of MLL re-arrangements in human leukemias. In contrast, research progress on MLL-PTD, MLL amplification and internal exonic deletion remains stagnant, in particular for the last two abnormalities where mouse model is not yet available. In this article, we will review the key features of both wild-type and re-arranged MLL proteins with particular focuses on MLL-PTD and MLL amplification for their roles in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Bon Ham Yip
- Leukemia and Stem Cell Biology Lab, Department of Haematological Medicine, King's College London, Denmark Hill, London SE5 9NU, UK
| | | |
Collapse
|
38
|
Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood 2013; 121:2533-41. [PMID: 23361907 DOI: 10.1182/blood-2012-11-465120] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The t(6;11)(q27;q23) is a recurrent chromosomal rearrangement that encodes the MLLAF6 fusion oncoprotein and is observed in patients with diverse hematologic malignancies. The presence of the t(6;11)(q27;q23) has been linked to poor overall survival in patients with AML. In this study, we demonstrate that MLL-AF6 requires continued activity of the histone-methyltransferase DOT1L to maintain expression of the MLL-AF6-driven oncogenic gene-expression program. Using gene-expression analysis and genome-wide chromatin immunoprecipitation studies followed by next generation sequencing, we found that MLL-fusion target genes display markedly high levels of histone 3 at lysine 79 (H3K79) dimethylation in murine MLL-AF6 leukemias as well as in ML2, a human myelomonocytic leukemia cell line bearing the t(6;11)(q27;q23) translocation. Targeted disruption of Dot1l using a conditional knockout mouse model inhibited leukemogenesis mediated by the MLL-AF6 fusion oncogene. Moreover, both murine MLL-AF6-transformed cells as well as the human MLL-AF6-positive ML2 leukemia cell line displayed specific sensitivity to EPZ0004777, a recently described, selective, small-molecule inhibitor of Dot1l. Dot1l inhibition resulted in significantly decreased proliferation, decreased expression of MLL-AF6 target genes, and cell cycle arrest of MLL-AF6-transformed cells. These results indicate that patients bearing the t(6;11)(q27;q23) translocation may benefit from therapeutic agents targeting aberrant H3K79 methylation.
Collapse
|
39
|
The histone methyltransferase KMT2B is required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Mol Cell Biol 2013; 33:1383-93. [PMID: 23358417 DOI: 10.1128/mcb.01721-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
KMT2B (MLL2/WBP7) is a member of the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2) and is vital for normal embryonic development in the mouse. To gain insight into the molecular mechanism underlying KMT2B function, we focused on MagohB, which is controlled by a CpG island promoter. We show that in cells lacking Mll2-the gene encoding KMT2B-the MagohB promoter resides in inaccessible chromatin and is methylated. To dissect the molecular events leading to the establishment of silencing, we performed kinetic studies in Mll2-conditional-knockout embryonic stem cells. KMT2B depletion was followed by the loss of the active chromatin marks and progressive loss of RNA polymerase II binding with a concomitant downregulation of MagohB expression. Once the active chromatin marks were lost, the MagohB promoter was rapidly methylated. We demonstrate that in the presence of KMT2B, neither transcription elongation nor RNA polymerase II binding is required to maintain H3K4 trimethylation at the MagohB promoter and protect it from DNA methylation. Reexpression of KMT2B was sufficient to reinstate an active MagohB promoter. Our study provides a paradigm for the idea that KMT2 proteins are crucial components for establishing and maintaining the transcriptionally active and unmethylated state of CpG island promoters.
Collapse
|
40
|
Cerveira N, Lisboa S, Correia C, Bizarro S, Santos J, Torres L, Vieira J, Barros-Silva JD, Pereira D, Moreira C, Meyer C, Oliva T, Moreira I, Martins Â, Viterbo L, Costa V, Marschalek R, Pinto A, Mariz JM, Teixeira MR. Genetic and clinical characterization of 45 acute leukemia patients with MLL gene rearrangements from a single institution. Mol Oncol 2012; 6:553-64. [PMID: 22846743 DOI: 10.1016/j.molonc.2012.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 12/31/2022] Open
Abstract
Chromosomal rearrangements affecting the MLL gene are associated with high-risk pediatric, adult and therapy-associated acute leukemia. In this study, conventional cytogenetic, fluorescence in situ hybridization, and molecular genetic studies were used to characterize the type and frequency of MLL rearrangements in a consecutive series of 45 Portuguese patients with MLL-related leukemia treated in a single institution between 1998 and 2011. In the group of patients with acute lymphoblastic leukemia and an identified MLL fusion partner, 47% showed the presence of an MLL-AFF1 fusion, as a result of a t(4;11). In the remaining cases, a MLL-MLLT3 (27%), a MLL-MLLT1 (20%), or MLL-MLLT4 (7%) rearrangement was found. The most frequent rearrangement found in patients with acute myeloid leukemia was the MLL-MLLT3 fusion (42%), followed by MLL-MLLT10 (23%), MLL-MLLT1 (8%), MLL-ELL (8%), MLL-MLLT4 (4%), and MLL-MLLT11 (4%). In three patients, fusions involving MLL and a septin family gene (SEPT2, SEPT6, and SEPT9), were identified. The most frequently identified chromosomal rearrangements were reciprocal translocations, but insertions and deletions, some cryptic, were also observed. In our series, patients with MLL rearrangements were shown to have a poor prognosis, regardless of leukemia subtype. Interestingly, children with 1 year or less showed a statistically significant better overall survival when compared with both older children and adults. The use of a combined strategy in the initial genetic evaluation of acute leukemia patients allowed us to characterize the pattern of MLL rearrangements in our institution, including our previous discovery of two novel MLL fusion partners, the SEPT2 and CT45A2 genes, and a very rare MLL-MLLT4 fusion variant.
Collapse
Affiliation(s)
- Nuno Cerveira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cha B, Jho EH. Protein arginine methyltransferases (PRMTs) as therapeutic targets. Expert Opin Ther Targets 2012; 16:651-64. [PMID: 22621686 DOI: 10.1517/14728222.2012.688030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Protein arginine methyltransferases (PRMTs) add one or two monomethyl groups to the guanidino nitrogen atoms of arginine residues, resulting in epigenetic modification of histones or changes of protein-protein interactions, which in turn leads to the regulation of a variety of biological functions, including transcriptional activation/repression, signal transduction, cell differentiation, and embryonic development. As dysregulation of PRMTs has been observed in diverse types of cancers and modulation of their levels affects cancer cell growth, these enzymes are considered to be potential therapeutic targets. AREAS COVERED In this review, we examined recent advances in our understanding of the regulatory mechanisms of PRMT activity and the biological roles of PRMTs in embryonic stem cell, Wnt/β-catenin signaling, and cancer development. EXPERT OPINION The roles of PRMTs have been fairly well established, but further studies are required to determine how PRMTs are regulated by cellular signaling pathways in vivo. Since the usage of adult stem cells is under intense scrutiny by society, identification of the roles of PRMTs in adult stem cells is expected in the near future. Although small molecules specific to PRMTs with high potency in vitro have been identified, development of small molecules that can regulate the activity of PRMTs in vivo is urgently required for therapeutic purposes.
Collapse
Affiliation(s)
- Boksik Cha
- The University of Seoul, Department of Life Science, 90 Jeonnong-dong, Dongdaemun-gu, Seoul, 130-743, Republic of Korea
| | | |
Collapse
|
42
|
Bergerson RJ, Collier LS, Sarver AL, Been RA, Lugthart S, Diers MD, Zuber J, Rappaport AR, Nixon MJ, Silverstein KAT, Fan D, Lamblin AFJ, Wolff L, Kersey JH, Delwel R, Lowe SW, O'Sullivan MG, Kogan SC, Adams DJ, Largaespada DA. An insertional mutagenesis screen identifies genes that cooperate with Mll-AF9 in a murine leukemogenesis model. Blood 2012; 119:4512-23. [PMID: 22427200 PMCID: PMC3362364 DOI: 10.1182/blood-2010-04-281428] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 03/03/2012] [Indexed: 11/20/2022] Open
Abstract
Patients with a t(9;11) translocation (MLL-AF9) develop acute myeloid leukemia (AML), and while in mice the expression of this fusion oncogene also results in the development of myeloid leukemia, it is with long latency. To identify mutations that cooperate with Mll-AF9, we infected neonatal wild-type (WT) or Mll-AF9 mice with a murine leukemia virus (MuLV). MuLV-infected Mll-AF9 mice succumbed to disease significantly faster than controls presenting predominantly with myeloid leukemia while infected WT animals developed predominantly lymphoid leukemia. We identified 88 candidate cancer genes near common sites of proviral insertion. Analysis of transcript levels revealed significantly elevated expression of Mn1, and a trend toward increased expression of Bcl11a and Fosb in Mll-AF9 murine leukemia samples with proviral insertions proximal to these genes. Accordingly, FOSB and BCL11A were also overexpressed in human AML harboring MLL gene translocations. FOSB was revealed to be essential for growth in mouse and human myeloid leukemia cells using shRNA lentiviral vectors in vitro. Importantly, MN1 cooperated with Mll-AF9 in leukemogenesis in an in vivo BM viral transduction and transplantation assay. Together, our data identified genes that define transcription factor networks and important genetic pathways acting during progression of leukemia induced by MLL fusion oncogenes.
Collapse
Affiliation(s)
- Rachel J Bergerson
- Department of Genetics, Cell Biology and Development, Masonic Cancer Center, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chin LK, Cheah CY, Michael PM, MacKinnon RN, Campbell LJ. 11q23 rearrangement and duplication of MLLT1-MLL gene fusion in therapy-related acute myeloid leukemia. Leuk Lymphoma 2012; 53:2066-8. [PMID: 22335556 DOI: 10.3109/10428194.2012.666663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
MESH Headings
- Azathioprine/adverse effects
- Azathioprine/therapeutic use
- Chromosome Banding
- Chromosomes, Human, Pair 11
- Cyclosporine/adverse effects
- Cyclosporine/therapeutic use
- Female
- Gene Duplication
- Hepatitis, Autoimmune/drug therapy
- Histone-Lysine N-Methyltransferase
- Humans
- Immunosuppressive Agents/adverse effects
- Immunosuppressive Agents/therapeutic use
- In Situ Hybridization, Fluorescence
- Leukemia, Myeloid, Acute/chemically induced
- Leukemia, Myeloid, Acute/genetics
- Myeloid-Lymphoid Leukemia Protein/genetics
- Neoplasm Proteins/genetics
- Nuclear Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Transcription Factors/genetics
- Translocation, Genetic
- Young Adult
Collapse
|
44
|
Clinical and laboratory biology of childhood acute lymphoblastic leukemia. J Pediatr 2012; 160:10-8. [PMID: 21920540 DOI: 10.1016/j.jpeds.2011.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 06/28/2011] [Accepted: 08/02/2011] [Indexed: 02/02/2023]
|
45
|
De Braekeleer E, Meyer C, Douet-Guilbert N, Basinko A, Le Bris MJ, Morel F, Berthou C, Marschalek R, Férec C, De Braekeleer M. Identification of MLL partner genes in 27 patients with acute leukemia from a single cytogenetic laboratory. Mol Oncol 2011; 5:555-63. [PMID: 21900057 DOI: 10.1016/j.molonc.2011.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/16/2011] [Accepted: 08/21/2011] [Indexed: 10/17/2022] Open
Abstract
Chromosomal rearrangements involving the MLL gene have been associated with many different types of hematological malignancies. Fluorescent in situ hybridization with a panel of probes coupled with long distance inverse-PCR was used to identify chromosomal rearrangements involving the MLL gene. Between 1995 and 2010, 27 patients with an acute leukemia were found to have a fusion gene involving MLL. All seven ALL patients with B cell acute lymphoblastic leukemia were characterized by the MLL/AFF1 fusion gene resulting from a translocation (5 patients) or an insertion (2 patients). In the 19 AML patients with acute myeloblastic leukemia, 31.6% of all characterized MLL fusion genes were MLL/MLLT3, 21.1% MLL/ELL, 10.5% MLL/MLLT6 and 10.5% MLL/EPS15. Two patients had rare or undescribed fusion genes, MLL/KIAA0284 and MLL/FLNA. Seven patients (26%) had a complex chromosomal rearrangement (three-way translocations, insertions, deletions) involving the MLL gene. Splicing fusion genes were found in three patients, leading to a MLL/EPS15 fusion in two and a MLL/ELL fusion in a third patient. This study showed that fusion involving the MLL gene can be generated through various chromosomal rearrangements such as translocations, insertions and deletions, some being complex or cryptic. A systematic approach should be used in all cases of acute leukemia starting with FISH analyses using a commercially available MLL split signal probe. Then, the analysis has to be completed, if necessary, by further molecular cytogenetic and genomic PCR methods.
Collapse
|
46
|
Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet 2011; 43:875-8. [PMID: 21822268 DOI: 10.1038/ng.907] [Citation(s) in RCA: 586] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/15/2011] [Indexed: 12/13/2022]
Abstract
Transitional cell carcinoma (TCC) is the most common type of bladder cancer. Here we sequenced the exomes of nine individuals with TCC and screened all the somatically mutated genes in a prevalence set of 88 additional individuals with TCC with different tumor stages and grades. In our study, we discovered a variety of genes previously unknown to be mutated in TCC. Notably, we identified genetic aberrations of the chromatin remodeling genes (UTX, MLL-MLL3, CREBBP-EP300, NCOR1, ARID1A and CHD6) in 59% of our 97 subjects with TCC. Of these genes, we showed UTX to be altered substantially more frequently in tumors of low stages and grades, highlighting its potential role in the classification and diagnosis of bladder cancer. Our results provide an overview of the genetic basis of TCC and suggest that aberration of chromatin regulation might be a hallmark of bladder cancer.
Collapse
|
47
|
Cerveira N, Bizarro S, Teixeira MR. MLL-SEPTIN gene fusions in hematological malignancies. Biol Chem 2011; 392:713-24. [PMID: 21714766 DOI: 10.1515/bc.2011.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mixed lineage leukemia (MLL) locus is involved in more than 60 different rearrangements with a remarkably diverse group of fusion partners in approximately 10% of human leukemias. MLL rearrangements include chromosomal translocations, gene internal duplications, chromosome 11q deletions or inversions and MLL gene insertions into other chromosomes, or vice versa. MLL fusion partners can be classified into four distinct categories: nuclear proteins, cytoplasmatic proteins, histone acetyltransferases and septins. Five different septin genes (SEPT2, SEPT5, SEPT6, SEPT9, and SEPT11) have been identified as MLL fusion partners, giving rise to chimeric fusion proteins in which the N terminus of MLL is fused, in frame, to almost the entire open reading frame of the septin partner gene. The rearranged alleles result from heterogeneous breaks in distinct introns of both MLL and its septin fusion partner, originating distinct gene fusion variants. MLL-SEPTIN rearrangements have been repeatedly identified in de novo and therapy related myeloid neoplasia in both children and adults, and some clinicopathogenetic associations are being uncovered. The fundamental roles of septins in cytokinesis, membrane remodeling and compartmentalization can provide some clues on how abnormalities in the septin cytoskeleton and MLL deregulation could be involved in the pathogenesis of hematological malignancies.
Collapse
Affiliation(s)
- Nuno Cerveira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | | | | |
Collapse
|
48
|
Enforced expression of MLL-AF4 fusion in cord blood CD34+ cells enhances the hematopoietic repopulating cell function and clonogenic potential but is not sufficient to initiate leukemia. Blood 2011; 117:4746-58. [PMID: 21389315 DOI: 10.1182/blood-2010-12-322230] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infant acute lymphoblastic leukemia harboring the fusion mixed-lineage leukemia (MLL)-AF4 is associated with a dismal prognosis and very brief latency. Our limited understanding of transformation by MLL-AF4 is reflected in murine models, which do not accurately recapitulate the human disease. Human models for MLL-AF4 disease do not exist. Hematopoietic stem or progenitor cells (HSPCs) represent probable targets for transformation. Here, we explored in vitro and in vivo the impact of the enforced expression of MLL-AF4 in human cord blood-derived CD34(+) HSPCs. Intrabone marrow transplantation into NOD/SCID-IL2Rγ(-/-) mice revealed an enhanced multilineage hematopoietic engraftment, efficiency, and homing to other hematopoietic sites on enforced expression of MLL-AF4. Lentiviral transduction of MLL-AF4 into CD34(+) HSPCs increased the in vitro clonogenic potential of CD34(+) progenitors and promoted their proliferation. Consequently, cell cycle and apoptosis analyses suggest that MLL-AF4 conveys a selective proliferation coupled to a survival advantage, which correlates with changes in the expression of genes involved in apoptosis, sensing DNA damage and DNA repair. However, MLL-AF4 expression was insufficient to initiate leukemogenesis on its own, indicating that either additional hits (or reciprocal AF4-MLL product) may be required to initiate ALL or that cord blood-derived CD34(+) HSPCs are not the appropriate cellular target for MLL-AF4-mediated ALL.
Collapse
|
49
|
Insights into the cellular origin and etiology of the infant pro-B acute lymphoblastic leukemia with MLL-AF4 rearrangement. Leukemia 2010; 25:400-10. [PMID: 21135858 DOI: 10.1038/leu.2010.284] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Infant acute lymphoblastic leukemia (ALL) involving mixed-lineage leukemia (MLL) fusions has attracted a huge interest in basic and clinical research because of its prenatal origin, mixed-lineage phenotype, dismal prognosis and extremely short latency. Over 90% of infant ALLs are pro-B ALL harboring the leukemic fusion MLL-AF4. Despite the fact that major achievements have provided a better understanding about the etiology of infant MLL-AF4+ ALL over the last two decades, key questions remain unanswered. Epidemiological and genetic studies suggest that the in utero origin of MLL rearrangements in infant leukemia may be the result of prenatal exposure to genotoxic compounds. In fact, chronic exposure of human embryonic stem cells (hESCs) to etoposide induces MLL rearrangements and makes hESC more prone to acquire subsequent chromosomal abnormalities than postnatal CD34(+) cells, linking embryonic exposure to topoisomerase II inhibitors to genomic instability and MLL rearrangements. Unfortunately, very little is known about the nature of the target cell for transformation. Neuron-glial antigen 2 expression was initially claimed to be specifically associated with MLL rearrangements and was recently shown to be readily expressed in CD34+CD38+, but not CD34+CD38- cells suggesting that progenitors rather than stem cells may be the target cell for transformation. Importantly, the recent findings showing that MLL-AF4 rearrangement is present and expressed in mesenchymal stem cells from infant patients with MLLAF4+ ALL challenged our current view of the etiology and cellular origin of this leukemia. It becomes therefore crucial to determine where the leukemia relapses come from and how the tumor-stroma relationship is defined at the molecular level. Finally, MLL-AF4 leukemogenesis has been particularly difficult to model and bona fide MLL-AF4 disease models do not exist so far. It is likely that the current disease models are missing some essential ingredients of leukemogenesis in the human embryo/fetus. We thus propose modeling MLL-AF4+ infant pro-B ALL using prenatal hESCs.
Collapse
|
50
|
Beesley AH, Rampellini JL, Palmer ML, Heng JYS, Samuels AL, Firth MJ, Ford J, Kees UR. Influence of wild-type MLL on glucocorticoid sensitivity and response to DNA-damage in pediatric acute lymphoblastic leukemia. Mol Cancer 2010; 9:284. [PMID: 20979663 PMCID: PMC2987983 DOI: 10.1186/1476-4598-9-284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 10/28/2010] [Indexed: 12/12/2022] Open
Abstract
Background Rearrangement of the mixed-lineage leukemia gene (MLL) is found in 80% of infant acute lymphoblastic leukemia (ALL) and is associated with poor prognosis and resistance to glucocorticoids (GCs). We have recently observed that GC resistance in T-ALL cell lines is associated with a proliferative metabolism and reduced expression of MLL. In this study we have further explored the relationship between MLL status and GC sensitivity. Results Negative correlation of MLL expression with GC resistance in 15 T-ALL cell lines was confirmed by quantitative RT-PCR. The absence of MLL-rearrangements suggested that this relationship represented expression of wild-type MLL. Analysis of MLL expression patterns revealed a negative relationship with cellular metabolism, proliferation and anti-apoptotic transcriptional networks. In silico analysis of published data demonstrated that reduced levels of MLL mRNA are associated with relapse and prednisolone resistance in T-ALL patients and adverse clinical outcome in children with MLL-rearranged ALL. RNAi knockdown of MLL expression in T-ALL cell lines significantly increased resistance to dexamethasone and gamma irradiation indicating an important role for wild-type MLL in the control of cellular apoptosis. Conclusions The data suggests that reduced expression of wild-type MLL can contribute to GC resistance in ALL patients both with and without MLL-translocations.
Collapse
Affiliation(s)
- Alex H Beesley
- Division of Children's Leukaemia and Cancer Research, Telethon Institute for Child Health Research, University of Western Australia Centre for Child Health Research, Perth, Australia
| | | | | | | | | | | | | | | |
Collapse
|