1
|
Rajaram Baskaran RK, van Teijlingen A, Tuttle T. Automated descriptors for high-throughput screening of peptide self-assembly. Faraday Discuss 2025. [PMID: 40365692 DOI: 10.1039/d4fd00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
We present five automated descriptors: Aggregate Detection Index (ADI); Sheet Formation Index (SFI); Vesicle Formation Index (VFI); Tube Formation Index (TFI); and Fibre Formation Index (FFI), that have been designed for analysing peptide self-assembly in molecular dynamics simulations. These descriptors, implemented as Python modules, enhance analytical precision and enable the development of screening methods tailored to specific structural targets rather than general aggregation. Initially tested on the FF dipeptide, the descriptors were validated using a comprehensive dipeptide dataset. This approach facilitates the identification of promising self-assembling moieties with nanoscale properties directly linked to macroscale functions, such as hydrogel formation.
Collapse
Affiliation(s)
| | - Alexander van Teijlingen
- Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | - Tell Tuttle
- Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| |
Collapse
|
2
|
Das TN, Ramesh A, Ghosh A, Moyra S, Maji TK, Ghosh G. Peptide-based nanomaterials and their diverse applications. NANOSCALE HORIZONS 2025; 10:279-313. [PMID: 39629637 DOI: 10.1039/d4nh00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The supramolecular self-assembly of peptides offers a promising avenue for both materials science and biological applications. Peptides have garnered significant attention in molecular self-assembly, forming diverse nanostructures with α-helix, β-sheet, and random coil conformations. These self-assembly processes are primarily driven by the amphiphilic nature of peptides and stabilized by non-covalent interactions, leading to complex nanoarchitectures responsive to environmental stimuli. While extensively studied in biomedical applications, including drug delivery and tissue engineering, their potential applications in the fields of piezoresponsive materials, conducting materials, catalysis and energy harvesting remain underexplored. This review comprehensively elucidates the diverse material characteristics and applications of self-assembled peptides. We discuss the multi-stimuli-responsiveness of peptide self-assemblies and their roles as energy harvesters, catalysts, liquid crystalline materials, glass materials and contributors to electrical conductivity. Additionally, we address the challenges and present future perspectives associated with peptide nanomaterials. This review aims to provide insights into the versatile applications of peptide self-assemblies while concisely summarizing their well-established biomedical roles that have previously been extensively reviewed by various research groups, including our group.
Collapse
Affiliation(s)
- Tarak Nath Das
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Aparna Ramesh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Arghya Ghosh
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Sourav Moyra
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), International Centre for Materials Science (ICMS), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Chen T, Liu Y, Gao Z, Gao Y, Chen H, Ye H, Luo Q, Wang K, Wu D. Template-assisted Flexible-to-rigid Transition of Peptides in Head-to-tail Self-polymerization Enables Sequence-controllable and Post-modifiable Peptide Nanofibers. Angew Chem Int Ed Engl 2025; 64:e202415809. [PMID: 39266463 DOI: 10.1002/anie.202415809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Peptide-based nanofibers are promising materials for many essential applications and can be generalized into two categories, self-assembling peptide nanofibers (SAPNs) and poly(amino acid) nanofibers (PAANs). Non-covalent SAPNs are sequence-controllable, but poorly stable and not suitable for post-modification. While covalent PAANs are post-modifiable, however, their sequences are either monotonic or undefined. The nanofibers obtained by head-to-tail covalent coupling polymerization of sequence-known peptides, which we call series-connected peptide nanofibers (SCPNs), promise to have the advantages of both SAPNs and PAANs, but they are barely reported. The undesired backbiting effect during the head-to-tail polymerization is one of the possible challenges. Here, we present a template-assisted strategy to trigger the flexible-to-rigid transition of peptide units, which can avoid the backbiting effect and enable consecutive intermolecular polymerization of peptides to produce desired sequence-controlled covalent SCPNs. SCPNs are highly stable and can function as excellent parent materials for various post-processing to create diverse hierarchical materials independent of the peptide sequence. Moreover, SCPNs allow for the display of predetermined functional groups at regular intervals along the nanofibers by pre-modification of the initial peptide sequence. SCPNs represent a new category of peptide-based nanofibers with outstanding performances and vast potential.
Collapse
Affiliation(s)
- Tianzi Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yin Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Zhanshan Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yue Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Haijin Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Haonan Ye
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Qiuhao Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Dongdong Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Park HS, Choi GH, Jung TW, Lee T. Scaffold-based synergistic enhancement of stem cell effects for therapeutic angiogenesis in critical limb ischemia: an experimental animal study. Ann Surg Treat Res 2024; 107:50-57. [PMID: 38978685 PMCID: PMC11227915 DOI: 10.4174/astr.2024.107.1.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose Stem cell-based therapies are considered an alternative approach for critical limb ischemia (CLI) patients with limited or exhausted options, yet their clinical use is limited by the lack of sustainability and unclear mechanism of action. In this study, a substance P-conjugated scaffold was injected with mesenchymal stem cells (MSCs) into an animal model of CLI to verify whether angiogenesis could be enhanced. Methods A self-assembling peptide (SAP) was conjugated with substance P, known to have the ability to recruit host stem cells into the site of action. This SAP was injected with MSCs into ischemic hindlimbs of rats, and the presence of MSCs was verified by immunohistochemical (IHC) staining of MSC-specific markers at days 7, 14, and 28. The degree of angiogenesis, cell apoptosis, and fibrosis was also quantified. Results Substance P-conjugated SAP was able to recruit intrinsic MSCs into the ischemic site of action. When injected in combination with MSCs, the presence of both injected and recruited MSCs was found in the ischemic tissues by double IHC staining. This in turn led to a higher degree of angiogenesis, less cell apoptosis, and less tissue fibrosis compared to the other groups at all time points. Conclusion The combination of substance P-conjugated SAP and MSCs was able to enhance angiogenesis and tissue repair, which was achieved by the additive effect from exogenously administered and intrinsically recruited MSCs. This scaffold-based intrinsic recruitment approach could be a viable option to enhance the therapeutic effects in patients with CLI.
Collapse
Affiliation(s)
- Hyung Sub Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Geum Hee Choi
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Tae Woo Jung
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Taeseung Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
5
|
Mahmoudi N, Mohamed E, Dehnavi SS, Aguilar LMC, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Calming the Nerves via the Immune Instructive Physiochemical Properties of Self-Assembling Peptide Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303707. [PMID: 38030559 PMCID: PMC10837390 DOI: 10.1002/advs.202303707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/22/2023] [Indexed: 12/01/2023]
Abstract
Current therapies for the devastating damage caused by traumatic brain injuries (TBI) are limited. This is in part due to poor drug efficacy to modulate neuroinflammation, angiogenesis and/or promoting neuroprotection and is the combined result of challenges in getting drugs across the blood brain barrier, in a targeted approach. The negative impact of the injured extracellular matrix (ECM) has been identified as a factor in restricting post-injury plasticity of residual neurons and is shown to reduce the functional integration of grafted cells. Therefore, new strategies are needed to manipulate the extracellular environment at the subacute phase to enhance brain regeneration. In this review, potential strategies are to be discussed for the treatment of TBI by using self-assembling peptide (SAP) hydrogels, fabricated via the rational design of supramolecular peptide scaffolds, as an artificial ECM which under the appropriate conditions yields a supramolecular hydrogel. Sequence selection of the peptides allows the tuning of these hydrogels' physical and biochemical properties such as charge, hydrophobicity, cell adhesiveness, stiffness, factor presentation, degradation profile and responsiveness to (external) stimuli. This review aims to facilitate the development of more intelligent biomaterials in the future to satisfy the parameters, requirements, and opportunities for the effective treatment of TBI.
Collapse
Affiliation(s)
- Negar Mahmoudi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Elmira Mohamed
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
| | - Shiva Soltani Dehnavi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
| | - Lilith M. Caballero Aguilar
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Alan R. Harvey
- School of Human SciencesThe University of Western Australiaand Perron Institute for Neurological and Translational SciencePerthWA6009Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleMelbourneVIC3010Australia
| | | | - David R. Nisbet
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
- Melbourne Medical SchoolFaculty of MedicineDentistry and Health ScienceThe University of MelbourneMelbourneVIC3010Australia
| |
Collapse
|
6
|
Mahmoudi N, Wang Y, Moriarty N, Ahmed NY, Dehorter N, Lisowski L, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Neuronal Replenishment via Hydrogel-Rationed Delivery of Reprogramming Factors. ACS NANO 2024; 18:3597-3613. [PMID: 38221746 DOI: 10.1021/acsnano.3c11337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The central nervous system's limited capacity for regeneration often leads to permanent neuronal loss following injury. Reprogramming resident reactive astrocytes into induced neurons at the site of injury is a promising strategy for neural repair, but challenges persist in stabilizing and accurately targeting viral vectors for transgene expression. In this study, we employed a bioinspired self-assembling peptide (SAP) hydrogel for the precise and controlled release of a hybrid adeno-associated virus (AAV) vector, AAVDJ, carrying the NeuroD1 neural reprogramming transgene. This method effectively mitigates the issues of high viral dosage at the target site, off-target delivery, and immunogenic reactions, enhancing the vector's targeting and reprogramming efficiency. In vitro, this vector successfully induced neuron formation, as confirmed by morphological, histochemical, and electrophysiological analyses. In vivo, SAP-mediated delivery of AAVDJ-NeuroD1 facilitated the trans-differentiation of reactive host astrocytes into induced neurons, concurrently reducing glial scarring. Our findings introduce a safe and effective method for treating central nervous system injuries, marking a significant advancement in regenerative neuroscience.
Collapse
Affiliation(s)
- Negar Mahmoudi
- Laboratory of Advanced Biomaterials, the John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
- ANU College of Engineering & Computer Science, Acton, ACT 2601, Australia
| | - Yi Wang
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Niamh Moriarty
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Noorya Y Ahmed
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, and Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- IMPACT, School of Medicine, Deakin University, Geelong, VIC 3217, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, the John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
7
|
Zeng G, Zheng Y, Xiang Y, Liu R, Yang X, Lin Z. A novel protein purification scheme based on salt inducible self-assembling peptides. Microb Cell Fact 2023; 22:224. [PMID: 37899435 PMCID: PMC10614350 DOI: 10.1186/s12934-023-02229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Protein purification remains a critical need for biosciences and biotechnology. It frequently requires multiple rounds of chromatographic steps that are expensive and time-consuming. Our lab previously reported a cleavable self-aggregating tag (cSAT) scheme for streamlined protein expression and purification. The tag consists of a self-assembling peptide (SAP) and a controllable self-cleaving intein. The SAP drives the target protein into an active aggregate, then by intein-mediated cleavage, the target protein is released. Here we report a novel cSAT scheme in which the self-assembling peptide is replaced with a salt inducible self-assembling peptide. This allows a target protein to be expressed first in the soluble form, and the addition of salt then drives the target protein into the aggregated form, followed by cleavage and release. RESULTS In this study, we used MpA (MKQLEDKIEELLSKAAMKQLEDKIEELLSK) as a second class of self-assembling peptide in the cSAT scheme. This scheme utilizes low salt concentration to keep the fusion protein soluble, while eliminating insoluble cellular matters by centrifugation. Salt then triggers MpA-mediated self-aggregation of the fusion, removing soluble background host cell proteins. Finally, intein-mediated cleavage releases the target protein into solution. As a proof-of-concept, we successfully purified four proteins and peptides (human growth hormone, 22.1 kDa; LCB3, 7.7 kDa; SpyCatcherΔN-ELP-SpyCatcherΔN, 26.2 kDa; and xylanase, 45.3 kDa) with yields ranging from 12 to 87 mg/L. This was comparable to the classical His-tag method both in yield and purity (72-97%), but without the His-tag. By using a further two-step column purification process that included ion-exchange chromatography and size-exclusion chromatography, the purity was increased to over 99%. CONCLUSION Our results demonstrate that a salt-inducible self-assembling peptide can serve as a controllable aggregating tag, which might be advantageous in applications where soluble expression of the target protein is preferred. This work also demonstrates the potential and advantages of utilizing salt inducible self-assembling peptides for protein separation.
Collapse
Affiliation(s)
- Guang Zeng
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Yinzhen Zheng
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Ya Xiang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Run Liu
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China.
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Tanikawa S, Ebisu Y, Sedlačík T, Semba S, Nonoyama T, Kurokawa T, Hirota A, Takahashi T, Yamaguchi K, Imajo M, Kato H, Nishimura T, Tanei ZI, Tsuda M, Nemoto T, Gong JP, Tanaka S. Engineering of an electrically charged hydrogel implanted into a traumatic brain injury model for stepwise neuronal tissue reconstruction. Sci Rep 2023; 13:2233. [PMID: 36788295 PMCID: PMC9929269 DOI: 10.1038/s41598-023-28870-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Neural regeneration is extremely difficult to achieve. In traumatic brain injuries, the loss of brain parenchyma volume hinders neural regeneration. In this study, neuronal tissue engineering was performed by using electrically charged hydrogels composed of cationic and anionic monomers in a 1:1 ratio (C1A1 hydrogel), which served as an effective scaffold for the attachment of neural stem cells (NSCs). In the 3D environment of porous C1A1 hydrogels engineered by the cryogelation technique, NSCs differentiated into neuroglial cells. The C1A1 porous hydrogel was implanted into brain defects in a mouse traumatic damage model. The VEGF-immersed C1A1 porous hydrogel promoted host-derived vascular network formation together with the infiltration of macrophages/microglia and astrocytes into the gel. Furthermore, the stepwise transplantation of GFP-labeled NSCs supported differentiation towards glial and neuronal cells. Therefore, this two-step method for neural regeneration may become a new approach for therapeutic brain tissue reconstruction after brain damage in the future.
Collapse
Affiliation(s)
- Satoshi Tanikawa
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Yuki Ebisu
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Tomáš Sedlačík
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Shingo Semba
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Akira Hirota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Taiga Takahashi
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazushi Yamaguchi
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Hinako Kato
- Graduate School of Life Science, Hokkaido University, N21, W11, Sapporo, Japan, 001-0021
| | - Takuya Nishimura
- Graduate School of Life Science, Hokkaido University, N21, W11, Sapporo, Japan, 001-0021
| | - Zen-Ichi Tanei
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.,Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.,Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan. .,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.
| |
Collapse
|
9
|
Biomimetic nanofiber-enabled rapid creation of skin grafts. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
10
|
EF4K bola-amphiphilic peptide nanomembrane: structural, energetic and dynamic properties using molecular dynamics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Martinez B, Peplow PV. Biomaterial and tissue-engineering strategies for the treatment of brain neurodegeneration. Neural Regen Res 2022; 17:2108-2116. [PMID: 35259816 PMCID: PMC9083174 DOI: 10.4103/1673-5374.336132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The incidence of neurodegenerative diseases is increasing due to changing age demographics and the incidence of sports-related traumatic brain injury is tending to increase over time. Currently approved medicines for neurodegenerative diseases only temporarily reduce the symptoms but cannot cure or delay disease progression. Cell transplantation strategies offer an alternative approach to facilitating central nervous system repair, but efficacy is limited by low in vivo survival rates of cells that are injected in suspension. Transplanting cells that are attached to or encapsulated within a suitable biomaterial construct has the advantage of enhancing cell survival in vivo. A variety of biomaterials have been used to make constructs in different types that included nanoparticles, nanotubes, microspheres, microscale fibrous scaffolds, as well as scaffolds made of gels and in the form of micro-columns. Among these, Tween 80-methoxy poly(ethylene glycol)-poly(lactic-co-glycolic acid) nanoparticles loaded with rhynchophylline had higher transport across a blood-brain barrier model and decreased cell death in an in vitro model of Alzheimer’s disease than rhynchophylline or untreated nanoparticles with rhynchophylline. In an in vitro model of Parkinson’s disease, trans-activating transcriptor bioconjugated with zwitterionic polymer poly(2-methacryoyloxyethyl phosphorylcholine) and protein-based nanoparticles loaded with non-Fe hemin had a similar protective ability as free non-Fe hemin. A positive effect on neuron survival in several in vivo models of Parkinson’s disease was associated with the use of biomaterial constructs such as trans-activating transcriptor bioconjugated with zwitterionic polymer poly(2-methacryoyloxyethyl phosphorylcholine) and protein-based nanoparticles loaded with non-Fe hemin, carbon nanotubes with olfactory bulb stem cells, poly(lactic-co-glycolic acid) microspheres with attached DI-MIAMI cells, ventral midbrain neurons mixed with short fibers of poly-(L-lactic acid) scaffolds and reacted with xyloglucan with/without glial-derived neurotrophic factor, ventral midbrain neurons mixed with Fmoc-DIKVAV hydrogel with/without glial-derived neurotrophic factor. Further studies with in vivo models of Alzheimer’s disease and Parkinson’s disease are warranted especially using transplantation of cells in agarose micro-columns with an inner lumen filled with an appropriate extracellular matrix material.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Medicine, St. Georges University School of Medicine, Grenada
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Liu Y, Gan L, Feng P, Huang L, Chen L, Li S, Chen H. An artificial self-assembling peptide with carboxylesterase activity and substrate specificity restricted to short-chain acid p-nitrophenyl esters. Front Chem 2022; 10:996641. [PMID: 36199662 PMCID: PMC9527324 DOI: 10.3389/fchem.2022.996641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Natural enzymes possess remarkable catalytic activity and high substrate specificity. Many efforts have been dedicated to construct artificial enzymes with high catalytic activity. However, how to mimic the exquisite substrate specificity of a natural enzyme remains challenging because of the complexity of the enzyme structure. Here, we report artificial carboxylesterases that are specific for short chain fatty acids and were constructed via peptide self-assembly. These artificial systems have esterase-like activity rather than lipase-like activity towards p-nitrophenyl esters. The designer peptides self-assembled into nanofibers with strong β-sheet character. The extending histidine units and the hydrophobic edge of the fibrillar structure collectively form the active center of the artificial esterase. These artificial esterases show substrate specificity for short-chain acids esters. Moreover, 1-isopropoxy-4-nitrobenzene could function as a competitive inhibitor of hydrolysis of p-nitrophenyl acetate for an artificial esterase.
Collapse
Affiliation(s)
- Yanfei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yanfei Liu,
| | - Lili Gan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Peili Feng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Lei Huang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Luoying Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Shuhua Li
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Hui Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
13
|
Tang L, Xu C, Xuan A, Zhu Z, Ruan D. Functionalized self-assembling peptide RADKPS hydrogels promote regenerative repair of degenerated intervertebral discs. Biomater Sci 2022; 10:5134-5145. [PMID: 35820128 DOI: 10.1039/d2bm00634k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Objective: the aim of this study was to investigate whether the functionalized self-assembling peptide hydrogel RADKPS is safe and effective for regenerative repair of degenerative intervertebral discs. Methods: an in vitro degenerative model of human nucleus pulposus cells was constructed by serum starvation culture, and their proliferation, apoptosis and viability were examined after three-dimensional culture with the RADKPS hydrogel. An in vivo degenerative model of the rabbit intervertebral disc was constructed by annulus fibrosus puncture, and the degeneration of the intervertebral disc was evaluated by imaging, histology, immunohistochemistry, and biomechanics after RADKPS hydrogel intervention. Results: through in vitro cell experiments it is shown that human degenerated nucleus pulposus cells after three-dimensional culture with the RADKPS hydrogel still exhibited better proliferation, viability, and low apoptosis rate. Through in vivo animal experiments we found that rabbit degenerated intervertebral discs intervened with the RADKPS hydrogel had higher water content, better histological morphology, more extracellular matrix synthesis, and better biomechanical properties. It is demonstrated that the RADKPS hydrogel may initiate the endogenous repair process through the sustained recruitment and enrichment of nucleus pulposus progenitor cells. Conclusion: it is verified from both in vitro cellular experiments and in vivo animal experiments that the regenerative repair effect of RADKPS, a functionalized self-assembling peptide hydrogel, on degenerated intervertebral discs is safe and effective. It is shown that it would be a new therapeutic approach for the regenerative repair action of intervertebral discs.
Collapse
Affiliation(s)
- Liang Tang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.,Department of Orthopedic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China. .,Department of Orthopedic Surgery, Hengyang Central Hospital, Hunan, 421001, China
| | - Cheng Xu
- Department of Orthopedic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| | - Anwu Xuan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhenbiao Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dike Ruan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.,Department of Orthopedic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
14
|
Yanev P, van Tilborg GA, van der Toorn A, Kong X, Stowe AM, Dijkhuizen RM. Prolonged release of VEGF and Ang1 from intralesionally implanted hydrogel promotes perilesional vascularization and functional recovery after experimental ischemic stroke. J Cereb Blood Flow Metab 2022; 42:1033-1048. [PMID: 34986707 PMCID: PMC9125493 DOI: 10.1177/0271678x211069927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Injectable hydrogels can generate and support pro-repair environments in injured tissue. Here we used a slow-releasing drug carrying in situ-forming hydrogel to promote post-stroke recovery in a rat model. Release kinetics were measured in vitro and in vivo with MRI, using gadolinium-labeled albumin (Galbumin), which demonstrated prolonged release over multiple weeks. Subsequently, this hydrogel was used for long-term delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1) (Gel VEGF + Ang1, n = 14), in a photothrombotically induced cortical stroke lesion in rats. Control stroke animals were intralesionally injected with saline (Saline, n = 10), non-loaded gel (Gel, n = 10), or a single bolus of VEGF + Ang1 in saline (Saline VEGF + Ang1, n = 10). MRI was executed to guide hydrogel injection. Functional recovery was assessed with sensorimotor function tests, while tissue status and vascularization were monitored by serial in vivo MRI. Significant recovery from sensorimotor deficits from day 28 onwards was only measured in the Gel VEGF + Ang1 group. This was accompanied by significantly increased vascularization in the perilesional cortex. Histology confirmed (re)vascularization and neuronal sparing in perilesional areas. In conclusion, intralesional injection of in situ-forming hydrogel loaded with pro-angiogenic factors can support prolonged brain tissue regeneration and promote functional recovery in the chronic phase post-stroke.
Collapse
Affiliation(s)
- Pavel Yanev
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Geralda Af van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Xiangmei Kong
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Ann M Stowe
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
Hyaluronic acid-based self-repairing hydrogel preparation and 3D cell culture. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Wang C, Li Z, Zhang K, Zhang C. Self-assembling peptides with hBMP7 biological activity promote the differentiation of ADSCs into nucleus pulposus-like cells. J Orthop Surg Res 2022; 17:197. [PMID: 35366936 PMCID: PMC8976972 DOI: 10.1186/s13018-022-03102-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractFunctionalized self-assembling peptides, which display functional growth-factor bioactivity, can be designed by connecting the C-terminus of a pure self-assembling peptide with a short functional motif. In this study, we designed a novel functionalized peptide (RADA16-SNVI) in which an SNVI motif with hBMP-7 activity was conjugated onto the C-terminus of the RADA16 peptide via solid-phase synthesis. A mix of RADA16-SNVI and RADA16 solutions was used to create a functionalized peptide nanofiber scaffold (SNVI-RADA16). The hydrogels were analyzed by atomic force microscopy, circular dichroism, and scanning electron microscopy. The results showed that the SNVI-RADA16 solution effectively formed hydrogel. Next, we seeded the SNVI-RADA16 scaffold with adipose-derived stem cells (ADSCs) and investigated whether it displayed biological properties of nucleus pulposus tissue. SNVI-RADA16 displayed good biocompatibility with the ADSCs and induced their expression. Cells in SNVI-RADA16 gel had a greater secretion of the extracellular matrix marker collagen type II and aggrecan compared to ADSCs grown in monolayer and control gel (p < 0.05). The ratio of the aggrecan to collagen in cells in SNVI-RADA16 gel is approximately 29:1 after culture for 21 days. ADSCs in SNVI-RADA16 gels expressed the hypoxia-inducible factor 1α(HIF-1α) mRNA by real-time PCR. However, HIF-1 mRNA is absence in control gel and monolayer. The results suggested that the functionalized self-assembled peptide promotes the differentiation of ADSCs into nucleus pulposus-like cells. Thus, the designed SNVI-RADA16 self-assembling peptide hydrogel scaffolds may be suitable for application in nucleus pulposus tissue regeneration.
Collapse
|
17
|
Cao J, Chan WC, Chow MSS. Use of conditional reprogramming cell, patient derived xenograft and organoid for drug screening for individualized prostate cancer therapy: Current and future perspectives (Review). Int J Oncol 2022; 60:52. [PMID: 35322860 DOI: 10.3892/ijo.2022.5342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/14/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer mortality is ranked second among all cancer mortalities in men worldwide. There is a great need for a method of efficient drug screening for precision therapy, especially for patients with existing drug‑resistant prostate cancer. Based on the concept of bacterial cell culture and drug sensitivity testing, the traditional approach of cancer drug screening is inadequate. The current and more innovative use of cancer cell culture and in vivo tumor models in drug screening for potential individualization of anti‑cancer therapy is reviewed and discussed in the present review. An ideal screening model would have the ability to identify drug activity for the targeted cells resembling what would have occurred in the in vivo environment. Based on this principle, three available cell culture/tumor screening models for prostate cancer are reviewed and considered. The culture conditions, advantages and disadvantages for each model together with ideas to best utilize these models are discussed. The first screening model uses conditional reprogramed cells derived from patient cancer cells. Although these cells are convenient to grow and use, they are likely to have different markers and characteristics from original tumor cells and thus not likely to be informative. The second model employs patient derived xenograft (PDX) which resembles an in vivo approach, but its main disadvantages are that it cannot be easily genetically modified and it is not suitable for high‑throughput drug screening. Finally, high‑throughput screening is more feasible with tumor organoids grown from patient cancer cells. The last system still needs a large number of tumor cells. It lacks in situ blood vessels, immune cells and the extracellular matrix. Based on these current models, future establishment of an organoid data bank would allow the selection of a specific organoid resembling that of an individual's prostate cancer and used for screening of suitable anticancer drugs. This can be further confirmed using the PDX model. Thus, this combined organoid‑PDX approach is expected to be able to provide the drug sensitivity testing approach for individualization of prostate cancer therapy in the near future.
Collapse
Affiliation(s)
- Jessica Cao
- College of Osteopathic Medicine of The Pacific, Western University of Health Sciences, Pomona, CA 91766‑1854, USA
| | - Wing C Chan
- City of Hope Comprehensive Cancer Center, City of Hope Medical Center, Duarte, CA 91010‑3012, USA
| | - Moses S S Chow
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766‑1854, USA
| |
Collapse
|
18
|
Experimental nethods in chemical engineering: Scanning electron microscopy and X‐ray
ultra‐microscopy–SEM
,
XuM. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Han L, Wang Z, Chen H, Li J, Zhang S, Zhang S, Shao S, Zhang Y, Shen C, Tao H. Sa12b-Modified Functional Self-Assembling Peptide Hydrogel Enhances the Biological Activity of Nucleus Pulposus Mesenchymal Stem Cells by Inhibiting Acid-Sensing Ion Channels. Front Cell Dev Biol 2022; 10:822501. [PMID: 35252187 PMCID: PMC8888415 DOI: 10.3389/fcell.2022.822501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
Various hydrogels have been studied for nucleus pulposus regeneration. However, they failed to overcome the changes in the acidic environment during intervertebral disc degeneration. Therefore, a new functionalized peptide RAD/SA1 was designed by conjugating Sa12b, an inhibitor of acid-sensing ion channels, onto the C-terminus of RADA16-I. Then, the material characteristics and biocompatibility of RAD/SA1, and the bioactivities and mechanisms of degenerated human nucleus pulposus mesenchymal stem cells (hNPMSCs) were evaluated. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) confirmed that RAD/SA1 self-assembling into three-dimensional (3D) nanofiber hydrogel scaffolds under acidic conditions. Analysis of the hNPMSCs cultured in the 3D scaffolds revealed that both RADA16-I and RAD/SA1 exhibited reliable attachment and extremely low cytotoxicity, which were verified by SEM and cytotoxicity assays, respectively. The results also showed that RAD/SA1 increased the proliferation of hNPMSCs compared to that in culture plates and pure RADA16-I. Quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting demonstrated that the expression of collagen I was downregulated, while collagen II, aggrecan, and SOX-9 were upregulated. Furthermore, Ca2+ concentration measurement and western blotting showed that RAD/SA1 inhibited the expression of p-ERK through Ca2+-dependent p-ERK signaling pathways. Therefore, the functional self-assembling peptide nanofiber hydrogel designed with the short motif of Sa12b could be used as an excellent scaffold for nucleus pulposus tissue engineering. Moreover, RAD/SA1 exhibits great potential applications in the regeneration of mildly degenerated nucleus pulposus.
Collapse
Affiliation(s)
- Letian Han
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziyu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haoyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Sumei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shanzhong Shao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yinshun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Tao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Abreu CM, Marques AP. Recreation of a hair follicle regenerative microenvironment: Successes and pitfalls. Bioeng Transl Med 2022; 7:e10235. [PMID: 35079623 PMCID: PMC8780054 DOI: 10.1002/btm2.10235] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
The hair follicle (HF) is an exquisite skin appendage endowed with cyclical regenerative capacity; however, de novo follicle formation does not naturally occur. Consequently, patients suffering from extensive skin damage or hair loss are deprived of the HF critical physiological and/or aesthetic functions, severally compromising skin function and the individual's psychosocial well-being. Translation of regenerative strategies has been prevented by the loss of trichogenic capacity that relevant cell populations undergo in culture and by the lack of suitable human-based in vitro testing platforms. Here, we provide a comprehensive overview of the major difficulties associated with HF regeneration and the approaches used to overcome these drawbacks. We describe key cellular requirements and discuss the importance of the HF extracellular matrix and associated signaling for HF regeneration. Finally, we summarize the strategies proposed so far to bioengineer human HF or hair-bearing skin models and disclose future trends for the field.
Collapse
Affiliation(s)
- Carla M. Abreu
- 3B's Research Group, I3Bs ‐ Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark–Parque de Ciência e Tecnologia, University of MinhoGuimarãesPortugal
- ICVS/3B's–PT Government Associate LaboratoryGuimarãesPortugal
| | - Alexandra P. Marques
- 3B's Research Group, I3Bs ‐ Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark–Parque de Ciência e Tecnologia, University of MinhoGuimarãesPortugal
- ICVS/3B's–PT Government Associate LaboratoryGuimarãesPortugal
| |
Collapse
|
21
|
Tian H, Guo A, Li K, Tao B, Lei D, Deng Z. Effects of a novel self-assembling peptide scaffold on bone regeneration and controlled release of two growth factors. J Biomed Mater Res A 2021; 110:943-953. [PMID: 34873824 DOI: 10.1002/jbm.a.37342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
RADA16 is a self-assembling peptide material with good bioactivity. To improve the bioactivity of a material, some specific functional motifs can be added to its peptide sequence. Here, we report a self-assembling peptide nanogel, RADA16-RGD, that has better bioactivity than RADA16 and can simultaneously carry and control the release of two growth factors, VEGF and BMP-2, which have synergistic effects on bone formation. The peptide materials were characterized by transmission electron microscopy and scanning electron microscopy. The mechanical properties of the peptides were evaluated by the rheology test. The biocompatibility of the materials was evaluated via the use of the CCK-8 test, live/dead staining and confocal laser scanning microscopy. Osteogenesis capability in vitro was evaluated by means of ALP staining, extracellular matrix mineralization and detection of osteogenic markers. The controlled release of growth factors was examined by ELISA. The results showed that RADA16-RGD exhibited a better ability than RADA16 to promote cell proliferation, adhesion and bone formation. In addition, RADA16-RGD had good biocompatibility and exhibited effective controlled release of VEGF and BMP-2. More importantly, compared with RADA16-RGD loaded with single growth factor or without growth factors, RADA16-RGD loaded with two growth factors exhibited a stronger ability to promote cell proliferation and osteogenesis. This study provides a promising strategy for the application of self-assembling peptides to promote osteogenesis and controlled release of proteins.
Collapse
Affiliation(s)
- Hongchuan Tian
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ai Guo
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Li
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dengliang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Pitz ME, Nukovic AM, Elpers MA, Alexander-Bryant AA. Factors Affecting Secondary and Supramolecular Structures of Self-Assembling Peptide Nanocarriers. Macromol Biosci 2021; 22:e2100347. [PMID: 34800001 DOI: 10.1002/mabi.202100347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Indexed: 01/12/2023]
Abstract
Self-assembling peptides are a popular vector for therapeutic cargo delivery due to their versatility, tunability, and biocompatibility. Accurately predicting secondary and supramolecular structures of self-assembling peptides is essential for de novo peptide design. However, computational modeling of such assemblies is not yet able to accurately predict structure formation for many peptide sequences. This review identifies patterns in literature between secondary and supramolecular structures, primary sequences, and applications to provide a guide for informed peptide design. An overview of peptide structures, their applications as nanocarriers, and analytical methods for characterizing secondary and supramolecular structure is examined. A top-down approach is then used to identify trends between peptide sequence and assembly structure from the current literature, including an analysis of the drivers at work, such as local and nonlocal sequence effects and solution conditions.
Collapse
Affiliation(s)
- Megan E Pitz
- Department of Bioengineering, 301 Rhodes Research Center, Clemson University, Clemson, SC, 29634-0905, USA
| | - Alexandra M Nukovic
- Department of Bioengineering, 301 Rhodes Research Center, Clemson University, Clemson, SC, 29634-0905, USA
| | - Margaret A Elpers
- Department of Bioengineering, 301 Rhodes Research Center, Clemson University, Clemson, SC, 29634-0905, USA
| | - Angela A Alexander-Bryant
- Department of Bioengineering, 301 Rhodes Research Center, Clemson University, Clemson, SC, 29634-0905, USA
| |
Collapse
|
23
|
Verbraeken B, Lammens M, Van Rompaey V, Ahmed M, Szewczyk K, Hermans C, Menovsky T. Efficacy and histopathological effects of self-assembling peptides RADA16 and IEIK13 in neurosurgical hemostasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102485. [PMID: 34748959 DOI: 10.1016/j.nano.2021.102485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/13/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
There is a continued need for effective hemostatic agents that are safe for neurosurgical use. Self-assembling peptide hydrogels have been suggested as novel hemostatic agents. They offer some advantages for neurosurgical hemostasis (e.g., transparency), but their efficacy and safety for neurosurgery has not been established. In this paper, the efficacy and safety of two self-assembling peptides, RADA16 and IEIK13, are explored for hemostasis of oozing bleeding on the rat cerebral cortex (n=56). Chronic safety was evaluated by neuropathological evaluation at one, four, and twelve weeks after craniotomy (n=32). An inactive control and oxidized cellulose served as comparators. Mean time-to-hemostasis was significantly shorter for RADA16 and IEIK13 compared to controls, while safety evaluation yielded similar results. Histopathological response consisted primarily of macrophage infiltration at the lesion site in all groups. This study confirms the hemostatic potential and safety of RADA16 and IEIK13 for hemostasis in the rat brain.
Collapse
Affiliation(s)
- Barbara Verbraeken
- Department of Translational Neuroscience, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Neurosurgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650 Edegem, Belgium.
| | - Martin Lammens
- Department of Translational Neuroscience, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Pathology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650 Edegem, Belgium.
| | - Vincent Van Rompaey
- Department of Translational Neuroscience, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650 Edegem, Belgium.
| | - Melek Ahmed
- Department of Pathology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650 Edegem, Belgium.
| | - Krystyna Szewczyk
- Department of Translational Neuroscience, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Christophe Hermans
- Department of Pathology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650 Edegem, Belgium; Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Tomas Menovsky
- Department of Translational Neuroscience, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Neurosurgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650 Edegem, Belgium.
| |
Collapse
|
24
|
Muraoka T. Amphiphilic Peptides with Flexible Chains for Tuning Supramolecular Morphologies, Macroscopic Properties and Biological Functions. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Jones CW, Morales CG, Eltiste SL, Yanchik‐Slade FE, Lee NR, Nilsson BL. Capacity for increased surface area in the hydrophobic core of β-sheet peptide bilayer nanoribbons. J Pept Sci 2021; 27:e3334. [PMID: 34151480 PMCID: PMC8349901 DOI: 10.1002/psc.3334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Amphipathic peptides with amino acids arranged in alternating patterns of hydrophobic and hydrophilic residues efficiently self-assemble into β-sheet bilayer nanoribbons. Hydrophobic side chain functionality is effectively buried in the interior of the putative bilayer of these nanoribbons. This study investigates consequences on self-assembly of increasing the surface area of aromatic side chain groups that reside in the hydrophobic core of nanoribbons derived from Ac-(XKXE)2 -NH2 peptides (X = hydrophobic residue). A series of Ac-(XKXE)2 -NH2 peptides incorporating aromatic amino acids of increasing molecular volume and steric profile (X = phenylalanine [Phe], homophenylalanine [Hph], tryptophan [Trp], 1-naphthylalanine [1-Nal], 2-naphthylalanine [2-Nal], or biphenylalanine [Bip]) were assessed to determine substitution effects on self-assembly propensity and on morphology of the resulting nanoribbon structures. Additional studies were conducted to determine the effects of incorporating amino acids of differing steric profile in the hydrophobic core (Ac-X1 KFEFKFE-NH2 and Ac-(X1,5 KFE)-NH2 peptides, X = Trp or Bip). Spectroscopic analysis by circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy indicated β-sheet formation for all variants. Self-assembly rate increased with peptide hydrophobicity; increased molecular volume of the hydrophobic side chain groups did not appear to induce kinetic penalties on self-assembly rates. Transmission electron microscopy (TEM) imaging indicated variation in fibril morphology as a function of amino acid in the X positions. This study confirms that hydrophobicity of amphipathic Ac-(XKXE)2 -NH2 peptides correlates to self-assembly propensity and that the hydrophobic core of the resulting nanoribbon bilayers has a significant capacity to accommodate sterically demanding functional groups. These findings provide insight that may be used to guide the exploitation of self-assembled amphipathic peptides as functional biomaterials.
Collapse
Affiliation(s)
| | - Crystal G. Morales
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Sharon L. Eltiste
- Department of Chemistry and Biochemistry, Center for Materials Interfaces in Research and Applications (¡MIRA!)Northern Arizona UniversityFlagstaffArizonaUSA
| | | | - Naomi R. Lee
- Department of Chemistry and Biochemistry, Center for Materials Interfaces in Research and Applications (¡MIRA!)Northern Arizona UniversityFlagstaffArizonaUSA
| | | |
Collapse
|
26
|
Laser Technology for the Formation of Bioelectronic Nanocomposites Based on Single-Walled Carbon Nanotubes and Proteins with Different Structures, Electrical Conductivity and Biocompatibility. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A laser technology for creating nanocomposites from alternating layers of albumin/collagen proteins with two types of single-walled carbon nanotubes (SWCNT) at concentrations of 0.001 and 0.01 wt.% was proposed. For this purpose, a setup with a diode laser (810 nm) and feedback system for controlling the temperature of the area affected by the radiation was developed. Raman spectroscopy was used to determine a decrease in the defectiveness of SWCNT with an increase in their concentration in the nanocomposite due to the formation of branched 3D networks with covalent bonds between nanotubes. It was revealed that adhesion of proteins to branched 3D networks from SWCNT occurred. The specific electrical conductivity of nanocomposites based on large SWCNT nanotubes was 3.2 and 4.3 S/m compared to that for nanocomposites based on small SWCNT with the same concentrations—1.1 and 1.8 S/m. An increase in the concentration and size of nanotubes provides higher porosity of nanocomposites. For small SWCNT-based nanocomposites, a significant number of mesopores up to 50 nm in size and the largest specific surface area and specific pore volume were found. Nanocomposites with small SWCNT (0.001 wt.%) provided the best cardiac fibroblast viability. Such technology can be potentially used to create bioelectronic components or scaffolds for heart tissue engineering.
Collapse
|
27
|
Fouzi M, Thimma M, BinSabt M, Husain AA, Aouabdi S. Stem cell growth and proliferation on RGD bio-conjugated cotton fibers. Biomed Mater Eng 2021; 32:39-52. [PMID: 33164919 DOI: 10.3233/bme-201115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Merging stem cells with biomimetic materials represent an attractive approach to tissue engineering. The development of an alternative scaffold with the ability to mimic the extracellular matrix, and the 3D gradient preventing any alteration in cell metabolism or in their gene expression patterns, would have many medical applications. OBJECTIVE In this study, we introduced the use of RGD (Arg-Gly-Asp) bio-conjugated cotton to promote the growth and proliferation of mesenchymal stem cells (MSCs). METHODS We measured the expression of stem cell markers and adhesion markers with Q-PCR and analyzed the transcriptomic. The results obtained showed that the MSCs, when cultured with bio-conjugated cotton fibers, form aggregates around the fibers while proliferating. The seeded MSCs with cotton fibers proliferated in a similar fashion to the cells seeded on the monolayer (population doubling level 1.88 and 2.19 respectively). RESULTS The whole genome sequencing of cells adhering to these cotton fibers and cells adhering to the cell culture dish showed differently expressed genes and pathways in both populations. However, the expression of the stem cell markers (Oct4, cKit, CD105) and cell adhesion markers (CD29, HSPG2 and CD138), when examined with quantitative RT-PCR, was maintained in both cell populations. CONCLUSION These results clearly show the ability of the cotton fibers to promote MSCs growth and proliferation in a 3D structure mimicking the in vivo environment without losing their stem cell phenotype.
Collapse
Affiliation(s)
| | - Manjula Thimma
- Environmental Epigenetics Lab, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | | | - Ali A Husain
- Department of Chemistry, Kuwait University, Kuwait
| | - Sihem Aouabdi
- King Saud Bin Abdualziz Univeristy, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Zhou G, Tian A, Yi X, Fan L, Shao W, Wu H, Sun N. Study on a 3D-Bioprinted Tissue Model of Self-Assembled Nanopeptide Hydrogels Combined With Adipose-Derived Mesenchymal Stem Cells. Front Bioeng Biotechnol 2021; 9:663120. [PMID: 34414170 PMCID: PMC8369258 DOI: 10.3389/fbioe.2021.663120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Objective: This study aimed to observe the cell growth status and multidirectional differentiation ability in a 3D-bioprinted tissue model of self-assembled nanopeptides and human adipose-derived mesenchymal stem cells (Ad-MSCs). Methods: Primary Ad-MSCs were isolated, cultured, and identified by flow cytometry. Tissue models were printed via 3D bioprinting technology using a “biological ink” consisting of a mixed solution of self-assembled nanopeptides and Ad-MSCs. Ad-MSCs were induced into osteogenic, adipogenic, and endothelial differentiation and compared with the control groups by staining. Results: The nanopeptide fiber was 10–30 nm in diameter and 200–500 nm in length under the atomic-force microscope. It had the characteristics of nano-scale materials. Flow cytometry showed that the isolated and cultured cells were positive for CD29 (98.51%), CD90 (97.87%), and CD166 (98.32%) but did not express CD31 (1.58%), CD34 (2.42%), CD45 (2.95%), or human leukocyte antigen (HLA)-DR (0.53%), consistent with the immunophenotype of Ad-MSCs. Then, a tissue model was printed using the biological ink, followed by induction of differentiation of Ad-MSCs within the tissue model. Alizarin red S staining showed the formation of calcium nodules in the osteogenesis induction experimental group, and oil red O stained lipid droplets in Ad-MSCs in the adipogenesis induction experimental group, whereas the two control groups were not stained. Conclusion: Ad-MSCs from primary cultures have the characteristics of stem cells. Self-assembled nanopeptide hydrogel is a good tissue engineering material that can serve as an extracellular matrix. Ad-MSCs in the 3D-printed tissue model using a biological ink consisting of a mixed solution of self-assembled nanopeptides and Ad-MSCs grew well and still had strong differentiation ability.
Collapse
Affiliation(s)
- Guanzhou Zhou
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.,Department of General Surgery, Zibo Central Hospital, Zibo, China
| | - Ailing Tian
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Yi
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Lufeng Fan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Wenchong Shao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Han Wu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Nianfeng Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
29
|
Yang Z, He S, Wu H, Yin T, Wang L, Shan A. Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics. Front Microbiol 2021; 12:710199. [PMID: 34475862 PMCID: PMC8406695 DOI: 10.3389/fmicb.2021.710199] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
The security issue of human health is faced with dispiriting threats from multidrug-resistant bacteria infections induced by the abuse and misuse of antibiotics. Over decades, the antimicrobial peptides (AMPs) hold great promise as a viable alternative to treatment with antibiotics due to their peculiar antimicrobial mechanisms of action, broad-spectrum antimicrobial activity, lower drug residue, and ease of synthesis and modification. However, they universally express a series of disadvantages that hinder their potential application in the biomedical field (e.g., low bioavailability, poor protease resistance, and high cytotoxicity) and extremely waste the abundant resources of AMP database discovered over the decades. For all these reasons, the nanostructured antimicrobial peptides (Ns-AMPs), based on a variety of nanosystem modification, have made up for the deficiencies and pushed the development of novel AMP-based antimicrobial therapies. In this review, we provide an overview of the advantages of Ns-AMPs in improving therapeutic efficacy and biological stability, reducing side effects, and gaining the effect of organic targeting and drug controlled release. Then the different material categories of Ns-AMPs are described, including inorganic material nanosystems containing AMPs, organic material nanosystems containing AMPs, and self-assembled AMPs. Additionally, this review focuses on the Ns-AMPs for the effect of biological activities, with emphasis on antimicrobial activity, biosecurity, and biological stability. The "state-of-the-art" antimicrobial modes of Ns-AMPs, including controlled release of AMPs under a specific environment or intrinsic antimicrobial properties of Ns-AMPs, are also explicated. Finally, the perspectives and conclusions of the current research in this field are also summarized.
Collapse
Affiliation(s)
| | | | | | | | | | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
30
|
Adhikari KR, Stanishevskaya I, Caracciolo PC, Abraham GA, Thomas V. Novel Poly(ester urethane urea)/Polydioxanone Blends: Electrospun Fibrous Meshes and Films. Molecules 2021; 26:3847. [PMID: 34202602 PMCID: PMC8270292 DOI: 10.3390/molecules26133847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022] Open
Abstract
In this work, we report the electrospinning and mechano-morphological characterizations of scaffolds based on blends of a novel poly(ester urethane urea) (PHH) and poly(dioxanone) (PDO). At the optimized electrospinning conditions, PHH, PDO and blend PHH/PDO in Hexafluroisopropanol (HFIP) solution yielded bead-free non-woven random nanofibers with high porosity and diameter in the range of hundreds of nanometers. The structural, morphological, and biomechanical properties were investigated using Differential Scanning Calorimetry, Scanning Electron Microscopy, Atomic Force Microscopy, and tensile tests. The blended scaffold showed an elastic modulus (~5 MPa) with a combination of the ultimate tensile strength (2 ± 0.5 MPa), and maximum elongation (150% ± 44%) in hydrated conditions, which are comparable to the materials currently being used for soft tissue applications such as skin, native arteries, and cardiac muscles applications. This demonstrates the feasibility of an electrospun PHH/PDO blend for cardiac patches or vascular graft applications that mimic the nanoscale structure and mechanical properties of native tissue.
Collapse
Affiliation(s)
- Kiran R. Adhikari
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Pablo C. Caracciolo
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina; (P.C.C.); (G.A.A.)
| | - Gustavo A. Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina; (P.C.C.); (G.A.A.)
| | - Vinoy Thomas
- Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
31
|
Advances in 3D peptide hydrogel models in cancer research. NPJ Sci Food 2021; 5:14. [PMID: 34075054 PMCID: PMC8169659 DOI: 10.1038/s41538-021-00096-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
In vitro cell culture models on monolayer surfaces (2D) have been widely adapted for identification of chemopreventive food compounds and food safety evaluation. However, the low correlation between 2D models and in vivo animal models has always been a concern; this gap is mainly caused by the lack of a three-dimensional (3D) extracellular microenvironment. In 2D models, cell behaviors and functionalities are altered, resulting in varied responses to external conditions (i.e., antioxidants) and hence leading to low predictability. Peptide hydrogel 3D scaffolding technologies, such as PGmatrix for cell culture, have been recently reported to grow organoid-like spheroids physiologically mimicking the 3D microenvironment that can be used as an in vitro 3D model for investigating cell activities, which is anticipated to improve the prediction rate. Thus, this review focuses on advances in 3D peptide hydrogels aiming to introduce 3D cell culture tools as in vitro 3D models for cancer-related research regarding food safety and nutraceuticals.
Collapse
|
32
|
Soto Morales B, Liu R, Olguin J, Ziegler AM, Herrera SM, Backer-Kelley KL, Kelley KL, Hudalla GA. Injectable nanofibrillar hydrogels based on charge-complementary peptide co-assemblies. Biomater Sci 2021; 9:2494-2507. [PMID: 33438696 PMCID: PMC8274480 DOI: 10.1039/d0bm01372b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Injectable hydrogels are attractive for therapeutic delivery because they can be locally administered through minimally-invasive routes. Charge-complementary peptide nanofibers provide hydrogels that are suitable for encapsulation of biotherapeutics, such as cells and proteins, because they assemble under physiological temperature, pH, and ionic strength. However, relationships between the sequences of charge-complementary peptides and the physical properties of the hydrogels that they form are not well understood. Here we show that hydrogel viscoelasticity, pore size, and pore structure depend on the pairing of charge-complementary "CATCH(+/-)" peptides. Oscillatory rheology demonstrated that co-assemblies of CATCH(4+/4-), CATCH(4+/6-), CATCH(6+/4-), and CATCH(6+/6-) formed viscoelastic gels that can recover after high-shear and high-strain disruption, although the extent of recovery depends on the peptide pairing. Cryogenic scanning electron microscopy demonstrated that hydrogel pore size and pore wall also depend on peptide pairing, and that these properties change to different extents after injection. In contrast, no obvious correlation was observed between nanofiber charge state, measured with ζ-potential, and hydrogel physical properties. CATCH(4+/6-) hydrogels injected into the subcutaneous space elicited weak, transient inflammation whereas CATCH(6+/4-) hydrogels induced stronger inflammation. No antibodies were raised against the CATCH(4+) or CATCH(6-) peptides following multiple challenges in vehicle or when co-administered with an adjuvant. These results demonstrate that CATCH(+/-) peptides form biocompatible injectable hydrogels with viscoelastic properties that can be tuned by varying peptide sequence, establishing their potential as carriers for localized delivery of therapeutic cargoes.
Collapse
Affiliation(s)
- Bethsymarie Soto Morales
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Carter T, Qi G, Wang W, Nguyen A, Cheng N, Ju YM, Lee SJ, Yoo JJ, Atala A, Sun XS. Self-Assembling Peptide Solution Accelerates Hemostasis. Adv Wound Care (New Rochelle) 2021; 10:191-203. [PMID: 32716728 DOI: 10.1089/wound.2019.1109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: One of the leading causes of death following traumatic injury is exsanguination. Biological material-based hemostatic agents such as fibrin, thrombin, and albumin have a high risk for causing infection. Synthetic peptide-based hemostatic agents offer an attractive alternative. The objective of this study is to explore the potential of h9e peptide as an effective hemostatic agent in both in vitro and in vivo models. Approach: In vitro blood coagulation kinetics in the presence of h9e peptide was determined as a function of gelation time using a dynamic rheometer. In vivo hemostatic effects were studied using the Wistar rat model. Results were compared to those of the commercial hemostatic product Celox™, a chitosan-based product. Adhesion of h9e peptide was evaluated using the platelet adhesion test. Biocompatibility of h9e peptide was studied in vivo using a mouse model. Results: After h9e peptide solution was mixed with blood, gelation started immediately, increased rapidly with time, and reached more than 100 Pa within 3 s. Blood coagulation strength increased as h9e peptide wt% concentration increased. In the rat model, h9e peptide solution at 5% weight concentration significantly reduced both bleeding time and blood loss, outperforming Celox. Preliminary pathological studies indicate that h9e peptide solution is biocompatible and did not have negative effects when injected subcutaneously in a mouse model. Innovation: For the first time, h9e peptide was found to have highly efficient hemostatic effects by forming nanoweb-like structures, which act as a preliminary thrombus and a surface to arrest bleeding 82% faster compared to the commercial hemostatic agent Celox. Conclusion: This study demonstrates that h9e peptide is a promising hemostatic biomaterial, not only because of its greater hemostatic effect than commercial product Celox but also because of its excellent biocompatibility based on the in vivo mouse model study.
Collapse
Affiliation(s)
- Tiffany Carter
- Bio-Materials and Technology Lab, Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
- Department of Agriculture, Austin Peay State University, Clarksville, Tennessee, USA
| | - Guangyan Qi
- Bio-Materials and Technology Lab, Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Weiqun Wang
- Human Nutrition, Kansas State University, Manhattan, Kansas, USA
| | - Annelise Nguyen
- Diagnostic Medicine and Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Nikki Cheng
- Pathology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Young Min Ju
- Wake Forest Institute of Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Sang Jin Lee
- Wake Forest Institute of Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - James J. Yoo
- Wake Forest Institute of Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute of Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Xiuzhi Susan Sun
- Bio-Materials and Technology Lab, Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
- Wake Forest Institute of Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
- Biological and Agricultural Engineering, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
34
|
Zhang L, Xiong N, Liu Y, Gan L. Biomimetic cell-adhesive ligand-functionalized peptide composite hydrogels maintain stemness of human amniotic mesenchymal stem cells. Regen Biomater 2021; 8:rbaa057. [PMID: 33738111 PMCID: PMC7953499 DOI: 10.1093/rb/rbaa057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
In vivo, stem cells reside in a three-dimensional (3D) extracellular microenvironment in which complicated biophysical and biochemical factors regulate their behaviors. Biomimicking of the stem cell-matrix interactions is an ideal approach for controlling the stem cell fate. This study investigates the effects of the incorporation of cell-adhesive ligands in 3D self-assembling peptide hydrogels to modulate stem cell survival, proliferation, maintenance of stemness, and osteogenic differentiation. The results show that the composite hydrogels were non-cytotoxic and effective for maintaining human amniotic mesenchymal stem cell (hAMSC) survival, proliferation and phenotypic characterization. The expression levels of pluripotent markers were also upregulated in the composite hydrogels. Under inductive media conditions, mineral deposition and mRNA expression levels of osteogenic genes of hAMSCs were enhanced. The increasing expression of integrin α- and β-subunits for hAMSCs indicates that the ligand-integrin interactions may modulate the cell fate for hAMSCs in composite hydrogels.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Na Xiong
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yanfei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Lili Gan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
35
|
Park Y, Huh KM, Kang SW. Applications of Biomaterials in 3D Cell Culture and Contributions of 3D Cell Culture to Drug Development and Basic Biomedical Research. Int J Mol Sci 2021; 22:2491. [PMID: 33801273 PMCID: PMC7958286 DOI: 10.3390/ijms22052491] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
The process of evaluating the efficacy and toxicity of drugs is important in the production of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical and ethical limitations. To overcome these limitations, various models have been developed in which responses to various external stimuli can be observed to help guide future trials. In particular, three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological functions of tissues in the human body. This article reviews the biomaterials currently used to improve cellular functions in 3D culture and the contributions of 3D culture to cancer research, stem cell culture and drug and toxicity screening.
Collapse
Affiliation(s)
- Yujin Park
- Department of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| | - Sun-Woong Kang
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
- Human and Environmental Toxicology Program, University of Science and Technology, Daejeon 34114, Korea
| |
Collapse
|
36
|
Omer S, Forgách L, Zelkó R, Sebe I. Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes. Pharmaceutics 2021; 13:286. [PMID: 33671624 PMCID: PMC7927019 DOI: 10.3390/pharmaceutics13020286] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, the electrospinning (ES) process has been extensively studied due to its potential applications in various fields, particularly pharmaceutical and biomedical purposes. The production rate using typical ES technology is usually around 0.01-1 g/h, which is lower than pharmaceutical industry production requirements. Therefore, different companies have worked to develop electrospinning equipment, technological solutions, and electrospun materials into large-scale production. Different approaches have been explored to scale-up the production mainly by increasing the nanofiber jet through multiple needles, free-surface technologies, and hybrid methods that use an additional energy source. Among them, needleless and centrifugal methods have gained the most attention and applications. Besides, the production rate reached (450 g/h in some cases) makes these methods feasible in the pharmaceutical industry. The present study overviews and compares the most recent ES approaches successfully developed for nanofibers' large-scale production and accompanying challenges with some examples of applied approaches in drug delivery systems. Besides, various types of commercial products and devices released to the markets have been mentioned.
Collapse
Affiliation(s)
- Safaa Omer
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, 1092 Budapest, Hungary;
| | - László Forgách
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary;
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, 1092 Budapest, Hungary;
| | - István Sebe
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, 1092 Budapest, Hungary;
| |
Collapse
|
37
|
Neto LAA, Pereira TM, Silva LP. Magnetic nanoparticles coated with carbohydrates for 3D culture of bacteria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111267. [PMID: 32806306 DOI: 10.1016/j.msec.2020.111267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 02/01/2023]
Abstract
Magnetic nanoparticles (MNPs) are a specific type of nanomaterial whose applications are widespread into several fields including biomedicine as a smart drug targeter and environmental engineering due to their interactions with contaminants. Lately, the use of MNPs has also been demonstrated in structuring three-dimensional (3D) cultures of mammalian cells. However, MNPs application to other cell types is still limited. In this sense, some planktonic microorganisms when adhered to surfaces perform the swarming phenomenon to guarantee the expansion of the colony and to guarantee more niches. Therefore, the aim of this study was to produce MNPs coated with four carbohydrates (galactose - gal, glucose - glu, sucrose - suc, and maltose - mal) aiming microorganism culture applications and also for possible 3D arrays. The results showed that carbohydrate-coated MNPs showed hydrodynamic diameters ranging from 100 to 200 nm and that their coatings influenced the chemical behavior in different ways. Indeed, when subjected to biological tests to determine their potential level of cytotoxicity, it was found that in concentrations of 1 mM, 800, 600, and 400 μM (iron equivalent), there was not any alteration on growth of model microorganisms when visually evaluated. Besides, magnetization of bacteria was promoted in different ways as well as the modulation of swarming formation in Escherichia coli when exposed to MNP-Glu. In sum, MNPs coated with carbohydrates and even uncoated were atoxic to bacteria and one of them was able to modulate E. coli swarming formation showing the potential for applications in 3D cultures of bacteria.
Collapse
Affiliation(s)
- Lucio Assis Araujo Neto
- Laboratory of Nanobiotechnology (LNANO), Embrapa Genetic Resources and Biotechnology, Pq. Est. Biol. Final W5 Norte, 70770-917 Brasília, DF, Brazil; Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Jardim Botânico, 80210-170 Curitiba, PR, Brazil
| | - Tatiane Melo Pereira
- Laboratory of Nanobiotechnology (LNANO), Embrapa Genetic Resources and Biotechnology, Pq. Est. Biol. Final W5 Norte, 70770-917 Brasília, DF, Brazil; Postgraduate Program in Biological Sciences, University of Brasília, Institute of Biological Sciences, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Luciano Paulino Silva
- Laboratory of Nanobiotechnology (LNANO), Embrapa Genetic Resources and Biotechnology, Pq. Est. Biol. Final W5 Norte, 70770-917 Brasília, DF, Brazil; Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Jardim Botânico, 80210-170 Curitiba, PR, Brazil; Postgraduate Program in Biological Sciences, University of Brasília, Institute of Biological Sciences, Asa Norte, 70910-900, Brasília, DF, Brazil..
| |
Collapse
|
38
|
Preparing polycaprolactone scaffolds using electrospinning technique for construction of artificial periodontal ligament tissue. J Taibah Univ Med Sci 2020; 15:363-373. [PMID: 33132808 PMCID: PMC7565014 DOI: 10.1016/j.jtumed.2020.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/28/2022] Open
Abstract
Objectives The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. Methods hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission scanning electron microscopy (FESEM). The isolated hPDLSCs were implanted on the fabricated PCL. After 21 days, FESEM was conducted to evaluate the implanted scaffolds, and an MTT assay was performed to characterize the biological response of the PCL scaffold at different cell exposure durations (24, 48, and 72 h). Results Periostin was expressed in the expanded PDL cells, and this result revealed that 20% weight/volume PCL scaffold with a pore size of more than 10 μm was the best. The growth rates of PDLSCs were high. Cytotoxicity test of fabricated PCL scaffold demonstrated no significant change in the cell viability when compared with the negative control and no deteriorating or inhibitory effect on growth after different durations. Conclusions A cell sheet was successfully formed by using PCL as a scaffold to cover dental implants and promote PDL cell attachment, proliferation, and growth for biohybrid implant construction.
Collapse
|
39
|
Mu X, Shi L, Pan S, He L, Niu Y, Wang X. A Customized Self-Assembling Peptide Hydrogel-Wrapped Stem Cell Factor Targeting Pulp Regeneration Rich in Vascular-Like Structures. ACS OMEGA 2020; 5:16568-16574. [PMID: 32685822 PMCID: PMC7364552 DOI: 10.1021/acsomega.0c01266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/15/2020] [Indexed: 05/27/2023]
Abstract
Pulp regeneration is to replace the inflamed/necrotic pulp tissue with regenerated pulp-like tissue to rejuvenate the teeth. Self-assembling peptide hydrogels RADA16-I (Ac-(RADA16-I)4-CONH2) can provide a three-dimensional environment for cells. The stem cell factor (SCF) plays a crucial role in homing stem cells. Combining these advantages, our study investigated the effects of SCF-RADA16-I on adhesion, proliferation, and migration of human dental pulp stem cells (DPSCs) and the angiogenesis of human umbilical vein endothelial cells (HUVECs). The β-sheet and grid structure were observed by circular dichroism (CD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Cytoskeleton staining, living cell staining, cell viability, cell migration, angiogenesis, and western blot assays were performed, and the results indicated that all the SCF groups were superior to the corresponding non-SCF groups in cell adhesion, proliferation, migration, and angiogenesis. RADA16-I provided a three-dimensional environment for DPSCs. Besides, the SCF promoted HUVECs to form more vascular-like structures and release more vascular endothelial growth factor A. In summary, the SCF-loaded RADA16-I scaffold improved adhesion, proliferation, and migration of DPSCs and the formation of more vascular-like structures of HUVECs. SCF-RADA16-I holds promise for guided pulp regeneration, and it can potentially be applied widely in tissue engineering and translational medicine in the future.
Collapse
Affiliation(s)
- Xiaodan Mu
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Lei Shi
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Shuang Pan
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Lina He
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Yumei Niu
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Xiumei Wang
- Department
of Materials Science and Engineering, State Key Laboratory of New
Ceramics and Fine Processing, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| |
Collapse
|
40
|
Gleave AM, Ci X, Lin D, Wang Y. A synopsis of prostate organoid methodologies, applications, and limitations. Prostate 2020; 80:518-526. [PMID: 32084293 DOI: 10.1002/pros.23966] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/11/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Current in vitro modeling systems do not fully reflect the biologic and clinical diversity of prostate cancer (PCa). Organoids are 3D in vitro cell cultures that recapitulate disease heterogeneity, retain prostate gland architecture, and mirror parental tumor characteristics. METHODS To make better use of organoid models in the PCa research field, we provide a review of cutting-edge prostate organoid methodologies, applications, and limitations. RESULTS We summarize methodologies for the establishment of benign prostate and PCa organoids and describe some of the model's practical applications and challenges. We highlight the patient-derived xenograft (PDX)-organoid interface model, which may allow for the generation of organoids from primary and rare PCa subtypes. Finally, we discuss potential future utilizations of PCa organoids in the realms of drug development and precision oncology. CONCLUSIONS AND FUTURE DIRECTIONS Organoids represent a quasi in vivo modeling system that can be easily amenable to genetic modification and functional studies. As such, organoids may serve as an intermediate preclinical model for studying PCa. Future directions may include the refinement of culturing conditions to increase drug response fidelity in PCa organoids. The PDX-organoid interface model may enable the future establishment of primary and rare subtype PCa organoid lines.
Collapse
Affiliation(s)
- Anna M Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xinpei Ci
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Dong Lin
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Yang Z, Xu H, Zhao X. Designer Self-Assembling Peptide Hydrogels to Engineer 3D Cell Microenvironments for Cell Constructs Formation and Precise Oncology Remodeling in Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903718. [PMID: 32382486 PMCID: PMC7201262 DOI: 10.1002/advs.201903718] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/08/2020] [Indexed: 02/05/2023]
Abstract
Designer self-assembling peptides form the entangled nanofiber networks in hydrogels by ionic-complementary self-assembly. This type of hydrogel has realistic biological and physiochemical properties to serve as biomimetic extracellular matrix (ECM) for biomedical applications. The advantages and benefits are distinct from natural hydrogels and other synthetic or semisynthetic hydrogels. Designer peptides provide diverse alternatives of main building blocks to form various functional nanostructures. The entangled nanofiber networks permit essential compositional complexity and heterogeneity of engineering cell microenvironments in comparison with other hydrogels, which may reconstruct the tumor microenvironments (TMEs) in 3D cell cultures and tissue-specific modeling in vitro. Either ovarian cancer progression or recurrence and relapse are involved in the multifaceted TMEs in addition to mesothelial cells, fibroblasts, endothelial cells, pericytes, immune cells, adipocytes, and the ECM. Based on the progress in common hydrogel products, this work focuses on the diverse designer self-assembling peptide hydrogels for instructive cell constructs in tissue-specific modeling and the precise oncology remodeling for ovarian cancer, which are issued by several research aspects in a 3D context. The advantages and significance of designer peptide hydrogels are discussed, and some common approaches and coming challenges are also addressed in current complex tumor diseases.
Collapse
Affiliation(s)
- Zehong Yang
- West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduSichuan610041P. R. China
- Institute for Nanobiomedical Technology and Membrane BiologyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Hongyan Xu
- GL Biochem (Shanghai) Ltd.519 Ziyue Rd.Shanghai200241P. R. China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane BiologyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Wenzhou InstituteUniversity of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering)WenzhouZhejiang325001P. R. China
| |
Collapse
|
42
|
Betriu N, Jarrosson-Moral C, Semino CE. Culture and Differentiation of Human Hair Follicle Dermal Papilla Cells in a Soft 3D Self-Assembling Peptide Scaffold. Biomolecules 2020; 10:biom10050684. [PMID: 32354097 PMCID: PMC7277435 DOI: 10.3390/biom10050684] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 01/28/2023] Open
Abstract
Hair follicle dermal papilla cells (HFDPC) are a specialized cell population located in the bulge of the hair follicle with unique characteristics such as aggregative behavior and the ability to induce new hair follicle formation. However, when expanded in conventional 2D monolayer culture, their hair inductive potency is rapidly lost. Different 3D culture techniques, including cell spheroid formation, have been described to restore, at least partially, their original phenotype, and therefore, their hair inductive ability once transplanted into a recipient skin. Moreover, hair follicle dermal papilla cells have been shown to differentiate into all mesenchymal lineages, but their differentiation potential has only been tested in 2D cultures. In the present work, we have cultured HFDPC in the 3D self-assembling peptide scaffold RAD16-I to test two different tissue engineering scenarios: restoration of HFDPC original phenotype after cell expansion and osteogenic and adipogenic differentiation. Experimental results showed that the 3D environment provided by RAD16-I allowed the restoration of HFDPC signature markers such as alkaline phosphatase, versican and corin. Moreover, RAD16-I supported, in the presence of chemical inductors, three-dimensional osteogenic and adipogenic differentiation. Altogether, this study suggests a potential 3D culture platform based on RAD16-I suitable for the culture, original phenotype recovery and differentiation of HFDPC.
Collapse
|
43
|
Lu L, Morrison D, Unsworth LD. A controlled nucleation and formation rate of self-assembled peptide nanofibers. NANOSCALE 2020; 12:8133-8138. [PMID: 32236237 DOI: 10.1039/d0nr02006k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembling peptide matrixes are powerful platforms for encouraging tissue regeneration, but are usually formed within seconds and remain relatively static in both structure and function throughout their application. For the first time, we have shown that it is possible to extend the time it takes for peptide self-assembly so as to allow for the dynamic building of a self-assembled system over days, in the presence of an enzyme. Specifically, K5 and K10 sequences were conjugated, via a thrombin-specific cleavage domain NleTPR/SFL, to prevent the nanofiber formation and form stable nanoparticles composed of (RADA)4-GG-NleTPR/SFL-K5 and (RADA)4-GG-NleTPR/SFL-K10 that act as nucleation sites for reassembling. Upon introduction of thrombin, a model enzyme, this system showed an extremely slow rate of nanofiber formation in a parallel direction that is in sharp contrast to the well-known rapid assembly of (RADA)4 systems with random networks. These bioresponsive materials may provide a novel platform for utilizing long-term enzymatic profiles to form new nanofibers within an existing matrix over long therapeutic timeframes.
Collapse
Affiliation(s)
- Lei Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | | | | |
Collapse
|
44
|
Cheng Z, Nai S, Song S, Chen L, Yu Z. Photoinduced directional domain sliding motion in peptide hydrogels promotes ectodermal differentiation of embryonic stem cells. SCIENCE CHINA MATERIALS 2020; 63:467-478. [DOI: 10.1007/s40843-019-1184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 08/30/2023]
|
45
|
Tran KA, Partyka PP, Jin Y, Bouyer J, Fischer I, Galie PA. Vascularization of self-assembled peptide scaffolds for spinal cord injury repair. Acta Biomater 2020; 104:76-84. [PMID: 31904559 DOI: 10.1016/j.actbio.2019.12.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 01/05/2023]
Abstract
The disruption of the blood-spinal cord barrier (BSCB) following spinal cord injury contributes to inflammation and glial scarring that inhibits axon growth and diminishes the effectiveness of conduits transplanted to the injury site to promote this growth. The purpose of this study is to evaluate whether scaffolds containing microvessels that exhibit BSCB integrity reduce inflammation and scar formation at the injury site and lead to increased axon growth. For these studies, a self-assembling peptide scaffold, RADA-16I, is used due to its established permissiveness to axon growth and ability to support vascularization. Immunocytochemistry and permeability transport assays verify the formation of tight-junction containing microvessels within the scaffold. Peptide scaffolds seeded with different concentrations of microvascular cells are then injected into a spinal contusion injury in rats to evaluate how microvessels affect axon growth and neurovascular interaction. The effect of the vascularized scaffold on inflammation and scar formation is evaluated by quantifying histological sections stained with ED-1 and GFAP, respectively. Our results indicate that the peptide scaffolds containing microvessels reduce inflammation and glial scar formation and increase the density of axons growing into the injury/transplant site. These results demonstrate the potential benefit of scaffold vascularization to treat spinal cord injury. STATEMENT OF SIGNIFICANCE: This study evaluates the benefit of transplanting microvascular cells within a self-assembling peptide scaffold, RADA-16I, that has shown promise for facilitating regeneration in the central nervous system in previous studies. Our results indicate that vasculature featuring tight junctions that give rise to the blood-spinal cord barrier can be formed within the peptide scaffold both in vitro and in a rat model of a subacute contusion spinal cord injury. Histological analysis indicates that the presence of the microvessels encourages axon infiltration into the site of injury and reduces the area of astrocyte activation and inflammation. Overall, these results demonstrate the potential of vascularizing scaffolds for the repair of spinal cord injury.
Collapse
|
46
|
Mizuguchi Y, Mashimo Y, Mie M, Kobatake E. Temperature-Responsive Multifunctional Protein Hydrogels with Elastin-like Polypeptides for 3-D Angiogenesis. Biomacromolecules 2020; 21:1126-1135. [PMID: 32003967 DOI: 10.1021/acs.biomac.9b01496] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Supramolecular protein hydrogels with tunable properties represent promising candidates for advanced designer extracellular matrices (ECMs). To control cellular functions, ECMs should be able to spatiotemporally regulate synergistic signaling between transmembrane receptors and growth factor (GF) receptors. In this study, we developed genetically engineered temperature-responsive multifunctional protein hydrogels. The designed hydrogel was fabricated by combining the following four peptide blocks: thermosensitive elastin-like polypeptides (ELPs), a polyaspartic acid (polyD) chain to control aggregation and delivery of GFs, a de novo-designed helix peptide that forms antiparallel homotetrameric coiled-coils, and a biofunctional peptide. The resultant coiled-coil unit bound ELPs (CUBEs) exhibit a controllable sol-gel transition with tunable mechanical properties. CUBEs were functionalized with bone sialoprotein-derived RGD (bRGD), and human umbilical vein endothelial cells (HUVECs) were three-dimensionally cultured in bRGD-modified CUBE (bRGD-CUBE) hydrogels. Proangiogenic activity of HUVECs was promoted by bRGD. Moreover, heparin-binding angiogenic GFs were immobilized to bRGD-CUBEs via electrostatic interactions. HUVECs cultured in GF-tethered bRGD-CUBE hydrogels formed three-dimensional (3-D) tubulelike structures. The designed CUBE hydrogels may demonstrate utility as advanced smart biomaterials for biomedical applications. Further, the protein hydrogel design strategy may provide a novel platform for constructing designer 3-D microenvironments for specific cell types.
Collapse
Affiliation(s)
- Yoshinori Mizuguchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Yasumasa Mashimo
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Masayasu Mie
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Eiry Kobatake
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
47
|
Yoshimatsu M, Nakamura R, Kishimoto Y, Yurie H, Hayashi Y, Kaba S, Ohnishi H, Yamashita M, Tateya I, Omori K. Recurrent laryngeal nerve regeneration using a self‐assembling peptide hydrogel. Laryngoscope 2019; 130:2420-2427. [DOI: 10.1002/lary.28434] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Masayoshi Yoshimatsu
- Department of Otolaryngology–Head and Neck Surgery Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Ryosuke Nakamura
- Department of Otolaryngology–Head and Neck Surgery Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Yo Kishimoto
- Department of Otolaryngology–Head and Neck Surgery Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Hirofumi Yurie
- Department of Orthopaedic Surgery Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Yasuyuki Hayashi
- Department of Otolaryngology–Head and Neck Surgery Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Shinji Kaba
- Department of Otolaryngology–Head and Neck Surgery Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology–Head and Neck Surgery Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Masaru Yamashita
- Department of Otorhinolaryngology–Head and Neck Surgery Shizuoka General Hospital Shizuoka Japan
| | - Ichiro Tateya
- Department of Otolaryngology School of Medicine, Fujita Health University Toyoake Japan
| | - Koichi Omori
- Department of Otolaryngology–Head and Neck Surgery Graduate School of Medicine, Kyoto University Kyoto Japan
| |
Collapse
|
48
|
Fontoura JC, Viezzer C, Dos Santos FG, Ligabue RA, Weinlich R, Puga RD, Antonow D, Severino P, Bonorino C. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110264. [PMID: 31761183 DOI: 10.1016/j.msec.2019.110264] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/12/2019] [Accepted: 09/28/2019] [Indexed: 12/24/2022]
Abstract
In vitro drug screening is widely used in the development of new drugs, because they constitute a cost-effective approach to select compounds with more potential for therapy. They are also an attractive alternative to in vivo testing. However, most of these assays are done in two-dimensional culture models, where cells are grown on a polystyrene or glass flat surface. In order to develop in vitro models that would more closely resemble physiological conditions, three-dimensional models have been developed. Here, we introduce two novel fully synthetic scaffolds produced using the polymer polyhydroxybutyrate (PHB): a Solvent-Casting Particle-Leaching (SCPL) membrane; and an electrospun membrane, to be used for 3D cultures of B16 F10 murine melanoma cells and 4T1 murine breast cancer cells. A 2D cell culture system in regular tissue culture plates and a classical 3D model where cells are grown on a commercially available gel derived from Engelbreth-Holm Swarm (EHS) tumor were used for comparison with the synthetic scaffolds. Cells were also collected from in vivo tumors grown as grafts in syngeneic mice. Morphology, cell viability, response to chemotherapy and gene expression analysis were used to compare all systems. In the electrospun membrane model, cells were grown on nanometer-scale fibers and in the SCPL membrane, which provides a foam-like structure for cell growth, pore sizes varied. Cells grown on all 3D models were able to form aggregates and spheroids, allowing for increased cell-cell contact when compared with the 2D system. Cell morphology was also more similar between 3D systems and cells collected from the in vivo tumors. Cells grown in 3D models showed an increase in resistance to dacarbazine, and cisplatin. Gene expression analysis also revealed similarities among all 3D platforms. The similarities between the two synthetic systems to the classic EHS gel model highlight their potential application as cost effective substitutes in drug screening, in which fully synthetic models could represent a step towards higher reproducibility. We conclude PHB synthetic membranes offer a valuable alternative for 3D cultures.
Collapse
Affiliation(s)
- Julia C Fontoura
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde, Porto Alegre, RS, Brazil
| | - Christian Viezzer
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | - Rosane A Ligabue
- Laboratório de Caracterização de Materiais, PUCRS, Porto Alegre, RS, Brazil
| | | | - Renato D Puga
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Dyeison Antonow
- Institute of Petroleum and Natural Resources (IPR), Tecnopuc, PUCRS, Porto Alegre, RS, Brazil
| | | | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde, Porto Alegre, RS, Brazil; Department of Surgery, School of Medicine, University of California at San Diego, United States.
| |
Collapse
|
49
|
Ishida A, Watanabe G, Oshikawa M, Ajioka I, Muraoka T. Glycine Substitution Effects on the Supramolecular Morphology and Rigidity of Cell‐Adhesive Amphiphilic Peptides. Chemistry 2019; 25:13523-13530. [DOI: 10.1002/chem.201902083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Atsuya Ishida
- Department of Applied ChemistryGraduate School of EngineeringTokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Go Watanabe
- Department of PhysicsSchool of ScienceKitasato University 1-15-1 Kitasato, Minami-ku Sagamihara 252-0373 Japan
| | - Mio Oshikawa
- Center for Brain Integration ResearchTokyo Medical and Dental University 1-5-45 Yushima, Bunkyo-ku Tokyo 113-8510 Japan
- Kanagawa Institute of Industrial Science and Technology 705-1 Shimoimaizumi Ebina Kanagawa 243-0435 Japan
| | - Itsuki Ajioka
- Center for Brain Integration ResearchTokyo Medical and Dental University 1-5-45 Yushima, Bunkyo-ku Tokyo 113-8510 Japan
- Precursory Research for Embryonic Science and TechnologyJapan Science and Technology Agency 4-1-8, Honcho Kawaguchi-shi Saitama 332-0012 Japan
| | - Takahiro Muraoka
- Department of Applied ChemistryGraduate School of EngineeringTokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
- Precursory Research for Embryonic Science and TechnologyJapan Science and Technology Agency 4-1-8, Honcho Kawaguchi-shi Saitama 332-0012 Japan
- Institute of Global Innovation ResearchTokyo University of Agriculture and Technology Tokyo Japan
| |
Collapse
|
50
|
Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarzadeh A, Hamblin MR. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res 2019; 18:185-201. [PMID: 31032119 PMCID: PMC6479020 DOI: 10.1016/j.jare.2019.03.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 01/29/2023] Open
Abstract
Tissue engineering is a rapidly-growing approach to replace and repair damaged and defective tissues in the human body. Every year, a large number of people require bone replacements for skeletal defects caused by accident or disease that cannot heal on their own. In the last decades, tissue engineering of bone has attracted much attention from biomedical scientists in academic and commercial laboratories. A vast range of biocompatible advanced materials has been used to form scaffolds upon which new bone can form. Carbon nanomaterial-based scaffolds are a key example, with the advantages of being biologically compatible, mechanically stable, and commercially available. They show remarkable ability to affect bone tissue regeneration, efficient cell proliferation and osteogenic differentiation. Basically, scaffolds are templates for growth, proliferation, regeneration, adhesion, and differentiation processes of bone stem cells that play a truly critical role in bone tissue engineering. The appropriate scaffold should supply a microenvironment for bone cells that is most similar to natural bone in the human body. A variety of carbon nanomaterials, such as graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds and their derivatives that are able to act as scaffolds for bone tissue engineering, are covered in this review. Broadly, the ability of the family of carbon nanomaterial-based scaffolds and their critical role in bone tissue engineering research are discussed. The significant stimulating effects on cell growth, low cytotoxicity, efficient nutrient delivery in the scaffold microenvironment, suitable functionalized chemical structures to facilitate cell-cell communication, and improvement in cell spreading are the main advantages of carbon nanomaterial-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|