1
|
Saito J, Onishi N, Yamasaki J, Koike N, Hata Y, Kimura K, Otsuki Y, Nobusue H, Sampetrean O, Shimizu T, Okazaki S, Sugihara E, Saya H. Benzaldehyde suppresses epithelial-mesenchymal plasticity and overcomes treatment resistance in cancer by targeting the interaction of 14-3-3ζ with H3S28ph. Br J Cancer 2025:10.1038/s41416-025-03006-4. [PMID: 40316727 DOI: 10.1038/s41416-025-03006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Benzaldehyde (BA) is an aromatic aldehyde found in fruits that has been studied as a potential anticancer agent on the basis of its ability to inhibit transformation in mouse embryo cells and to suppress metastasis in mice. METHODS We investigated the cytotoxic effects of BA on cancer cells, and probed its effects on intracellular signaling pathways. The anticancer effects of BA in vivo were studied by using a mouse orthotopic transplantation model of pancreatic cancer. RESULTS BA inhibited the growth of osimertinib- or radiation-resistant cancer cells as well as the interaction between 14-3-3ζ and its client proteins. The interaction of 14-3-3ζ with the Ser28-phosphorylated form of histone H3 (H3S28ph) was implicated in treatment resistance and the transcriptional regulation of genes related to epithelial-mesenchymal transition and stemness, including E2F2, SRSF1, and ID1. Treatment of mice with a BA derivative inhibited pancreatic tumor growth and lung metastasis, as well as suppressed a state of epithelial-mesenchymal plasticity (EMP) of tumor cells. CONCLUSION The interaction between 14-3-3ζ and H3S28ph plays a key role in EMP and treatment resistance in cancer. The ability of BA to inhibit this and other interactions of 14-3-3ζ offers the potential to overcome treatment resistance and to suppress metastasis.
Collapse
Affiliation(s)
- Jun Saito
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
- Department of Pathophysiology, Hoshi University, Shinagawa, Tokyo, 142-0063, Japan
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-0062, Japan
- Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
- Ichijokai Hospital, Ichikawa, Chiba, 272-0836, Japan
| | - Nobuyuki Onishi
- Department of Clinical Diagnostics Oncology, Clinical Research Institute for Clinical Pharmacology and Therapy, Showa University, Shinagawa, Tokyo, 142-8555, Japan
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Juntaro Yamasaki
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Naoyoshi Koike
- Department of Radiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Yukie Hata
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kiyomi Kimura
- Department of Pathophysiology, Hoshi University, Shinagawa, Tokyo, 142-0063, Japan
- Department of Breast Oncology Juntendo University School of Medicine, Bunkyo, Tokyo, 113-0033, Japan
| | - Yuji Otsuki
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Hiroyuki Nobusue
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Oltea Sampetrean
- Keio University Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Shinjuku, Tokyo, 160-8582, Japan
| | - Takatsune Shimizu
- Department of Pathophysiology, Hoshi University, Shinagawa, Tokyo, 142-0063, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-0062, Japan
| | - Eiji Sugihara
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Hideyuki Saya
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
2
|
Low ZY, Yip AJW, Chan AML, Choo WS. 14-3-3 Family of Proteins: Biological Implications, Molecular Interactions, and Potential Intervention in Cancer, Virus and Neurodegeneration Disorders. J Cell Biochem 2024; 125:e30624. [PMID: 38946063 DOI: 10.1002/jcb.30624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The 14-3-3 family of proteins are highly conserved acidic eukaryotic proteins (25-32 kDa) abundantly present in the body. Through numerous binding partners, the 14-3-3 is responsible for many essential cellular pathways, such as cell cycle regulation and gene transcription control. Hence, its dysregulation has been linked to the onset of critical illnesses such as cancers, neurodegenerative diseases and viral infections. Interestingly, explorative studies have revealed an inverse correlation of 14-3-3 protein in cancer and neurodegenerative diseases, and the direct manipulation of 14-3-3 by virus to enhance infection capacity has dramatically extended its significance. Of these, COVID-19 has been linked to the 14-3-3 proteins by the interference of the SARS-CoV-2 nucleocapsid (N) protein during virion assembly. Given its predisposition towards multiple essential host signalling pathways, it is vital to understand the holistic interactions between the 14-3-3 protein to unravel its potential therapeutic unit in the future. As such, the general structure and properties of the 14-3-3 family of proteins, as well as their known biological functions and implications in cancer, neurodegeneration, and viruses, were covered in this review. Furthermore, the potential therapeutic target of 14-3-3 proteins in the associated diseases was discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
3
|
Wu M, Maiorano G, Stadnicka K. Protein profiles in the transfected oviductal secreting cells of laying hen (Gallus gallus domesticus). Poult Sci 2024; 103:103305. [PMID: 38198917 PMCID: PMC10792652 DOI: 10.1016/j.psj.2023.103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the intensive development of novel biopharming applications, there is a need for the in vitro verification models prior to in vivo testing. Laying hen has been already applied as an animal bioreactor to produce the therapeutical enzyme in a rare disease called lysosomal acid lipase deficiency. In this study, we aimed to verify how the proteome of the transfected oviduct epithelial cells would be affected by genetic nonviral modification with the human exogene. The study was based on a previously developed method to cultivate chicken oviduct epithelial cells (COEC). The typical characteristics of the COEC epithelial cells were retained across the experiments. The mean efficiency of nucleofection ranged from 2.6 to 19.7% depending on the cells' isolation and location in the oviduct (upper, infundibulum site, or magnum). The PCR confirmed the incorporation of human interferon alpha2a (hIFNα2a) exogene into the nucleofected COEC but, the production of hIFNα2a protein did not exceed the detection level in this study. The ovalbumin protein was detected in the nontransfected and transfected COEC, which confirmed the normal secreting functions of the cells subject to modification. Proteomic analysis revealed an increase in abundance of the cell adhesion molecules and collagen molecules after introducing gene under ovalbumin promoter. According to the bioinformatic analyses there was a limited negative impact of transfection on cells, and the normal biochemical pathways were not severely disordered. In conclusion, the observations provide new knowledge about the proteomic profile of the manipulated COEC with regard to the retained normal functionality of the cells, which can be informative for avian biopharma research.
Collapse
Affiliation(s)
- Mengjun Wu
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Giuseppe Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Katarzyna Stadnicka
- Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-821 Bydgoszcz, Poland.
| |
Collapse
|
4
|
Kor A, Yalçın M, Erten Ş, Maraş Y, Oğuz EF, Doğan İ, Atalar E, Başer S, Erel Ö. 14-3-3η Proteins as a Diagnostic Marker, Disease Activation Indicator, and Lymphoma Predictor in Patients with Primary Sjögren Syndrome. ARCHIVES OF IRANIAN MEDICINE 2023; 26:582-591. [PMID: 38310415 PMCID: PMC10862092 DOI: 10.34172/aim.2023.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/03/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Primary Sjögren syndrome (PSS) is a chronic, autoimmune, and lymphoproliferative disease of the connective tissue. In patients with PSS, the risk of developing B-cell non-Hodgkin lymphoma (NHL) increases dramatically, with a prevalence of approximately 5%. The 14-3-3 protein isoforms are phospho-serin/phospho-threonine binding proteins associated with many malignant diseases. This study aimed to evaluate the relationship between disease activity parameters and markers predicting lymphoma development in patients with PSS and 14-3-3η proteins. METHODS This study was designed as an analytical case-control study. A total of 57 PSS patients and 54 healthy volunteers were included in the study. The European League Against Rheumatism (EULAR) Sjögren syndrome disease activity index (ESSDAI) was used to assess systemic disease activity in PSS. Receiver operating characteristic (ROC) analysis was used to test the diagnostic accuracy measures of the analytical results. Multivariable linear regression analysis was used to evaluate the effects of independent variables on the 14-3-3η protein. RESULTS The 14-3-3η protein serum levels were found to be significantly higher in PSS (2.72 [2.04-4.07]) than healthy controls (1.73 [1.41-2.43]) (P<0.0001). A significant relationship was found between 14-3-3η protein levels and ESSDAI group (β=0.385, 95%CI=0.318-1.651, P=0.005), hypocomplementemia (C3 or C4) (β=0.223, 95% CI=0.09-1.983, P=0.048) and purpura (β=0.252, 95% CI=0.335-4.903, P=0.022), which are accepted as lymphoma predictors. A significant correlation was found between PSS disease activity score ESSDAI and 14-33η protein (β=0.496, 95% CI=0.079-0.244, P=0.0002). CONCLUSION 14-3-3η proteins are potential candidates for diagnostic marker, marker of disease activity, and predictor of lymphoma in PSS patients.
Collapse
Affiliation(s)
- Ahmet Kor
- Department of Rheumatology, Aksaray Education and Research Hospital, Aksaray, Turkey
| | - Merve Yalçın
- Department of Internal Medicine, Ankara Bilkent City Hospital, Ministry of Health, Ankara, Turkey
| | - Şükran Erten
- Department of Rheumatology, Faculty of Medicine Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Yüksel Maraş
- Department of Rheumatology, Ankara Bilkent City Hospital, Health Sciences University, Ankara, Turkey
| | - Esra Fırat Oğuz
- Department of Medical Biochemistry, Ankara Bilkent City Hospital, Ministry of Health, Ankara, Turkey
| | - İsmail Doğan
- Department of Rheumatology, Faculty of Medicine Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Ebru Atalar
- Department of Rheumatology, Ankara Bilkent City Hospital, Ministry of Health, Ankara, Turkey
| | - Salih Başer
- Department of Internal Medicine, Faculty of Medicine Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Özcan Erel
- Department of Medical Biochemistry, Faculty of Medicine Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
5
|
Arroyo E, Pérez Sayáns M, Bravo SB, de Oliveira Barbeiro C, Paravani Palaçon M, Chamorro Petronacci CM, García Vence M, Chantada Vázquez MDP, Blanco Carrión A, Suárez Peñaranda JM, García García A, Gándara Vila P, Días Almeida J, Veríssimo da Costa GC, Sousa Nogueira FC, Medeiros Evaristo JA, de Abreu Pereira D, Rintala M, Salo T, Rautava J, Padín Iruegas E, Oliveira Alves MG, Morandin Ferrisse T, Albergoni da Silveira H, Esquiche León J, Vilela Silva E, Flores IL, Bufalino A. Identification of Proteomic Biomarkers in Proliferative Verrucous Leukoplakia through Liquid Chromatography With Tandem Mass Spectrometry. J Transl Med 2023; 103:100222. [PMID: 37507024 DOI: 10.1016/j.labinv.2023.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Proliferative verrucous leukoplakia (PVL) is an oral potentially malignant disorder associated with high risk of malignant transformation. Currently, there is no treatment available, and restrictive follow-up of patients is crucial for a better prognosis. Oral leukoplakia (OL) shares some clinical and microscopic features with PVL but exhibits different clinical manifestations and a lower rate of malignant transformation. This study aimed to investigate the proteomic profile of PVL in tissue and saliva samples to identify potential diagnostic biomarkers with therapeutic implications. Tissue and saliva samples obtained from patients with PVL were compared with those from patients with oral OL and controls. Label-free liquid chromatography with tandem mass spectrometry was employed, followed by qualitative and quantitative analyses, to identify differentially expressed proteins. Potential biomarkers were identified and further validated using immunohistochemistry. Staining intensity scan analyses were performed on tissue samples from patients with PVL, patients with OL, and controls from Brazil, Spain, and Finland. The study revealed differences in the immune system, cell cycle, DNA regulation, apoptosis pathways, and the whole proteome of PVL samples. In addition, liquid chromatography with tandem mass spectrometry analyses showed that calreticulin (CALR), receptor of activated protein C kinase 1 (RACK1), and 14-3-3 Tau-protein (YWHAQ) were highly expressed in PVL samples. Immunohistochemistry validation confirmed increased CARL expression in PVL compared with OL. Conversely, RACK1 and YWHA were highly expressed in oral potentially malignant disorder compared to the control group. Furthermore, significant differences in CALR and RACK1 expression were observed in the OL group when comparing samples with and without oral epithelial dysplasia, unlike the PVL. This research provides insights into the molecular mechanisms underlying these conditions and highlights potential targets for future diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Esteban Arroyo
- Department of Diagnosis and Surgery, Araraquara, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Mario Pérez Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, University of Santiago de Compostela, Instituto de los materiales de Santiago de Compostela (iMATUS), Santiago, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS) (ORALRES Group), Santiago de Compostela, Spain.
| | - Susana Belen Bravo
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Camila de Oliveira Barbeiro
- Department of Diagnosis and Surgery, Araraquara, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Mariana Paravani Palaçon
- Department of Diagnosis and Surgery, Araraquara, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - María García Vence
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | | | - Andrés Blanco Carrión
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, University of Santiago de Compostela, Instituto de los materiales de Santiago de Compostela (iMATUS), Santiago, Spain
| | - José M Suárez Peñaranda
- Servicio de Anatomia Patológica, Hospital Clinico Universitario de Santiago, Choupana s/n Santiago de Compostela, Spain
| | - Abel García García
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, University of Santiago de Compostela, Instituto de los materiales de Santiago de Compostela (iMATUS), Santiago, Spain
| | - Pilar Gándara Vila
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, University of Santiago de Compostela, Instituto de los materiales de Santiago de Compostela (iMATUS), Santiago, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS) (ORALRES Group), Santiago de Compostela, Spain
| | - Janete Días Almeida
- Department of Bioscience and Buccal Diagnosis, São José dos Campos, Science and Technologies Institute, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Giovani Carlo Veríssimo da Costa
- Department of Basic Sciences, Nova Friburgo Health Institute, Univ. Federal Fluminense, Nova Friburgo, Rio de Janeiro, Brazil; Laboratory of Proteomics, Technological Development Support Laboratory (LADETEC), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio César Sousa Nogueira
- Laboratory of Proteomics, Technological Development Support Laboratory (LADETEC), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joseph Albert Medeiros Evaristo
- Laboratory of Proteomics, Technological Development Support Laboratory (LADETEC), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise de Abreu Pereira
- Program on Cellular and Molecular Oncobiology, Research Coordination, National Institute of Cancer (INCA), Rio de Janeiro, Brazil
| | - Mirjami Rintala
- Department of Oral Pathology, University of Turku, Turku, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland; Department of Pathology, HUSLAB, Helsinki, Finland; Department of Cancer and Translational Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu, Finland
| | - Jaana Rautava
- Department of Oral Pathology, University of Turku, Turku, Finland; Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland; Department of Pathology, HUSLAB, Helsinki, Finland
| | - Elena Padín Iruegas
- Human Anatomy and Embryology Area, Faculty of Physiotherapy, Department of Functional Biology and Health Sciences, Pontevedra, Spain
| | | | - Túlio Morandin Ferrisse
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Heitor Albergoni da Silveira
- Department of Diagnosis and Surgery, Araraquara, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jorge Esquiche León
- Oral Pathology, Department of Stomatology, Public Oral Health, and Forensic Dentistry, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Evânio Vilela Silva
- Department of Diagnosis and Surgery, Araraquara, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Isadora Luana Flores
- Oral Pathology Area, Conservative Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre/RS, Brazil
| | - Andreia Bufalino
- Department of Diagnosis and Surgery, Araraquara, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
6
|
Song R, He S, Wu Y, Chen W, Song J, Zhu Y, Chen H, Wang Q, Wang S, Tan S, Tan S. Validation of reference genes for the normalization of the RT-qPCR in peripheral blood mononuclear cells of septic patients. Heliyon 2023; 9:e15269. [PMID: 37089378 PMCID: PMC10119759 DOI: 10.1016/j.heliyon.2023.e15269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Objective To screen and validate reference genes suitable for gene mRNA expression study in peripheral blood mononuclear cells (PBMCs) between septic patients and healthy controls (HC). Methods Total RNA in PBMCs was extracted and RT-qPCR was used to determine the mRNA expression profiles of 9 candidate genes, including ACTB, B2M, GAPDH, GUSB, HPRT1, PGK1, RPL13A, SDHA and YWHAZ. The genes expression stabilities were assessed by both geNorm and NormFinder software. Results YWHAZ was the most stable gene among the 9 candidate genes evaluated by both geNorm and NormFinder in mixed and sepsis groups. The most stable gene combination in mixed group analyzed by geNorm was the combination of GAPDH, PKG1 and YWHAZ, while that in sepsis group was the combination of ACTB, PKG1 and YWHAZ. Conclusion Our first systematic analysis of the reference genes in PBMC of septic patients suggested YWHAZ was the best candidate. The combination of ACTB, PKG1 and YWHAZ could improve RT-qPCR accuracy in septic patients. Our results identified the most stable reference genes to standardize RT-qPCR of sepsis patients, which can serve as a useful tool for gene function exploration in the future.
Collapse
Affiliation(s)
- Ruoyu Song
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Shijun He
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Yongbin Wu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Wanxin Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Jie Song
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Yaxi Zhu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Huan Chen
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Qianlu Wang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, PR China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Shouman Wang
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Sichuang Tan
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
- Corresponding author.
| | - Sipin Tan
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, PR China
- Corresponding author.
| |
Collapse
|
7
|
Exosome-Encapsulated miR-31, miR-192, and miR-375 Serve as Clinical Biomarkers of Gastric Cancer. JOURNAL OF ONCOLOGY 2023; 2023:7335456. [PMID: 36844871 PMCID: PMC9950326 DOI: 10.1155/2023/7335456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 02/18/2023]
Abstract
In recent years, microRNAs (miRNAs) derived from exosomes have been attracting attention as novel clinical biomarkers in a variety of cancers. In this study, plasma samples from 60 gastric cancer (GC) patients and 63 healthy individuals were collected, and the exosomal microRNAs (ex-miRNAs) were isolated. We determined the specific ex-miRNAs through miRNA microarray and a database of differentially expressed miRNAs called dbDEMC. Then, the expression levels of exosomal miR-31, miR-192, and miR-375 were analyzed by quantitative polymerase chain reaction (qRT-PCR). Compared to the matched controls, exosomal miR-31, miR-375, and miR-192 were significantly upregulated in GC patients. Also, they were found to be associated with gender, with miR-192 being significantly upregulated in male GC patients. Kaplan-Meier analysis indicated that high expressions of exosomal miR-31, miR-375, and miR-192 were positively correlated with poor clinical outcomes of GC patients. Cox univariate and multivariate analysis found that ex-miR-375 expression and TNM stage were independent prognostic factors of overall survival (OS). Our findings revealed that exosomal miR-31, miR-192, and miR-375 might serve as noninvasive, sensitive, and specific biomarkers for the diagnosis and prognosis of GC patients.
Collapse
|
8
|
Chen Z, Zheng L, Chen Y, Liu X, Kawakami M, Mustachio LM, Roszik J, Ferry-Galow KV, Parchment RE, Liu X, Andresson T, Duncan G, Kurie JM, Rodriguez-Canales J, Liu X, Dmitrovsky E. Loss of ubiquitin-specific peptidase 18 destabilizes 14-3-3ζ protein and represses lung cancer metastasis. Cancer Biol Ther 2022; 23:265-280. [PMID: 35387560 PMCID: PMC8993103 DOI: 10.1080/15384047.2022.2054242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer metastasis is a major cause of cancer-related mortality. Strategies to reduce metastases are needed especially in lung cancer, the most common cause of cancer mortality. We previously reported increased ubiquitin-specific peptidase 18 (USP18) expression in lung and other cancers. Engineered reduction of USP18 expression repressed lung cancer growth and promoted apoptosis. This deubiquitinase (DUB) stabilized targeted proteins by removing the complex interferon-stimulated gene 15 (ISG15). This study explores if the loss of USP18 reduced lung cancer metastasis. USP18 knock-down in lung cancer cells was independently achieved using small hairpin RNAs (shRNAs) and small interfering RNAs (siRNAs). USP18 knock-down reduced lung cancer growth, wound-healing, migration, and invasion versus controls (P < .001) and markedly decreased murine lung cancer metastases (P < .001). Reverse Phase Protein Arrays (RPPAs) in shRNA knock-down lung cancer cells showed that 14-3-3ζ protein was regulated by loss of USP18. ISG15 complexed with 14-3-3ζ protein reducing its stability. Survival in lung adenocarcinomas (P < .0015) and other cancers was linked to elevated 14-3-3ζ expression as assessed by The Cancer Genome Atlas (TCGA). The findings were confirmed and extended using 14-3-3ζ immunohistochemical assays of human lung cancer arrays and syngeneic murine lung cancer metastasis models. A direct 14-3-3ζ role in controlling lung cancer metastasis came from engineered 14-3-3ζ knock-down in lung cancer cell lines and 14-3-3ζ rescue experiments that reversed migration and invasion inhibition. Findings presented here revealed that USP18 controlled metastasis by regulating 14-3-3ζ expression. These data provide a strong rationale for developing a USP18 inhibitor to combat metastases.
Collapse
Affiliation(s)
- Zibo Chen
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lin Zheng
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yulong Chen
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuxia Liu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Masanori Kawakami
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lisa Maria Mustachio
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Roszik
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine V Ferry-Galow
- Clinical Pharmacodynamic Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph E Parchment
- Clinical Pharmacodynamic Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Xin Liu
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thorkell Andresson
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gerard Duncan
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jonathan M Kurie
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Xi Liu
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ethan Dmitrovsky
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.,Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Lin J, Liu G, Chen L, Kwok HF, Lin Y. Targeting lactate-related cell cycle activities for cancer therapy. Semin Cancer Biol 2022; 86:1231-1243. [PMID: 36328311 DOI: 10.1016/j.semcancer.2022.10.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Lactate has long been considered as a metabolic by-product of aerobic glycolysis for cancer. However, more and more studies have shown that lactate can regulate cancer progression via multiple mechanisms such as cell cycle regulation, immune suppression, energy metabolism and so on. A recent discovery of lactylation attracted a lot of attention and is already a hot topic in the cancer field. In this review, we summarized the latest functions of lactate and its underlying mechanisms in cancer. We also included our analysis of protein lactylation in different rat organs and compared them with other published lactylation data. The unresolved challenges in this field were discussed, and the potential application of these new discoveries of lactate-related cell cycle activities for cancer target therapy was speculated.
Collapse
Affiliation(s)
- Jia Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China; Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China
| | - Geng Liu
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - Lidian Chen
- Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China.
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China; Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China.
| |
Collapse
|
10
|
Lage-Vickers S, Sanchis P, Bizzotto J, Toro A, Sabater A, Lavignolle R, Anselmino N, Labanca E, Paez A, Navone N, Valacco MP, Cotignola J, Vazquez E, Gueron G. Exploiting Interdata Relationships in Prostate Cancer Proteomes: Clinical Significance of HO-1 Interactors. Antioxidants (Basel) 2022; 11:antiox11020290. [PMID: 35204174 PMCID: PMC8868058 DOI: 10.3390/antiox11020290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
Prostate cancer (PCa) cells display abnormal expression of proteins resulting in an augmented capacity to resist chemotherapy and colonize distant organs. We have previously shown the anti-tumoral role of heme oxygenase 1 (HO-1) in this disease. In this work, we undertook a mass spectrometry-based proteomics study to identify HO-1 molecular interactors that might collaborate with its modulatory function in PCa. Among the HO-1 interactors, we identified proteins with nuclear localization. Correlation analyses, using the PCa GSE70770 dataset, showed a significant and positive correlation between HMOX1 and 6 of those genes. Alternatively, HMOX1 and YWHAZ showed a negative correlation. Univariable analyses evidenced that high expression of HNRNPA2B1, HSPB1, NPM1, DDB1, HMGA1, ZC3HAV1, and HMOX1 was associated with increased relapse-free survival (RFS) in PCa patients. Further, PCa patients with high HSPB1/HMOX1, DDB1/HMOX1, and YWHAZ/HMOX1 showed a worse RFS compared with patients with lower ratios. Moreover, a decrease in RFS for patients with higher scores of this signature was observed using a prognostic risk score model. However, the only factor significantly associated with a higher risk of relapse was high YWHAZ. Multivariable analyses confirmed HSPB1, DDB1, and YWHAZ independence from PCa clinic-pathological parameters. In parallel, co-immunoprecipitation analysis in PCa cells ascertained HO-1/14-3-3ζ/δ (protein encoded by YWHAZ) interaction. Herein, we describe a novel protein interaction between HO-1 and 14-3-3ζ/δ in PCa and highlight these factors as potential therapeutic targets.
Collapse
Affiliation(s)
- Sofia Lage-Vickers
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Pablo Sanchis
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Juan Bizzotto
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Ayelen Toro
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Agustina Sabater
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Rosario Lavignolle
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Alejandra Paez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Nora Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Maria P. Valacco
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Javier Cotignola
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Elba Vazquez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
- Correspondence: ; Tel.: +54-9114-408-7796; Fax: +54-9114-788-5755
| |
Collapse
|
11
|
Ou M, Xu X, Chen Y, Li L, Zhang L, Liao Y, Sun W, Quach C, Feng J, Tang L. MDM2 induces EMT via the B‑Raf signaling pathway through 14‑3‑3. Oncol Rep 2021; 46:120. [PMID: 33955525 PMCID: PMC8129971 DOI: 10.3892/or.2021.8071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/23/2021] [Indexed: 12/28/2022] Open
Abstract
MDM2 proto‑oncogene, E3 ubiquitin protein ligase (MDM2) is a well‑known oncogene and has been reported to be closely associated with epithelial‑to‑mesenchymal transition (EMT). The present study first demonstrated that the expression levels of MDM2 were markedly increased in TGF‑β‑induced EMT using quantitative PCR and western blotting. In addition, MDM2 was demonstrated to be associated with pathological grade in clinical glioma samples by immunohistochemical staining. Furthermore, overexpression of MDM2 promoted EMT in glioma, lung cancer and breast cancer cell lines using a scratch wound migration assay. Subsequently, the present study explored the mechanism by which MDM2 promoted EMT and revealed that MDM2 induced EMT by upregulating EMT‑related transcription factors via activation of the B‑Raf signaling pathway through tyrosine 3‑monooxygenase activation protein ε using RNA sequencing and western blotting. This mechanism depended on the p53 gene. Furthermore, in vivo experiments and the colony formation experiment demonstrated that MDM2 could promote tumor progression and induce EMT via the B‑Raf signaling pathway. Since EMT contributes to increased drug resistance in tumor cells, the present study also explored the relationship between MDM2 and drug sensitivity using an MTT assay, and identified that MDM2 promoted cell insensitivity to silibinin treatment in an EMT‑dependent manner. This finding is crucial for the development of cancer therapies and can also provide novel research avenues for future biological and clinical studies.
Collapse
Affiliation(s)
- Mengting Ou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Li Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Lu Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yi Liao
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400044, P.R. China
| | - Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
12
|
Shabbir M, Mukhtar H, Syed D, Razak S, Afsar T, Almajwal A, Badshah Y, Aldisi D. Tissue microarray profiling and integrative proteomics indicate the modulatory potential of Maytenus royleanus in inhibition of overexpressed TPD52 in prostate cancers. Sci Rep 2021; 11:11935. [PMID: 34099820 PMCID: PMC8184821 DOI: 10.1038/s41598-021-91408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Maytenus roylanus (MEM) is a plant with anti-proliferative effects against prostate cancer. We aimed to explore the mechanism of action of MEM in prostate cancer (PCa) by employing an in vitro global proteome approach to get useful information of various signaling pathways and effected genes to define the mechanism of MEM action in prostate cancer. We conducted a global proteome analysis of CWR22Rv1after treatment with methanolic extract of MEM. The result of the proteomic profiling of in vitro PCa cells demonstrated the reduction in tumor protein D52 (TPD52) expression after treatment with methanolic extract of MEM. Down-regulation of TPD52 expression at mRNA level was observed by MEM treatment in CWR22Rν1 and C4-2 cells in a dose-dependent fashion probably by cleavage of Caspase 3 and PARP, or by modulation of cyclin-dependent kinases in CWR22Rν1 and C4-2 cells. The progressive character of the TRAMP model demonstrates a chance to evaluate the potential of chemo-preventive agents for both initial and late stages of prostate cancer development, and induction in TPD52 protein expression with development as well as the progression of prostate cancer was observed in the TRAMP model. Analyses of the tissue microarray collection of 25 specimens confirmed the clinical significance of our findings identifying TPD52 as a potential marker for PCa progression. We determined that knockdown of TPD52 (CWR22Rν1 cells), a considerable downregulation was seen at the protein level. Downregulation of TPD52 inhibited the migration and invasive behavior of prostate cancer cells as observed. Moreover, we observed that the siRNA-TPD52 transfection of CWR22Rν1 cells resulted in tumor growth inhibition with a marked reduction in the secretion of prostate-specific antigen (PSA) in the serum. Intraperitoneal injection of MEM considerably slowed tumor growth in athymic mice, inhibited TPD52 expression, and caused a marked reduction in PSA levels of serum as demonstrated by immunoblot screening and immune-histochemical staining. This report illustrates a molecular overview of pathological processes in PCa, indicating possible new disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, USA
| | - Deeba Syed
- Department of Dermatology, University of Wisconsin, Madison, USA
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, KSA, Riyadh, Saudi Arabia.
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Yasmin Badshah
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Dara Aldisi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, KSA, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Zangouei AS, Alimardani M, Moghbeli M. MicroRNAs as the critical regulators of Doxorubicin resistance in breast tumor cells. Cancer Cell Int 2021; 21:213. [PMID: 33858435 PMCID: PMC8170947 DOI: 10.1186/s12935-021-01873-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chemotherapy is one of the most common treatment options for breast cancer (BC) patients. However, about half of the BC patients are chemotherapeutic resistant. Doxorubicin (DOX) is considered as one of the first line drugs in the treatment of BC patients whose function is negatively affected by multi drug resistance. Due to the severe side effects of DOX, it is very important to diagnose the DOX resistant BC patients. Therefore, assessment of molecular mechanisms involved in DOX resistance can improve the clinical outcomes in BC patients by introducing the novel therapeutic and diagnostic molecular markers. MicroRNAs (miRNAs) as members of the non-coding RNAs family have pivotal roles in various cellular processes including cell proliferation and apoptosis. Therefore, aberrant miRNAs functions and expressions can be associated with tumor progression, metastasis, and drug resistance. Moreover, due to miRNAs stability in body fluids, they can be considered as non-invasive diagnostic markers for the DOX response in BC patients. MAIN BODY In the present review, we have summarized all of the miRNAs that have been reported to be associated with DOX resistance in BC for the first time in the world. CONCLUSIONS Since, DOX has severe side effects; it is required to distinguish the non DOX-responders from responders to improve the clinical outcomes of BC patients. This review highlights the miRNAs as pivotal regulators of DOX resistance in breast tumor cells. Moreover, the present review paves the way of introducing a non-invasive panel of prediction markers for DOX response among BC patients.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Alimardani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Frascotti G, Galbiati E, Mazzucchelli M, Pozzi M, Salvioni L, Vertemara J, Tortora P. The Vault Nanoparticle: A Gigantic Ribonucleoprotein Assembly Involved in Diverse Physiological and Pathological Phenomena and an Ideal Nanovector for Drug Delivery and Therapy. Cancers (Basel) 2021; 13:cancers13040707. [PMID: 33572350 PMCID: PMC7916137 DOI: 10.3390/cancers13040707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In recent decades, a molecular complex referred to as vault nanoparticle has attracted much attention by the scientific community, due to its unique properties. At the molecular scale, it is a huge assembly consisting of 78 97-kDa polypeptide chains enclosing an internal cavity, wherein enzymes involved in DNA integrity maintenance and some small noncoding RNAs are accommodated. Basically, two reasons justify this interest. On the one hand, this complex represents an ideal tool for the targeted delivery of drugs, provided it is suitably engineered, either chemically or genetically; on the other hand, it has been shown to be involved in several cellular pathways and mechanisms that most often result in multidrug resistance. It is therefore expected that a better understanding of the physiological roles of this ribonucleoproteic complex may help develop new therapeutic strategies capable of coping with cancer progression. Here, we provide a comprehensive review of the current knowledge. Abstract The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-“major vault protein” (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault poly(ADP-ribose) polymerase (vPARP), telomerase-associated protein-1 (TEP1), and some small untranslated RNAs are accommodated. Plenty of literature reports on the biological role(s) of this nanocomplex, as well as its involvement in diseases, mostly oncological ones. Nevertheless, much has still to be understood as to how vault participates in normal and pathological mechanisms. In this comprehensive review, current understanding of its biological roles is discussed. By different mechanisms, vault’s individual components are involved in major cellular phenomena, which result in protection against cellular stresses, such as DNA-damaging agents, irradiation, hypoxia, hyperosmotic, and oxidative conditions. These diverse cellular functions are accomplished by different mechanisms, mainly gene expression reprogramming, activation of proliferative/prosurvival signaling pathways, export from the nucleus of DNA-damaging drugs, and import of specific proteins. The cellular functions of this nanocomplex may also result in the onset of pathological conditions, mainly (but not exclusively) tumor proliferation and multidrug resistance. The current understanding of its biological roles in physiological and pathological processes should also provide new hints to extend the scope of its exploitation as a nanocarrier for drug delivery.
Collapse
|
15
|
Wen S, Li J, Yang J, Li B, Li N, Zhan X. Quantitative Acetylomics Revealed Acetylation-Mediated Molecular Pathway Network Changes in Human Nonfunctional Pituitary Neuroendocrine Tumors. Front Endocrinol (Lausanne) 2021; 12:753606. [PMID: 34712204 PMCID: PMC8546192 DOI: 10.3389/fendo.2021.753606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Acetylation at lysine residue in a protein mediates multiple cellular biological processes, including tumorigenesis. This study aimed to investigate the acetylated protein profile alterations and acetylation-mediated molecular pathway changes in human nonfunctional pituitary neuroendocrine tumors (NF-PitNETs). The anti-acetyl antibody-based label-free quantitative proteomics was used to analyze the acetylomes between NF-PitNETs (n = 4) and control pituitaries (n = 4). A total of 296 acetylated proteins with 517 acetylation sites was identified, and the majority of which were significantly down-acetylated in NF-PitNETs (p<0.05 or only be quantified in NF-PitNETs/controls). These acetylated proteins widely functioned in cellular biological processes and signaling pathways, including metabolism, translation, cell adhesion, and oxidative stress. The randomly selected acetylated phosphoglycerate kinase 1 (PGK1), which is involved in glycolysis and amino acid biosynthesis, was further confirmed with immunoprecipitation and western blot in NF-PitNETs and control pituitaries. Among these acetylated proteins, 15 lysine residues within 14 proteins were down-acetylated and simultaneously up-ubiquitinated in NF-PitNETs to demonstrate a direct competition relationship between acetylation and ubiquitination. Moreover, the potential effect of protein acetylation alterations on NF-PitNETs invasiveness was investigated. Overlapping analysis between acetylomics data in NF-PitNETs and transcriptomics data in invasive NF-PitNETs identified 26 overlapped molecules. These overlapped molecules were mainly involved in metabolism-associated pathways, which means that acetylation-mediated metabolic reprogramming might be the molecular mechanism to affect NF-PitNET invasiveness. This study provided the first acetylomic profiling and acetylation-mediated molecular pathways in human NF-PitNETs, and offered new clues to elucidate the biological functions of protein acetylation in NF-PitNETs and discover novel biomarkers for early diagnosis and targeted therapy of NF-PitNETs.
Collapse
Affiliation(s)
- Siqi Wen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jiajia Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jingru Yang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Biao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, Jinan, China
- *Correspondence: Xianquan Zhan,
| |
Collapse
|
16
|
A Novel Nanoproteomic Approach for the Identification of Molecular Targets Associated with Thyroid Tumors. NANOMATERIALS 2020; 10:nano10122370. [PMID: 33260544 PMCID: PMC7761166 DOI: 10.3390/nano10122370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
A thyroid nodule is the most common presentation of thyroid cancer; thus, it is extremely important to differentiate benign from malignant nodules. Within malignant lesions, classification of a thyroid tumor is the primary step in the assessment of the prognosis and selection of treatment. Currently, fine-needle aspiration biopsy (FNAB) is the preoperative test most commonly used for the initial thyroid nodule diagnosis. However, due to some limitations of FNAB, different high-throughput “omics” approaches have emerged that could further support diagnosis based on histopathological patterns. In the present work, formalin-fixed paraffin-embedded (FFPE) tissue specimens from normal (non-neoplastic) thyroid (normal controls (NCs)), benign tumors (follicular thyroid adenomas (FTAs)), and some common types of well-differentiated thyroid carcinoma (follicular thyroid carcinomas (FTCs), conventional or classical papillary thyroid carcinomas (CV-PTCs), and the follicular variant of papillary thyroid carcinomas (FV-PTCs)) were analyzed. For the first time, FFPE thyroid samples were deparaffinized using an easy, fast, and non-toxic method. Protein extracts from thyroid tissue samples were analyzed using a nanoparticle-assisted proteomics approach combined with shotgun LC-MS/MS. The differentially regulated proteins found to be specific for the FTA, FTC, CV-PTC, and FV-PTC subtypes were analyzed with the bioinformatic tools STRING and PANTHER showing a profile of proteins implicated in the thyroid cancer metabolic reprogramming, cancer progression, and metastasis. These proteins represent a new source of potential molecular targets related to thyroid tumors.
Collapse
|
17
|
14-3-3 σ: A potential biomolecule for cancer therapy. Clin Chim Acta 2020; 511:50-58. [PMID: 32950519 DOI: 10.1016/j.cca.2020.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022]
Abstract
As more studies have focused on the function of 14-3-3 proteins, their role in tumor progression has gradually improved. In the 14-3-3 protein family, 14-3-3σ is the protein that is most associated with tumor occurrence and development. In some malignancies, 14-3-3σ acts as a tumor suppressor via p53 and tumor suppressor genes. In most tumors, 14-3-3σ overexpression increases resistance to chemotherapy and radiotherapy and mediates the G2-M checkpoint after DNA damage. Although 14-3-3σ overexpression has been closely associated with poorer prognosis in pancreatic, gastric and colorectal cancer, its role in gallbladder and nasopharyngeal cancer remains less clear. As such, the function of 14-3-3σ in specific cancer types needs to be further clarified. It has been hypothesized that a role may be related to its molecular chaperone function combined with various protein ligands. In this review, we examine the role of 14-3-3σ in tumor development and drug resistance. We discuss the potential of targeting 14-3-3σ regulators in cancer therapy and treatment.
Collapse
|
18
|
Altinoz MA, Ucal Y, Yilmaz MC, Kiris İ, Ozisik O, Sezerman U, Ozpinar A, Elmaci İ. Progesterone at high doses reduces the growth of U87 and A172 glioblastoma cells: Proteomic changes regarding metabolism and immunity. Cancer Med 2020; 9:5767-5780. [PMID: 32590878 PMCID: PMC7433824 DOI: 10.1002/cam4.3223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
While pregnancy may accelerate glioblastoma multiforme (GBM) growth, parity and progesterone (P4) containing treatments (ie, hormone replacement therapy) reduce the risk of GBM development. In parallel, low and high doses of P4 exert stimulating and inhibitory actions on GBM growth, respectively. The mechanisms behind the high‐dose P4‐suppression of GBM growth is unknown. In the present study, we assessed the changes in growth and proteomic profiles when high‐dose P4 (100 and 300 µM) was administered in human U87 and A172 GBM cell lines. The xCELLigence system was used to examine cell growth when different concentrations of P4 (20, 50, 100, and 300 µM) was administered. The protein profiles were determined by two‐dimensional gel electrophoresis in both cell lines when 100 and 300 µM P4 were administered. Finally, the pathways enriched by the differentially expressed proteins were assessed using bioinformatic tools. Increasing doses of P4 blocked the growth of both GBM cells. We identified 26 and 51 differentially expressed proteins (fc > 2) in A172 and U87 cell lines treated with P4, respectively. Only the pro‐tumorigenic mitochondrial ornithine aminotransferase and anti‐apoptotic mitochondrial 60 kDa heat shock protein were downregulated in A172 cell line and U87 cell line when treated with P4, respectively. Detoxification of reactive oxygen species, cellular response to stress, glucose metabolism, and immunity‐related proteins were altered in P4‐treated GBM cell lines. The paradox on the effect of low and high doses of P4 on GBM growth is gaining attention. The mechanism related to the high dose of P4 on GBM growth can be explained by the alterations in detoxification mechanisms, stress, and immune response and glucose metabolism. P4 suppresses GBM growth and as it is nontoxic in comparison to classical chemotherapeutics, it can be used as a new strategy in GBM treatment in the future.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Yasemin Ucal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Muazzez C Yilmaz
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - İrem Kiris
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozan Ozisik
- Medical Genetics, Aix Marseille University, Inserm, MMG, Marseille, France
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - İlhan Elmaci
- Department of Neurosurgery, Acibadem Maslak Hospital and School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
19
|
Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020; 57:409-432. [PMID: 32468071 PMCID: PMC7307599 DOI: 10.3892/ijo.2020.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin‑embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Collapse
Affiliation(s)
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| | | | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| |
Collapse
|
20
|
Lin Y, Sun L, Ye X. Expression of yhwaz and gene regulation network in hepatocellular carcinoma. Oncol Lett 2020; 19:3971-3981. [PMID: 32382342 PMCID: PMC7202284 DOI: 10.3892/ol.2020.11481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/09/2020] [Indexed: 11/09/2022] Open
Abstract
The adaptor protein 14-3-3ζ is encoded by the yhwaz gene and implicated in a wide range of biological processes. In tumorigenesis, 14-3-3ζ recognizes specific phosphorylation motifs and interacts with hundreds of target proteins and is, thus, involved in the regulation of tumor proliferation, migration and differentiation. In the present study, bioinformatics tools were used to analyze data from The Cancer Genome Atlas and Gene Expression Omnibus databases and the expression of yhwaz, and gene regulation networks were identified as potentially relevant in hepatocellular carcinoma (HCC). In HCC, yhwaz expression was demonstrated to be upregulated and significantly associated with poor prognosis. Expression levels of microRNAs targeting yhwaz were associated with improved prognosis in patients with liver cancer. Gene networks that are regulated by yhwaz were found to be involved in cell cycle regulation and tumorigenesis, indicating the potential use of the expression levels of yhwaz in liver tissue as predictive biomarkers in patients with liver cancer. In the present study, yhwaz was identified as a gene of interest through data mining gene expression databases and its involvement in regulatory networks in HCC was indicated. Therefore, further in vitro and in vivo studies on the role of yhwaz in the carcinogenesis of HCC would be greatly beneficial.
Collapse
Affiliation(s)
- Yi Lin
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang 325027, P.R. China
| | - Ling Sun
- Department of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224000, P.R. China
| | - Xiaolei Ye
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
21
|
Tissue-Specific Metabolic Regulation of FOXO-Binding Protein: FOXO Does Not Act Alone. Cells 2020; 9:cells9030702. [PMID: 32182991 PMCID: PMC7140670 DOI: 10.3390/cells9030702] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
The transcription factor forkhead box (FOXO) controls important biological responses, including proliferation, apoptosis, differentiation, metabolism, and oxidative stress resistance. The transcriptional activity of FOXO is tightly regulated in a variety of cellular processes. FOXO can convert the external stimuli of insulin, growth factors, nutrients, cytokines, and oxidative stress into cell-specific biological responses by regulating the transcriptional activity of target genes. However, how a single transcription factor regulates a large set of target genes in various tissues in response to a variety of external stimuli remains to be clarified. Evidence indicates that FOXO-binding proteins synergistically function to achieve tightly controlled processes. Here, we review the elaborate mechanism of FOXO-binding proteins, focusing on adipogenesis, glucose homeostasis, and other metabolic regulations in order to deepen our understanding and to identify a novel therapeutic target for the prevention and treatment of metabolic disorders.
Collapse
|
22
|
Regulatory factor X5 promotes hepatocellular carcinoma progression by transactivating tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein theta and suppressing apoptosis. Chin Med J (Engl) 2020; 132:1572-1581. [PMID: 31188160 PMCID: PMC6616235 DOI: 10.1097/cm9.0000000000000296] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Our previous studies have shown that regulatory factor X5 (RFX5), a classical transcription regulator of MHCII genes, was obviously overexpressed in hepatocellular carcinoma (HCC) tumors. However, the role of RFX5 in the carcinogenesis and progress of HCC remains unknown. This study aimed to reveal its biological significance and the underlying mechanism in HCC. Methods: RFX5 mRNA expression level and copy number variation in HCC tumors and cell lines were determined by analyzing deposited data sets in the Cancer Genome Atlas and Gene Expression Omnibus database. The biological significance of RFX5 in HCC was investigated by monitoring the colony formation and subcutaneous tumor growth capacity when RFX5 was silenced with lentiviral short hairpin RNA and CRISPR/Cas9 system in HCC cell lines. The downstream gene transcriptionally activated by RFX5 in HCC cells was determined by chromatin immunoprecipitation and luciferase reporter assay. The involvement of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein theta (YWHAQ) in HCC development was further determined by performing colony formation rescue assay and subcutaneous tumor growth rescue experiment. The association of YWHAQ with recurrence-free survival of patients with HCC was assessed by Kaplan-Meier analysis. Moreover, apoptosis level and the protein level of p53 pathway were determined to reveal the mechanism of RFX5 in driving HCC development. Results: RFX5 was amplified and highly overexpressed in HCC tumor tissues compared with the corresponding non-tumor tissues. The mRNA expression level of RFX5 was significantly correlated with its DNA copy number (r = 0.4, P < 0.001). Functional study demonstrated that RFX5 was required for both clonogenic forming in vitro and subcutaneous tumor growth in vivo of HCC cells. Further study identified YWHAQ, namely 14-3-3 tau, as a key downstream transcriptional target gene of RFX5, which was tightly regulated by RFX5 in HCC. Moreover, overexpression of YWHAQ largely rescued the clonogenic growth of HCC cells that was suppressed by RFX5 knockdown. In addition, overexpression of YWHAQ in primary tumor was linked to poor prognosis of patients with HCC. These results demonstrated that YWHAQ was a downstream effector of RFX5 in HCC. Notably, RFX5-YWHAQ pathway could protect cells from apoptosis by suppressing the p53 and Bax in HCC. Conclusion: RFX5 is a putative HCC driver gene that plays an important role in the development and progression of HCC by transactivating YWHAQ and suppressing apoptosis.
Collapse
|
23
|
Fan X, Cui L, Zeng Y, Song W, Gaur U, Yang M. 14-3-3 Proteins Are on the Crossroads of Cancer, Aging, and Age-Related Neurodegenerative Disease. Int J Mol Sci 2019; 20:ijms20143518. [PMID: 31323761 PMCID: PMC6678932 DOI: 10.3390/ijms20143518] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
14-3-3 proteins are a family of conserved regulatory adaptor molecules which are expressed in all eukaryotic cells. These proteins participate in a variety of intracellular processes by recognizing specific phosphorylation motifs and interacting with hundreds of target proteins. Also, 14-3-3 proteins act as molecular chaperones, preventing the aggregation of unfolded proteins under conditions of cellular stress. Furthermore, 14-3-3 proteins have been shown to have similar expression patterns in tumors, aging, and neurodegenerative diseases. Therefore, we put forward the idea that the adaptor activity and chaperone-like activity of 14-3-3 proteins might play a substantial role in the above-mentioned conditions. Interestingly, 14-3-3 proteins are considered to be standing at the crossroads of cancer, aging, and age-related neurodegenerative diseases. There are great possibilities to improve the above-mentioned diseases and conditions through intervention in the activity of the 14-3-3 protein family.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lang Cui
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yao Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wenhao Song
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Uma Gaur
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
24
|
Qian S, Zhan X, Lu M, Li N, Long Y, Li X, Desiderio DM, Zhan X. Quantitative Analysis of Ubiquitinated Proteins in Human Pituitary and Pituitary Adenoma Tissues. Front Endocrinol (Lausanne) 2019; 10:328. [PMID: 31191455 PMCID: PMC6540463 DOI: 10.3389/fendo.2019.00328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/07/2019] [Indexed: 12/30/2022] Open
Abstract
Protein ubiquitination is an important post-translational modification that is associated with multiple diseases, including pituitary adenomas (PAs). Protein ubiquitination profiling in human pituitary and PAs remains unknown. Here, we performed the first ubiquitination analysis with an anti-ubiquitin antibody (specific to K-ε-GG)-based label-free quantitative proteomics method and bioinformatics to investigate protein ubiquitination profiling between PA and control tissues. A total of 158 ubiquitinated sites and 142 ubiquitinated peptides in 108 proteins were identified, and five ubiquitination motifs were found. KEGG pathway network analysis of 108 ubiquitinated proteins identified four statistically significant signaling pathways, including PI3K-AKT signaling pathway, hippo signaling pathway, ribosome, and nucleotide excision repair. R software Gene Ontology (GO) analysis of 108 ubiquitinated proteins revealed that protein ubiquitination was involved in multiple biological processes, cellular components, and molecule functions. The randomly selected ubiquitinated 14-3-3 zeta/delta protein was further analyzed with Western blot, and it was found that upregulated 14-3-3 zeta/delta protein in nonfunctional PAs might be derived from the significantly decreased level of its ubiquitination compared to control pituitaries, which indicated a contribution of 14-3-3 zeta/delta protein to pituitary tumorigenesis. These findings provided the first ubiquitinated proteomic profiling and ubiquitination-involved signaling pathway networks in human PAs. This study offers new scientific evidence and basic data to elucidate the biological functions of ubiquitination in PAs, insights into its novel molecular mechanisms of pituitary tumorigenesis, and discovery of novel biomarkers and therapeutic targets for effective treatment of PAs.
Collapse
Affiliation(s)
- Shehua Qian
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Long
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dominic M. Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
|
26
|
Sluchanko NN, Bustos DM. Intrinsic disorder associated with 14-3-3 proteins and their partners. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:19-61. [PMID: 31521232 DOI: 10.1016/bs.pmbts.2019.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein-protein interactions (PPIs) mediate a variety of cellular processes and form complex networks, where connectivity is achieved owing to the "hub" proteins whose interaction with multiple protein partners is facilitated by the intrinsically disordered protein regions (IDPRs) and posttranslational modifications (PTMs). Universal regulatory proteins of the eukaryotic 14-3-3 family nicely exemplify these concepts and are the focus of this chapter. The extremely wide interactome of 14-3-3 proteins is characterized by high levels of intrinsic disorder (ID) enabling protein phosphorylation and consequent specific binding to the well-structured 14-3-3 dimers, one of the first phosphoserine/phosphothreonine binding modules discovered. However, high ID enrichment also challenges structural studies, thereby limiting the progress in the development of small molecule modulators of the key 14-3-3 PPIs of increased medical importance. Besides the well-known structural flexibility of their variable C-terminal tails, recent studies revealed the strong and conserved ID propensity hidden in the N-terminal segment of 14-3-3 proteins (~40 residues), normally forming the α-helical dimerization region, that may have a potential role for the dimer/monomer dynamics and recently reported moonlighting chaperone-like activity of these proteins. We review the role of ID in the 14-3-3 structure, their interactome, and also in selected 14-3-3 complexes. In addition, we discuss approaches that, in the future, may help minimize the disproportion between the large amount of known 14-3-3 partners and the small number of 14-3-3 complexes characterized with atomic precision, to unleash the whole potential of 14-3-3 PPIs as drug targets.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Diego M Bustos
- Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
27
|
Xia Q, Li Z, Zheng J, Zhang X, Di Y, Ding J, Yu D, Yan L, Shen L, Yan D, Jia N, Chen W, Feng Y, Wang J. Identification of novel biomarkers for hepatocellular carcinoma using transcriptome analysis. J Cell Physiol 2019; 234:4851-4863. [PMID: 30272824 DOI: 10.1002/jcp.27283] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/26/2018] [Indexed: 01/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of death from cancer in the world. To comprehensively investigate the utility of microRNAs (miRNAs) and protein-encoding transcripts (messenger RNAs [mRNAs]) in HCC as potential biomarkers for early detection and diagnosis, we exhaustively mined genomic data from three available omics datasets (GEO, Oncomine, and TCGA), analyzed the overlaps among gene expression studies from 920 hepatocellular carcinoma samples and 508 healthy (or adjacent normal) liver tissue samples available from six laboratories, and identified 178 differentially expressed genes (DEGs) associated with HCC. Paired with miRNA and lncRNA data, we identified 23 core genes that were targeted by nine differentially expressed miRNAs and 21 HCC-specific lncRNAs. We further demonstrated that alterations in these 23 genes were quite frequent, with five genes altered in over 5% of the population. Patients with high levels of YWHAZ, ENAH, and HMGN4 tended to have high-grade tumors and shorter overall survival, suggesting that these genes could be promising candidate biomarkers for disease and poor prognosis in patients with HCC. Our comprehensive mRNA, miRNA, and lncRNA omics analyses from multiple independent datasets identified robust molecules that may be used as biomarkers for early HCC detection and diagnosis.
Collapse
Affiliation(s)
- Qianlin Xia
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China
| | - Zehuan Li
- Department of General Surgery, Zhong Shan Hospital, Fudan University, Shanghai, China
| | - Jianghua Zheng
- Department of Laboratory Medicine, Zhoupu Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xu Zhang
- National Center for Liver Cancer, Shanghai, China
| | - Yang Di
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Ding
- Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Die Yu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China
| | - Li Yan
- Department of Severe Hepatology, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China
| | - Longqiang Shen
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China
| | - Dong Yan
- Department of Medical Oncology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ning Jia
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, China
| | - Weiping Chen
- Microarray Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Yanling Feng
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China
| | - Jin Wang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China
| |
Collapse
|
28
|
Cao S, Cong F, Tan M, Ding G, Liu J, Li L, Zhao Y, Liu S, Xiao Y. 14-3-3ε acts as a proviral factor in highly pathogenic porcine reproductive and respiratory syndrome virus infection. Vet Res 2019; 50:16. [PMID: 30819256 PMCID: PMC6394020 DOI: 10.1186/s13567-019-0636-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) emerged in 2006 in China and caused great economic losses for the swine industry because of the lack of an effective vaccine. 14-3-3 proteins are generating significant interest as potential drug targets by allowing the targeting of specific pathways to elicit therapeutic effects in human diseases. In a previous study, 14-3-3s were identified to interact with non-structural protein 2 (NSP2) of PRRSV. In the present study, the specific subtype 14-3-3ε was confirmed to interact with NSP2 and play a role in the replication of the HP-PRRSV TA-12 strain. Knockdown of 14-3-3ε in Marc-145 cells and porcine alveolar macrophages (PAMs) caused a significant decrease in TA-12 replication, while stable overexpression of 14-3-3ε caused a significant increase in the replication of TA-12 and low pathogenic PRRSV (LP-PRRSV) CH-1R. The 14-3-3 inhibitor difopein also decreased TA-12 and CH-1R replication in Marc-145 cells and PAMs. These findings are consistent with 14-3-3ε acting as a proviral factor and suggest that 14-3-3ε siRNA and difopein are therapeutic candidates against PRRSV infection.
Collapse
Affiliation(s)
- Shengliang Cao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Fangyuan Cong
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Min Tan
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Guofei Ding
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jiaqi Liu
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Li Li
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yuzhong Zhao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Sidang Liu
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yihong Xiao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
29
|
Li J, Xu H, Wang Q, Wang S, Xiong N. 14-3-3ζ promotes gliomas cells invasion by regulating Snail through the PI3K/AKT signaling. Cancer Med 2019; 8:783-794. [PMID: 30656845 PMCID: PMC6382716 DOI: 10.1002/cam4.1950] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
14-3-3ζ has been reported to function as critical regulators of diverse cellular responses. However, the role of 14-3-3ζ in gliomas progression remains largely unknown. The expression level of 14-3-3ζ and Snail was detected by Western blot analysis and quantitative polymerase chain reaction in different grades of human gliomas. The effect of 14-3-3ζ on gliomas progression was measured using cell migration and invasion assay, the colony formation experiment, and CCK-8 assay. The effect of 14-3-3ζ on PI3K/AKT/Snail signaling protein expression levels was tested by Western blotting. Firstly, 14-3-3ζ was often up-regulated in high-grade gliomas relative to low-grade gliomas, and this overexpression was significantly related to tumor size, Karnofsky Performance Scale score and weaker disease-free survival. Secondly, the overexpression of 14-3-3ζ promoted gliomas cells proliferation, migration, and invasion. Conversely, the knockdown of 14-3-3ζ suppressed gliomas cells proliferation, migration, and invasion. Furthermore, subsequent mechanistic studies showed that 14-3-3ζ could activate PI3K/AKT/Snail signaling pathway to facilitate gliomas cells proliferation, migration, and invasion. This study shows that the overexpression of 14-3-3ζ can promote remarkably gliomas cells proliferation, migration, and invasion by regulating the Snail protein expression through activating PI3K/AKT signaling, and it may serve as a potential prognostic marker and therapeutic target for gliomas.
Collapse
Affiliation(s)
- Junjun Li
- Department of NeurosurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hao Xu
- Department of NeurosurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiangping Wang
- Department of NeurosurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sihua Wang
- Department of Thoracic surgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Nanxiang Xiong
- Department of NeurosurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
30
|
Song J, Zhang X, Liao Z, Liang H, Chu L, Dong W, Zhang X, Ge Q, Liu Q, Fan P, Zhang Z, Zhang B. 14-3-3ζ inhibits heme oxygenase-1 (HO-1) degradation and promotes hepatocellular carcinoma proliferation: involvement of STAT3 signaling. J Exp Clin Cancer Res 2019; 38:3. [PMID: 30606233 PMCID: PMC6319010 DOI: 10.1186/s13046-018-1007-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Heme oxygenase 1 (HO-1) has been reported to be very important in the pathogenesis or progression of multiple types of cancer. Identification of novel hmox1 binding proteins may reveal undefined oncogenes, tumor suppressors, signaling pathways, and possible treatment targets. METHODS Immunoprecipitation and mass spectrometry analyses were used to identify novel regulators of HO-1. The association of the 14-3-3ζ protein with HO-1 and modulation of the stability of HO-1 were investigated by co-immunoprecipitation, immunofluorescence, western blotting, and quantitative RT-PCR. Degradation and in vivo ubiquitination assays were utilized to examine whether 14-3-3ζ stabilizes the HO-1 protein by inhibiting its ubiquitination. The effect of 14-3-3ζ on proliferation was investigated by function assays conducted in vitro using the CCK-8 and colony formation assays and in vivo in a xenograft mouse model. The biological functions of the 14-3-3ζ/HO-1 axis were demonstrated by western blotting and rescue experiments. Using gain-of-function and loss-of-function strategies, we further clarified the impact of 14-3-3ζ/HO-1 complex on the signal transducers and activators of transcription 3 (STAT3) signaling pathway in cancer cells. RESULTS We identified 14-3-3ζ as a novel HO-1 binding protein. The binding inhibited the ubiquitination and proteasome-mediated degradation of HO-1, thus facilitating its stabilization. Enforced expression of 14-3-3ζ significantly promoted cell proliferation in vitro, as well as tumorigenesis in vivo, while 14-3-3ζ knockdown had opposite effects. The data indicated that 14-3-3ζ can stabilize HO-1 expression and thus influence cancer cell proliferation. We further demonstrated the involvement of the STAT3 pathway in 14-3-3ζ/HO-1 regulation of hepatocellular carcinoma cell proliferation. CONCLUSIONS Collectively, these data show that 14-3-3ζ regulates the stability of HO-1 to promote cancer cell proliferation and STAT3 signaling activation. The data establish the 14-3-3ζ-HO-1-STAT3 axis as an important regulatory mechanism of cancer cell growth and implicate HO-1 and 14-3-3ζ as potential therapeutic targets in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Xiaochao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Xuewu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Qianyun Ge
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Pan Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| |
Collapse
|
31
|
Diallo K, Oppong AK, Lim GE. Can 14-3-3 proteins serve as therapeutic targets for the treatment of metabolic diseases? Pharmacol Res 2019; 139:199-206. [DOI: 10.1016/j.phrs.2018.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
|
32
|
Guo F, Gao Y, Sui G, Jiao D, Sun L, Fu Q, Jin C. miR-375-3p/YWHAZ/β-catenin axis regulates migration, invasion, EMT in gastric cancer cells. Clin Exp Pharmacol Physiol 2018; 46:144-152. [PMID: 30353914 DOI: 10.1111/1440-1681.13047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022]
Abstract
YWHAZ (14-3-3ζ) plays crucial roles in regulating proliferation, apoptosis, migration, and invasion of gastric cancer (GC) cells. However, its extensive roles and potential mechanisms in GC cells remain unknown, and need to be researched deeply. In this study, we focus on the role of miR-375/YWHAZ axis in migration, invasion and epithelial-to-mesenchymal transition (EMT) of GC cells. YWHAZ level was assessed by western blot and qPCR assays in GC cells. Scratch and transwell assays were used to determine the migration and invasion of GC cells. The protein levels of correlative molecules were detected by western blot. The regulation of miR-375 on the expression of its target gene YWHAZ was verified by dual-luciferase report system. According to the results, knockdown of YWHAZ inhibited the migration, invasion and EMT of GC cells. Moreover, silencing of YWHAZ restrained the activation of wnt/β-catenin signalling pathway. YWHAZ was confirmed to be a target gene of miR-375, and its expression was regulated by miR-375 in GC cells. Transfection of miR-375 inhibitor promoted the migration, invasion, EMT and activation of wnt/β-catenin pathway in GC cells, which was suppressed by inhibition of YWHAZ. Taken together, this study suggests that miR-375/YWHAZ axis may be served as a novel therapeutic target for GC patients.
Collapse
Affiliation(s)
- Feng Guo
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guoqing Sui
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dan Jiao
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lina Sun
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qingfeng Fu
- Jilin Provincial Key Laboratory of Surgical Translational Medicine, Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chunxiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Long S, Guo W, Hu S, Su F, Zeng Y, Zeng J, Tan EK, Ross CA, Pei Z. G2019S LRRK2 Increases Stress Susceptibility Through Inhibition of DAF-16 Nuclear Translocation in a 14-3-3 Associated-Manner in Caenorhabditis elegans. Front Neurosci 2018; 12:782. [PMID: 30464741 PMCID: PMC6234837 DOI: 10.3389/fnins.2018.00782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/09/2018] [Indexed: 01/17/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are common causes of familial Parkinson’s disease (PD). Oxidative stress plays a key role in the pathogenesis of PD. Mutations in LRRK2 have been shown to increase susceptibility to oxidative stress. To explore mechanisms underlying susceptibility to oxidative stress in LRRK2 mutants, we generated stable Caenorhabditis elegans (C. elegans) strains in which human LRRK2 proteins including wild type LRRK2 (WT), G2019S LRRK2 (G2019S), and G2019S-D1994A kinase-dead LRRK2 (KD) were expressed in all neurons. Human 14-3-3 β was injected into LRRK2 transgenic worms to allow co-expression of 14-3-3 β and LRRK2 proteins. We found that G2019S transgenic worms had increased sensitivity to stress (heat and juglone treatment) and impaired stress-induced nuclear translocation of DAF-16. In addition, G2019S inhibited ftt2 (a 14-3-3 gene homolog in C. elegans) knockdown-associated nuclear translocation of DAF-16. Comparably, overexpression of human 14-3-3 β could attenuate G2019S-associated toxicity in response to stress and rescued G2019S-mediated inhibition of sod-3 and dod-3 expression. Taken together, our study provides evidence suggesting that 14-3-3-associated inhibition of DAF-16 nuclear translocation could be a mechanism for G2019S LRRK2-induced oxidative stress and cellular toxicity. Our findings may give a hint that the potential of 14-3-3 proteins as neuroprotective targets in PD patients carrying LRRK2 mutations.
Collapse
Affiliation(s)
- Simei Long
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sophie Hu
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fengjuan Su
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yixuan Zeng
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jinsheng Zeng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.,National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry-Departments of Neuroscience, Neurology, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Hou Y, Zang D, Li X, Li F. Effect of cytokine-induced killer cells combined with dendritic cells on the survival rate and expression of 14-3-3ζ and p-Bad proteins in Lewis lung cancer cell lines. Oncol Lett 2018; 16:1815-1820. [PMID: 30008870 DOI: 10.3892/ol.2018.8834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/23/2018] [Indexed: 11/06/2022] Open
Abstract
In the present study, the function and mechanism of cytokine-induced killer cells (CIK) combined with dendritic cells (DC-CIK) were examined in Lewis lung cancer (LLC) cells. Co-culture of CIK dendritic cells (DC) in vitro was used to investigate their proliferation and the antitumor effects on LLC cells. DC and CIK cells were collected from healthy human peripheral blood mononuclear cells and co-cultured as an experimental group, while LLC cells were cultured alone as a control group. Cell morphology was observed by an inverted microscope and an MTT assay was utilized to detect the proliferation of LLC cells. Expression of 14-3-3ζ and p-Bad were measured by western blot analysis. Compared with the control group, treatment of LLC cells with DC-CIK resulted in decreased cell adherence, reduced cell proliferation and abnormal morphological changes. Additionally, DC-CIK treatment of LLC cells resulted in the decreased expression of 14-3-3ζ and p-Bad protein in LLC cells, which may provide important information pertaining to the possible mechanism of DC-CIK-induced antitumor activity against LLC cells. The present study provides a theoretical and experimental basis for the clinical treatment of DC-CIK cell co-culture.
Collapse
Affiliation(s)
- Yang Hou
- Life Science Institute of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dongyu Zang
- Department of Thoraxes Surgery of The Third Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xiaoming Li
- Department of Histology and Embryology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Fuzhi Li
- Department of Thoraxes Surgery of The Third Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
35
|
BAP1 induces cell death via interaction with 14-3-3 in neuroblastoma. Cell Death Dis 2018; 9:458. [PMID: 29686263 PMCID: PMC5913307 DOI: 10.1038/s41419-018-0500-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 11/08/2022]
Abstract
BRCA1-associated protein 1 (BAP1) is a nuclear deubiquitinating enzyme that is associated with multiprotein complexes that regulate key cellular pathways, including cell cycle, cellular differentiation, cell death, and the DNA damage response. In this study, we found that the reduced expression of BAP1 pro6motes the survival of neuroblastoma cells, and restoring the levels of BAP1 in these cells facilitated a delay in S and G2/M phase of the cell cycle, as well as cell apoptosis. The mechanism that BAP1 induces cell death is mediated via an interaction with 14-3-3 protein. The association between BAP1 and 14-3-3 protein releases the apoptotic inducer protein Bax from 14-3-3 and promotes cell death through the intrinsic apoptosis pathway. Xenograft studies confirmed that the expression of BAP1 reduces tumor growth and progression in vivo by lowering the levels of pro-survival factors such as Bcl-2, which in turn diminish the survival potential of the tumor cells. Patient data analyses confirmed the finding that the high-BAP1 mRNA expression correlates with a better clinical outcome. In summary, our study uncovers a new mechanism for BAP1 in the regulation of cell apoptosis in neuroblastoma cells.
Collapse
|
36
|
Zhao Y, Zhang K, Zou M, Sun Y, Peng X. gga-miR-451 Negatively Regulates Mycoplasma gallisepticum (HS Strain)-Induced Inflammatory Cytokine Production via Targeting YWHAZ. Int J Mol Sci 2018; 19:ijms19041191. [PMID: 29652844 PMCID: PMC5979595 DOI: 10.3390/ijms19041191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is the most economically significant mycoplasma pathogen of poultry that causes chronic respiratory disease (CRD) in chickens. Although miRNAs have been identified as a major regulator effect on inflammatory response, it is largely unclear how they regulate MG-induced inflammation. The aim of this study was to investigate the functional roles of gga-miR-451 and identify downstream targets regulated by gga-miR-451 in MG infection of chicken. We found that the expression of gga-miR-451 was significantly up-regulated during MG infection of chicken embryo fibroblast cells (DF-1) and chicken embryonic lungs. Overexpression of gga-miR-451 decreased the MG-induced inflammatory cytokine production, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), whereas inhibition of gga-miR-451 had the opposite effect. Gene expression data combined with luciferase reporter assays demonstrated that tyrosine3-monooxygenase/tryptophan5-monooxygenase activation protein zeta (YWHAZ) was identified as a direct target of gga-miR-451 in the context of MG infection. Furthermore, upregulation of gga-miR-451 significantly inhibited the MG-infected DF-1 cells proliferation, induced cell-cycle arrest, and promoted apoptosis. Collectively, our results demonstrate that gga-miR-451 negatively regulates the MG-induced production of inflammatory cytokines via targeting YWHAZ, inhibits the cell cycle progression and cell proliferation, and promotes cell apoptosis. This study provides a better understanding of the molecular mechanisms of MG infection.
Collapse
Affiliation(s)
- Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Kang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
37
|
Liu L, Liu Z, Wang H, Chen L, Ruan F, Zhang J, Hu Y, Luo H, Wen S. 14-3-3β exerts glioma-promoting effects and is associated with malignant progression and poor prognosis in patients with glioma. Exp Ther Med 2018; 15:2381-2387. [PMID: 29467845 PMCID: PMC5792794 DOI: 10.3892/etm.2017.5664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Abstract
Glioma is a type of tumor that affects the central nervous system. It has been demonstrated that 14-3-3β, a protein that is mainly concentrated in the brain, serves an important role in tumor regulation. However, the mechanism of action of 14-3-3β that underlies the pathogenesis of glioma remains to be elucidated. In the present study, 14-3-3β was silenced by RNA interference in the human glioma cell line U373-MG. Following knockdown of 14-3-3β, the proliferation, colony formation, cell cycle progression, migration and invasion of U373-MG cells were significantly decreased (P<0.01), whereas cell apoptosis was increased (P<0.01). Furthermore, in a tumor xenograft experiment, silencing 14-3-3β significantly inhibited the in vivo tumor growth of U373-MG cells (P<0.01). The results demonstrated that 14-3-3β levels were significantly higher in human glioma tissues compared with normal brain tissues (P<0.01) and high 14-3-3β expression was significantly associated with advanced pathological grade (P<0.03) and low Karnofsky performance scale (P<0.003). Patients with glioma who had high 14-3-3β levels had a significantly shorter survival time compared with those with low expression of 14-3-3β (P=0.031), suggesting that 14-3-3β may be an effective predictor of the prognosis of patients with glioma. The results of the present study indicate that 14-3-3β serves an oncogenic role in glioma, suggesting that 14-3-3β may have potential as a promising therapeutic target for glioma.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Hao Wang
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| | - Long Chen
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| | - Fuqiang Ruan
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| | - Jihui Zhang
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| | - Yi Hu
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| | - Hengshan Luo
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| | - Shuai Wen
- Department of Neurosurgery, People's Hospital of Ningxiang County, Ningxiang, Hunan 410600, P.R. China
| |
Collapse
|
38
|
Bajpai U, Sharma R, Kausar T, Dattagupta S, Chattopadhayay T, Ralhan R. Clinical Significance of 14-3-3 Zeta in Human Esophageal Cancer. Int J Biol Markers 2018; 23:231-7. [DOI: 10.1177/172460080802300406] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We recently found 14-3-3 zeta to be overexpressed in esophageal squamous cell carcinomas (ESCCs) by differential display. In the present study we determined the clinical significance of 14-3-3 zeta in esophageal tumorigenesis. Immunohistochemical analysis was carried out in 61 ESCCs, 33 dysplasia samples, 14 hyperplasia samples and 7 matched histologically normal esophageal tissues and correlated with clinicopathological parameters. Cytoplasmic expression of 14-3-3 zeta protein was observed in 95% of ESCCs; 63% of tumors also showed nuclear localization. All hyperplastic and dysplastic tissues distant from ESCCs as well as dysplastic endoscopic biopsies showed cytoplasmic immunopositivity for 14-3-3 zeta, while nuclear localization was observed in 58% of dysplasia and 36% of hyperplasia samples. Matched distant histologically normal epithelia either showed basal cytoplasmic expression of 14-3-3 zeta or no detectable nuclear expression of the protein. Interestingly, immunopositivity observed in normal esophageal tissues and early hyperplasia was confined to cytoplasm only, though significant nuclear expression was detected in dysplasia and ESCC. Immunoblotting and RT-PCR analyses further confirmed 14-3-3 zeta expression in dysplasia and ESCC. To our knowledge, this is the first report demonstrating overexpression of 14-3-3 zeta in esophageal hyperplasia, dysplasia and squamous cell carcinoma, suggesting that alteration in its expression occurs in early stages and is associated with esophageal tumorigenesis.
Collapse
Affiliation(s)
- U. Bajpai
- Department of Biomedical Sciences, Acharaya Narendra Dev College, University of Delhi South Campus, Delhi
| | - R. Sharma
- School of Biotechnology, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi
| | - T. Kausar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - India
| | - S. Dattagupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - India
| | - T.K. Chattopadhayay
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - India
| | - R. Ralhan
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - India
| |
Collapse
|
39
|
Kim HJ, Sung SH, Kim CY, Bae MK, Cho MS, Kim YH, Kim SC, Ju W. 14-3-3ζ Overexpression is Associated with Poor Prognosis in Ovarian Cancer. Yonsei Med J 2018; 59:51-56. [PMID: 29214776 PMCID: PMC5725364 DOI: 10.3349/ymj.2018.59.1.51] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 01/05/2023] Open
Abstract
PURPOSE 14-3-3ζregulates cell signaling, cell cycle progression, and apoptosis, and its overexpression is associated with disease recurrence and poor clinical outcomes in some solid tumors. However, its clinicopathological role in ovarian cancer is unknown. Our goal was to investigate whether 14-3-3ζis associated with ovarian cancer prognosis. MATERIALS AND METHODS We examined 14-3-3ζexpression by immunohistochemistry in ovarian cancer tissues obtained from 88 ovarian cancer patients. The examined tissues were of various histologies and stages. 14-3-3ζexpression was also analyzed by western blot in seven ovarian cancer cell lines and a primary ovary epithelial cell line. Cell viability was measured using an MTS-based assay following cisplatin treatment. RESULTS Among the ovarian cancer samples, 53.4% (47/88) showed high 14-3-3ζexpression, and 14-3-3ζoverexpression was positively correlated with more advanced pathologic stages and grades. 14-3-3ζoverexpression was also significantly associated with poor disease-free survival (DFS) and overall survival (OS) of ovarian cancer patients. Median DFS and OS were 1088 and 3905 days, respectively, in the high 14-3-3ζexpression group, but not reached in the low 14-3-3ζexpression group (p=0.004 and p=0.033, log-rank test, respectively). Downregulating 14-3-3ζby RNA interference in ovarian cancer cells led to enhanced sensitivity to cisplatin-induced cell death. CONCLUSION 14-3-3ζoverexpression might be a potential prognostic biomarker for ovarian cancer, and the inhibition of 14-3-3ζcould be a therapeutic option that enhances the antitumor activity of cisplatin.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul, Korea
- Innovative Research Center for Control and Prevention of Women's Cancer, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Sun Hee Sung
- Department of Pathology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Chan Young Kim
- Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul, Korea
- Innovative Research Center for Control and Prevention of Women's Cancer, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Moon Kyoung Bae
- Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul, Korea
- Innovative Research Center for Control and Prevention of Women's Cancer, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Min Sun Cho
- Department of Pathology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Yun Hwan Kim
- Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul, Korea
- Innovative Research Center for Control and Prevention of Women's Cancer, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Seung Cheol Kim
- Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul, Korea
- Innovative Research Center for Control and Prevention of Women's Cancer, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Woong Ju
- Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul, Korea
- Innovative Research Center for Control and Prevention of Women's Cancer, Ewha Womans University Mokdong Hospital, Seoul, Korea.
| |
Collapse
|
40
|
Gomes CJ, Centuori SM, Harman MW, Putnam CW, Wolgemuth CW, Martinez JD. The induction of endoreduplication and polyploidy by elevated expression of 14-3-3γ. Genes Cancer 2017; 8:771-783. [PMID: 29321819 PMCID: PMC5755723 DOI: 10.18632/genesandcancer.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Several studies have demonstrated that specific 14-3-3 isoforms are frequently elevated in cancer and that these proteins play a role in human tumorigenesis. 14-3-3γ, an isoform recently demonstrated to function as an oncoprotein, is overexpressed in a variety of human cancers; however, its role in promoting tumorigenesis remains unclear. We previously reported that overexpression of 14-3-3γ caused the appearance of polyploid cells, a phenotype demonstrated to have profound tumor promoting properties. Here we examined the mechanism driving 14-3-3γ-induced polyploidization and the effect this has on genomic stability. Using FUCCI probes we showed that these polyploid cells appeared when diploid cells failed to enter mitosis and subsequently underwent endoreduplication. We then demonstrated that 14-3-3γ-induced polyploid cells experience significant chromosomal segregation errors during mitosis and observed that some of these cells stably propagate as tetraploids when isolated cells were expanded into stable cultures. These data lead us to conclude that overexpression of the 14-3-3γ promotes endoreduplication. We further investigated the role of 14-3-3γ in human NSCLC samples and found that its expression is significantly elevated in polyploid tumors. Collectively, these results suggests that 14-3-3γ may promote tumorigenesis through the production of a genetically unstable polyploid intermediate.
Collapse
Affiliation(s)
- Cecil J Gomes
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA.,Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Sara M Centuori
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Michael W Harman
- Department of Surgical Research, Rhode Island Hospital, Providence, Rhode Island, USA.,Department of Engineering, Brown University, Providence, Rhode Island, USA
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - Charles W Wolgemuth
- Department of Physics, University of Arizona, Tucson, Arizona, USA.,Department of Molecular & Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Jesse D Martinez
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA.,Department of Cell & Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
41
|
Wu Q, Zhu J, Liu F, Liu J, Li M. Downregulation of 14-3-3β inhibits proliferation and migration in osteosarcoma cells. Mol Med Rep 2017; 17:2493-2500. [PMID: 29207109 DOI: 10.3892/mmr.2017.8144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/09/2017] [Indexed: 11/05/2022] Open
Abstract
The 14-3-3 protein isoform β (14‑3‑3β), which is an intracellular adaptor protein that exists in all eukaryotic organisms, is highly expressed in many cancer tissues, including glioma, lung carcinoma and breast cancer. However, 14‑3‑3β expression and function in osteosarcoma progression remain unknown. In the present study, the endogenous expression of 14‑3‑3β was assessed in osteosarcoma samples and the effect of 14‑3‑3β knockdown was examined in human osteosarcoma MG63 cells using small interfering RNA (siRNA). mRNA and protein expression levels for 14‑3‑3β were detected by reverse transcription‑quantitative polymerase reaction and western blotting, respectively. The results demonstrated that endogenous 14‑3‑3β mRNA and protein were highly expressed in human osteosarcoma tissues and osteosarcoma cell lines (U2OS, MG63 and SaOs‑2), but not in normal bone tissues or normal osteoblast hFOB1.19 cells. These data suggested that increased expression of 14‑3‑3β may be significantly associated with the development and progression of osteosarcoma. Therefore, the effect of 14‑3‑3β knockdown in MG63 cells was further examined in vitro. Knockdown of 14‑3‑3β by siRNA significantly decreased cell viability, and inhibited cell proliferation and invasion. In addition, 14‑3‑3β knockdown significantly decreased the protein expression levels of β‑catenin, cyclin D1, v‑myc avian myelocytomatosis viral oncogene homolog and matrix metallopeptidase 9 in osteosarcoma MG63 cells. These results suggested that the anticancer effects of 14‑3‑3β knockdown in MG63 cells might be mediated by the inhibition of the Wnt/β‑catenin signaling pathway. In summary, 14‑3‑3β knockdown decreased proliferation and invasion in MG63 cells, which suggests a potential therapeutic application for 14‑3‑3β as a novel target for the treatment of osteosarcoma patients.
Collapse
Affiliation(s)
- Quanming Wu
- Department of Orthopedics, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianwei Zhu
- Department of Orthopedics, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fan Liu
- Department of Orthopedics, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jin Liu
- Department of Orthopedics, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Mingpeng Li
- Department of Orthopedics, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
42
|
Liu XX, Ye H, Wang P, Zhang Y, Zhang JY. Identification of 14‑3‑3ζ as a potential biomarker in gastric cancer by proteomics‑based analysis. Mol Med Rep 2017; 16:7759-7765. [PMID: 28944820 DOI: 10.3892/mmr.2017.7496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 07/20/2017] [Indexed: 11/06/2022] Open
Abstract
The identification of tumor biomarkers to support early diagnosis and tumor progression monitoring may potentially reduce the mortality of gastric cancer (GC). The present study aimed to detect novel tumor‑associated antigens from the AGS GC cell line, and to identify their associated autoantibodies in sera from patients with GC by proteomics‑based approaches. Proteins from AGS cell lysates were isolated using two‑dimensional polyacrylamide gel electrophoresis, and western blotting was subsequently performed, to determine autoantibody responses in sera derived from patients with GC and healthy individuals. Positive protein spots were removed from gels stained with Coomassie blue, and were then evaluated by liquid chromatography‑tandem mass spectrometry. Sera from patients with GC produced numerous spots, one of which was identified as 14‑3‑3ζ. Autoantibody frequency to 14‑3‑3ζ was 17.6% (15/85) in patients with GC, which was significantly higher than that in healthy control individuals (2.4%; 2/85; P<0.01). These results suggested that the autoantibody against 14‑3‑3ζ may be a potential serological biomarker for the detection and diagnosis of GC.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Center for Tumor Biotherapy, The First Affiliated Hospital of Zhengzhou University and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hua Ye
- Center for Tumor Biotherapy, The First Affiliated Hospital of Zhengzhou University and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Peng Wang
- Center for Tumor Biotherapy, The First Affiliated Hospital of Zhengzhou University and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yi Zhang
- Center for Tumor Biotherapy, The First Affiliated Hospital of Zhengzhou University and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jian-Ying Zhang
- Center for Tumor Biotherapy, The First Affiliated Hospital of Zhengzhou University and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
43
|
Lin H, Jiao X, Yu B, Du J, Xu H, Dong A, Wan C. Clinical significance of serum 14-3-3 beta in patients with hepatocellular carcinoma. Cancer Biomark 2017; 20:143-150. [PMID: 28869445 DOI: 10.3233/cbm-160533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hai Lin
- Department of Gastroenterology, The Central Hospital of Linyi, Yishui, Shandong, China
| | - Xuelong Jiao
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Benxia Yu
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiangdong Du
- Department of Gastroenterology, The Central Hospital of Linyi, Yishui, Shandong, China
- Department of Clinical Laboratory, Yantaiyuhuangding Hospital, Yantai, Shandong, China
| | - HaiYan Xu
- Department of Hemopurification Center, Yantaiyuhuangding Hospital, Yantai, Shandong, China
| | - Aiping Dong
- Department of Clinical Laboratory, People’s Hospital of Weifang, Weifang, Shandong, China
| | - Chunsheng Wan
- Department of Clinical Laboratory, Yantaiyuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
44
|
Khorrami A, Sharif Bagheri M, Tavallaei M, Gharechahi J. The functional significance of 14-3-3 proteins in cancer: focus on lung cancer. Horm Mol Biol Clin Investig 2017; 32:/j/hmbci.ahead-of-print/hmbci-2017-0032/hmbci-2017-0032.xml. [PMID: 28779564 DOI: 10.1515/hmbci-2017-0032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
The 14-3-3 family proteins are phosphoserine/phosphothreonine binding proteins constituting a conserved class of proteins which are detected in all eukaryotic cells. In mammalians, 14-3-3 proteins have seven distinct isoforms (β, γ, ε, η, ζ, σ and τ/θ) which are involved in various cellular processes including signal transduction, cell cycle, cell proliferation, apoptosis, differentiation and survival. 14-3-3 proteins do not have a distinct catalytic activity and often regulate the activity, stability, subcellular localization and interactions of other proteins. The 14-3-3 family proteins function through interacting with their client proteins or facilitating the interaction of other proteins likely as adaptor proteins. The versatile functions of these proteins in the regulation of cell growth, cell division, cell death and cell migration make them candidate proteins for which an important role in cancer development could be envisioned. Indeed, analysis of cancer cell lines and tumor-derived tissues have indicated the differential abundance or post-translational modification of some 14-3-3 isoforms. In this review, we aimed to show how deregulation of 14-3-3 proteins contributes to initiation, establishment and progression of cancers with a particular emphasis on lung cancer. The role of these proteins in cancer-relevant processes including cell cycle, cell migration, cell-cell communication and programmed cell death will be discussed in detail.
Collapse
Affiliation(s)
- Afshin Khorrami
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahyar Sharif Bagheri
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahmood Tavallaei
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells. Oncotarget 2017; 8:73793-73809. [PMID: 29088746 PMCID: PMC5650301 DOI: 10.18632/oncotarget.17379] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/22/2017] [Indexed: 01/01/2023] Open
Abstract
Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro, indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-β pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.
Collapse
|
46
|
Kim JO, Kim SR, Lim KH, Kim JH, Ajjappala B, Lee HJ, Choi JI, Baek KH. Deubiquitinating enzyme USP37 regulating oncogenic function of 14-3-3γ. Oncotarget 2017; 6:36551-76. [PMID: 26427597 PMCID: PMC4742195 DOI: 10.18632/oncotarget.5336] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
14-3-3 is a family of highly conserved protein that is involved in a number of cellular processes. In this study, we identified that the high expression of 14-3-3γ in various cancer cell lines correlates with the invasiveness of the cancer cells. Overexpression of 14-3-3γ causes changes to the morphologic characteristics of cell transformation, and promotes cell migration and invasion. The cells overexpressed with 14-3-3γ have been shown to stimulate foci and tumor formation in SCID-NOD mice in concert with signaling components as reported with the 14-3-3β. In our previous study, we demonstrated that 14-3-3γ inhibits apoptotic cell death and mediates the promotion of cell proliferation in immune cell lines. Earlier, binding partners for 14-3-3γ were defined by screening. We found that USP37, one of deubiquitinating enzymes (DUBs), belongs to this binding partner group. Therefore, we investigated whether 14-3-3γ mediates proliferation in cancer cells, and 14-3-3γ by USP37 is responsible for promoting cell proliferation. Importantly, we found that USP37 regulates the stability of ubiquitin-conjugated 14-3-3γ through its catalytic activity. This result implies that the interactive behavior between USP37 and 14-3-3γ could be involved in the regulation of 14-3-3γ degradation. When all these findings are considered together, USP37 is shown to be a specific DUB that prevents 14-3-3γ degradation, which may contribute to malignant transformation via MAPK signaling pathway, possibly providing a new target for therapeutic objectives of cancer.
Collapse
Affiliation(s)
- Jin-Ock Kim
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - So-Ra Kim
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Key-Hwan Lim
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Jun-Hyun Kim
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Brijesh Ajjappala
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Hey-Jin Lee
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Jee-In Choi
- Department of Rehabilitation Medicine, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| |
Collapse
|
47
|
Tang YF, Zhang YB, Feng XD, Lin SH, Qiao N, Sun ZY, Zhou WP. Role of 14-3-3 proteins in human diseases. Shijie Huaren Xiaohua Zazhi 2017; 25:509-520. [DOI: 10.11569/wcjd.v25.i6.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
14-3-3 proteins are a family of highly conserved small proteins. By interacting with target proteins, 14-3-3 proteins are involved in regulating multiple cellular processes, such as signal transduction, cell cycle regulation, apoptosis, cellular metabolism, cytoskeleton organization and malignant transformation. Mounting evidence suggests that 14-3-3 proteins play an important role in a wide variety of human diseases, such as human cancers and nervous system diseases. This review aims to summarize the current knowledge on the expression, regulation and biological function of 14-3-3 to highlight the role of 14-3-3 proteins in human diseases.
Collapse
|
48
|
Qiu Y, Zhou Z, Li Z, Lu L, Li L, Li X, Wang X, Zhang M. Pretreatment 14-3-3 epsilon level is predictive for advanced extranodal NK/T cell lymphoma therapeutic response to asparaginase-based chemotherapy. Proteomics Clin Appl 2016; 11. [PMID: 27774748 DOI: 10.1002/prca.201600111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE The aim of the present study was to identify the potential relevant biomarkers to predict the therapeutic response of advanced extranodal natural killer/T cell lymphoma(ENKTL) treated with asparaginase-based treatment. EXPERIMENTAL DESIGN Proteomic technology is used to identify differentially expressed proteins between chemotherapy-resistant and chemotherapy-sensitive patients. Then enzyme-linked immunosorbent assay is used to validate the predictive value of selective biomarkers. RESULTS A total of 61 upregulated and 22 downregulated proteins are identified in chemotherapy-resistant patients compared with chemotherapy-sensitive patients. Furthermore, they validated that pretreatment high level 14-3-3 epsilon(ε)(≥61.95 ng/mL, 84.0 and 95.2% for sensitivity and specificity, respectively) is associated with poor 2-year overall survival (OS) (5.3 vs 68.8%, p<0.0001) and PFS (4.5 vs 76.9%, p<0.0001). In multivariate survival analysis, pretreatment high level 14-3-3 epsilon significantly is correlated with both inferior OS (p = 0.033) and PFS (p = 0.005). CONCLUSION AND CLINICAL RELEVANCE These findings indicate that pretreatment high level 14-3-3 epsilon is an independent predictor of chemotherapy-resistance and poor prognosis for patients with advanced ENKTL in the era of asparaginase.
Collapse
Affiliation(s)
- Yajuan Qiu
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyuan Zhou
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoming Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lisha Lu
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinhua Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
49
|
van Tong H, Brindley PJ, Meyer CG, Velavan TP. Parasite Infection, Carcinogenesis and Human Malignancy. EBioMedicine 2016; 15:12-23. [PMID: 27956028 PMCID: PMC5233816 DOI: 10.1016/j.ebiom.2016.11.034] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic. Trypanosoma cruzi has a dual role in cancer development including both carcinogenic and anticancer properties. Initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by EBV. Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas.
We searched MEDLINE database and PubMed for articles from 1970 through June 30, 2016. Search terms used in various combinations were “parasite infection”, “carcinogenesis”, “cancer”, “human malignancy”, “parasite and cancer”, “infection-associated cancer”, “parasite-associated cancer” “schistosomiasis”, “opisthorchiasis”, “malaria”, “Chagas disease”, and “strongyloidiasis”. Articles resulting from these searches and relevant references cited in those articles were selected based on their related topics and were reviewed. Abstracts and reports from meetings were also included. Articles published in English were included.
Collapse
Affiliation(s)
- Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Biomedical and Pharmaceutical Applied Research Center, Vietnam Military Medical University, Hanoi, Vietnam.
| | - Paul J Brindley
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, D.C., USA
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Health Focus GmbH, Potsdam, Germany; Duy Tan University, Da Nang, Viet Nam; Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Viet Nam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Duy Tan University, Da Nang, Viet Nam; Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Viet Nam.
| |
Collapse
|
50
|
Dowling P, Moran B, McAuley E, Meleady P, Henry M, Clynes M, McMenamin M, Leonard N, Monks M, Wynne B, Ormond P, Larkin A. Quantitative label-free mass spectrometry analysis of formalin-fixed, paraffin-embedded tissue representing the invasive cutaneous malignant melanoma proteome. Oncol Lett 2016; 12:3296-3304. [PMID: 27899996 PMCID: PMC5103945 DOI: 10.3892/ol.2016.5101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/15/2016] [Indexed: 12/22/2022] Open
Abstract
Understanding the events at a protein level that govern the progression from melanoma in situ to invasive melanoma are important areas of current research to be developed. Recent advances in the analysis of formalin-fixed, paraffin-embedded tissue by proteomics, particularly using the filter-aided sample preparation protocol, has opened up the possibility of studying vast archives of clinical material and associated medical records. In the present study, quantitative protein profiling was performed using tandem mass spectrometry, and the proteome differences between melanoma in situ and invasive melanoma were compared. Biological pathway analyses revealed several signalling pathways differing between melanoma in situ and invasive melanoma, including metabolic pathways and the phosphoinositide 3-kinase-Akt signalling pathway. Selected proteins of interest (14–3-3ε and fatty acid synthase) were subsequently investigated using immunohistochemical analysis of tissue microarrays. Identifying the key proteins that play significant roles in the establishment of a more invasive phenotype in melanoma may ultimately aid diagnosis and treatment decisions.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Republic of Ireland
| | - Benvon Moran
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Republic of Ireland; Department of Dermatology, St. James's Hospital, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Edel McAuley
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| | - Mairin McMenamin
- Department of Dermatology, St. James's Hospital, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Niamh Leonard
- Department of Dermatology, St. James's Hospital, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Mary Monks
- Department of Dermatology, St. James's Hospital, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Bairbre Wynne
- Department of Dermatology, St. James's Hospital, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Patrick Ormond
- Department of Dermatology, St. James's Hospital, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Annemarie Larkin
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| |
Collapse
|