1
|
Eberhardt W, Nasrullah U, Pfeilschifter J. TRIM25: A Global Player of Cell Death Pathways and Promising Target of Tumor-Sensitizing Therapies. Cells 2025; 14:65. [PMID: 39851496 PMCID: PMC11764315 DOI: 10.3390/cells14020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Therapy resistance still constitutes a common hurdle in the treatment of many human cancers and is a major reason for treatment failure and patient relapse, concomitantly with a dismal prognosis. In addition to "intrinsic resistance", e.g., acquired by random mutations, cancer cells typically escape from certain treatments ("acquired resistance") by a large variety of means, including suppression of apoptosis and other cell death pathways via upregulation of anti-apoptotic factors or through inhibition of tumor-suppressive proteins. Therefore, ideally, the tumor-cell-restricted induction of apoptosis is still considered a promising avenue for the development of novel, tumor (re)sensitizing therapies. A growing body of evidence has highlighted the multifaceted role of tripartite motif 25 (TRIM25) in controlling different aspects of tumorigenesis, including chemotherapeutic drug resistance. Accordingly, overexpression of TRIM25 is observed in many tumors and frequently correlates with a poor patient survival. In addition to its originally described function in antiviral innate immune response, TRIM25 can play critical yet context-dependent roles in apoptotic- and non-apoptotic-regulated cell death pathways, including pyroposis, necroptosis, ferroptosis, and autophagy. The review summarizes current knowledge of molecular mechanisms by which TRIM25 can interfere with different cell death modalities and thereby affect the success of currently used chemotherapeutics. A better understanding of the complex repertoire of cell death modulatory effects by TRIM25 is an essential prerequisite for validating TRIM25 as a potential target for future anticancer therapy to surmount the high failure rate of currently used chemotherapies.
Collapse
Affiliation(s)
- Wolfgang Eberhardt
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, 60590 Frankfurt, Germany; (U.N.); (J.P.)
| | | | | |
Collapse
|
2
|
Greidinger D, Halperin R, Zemet R, Maixner N, Tirosh A. Somatic USP8 alteration affects the immune landscape of corticotroph pituitary adenomas- a pilot study. Hormones (Athens) 2024; 23:717-725. [PMID: 38819743 DOI: 10.1007/s42000-024-00569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Somatic mutations in ubiquitin-specific protease-8 (USP8), encoding a deubiquinating protein, are found in approximately 30% of corticotroph-derived pituitary adenomas (CPAs). Stratifin, a protein encoded by SFN, inhibits USP8 catalytic activity. USP8 has immunomodulating properties that have been demonstrated in non-tumoral diseases. METHODS We assessed the influence of USP8 on the immune landscape of CPA and validated this effect and its dependency on stratifin in large cohorts of non-pituitary tumors. We analyzed data of CPA samples (n = 20) and additional non-pituitary tumors from the TCGA database, using transcriptome signature-recognition algorithms. Immune tumor microenvironment (iTME) was compared both by USP8 and SFN expression levels (n = 843) and by USP8 mutation status and SFN expression (n = 12,389). RESULTS CPA with activating USP8 mutations was associated with "cold" iTME compared with wild-type USP8 CPA, as reflected by lower fractions of immune cells, including B cells, CD4, regulatory and gamma/delta T cells, natural killer cells, M0 and M1 macrophages, dendritic cells, and eosinophils (p < 0.05 for all comparisons). Pathways altered by the presence of USP8 mutation, based on the most differentially expressed genes (3061 genes), included microglia pathogen phagocytosis and multiple toll-like receptor signaling pathways (p < 0.0001). In a validation analysis based on large cohorts of non-pituitary tumors, high expression of USP8 was associated with a suppressed iTME effect that was augmented by a low SFN expression. CONCLUSIONS Our data demonstrate for the first time, to our knowledge, a distinct immune landscape of tumors based on USP8 status and expression and the dependency of this immunological effect on SFN expression.
Collapse
Affiliation(s)
- Dahlia Greidinger
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Internal Medicine I, Tel HaShomer, Israel
| | - Reut Halperin
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- ENTIRE - Endocrine Neoplasia Translational Research Center, Research Center for Endocrinology, Diabetes and Metabolism, The Chaim Sheba Medical Center, Tel HaShomer , Israel
| | - Roni Zemet
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Department of Obstetrics and Gynecology, Tel HaShomer, Israel
| | - Nitzan Maixner
- Cancer Center at Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Amit Tirosh
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel.
- ENTIRE - Endocrine Neoplasia Translational Research Center, Research Center for Endocrinology, Diabetes and Metabolism, The Chaim Sheba Medical Center, Tel HaShomer , Israel.
| |
Collapse
|
3
|
Wang SH, Hsieh YY, Ong KH, Lai HY, Tsai HH, Sun DP, Huang SKH, Tian YF, Wu HC, Chan TC, Joseph K, Chang IW. The clinicopathological significance and prognostic impact of 14-3-3σ/stratifin expression on patients with surgically resectable intrahepatic cholangiocarcinoma. Asian J Surg 2024:S1015-9584(24)01873-6. [PMID: 39232956 DOI: 10.1016/j.asjsur.2024.08.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer after hepatocellular carcinoma. Through data mining of publicly available iCCA transcriptomic datasets from the Gene Expression Omnibus, we identified SFN as the most significantly up-regulated gene in iCCA compared to normal tissue, focusing on the Gene Ontology term "cell proliferation" (GO:0008283). SFN encodes the 14-3-3σ protein, also known as stratifin, which plays crucial roles in various cellular processes. MATERIALS AND METHODS Immunohistochemistry was used to assess stratifin expression in 182 patients with localized iCCAs undergoing surgical resection. Patients were divided into low and high expression groups, and the association between stratifin expression and clinicopathological features was analyzed. Univariate and multivariate survival analyses were performed to assess overall survival (OS), disease-specific survival (DSS), local recurrence-free survival (LRFS), and metastasis-free survival (MeFS). RESULTS Elevated stratifin expression in iCCAs was significantly associated with the absence of hepatitis, positive surgical margins, advanced primary tumor stages, and higher histological grades (all p ≤ 0.011). Survival analyses demonstrated a significant negative association between stratifin expression and all prognostic indicators, including OS, DSS, LRFS, and MeFS (all p ≤ 0.0004). Multivariate analysis revealed that stratifin overexpression was significantly correlated with poorer outcomes in terms of DSS, LRFS, and MeFS (all p < 0.001). CONCLUSIONS These findings suggest that stratifin may play a crucial role in iCCA oncogenesis and tumor progression, serving as a potential novel prognostic biomarker.
Collapse
Affiliation(s)
- Su-Hong Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Khaa Hoo Ong
- Department of Surgery, Division of Gastroenterology and General Surgery, Chi Mei Medical Center, Tainan, Taiwan; Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hong-Yue Lai
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsin-Hwa Tsai
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ding-Ping Sun
- Department of Surgery, Division of Gastroenterology and General Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Steven Kuan-Hua Huang
- Department of Surgery, Division of Urology, Chi Mei Medical Center, Tainan, Taiwan; Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Feng Tian
- Department of Surgery, Division of Colon and Rectal Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Hung-Chang Wu
- Department of Internal Medicine, Division of Hematology and Oncology, Chi Mei Medical Center, Tainan, Taiwan; College of Pharmacy and Science, Chia Nan University, Tainan, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | | | - I-Wei Chang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Clinical Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
McMenemy CM, Guo D, Quinn JA, Greenhalgh DA. 14-3-3σ/Stratifin and p21 limit AKT-related malignant progression in skin carcinogenesis following MDM2-associated p53 loss. Mol Carcinog 2024; 63:1768-1782. [PMID: 38869281 DOI: 10.1002/mc.23771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
To study mechanisms driving/inhibiting skin carcinogenesis, stage-specific expression of 14-3-3σ (Stratifin) was analyzed in skin carcinogenesis driven by activated rasHa/fos expression (HK1.ras/fos) and ablation of PTEN-mediated AKT regulation (K14.creP/Δ5PTENflx/flx). Consistent with 14-3-3σ roles in epidermal differentiation, HK1.ras hyperplasia and papillomas displayed elevated 14-3-3σ expression in supra-basal keratinocytes, paralleled by supra-basal p-MDM2166 activation and sporadic p-AKT473 expression. In bi-genic HK1.fos/Δ5PTENflx/flx hyperplasia, basal-layer 14-3-3σ expression appeared, and alongside p53/p21, was associated with keratinocyte differentiation and keratoacanthoma etiology. Tri-genic HK1.ras/fos-Δ5PTENflx/flx hyperplasia/papillomas initially displayed increased basal-layer 14-3-3σ, suggesting attempts to maintain supra-basal p-MDM2166 and protect basal-layer p53. However, HK1.ras/fos-Δ5PTENflx/flx papillomas exhibited increasing basal-layer p-MDM2166 activation that reduced p53, which coincided with malignant conversion. Despite p53 loss, 14-3-3σ expression persisted in well-differentiated squamous cell carcinomas (wdSCCs) and alongside elevated p21, limited malignant progression via inhibiting p-AKT1473 expression; until 14-3-3σ/p21 loss facilitated progression to aggressive SCC exhibiting uniform p-AKT1473. Analysis of TPA-promoted HK1.ras-Δ5PTENflx/flx mouse skin, demonstrated early loss of 14-3-3σ/p53/p21 in hyperplasia and papillomas, with increased p-MDM2166/p-AKT1473 that resulted in rapid malignant conversion and progression to poorly differentiated SCC. In 2D/3D cultures, membranous 14-3-3σ expression observed in normal HaCaT and SP1ras61 papilloma keratinocytes was unexpectedly detected in malignant T52ras61/v-fos SCC cells cultured in monolayers, but not invasive 3D-cells. Collectively, these data suggest 14-3-3σ/Stratifin exerts suppressive roles in papillomatogenesis via MDM2/p53-dependent mechanisms; while persistent p53-independent expression in early wdSCC may involve p21-mediated AKT1 inhibition to limit malignant progression.
Collapse
Affiliation(s)
- Carol M McMenemy
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, Scotland
| | - Dajiang Guo
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, Scotland
| | - Jean A Quinn
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - David A Greenhalgh
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, Scotland
| |
Collapse
|
5
|
Li M, Fan X, Zhao J, Wang D. Establishment and Validation of a Four-stress Granule-related Gene Signature in Hepatocellular Carcinoma. J Clin Transl Hepatol 2024; 12:1-14. [PMID: 38250470 PMCID: PMC10794267 DOI: 10.14218/jcth.2023.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 01/23/2024] Open
Abstract
Background and Aims Stress granules (SGs) as membrane-less cytoplasmic foci formed in response to unfavorable external stimuli could promote cancer cells to adapt to hostile environments. Hepatocellular carcinoma (HCC) is prone to be highly aggressive once diagnosed, which markedly reduces patient survival time. Therefore, it is crucial to develop valid diagnostic markers to prognosticate HCC patient prognosis, which promotes individualized precision therapeutics in HCC. Considering the pro-tumorigenic activity of SGs, it is of great potential value to construct a prognostic tool for HCC based on the expression profiles of SG-related genes (SGGs). Methods Bioinformatic analysis was employed to establish an SGG-based prognostic signature. Western blotting and real-time polymerase chain reaction assays were used to assess the expression patterns of the related SGGs. Loss-of-function experiments were performed to analyze the effect of the SGGs on SG formation and cell survival. Results A four-SGG signature (KPNA2, MEX3A, WDR62, and SFN) targeting HCC was established and validated to exhibit a robust performance in predicting HCC prognosis. Consistently, all four genes were further found to be highly expressed in human HCC tissues. More important, we demonstrated that individually knocking down the four SGGs significantly reduced HCC cell proliferation and metastasis by compromising the SG formation process. Conclusions We developed an SGG-based predictive signature that can be used as an independent prognostic tool for HCC. The strong predictive power of this signature was further elucidated by the carcinogenic activity of KPNA2, MEX3A, WDR62, and SFN in HCC cells by regulating SG formation.
Collapse
Affiliation(s)
- Mengzhu Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xiude Fan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Dawei Wang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|
6
|
Aljabal G, Teh AH, Yap BK. In Silico Prediction and Biophysical Validation of Novel 14-3-3σ Homodimer Stabilizers. J Chem Inf Model 2023; 63:5619-5630. [PMID: 37606921 DOI: 10.1021/acs.jcim.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
14-3-3σ plays an important role in controlling tumor metabolic reprogramming and cancer cell growth. However, its function is often compromised in many cancers due to its downregulation. Previous studies found that homodimerization of 14-3-3σ is critical for its activity. However, to date, it is not known if stabilization of 14-3-3σ homodimers can improve its activity or prevent its degradation. In our previous work, we have showed that GCP-Lys-OMe is a potential 14-3-3σ homodimer stabilizer. However, its stabilizing effect was not experimentally validated. Therefore, in this study, we have attempted to predict few potential peptides that can stabilize the dimeric form of 14-3-3σ using similar in silico techniques as described previously for GCP-Lys-OMe. Subsequent [1H]-CPMG NMR experiments confirmed the binding of the peptides (peptides 3, 5, 9, and 16) on 14-3-3σ, with peptide 3 showing the strongest binding. Competitive [1H]-CPMG assays further revealed that while peptide 3 does not compete with a 14-3-3σ binding peptide (ExoS) for the protein's amphipathic groove, it was found to improve ExoS binding on 14-3-3σ. When 14-3-3σ was subjected to dynamic light scattering experiments, the 14-3-3σ homodimer was found to undergo dissociation into monomers prior to aggregation. Intriguingly, the presence of peptide 3 increased 14-3-3σ stability against aggregation. Overall, our findings suggest that (1) docking accompanied by MD simulations can be used to identify potential homodimer stabilizing compounds of 14-3-3σ and (2) peptide 3 can slow down 14-3-3σ aggregation (presumably by preventing its dissociation into monomers), as well as improving the binding of 14-3-3σ to ExoS protein.
Collapse
Affiliation(s)
- Ghazi Aljabal
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang 11900, Malaysia
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| |
Collapse
|
7
|
Liu S, Guo R, Xu H, Yang J, Luo H, Yeung SCJ, Li K, Lee MH, Yang R. 14-3-3σ-NEDD4L axis promotes ubiquitination and degradation of HIF-1α in colorectal cancer. Cell Rep 2023; 42:112870. [PMID: 37494179 DOI: 10.1016/j.celrep.2023.112870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
A hypoxic microenvironment contributes to tumor progression, with hypoxia-inducible factor-1α (HIF-1α) being a critical regulator. We have reported that 14-3-3σ is negatively associated with HIF-1α expression; however, its role in hypoxia-induced tumor progression remains poorly characterized. Here we show that 14-3-3σ suppresses cancer hypoxia-induced metastasis and angiogenesis in colorectal cancer (CRC). 14-3-3σ opposes HIF-1α expression by regulating the protein stability of HIF-1α, thereby decreasing HIF-1α transcriptional activity and suppressing tumor progression. Mechanistic studies show that the 14-3-3σ-interacting protein neural precursor cell-expressed developmentally down-regulated 4-like (NEDD4L) is an E3 ligase that targets HIF-1α. 14-3-3σ promotes the binding of S448-phosphorylated NEDD4L to HIF-1α, thereby enhancing HIF-1α poly-ubiquitination and subsequent proteasome-mediated degradation. Consistent with this anti-tumorigenic function for 14-3-3σ, low 14-3-3σ expression levels correlate with poor CRC patient survival, and 14-3-3σ enhances the response of CRC to bevacizumab. These results reveal an important mechanism for 14-3-3σ in tumor suppression through HIF-1α regulation.
Collapse
Affiliation(s)
- Sicheng Liu
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming 650100, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Rui Guo
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming 650100, China
| | - Hui Xu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jinneng Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Haidan Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kai Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| | - Mong-Hong Lee
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| | - Runxiang Yang
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming 650100, China.
| |
Collapse
|
8
|
Liu C, Kuang S, Wu L, Cheng Q, Gong X, Wu J, Zhang L. Radiotherapy and radio-sensitization in H3 K27M -mutated diffuse midline gliomas. CNS Neurosci Ther 2023. [PMID: 37157237 DOI: 10.1111/cns.14225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND H3K27M mutated diffuse midline gliomas (DMGs) are extremely aggressive and the leading cause of cancer-related deaths in pediatric brain tumors with 5-year survival <1%. Radiotherapy is the only established adjuvant treatment of H3K27M DMGs; however, the radio-resistance is commonly observed. METHODS We summarized current understandings of the molecular responses of H3K27M DMGs to radiotherapy and provide crucial insights into current advances in radiosensitivity enhancement. RESULTS Ionizing radiation (IR) can mainly inhibit tumor cell growth by inducing DNA damage regulated by the cell cycle checkpoints and DNA damage repair (DDR) system. In H3K27M DMGs, the aberrant genetic and epigenetic changes, stemness genotype, and epithelial-mesenchymal transition (EMT) disrupt the cell cycle checkpoints and DDR system by altering the associated regulatory signaling pathways, which leads to the development of radio-resistance. CONCLUSIONS The advances in mechanisms of radio-resistance in H3K27M DMGs promote the potential targets to enhance the sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Chao Liu
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Kuang
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quan Cheng
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Wu
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Longbo Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Abstract
Probiotic roles of Clostridium butyricum (C.B) are involved in regulating disease and cancers, yet the mechanistic basis for these regulatory roles remains largely unknown. Here, we demonstrate that C.B reprograms the proliferation, migration, stemness, and tumor growth in CRC by regulating pivotal signal molecules including MYC. Destabilization of MYC by C.B supplementation suppresses cancer cell proliferation/metastasis, sensitizes 5-FU treatment, and boosts responsiveness of anti-PD1 therapy. MYC is a transcriptional regulator of Thymidylate synthase (TYMS), a key target of the 5-FU. Also MYC is known to impact on PD-1 expression. Mechanistically, C.B treatment of CRC cells results in MYC degradation by enhancing proteasome-mediated ubiquitination, thereby mitigating MYC-mediated 5-FU resistance and boosting anti-PD1 immunotherapeutic efficacy. Together, our findings uncover previously unappreciated links between C.B and CRC cell signaling, providing insight into the tumorigenesis modulating mechanisms of C.B in boosting chemo/immune therapies.
Collapse
Affiliation(s)
- Hui Xu
- Guangdong Research Institute of Gastroenterology, and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haidan Luo
- Guangdong Research Institute of Gastroenterology, and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiayu Zhang
- Guangdong Research Institute of Gastroenterology, and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kai Li
- Guangdong Research Institute of Gastroenterology, and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mong-Hong Lee
- Guangdong Research Institute of Gastroenterology, and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
ZLM-7 Blocks Breast Cancer Progression by Inhibiting MDM2 via Upregulation of 14-3-3 Sigma. Pharmaceuticals (Basel) 2022; 15:ph15070874. [PMID: 35890172 PMCID: PMC9321038 DOI: 10.3390/ph15070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is one of the most prevalent malignancies with poor prognosis. Inhibition of angiogenesis is becoming a valid and evident therapeutic strategy to treat cancer. Recent studies uncovered the antiangiogenic activity of ZLM-7 (a combretastain A-4 derivative), but the regulatory mechanism is unclear. ZLM-7 treatment was applied in estrogen receptor-positive cell MCF-7, triple-negative breast cancer cell MDA-MB-231 and xenograft models. Transfections were conducted to overexpress or knockdown targeted genes. The gene and protein expressions were measured by qPCR and Western blotting assay, respectively. Cell proliferation and apoptosis were evaluated using the CCK8 method, clone formation assay and flow cytometry. We found that ZLM-7 upregulated 14-3-3 sigma expression but downregulated MDM2 expression in breast cancer cells. ZLM-7 delayed cell proliferation, promoted apoptosis and blocked cell-cycle progression in human breast cancer cells in vitro, while those effects were abolished by 14-3-3 sigma knockdown; overexpression of 14-3-3 sigma reproduced the actions of ZLM-7 on the cell cycle, which could be reversed by MDM2 overexpression. In xenograft models, ZLM-7 treatment significantly inhibited tumor growth while the inhibition was attenuated when 14-3-3 sigma was silenced. Collectively, ZLM-7 could inhibit MDM2 via upregulating 14-3-3 sigma expression, thereby blocking the breast cancer progression.
Collapse
|
11
|
Makgoo L, Mosebi S, Mbita Z. Molecular Mechanisms of HIV Protease Inhibitors Against HPV-Associated Cervical Cancer: Restoration of TP53 Tumour Suppressor Activities. Front Mol Biosci 2022; 9:875208. [PMID: 35620479 PMCID: PMC9127998 DOI: 10.3389/fmolb.2022.875208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is a Human Papilloma virus-related disease, which is on the rise in a number of countries, globally. Two essential oncogenes, E6 and E7, drive cell transformation and cancer development. These two oncoproteins target two of the most important tumour suppressors, p53 and pRB, for degradation through the ubiquitin ligase pathway, thus, blocking apoptosis activation and deregulation of cell cycle. This pathway can be exploited for anticancer therapeutic interventions, and Human Immunodeficiency Virus Protease Inhibitors (HIV-PIs) have attracted a lot of attention for this anticancer drug development. HIV-PIs have proven effective in treating HPV-positive cervical cancers and shown to restore impaired or deregulated p53 in HPV-associated cervical cancers by inhibiting the 26S proteasome. This review will evaluate the role players, such as HPV oncoproteins involved cervical cancer development and how they are targeted in HIV protease inhibitors-induced p53 restoration in cervical cancer. This review also covers the therapeutic potential of HIV protease inhibitors and molecular mechanisms behind the HIV protease inhibitors-induced p53-dependent anticancer activities against cervical cancer.
Collapse
Affiliation(s)
- Lilian Makgoo
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, University of South Africa, Florida, South Africa
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
- *Correspondence: Zukile Mbita,
| |
Collapse
|
12
|
Lee MH. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Commun (Lond) 2021; 41:937-967. [PMID: 34355542 PMCID: PMC8504147 DOI: 10.1002/cac2.12200] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
It has been shown that gut microbiota dysbiosis leads to physiological changes and links to a number of diseases, including cancers. Thus, many cancer categories and treatment regimens should be investigated in the context of the microbiome. Owing to the availability of metagenome sequencing and multiomics studies, analyses of species characterization, host genetic changes, and metabolic profile of gut microbiota have become feasible, which has facilitated an exponential knowledge gain about microbiota composition, taxonomic alterations, and host interactions during tumorigenesis. However, the complexity of the gut microbiota, with a plethora of uncharacterized host‐microbe, microbe‐microbe, and environmental interactions, still contributes to the challenge of advancing our knowledge of the microbiota‐cancer interactions. These interactions manifest in signaling relay, metabolism, immunity, tumor development, genetic instability, sensitivity to cancer chemotherapy and immunotherapy. This review summarizes current studies/molecular mechanisms regarding the association between the gut microbiota and the development of cancers, which provides insights into the therapeutic strategies that could be harnessed for cancer diagnosis, treatment, or prevention.
Collapse
Affiliation(s)
- Mong-Hong Lee
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| |
Collapse
|
13
|
Kuusk A, Boyd H, Chen H, Ottmann C. Small-molecule modulation of p53 protein-protein interactions. Biol Chem 2021; 401:921-931. [PMID: 32049643 DOI: 10.1515/hsz-2019-0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 12/22/2022]
Abstract
Small-molecule modulation of protein-protein interactions (PPIs) is a very promising but also challenging area in drug discovery. The tumor suppressor protein p53 is one of the most frequently altered proteins in human cancers, making it an attractive target in oncology. 14-3-3 proteins have been shown to bind to and positively regulate p53 activity by protecting it from MDM2-dependent degradation or activating its DNA binding affinity. PPIs can be modulated by inhibiting or stabilizing specific interactions by small molecules. Whereas inhibition has been widely explored by the pharmaceutical industry and academia, the opposite strategy of stabilizing PPIs still remains relatively underexploited. This is rather interesting considering the number of natural compounds like rapamycin, forskolin and fusicoccin that exert their activity by stabilizing specific PPIs. In this review, we give an overview of 14-3-3 interactions with p53, explain isoform specific stabilization of the tumor suppressor protein, explore the approach of stabilizing the 14-3-3σ-p53 complex and summarize some promising small molecules inhibiting the p53-MDM2 protein-protein interaction.
Collapse
Affiliation(s)
- Ave Kuusk
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, NL-5600MB Eindhoven, The Netherlands
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, S-43183 Mölndal, Sweden
| | - Helen Boyd
- Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | - Hongming Chen
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Science Park, Guangzhou 510530, China
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, NL-5600MB Eindhoven, The Netherlands
- Department of Chemistry, University of Duisburg-Essen, D-45141 Essen, Germany
| |
Collapse
|
14
|
Aljabal G, Yap BK. 14-3-3σ and Its Modulators in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13120441. [PMID: 33287252 PMCID: PMC7761676 DOI: 10.3390/ph13120441] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023] Open
Abstract
14-3-3σ is an acidic homodimer protein with more than one hundred different protein partners associated with oncogenic signaling and cell cycle regulation. This review aims to highlight the crucial role of 14-3-3σ in controlling tumor growth and apoptosis and provide a detailed discussion on the structure-activity relationship and binding interactions of the most recent 14-3-3σ protein-protein interaction (PPI) modulators reported to date, which has not been reviewed previously. This includes the new fusicoccanes stabilizers (FC-NAc, DP-005), fragment stabilizers (TCF521-123, TCF521-129, AZ-003, AZ-008), phosphate-based inhibitors (IMP, PLP), peptide inhibitors (2a-d), as well as inhibitors from natural sources (85531185, 95911592). Additionally, this review will also include the discussions of the recent efforts by a different group of researchers for understanding the binding mechanisms of existing 14-3-3σ PPI modulators. The strategies and state-of-the-art techniques applied by various group of researchers in the discovery of a different chemical class of 14-3-3σ modulators for cancer are also briefly discussed in this review, which can be used as a guide in the development of new 14-3-3σ modulators in the near future.
Collapse
|
15
|
14-3-3 σ: A potential biomolecule for cancer therapy. Clin Chim Acta 2020; 511:50-58. [PMID: 32950519 DOI: 10.1016/j.cca.2020.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022]
Abstract
As more studies have focused on the function of 14-3-3 proteins, their role in tumor progression has gradually improved. In the 14-3-3 protein family, 14-3-3σ is the protein that is most associated with tumor occurrence and development. In some malignancies, 14-3-3σ acts as a tumor suppressor via p53 and tumor suppressor genes. In most tumors, 14-3-3σ overexpression increases resistance to chemotherapy and radiotherapy and mediates the G2-M checkpoint after DNA damage. Although 14-3-3σ overexpression has been closely associated with poorer prognosis in pancreatic, gastric and colorectal cancer, its role in gallbladder and nasopharyngeal cancer remains less clear. As such, the function of 14-3-3σ in specific cancer types needs to be further clarified. It has been hypothesized that a role may be related to its molecular chaperone function combined with various protein ligands. In this review, we examine the role of 14-3-3σ in tumor development and drug resistance. We discuss the potential of targeting 14-3-3σ regulators in cancer therapy and treatment.
Collapse
|
16
|
Li L, Wu B, Zhao Q, Li J, Han Y, Fan X, Dong J, Li P. Attenuation of doxorubicin-induced cardiotoxicity by cryptotanshinone detected through association analysis of transcriptomic profiling and KEGG pathway. Aging (Albany NY) 2020; 12:9585-9603. [PMID: 32457254 PMCID: PMC7288906 DOI: 10.18632/aging.103228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/16/2020] [Indexed: 05/09/2023]
Abstract
OBJECTIVE The cardiotoxicity of doxorubicin (DOX) reduces the quality of life and prognosis of cancer patients, and therefore its clinical application has been largely restricted. This study aimed to assess the effects of cryptotanshione (CPT) on DOX-induced rat cardiac insufficiency. RESULTS CPT treatment significantly suppressed apoptosis in vitro. The oral administration of CPT significantly improved cardiac function in the rat model, reduced collagen production and suppressed apoptosis and the production of reactive oxygen species in the heart tissue. Transcriptomic profiling and its relevant bioinformatics analysis showed that CPT suppressed doxorubicin-induced cardiotoxicity by inhibiting p53 signaling pathway. CONCLUSION Transcriptomic profiling and bioinformatics analysis can be used to evaluate the cardio-protective effect of CPT through inactivating p53 signaling pathway in the doxorubicin-mediated myocardial damage model. METHODS F-actin staining and flow cytometry were used to assess the effects of CPT on cardiomyocytes. In vivo, echocardiography and hemodynamic evaluation were used to assess the effects of CPT on the cardiac dysfunction in rats. Furthermore, transcriptomic profiling and bioinformatics analysis, as well as western blot analysis, were used to determine that CPT induced changes in the signaling pathways in the model.
Collapse
Affiliation(s)
- Le Li
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bin Wu
- Laboratory of Platelet and Endothelium Biology, Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Hematology, Qinghai Provincial People’s Hospital, Xi’ning, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yunfeng Han
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohang Fan
- Department of Pathophysiology, Scholl of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junli Dong
- Laboratory of Clinical Pharmacogenetics, Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Li
- Laboratory of Platelet and Endothelium Biology, Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Abstract
Dysregulated metabolism is one of the hallmarks of cancer. Under normal physiological conditions, ATP is primarily generated by oxidative phosphorylation. Cancers commonly undergo a dramatic shift toward glycolysis, despite the presence of oxygen. This phenomenon is known as the Warburg effect, and requires the activity of LDHA. LDHA converts pyruvate to lactate in the final step of glycolysis and is often upregulated in cancer. LDHA inhibitors present a promising therapeutic option, as LDHA blockade leads to apoptosis in cancer cells. Despite this, existing LDHA inhibitors have shown limited clinical efficacy. Here, we review recent progress in LDHA structure, function and regulation as well as strategies to target this critical enzyme.
Collapse
|
18
|
Li P, Liu HM. Recent advances in the development of ubiquitin-specific-processing protease 7 (USP7) inhibitors. Eur J Med Chem 2020; 191:112107. [PMID: 32092586 DOI: 10.1016/j.ejmech.2020.112107] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022]
Abstract
Ubiquitin-specific-processing protease 7 (USP7) is one among the several deubiquitinating enzymes gaining central attention in the current cancer research. Most recent studies have focused on illustrating how USP7 is involved in the cancer process, while few articles reported the development of small molecule USP7 inhibitors. Although some review articles dealt with USP7, they mainly focused on its physiological role and not on the development of USP7 inhibitors. In this review, we systematically summarise the structures, activities and structure-activity relationship (SAR) of small molecule USP7 inhibitors, recently disclosed in scientific articles and patents from 2000 to 2019. The binding modes of typical compounds and their interactions with USP7 are also presented, while other deubiquitinase inhibitors are described in detail. Meanwhile, we briefly introduce the biochemical and physiological functions of USP7. Finally, challenges and potential strategies in developing small molecule USP7 inhibitors are also discussed.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Advanced Technology of Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, And School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Technology of Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, And School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
19
|
Kuusk A, Neves JF, Bravo-Rodriguez K, Gunnarsson A, Ruiz-Blanco YB, Ehrmann M, Chen H, Landrieu I, Sanchez-Garcia E, Boyd H, Ottmann C, Doveston RG. Adoption of a Turn Conformation Drives the Binding Affinity of p53 C-Terminal Domain Peptides to 14-3-3σ. ACS Chem Biol 2020; 15:262-271. [PMID: 31742997 DOI: 10.1021/acschembio.9b00893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interaction between the adapter protein 14-3-3σ and transcription factor p53 is important for preserving the tumor-suppressor functions of p53 in the cell. A phosphorylated motif within the C-terminal domain (CTD) of p53 is key for binding to the amphipathic groove of 14-3-3. This motif is unique among 14-3-3 binding partners, and the precise dynamics of the interaction is not yet fully understood. Here, we investigate this interaction at the molecular level by analyzing the binding of different length p53 CTD peptides to 14-3-3σ using ITC, SPR, NMR, and MD simulations. We observed that the propensity of the p53 peptide to adopt turn-like conformation plays an important role in the binding to the 14-3-3σ protein. Our study contributes to elucidate the molecular mechanism of the 14-3-3-p53 binding and provides useful insight into how conformation properties of a ligand influence protein binding.
Collapse
Affiliation(s)
- Ave Kuusk
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Mölndal, Sweden
- Laboratory of Chemical Biology, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | | | | - Hongming Chen
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Mölndal, Sweden
- Chemistry and Chemical Biology Centre, Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, China
| | | | | | - Helen Boyd
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Richard G. Doveston
- Leicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| |
Collapse
|
20
|
He QJ, Wang P, Liu QQ, Wu QG, Li YF, Wang J, Lee SC. Secreted Wnt6 mediates diabetes-associated centrosome amplification via its receptor FZD4. Am J Physiol Cell Physiol 2020; 318:C48-C62. [DOI: 10.1152/ajpcell.00091.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We recently published that type 2 diabetes promotes cell centrosome amplification via upregulation of Rho-associated protein kinase 1 (ROCK1) and 14-3-3 protein-σ (14-3-3σ). This study further investigates the molecular mechanisms underlying diabetes-associated centrosome amplification. We found that treatment of cells with high glucose, insulin, and palmitic acid levels increased the intracellular and extracellular protein levels of Wingless-type MMTV integration site family member 6 (Wnt6) as well as the cellular level of β-catenin. The treatment also activated β-catenin and promoted its nuclear translocation. Treatment of cells with siRNA species for Wnt6, Frizzled-4 (FZD4), or β-catenin as well as introduction of antibodies against Wnt6 or FZD4 to the cell culture medium could all attenuate the treatment-triggered centrosome amplification. Moreover, we showed that secreted Wnt6-FZD4-β-catenin was the signaling pathway that was upstream of ROCK1 and 14-3-3σ. We found that advanced glycation end products (AGEs) were also able to increase the cellular and extracellular levels of Wnt6, the cellular protein level of β-catenin, and centrosome amplification. Treatment of the cells with siRNA species for Wnt6 or FZD4 as well as introduction of antibodies against Wnt6 or FZD4 to the cell culture could all inhibit the AGEs-elicited centrosome amplification. In colon tissues from a diabetic mouse model, the protein levels of Wnt6 and 14-3-3σ were increased. In conclusion, our results showed that the pathophysiological factors in type 2 diabetes, including AGEs, were able to induce centrosome amplification. It is suggested that secreted Wnt6 binds to FZD4 to activate the canonical Wnt6 signaling pathway, which is upstream of ROCK1 and 14-3-3σ, and that this is the cell signaling pathway underlying diabetes-associated centrosome amplification.
Collapse
Affiliation(s)
- Qin Ju He
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Pu Wang
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Qin Qin Liu
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Qi Gui Wu
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Yuan Fei Li
- Department of Oncology, First Clinical Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jie Wang
- Shanxi College of Traditional Chinese Medicine, Taiyuan, People’s Republic of China
| | - Shao Chin Lee
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, People’s Republic of China
| |
Collapse
|
21
|
Cowen LE, Luo H, Tang Y. Characterization of SMG7 14-3-3-like domain reveals phosphoserine binding-independent regulation of p53 and UPF1. Sci Rep 2019; 9:13097. [PMID: 31511540 PMCID: PMC6739308 DOI: 10.1038/s41598-019-49229-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022] Open
Abstract
The 14-3-3-related protein SMG7 plays critical roles in regulation of DNA damage response and nonsense-mediated mRNA decay (NMD). Like 14-3-3, SMG7 engages phosphoserine-dependent protein interactions; however, the precise role of phosphorylation-mediated SMG7 binding remains unknown. Here, we show that DNA damage-induced SMG7-p53 binding requires phosphorylated Ser15 on p53, and that substitution of the conserved lysine residue K66 in the SMG7 14-3-3-like domain with the glutamic acid (E) abolishes interactions with its client proteins p53 and UPF1. Unexpectedly, loss of phosphoserine-dependent SMG7 binding does not significantly affect p53 stabilization/activation, and p53-dependent cell growth arrest or apoptosis upon DNA damage. Also surprisingly, cells expressing the SMG7 K66E-knockin mutant retain fully functional UPF1-mediated NMD. These findings are highly unusual, given that phosphorylation-mediated 14-3-3 binding has essential roles in numerous cellular signaling pathways. Thus, our studies suggest that 14-3-3-like proteins such as SMG7 likely function using additional distinct regulatory mechanisms besides phosphoserine-mediated protein interactions.
Collapse
Affiliation(s)
- Lauren E Cowen
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave., Albany, NY, 12208, USA
| | - Hongwei Luo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave., Albany, NY, 12208, USA
| | - Yi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave., Albany, NY, 12208, USA.
| |
Collapse
|
22
|
Amaya E, Alarcón L, Martín-Tapia D, Cuellar-Pérez F, Cano-Cortina M, Ortega-Olvera JM, Cisneros B, Rodriguez AJ, Gamba G, González-Mariscal L. Activation of the Ca 2+ sensing receptor and the PKC/WNK4 downstream signaling cascade induces incorporation of ZO-2 to tight junctions and its separation from 14-3-3. Mol Biol Cell 2019; 30:2377-2398. [PMID: 31318316 PMCID: PMC6741067 DOI: 10.1091/mbc.e18-09-0591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zonula occludens-2 (ZO-2) is a tight junction (TJ) cytoplasmic protein, whose localization varies according to cell density and Ca2+ in the media. In cells cultured in low calcium (LC), ZO-2 displays a diffuse cytoplasmic distribution, but activation of the Ca2+ sensing receptor (CaSR) with Gd3+ triggers the appearance of ZO-2 at the cell borders. CaSR downstream signaling involves activation of protein kinase C, which phosphorylates and activates with no lysine kinase-4 that phosphorylates ZO-2 inducing its concentration at TJs. In LC, ZO-2 is protected from degradation by association to 14-3-3 proteins. When monolayers are transferred to normal calcium, the complexes ZO-2/14-3-3ζ and ZO-2/14-3-3σ move to the cell borders and dissociate. The 14-3-3 proteins are then degraded in proteosomes, whereas ZO-2 integrates to TJs. From the plasma membrane residual ZO-2 is endocyted and degradaded in lysosomes. The unique region 2 of ZO-2, and S261 located within a nuclear localization signal, are critical for the interaction with 14-3-3 ζ and σ and for the efficient nuclear importation of ZO-2. These results explain the molecular mechanism through which extracellular Ca2+ triggers the appearance of ZO-2 at TJs in epithelial cells and reveal the novel interaction between ZO-2 and 14-3-3 proteins, which is critical for ZO-2 protection and intracellular traffic.
Collapse
Affiliation(s)
- Elida Amaya
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| | - Dolores Martín-Tapia
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| | - Francisco Cuellar-Pérez
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| | - Misael Cano-Cortina
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| | - Jose Mario Ortega-Olvera
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Mexico City 07360, Mexico
| | - Alexis J Rodriguez
- Department of Biological Science, Rutgers, The State University of New Jersey, Newark, NJ 07102
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, México.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 64710 Monterrey, Nuevo Leon, México
| | - Lorenza González-Mariscal
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Mexico City 07360, Mexico
| |
Collapse
|
23
|
Evaluation of 14-3-3 sigma as a potential partner of p16 in quiescence and differentiation. In Vitro Cell Dev Biol Anim 2018; 54:658-665. [DOI: 10.1007/s11626-018-0291-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/16/2018] [Indexed: 11/30/2022]
|
24
|
The Human Papillomavirus E6 PDZ Binding Motif Links DNA Damage Response Signaling to E6 Inhibition of p53 Transcriptional Activity. J Virol 2018; 92:JVI.00465-18. [PMID: 29848585 DOI: 10.1128/jvi.00465-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
The presence of a PDZ binding motif (PBM) in the human papillomavirus (HPV) E6 oncoprotein appears to be a characteristic marker of high oncogenic potential and confers interaction with a number of different cellular PDZ domain-containing substrates. The E6 PBM is also subject to phosphorylation, resulting in inhibition of E6 PDZ binding activity and instead allowing E6 to associate with 14-3-3 proteins. In this study, we analyzed the conditions under which the E6 PBM is phosphorylated. We demonstrate that in normal cycling cells, the levels of E6 phosphorylation are very low. However, following exposure of cells to oxidative stress or the induction of DNA damage, there is a striking increase in the levels of E6 phosphorylation. Depending on the specific stimulus, this phosphorylation of E6 can involve the ATM/ATR pathway and is performed primarily through Chk1, although the Chk2 pathway is also involved indirectly through activation of protein kinase A (PKA). To understand the biological relevance of these phospho-modifications of E6, we analyzed their effects upon the ability of E6 to inhibit p53 transcriptional activity. We show that an intact E6 phospho-acceptor site plays an essential role in the ability of E6 to inhibit p53 transcriptional activity on a subset of p53-responsive promoters in a manner that is independent of E6's ability to direct p53 degradation. These results are, to our knowledge, the first example of a DNA damage response controlling PBM-PDZ recognition. This study also provides links between the DNA damage response, the regulation of E6 PBM function, and the inhibition of p53 activity and begins to explain how HPV-infected cells remain within the cell cycle, despite activation of DNA damage response pathways during productive virus infections.IMPORTANCE The cancer-causing HPV E6 oncoproteins all possess a PDZ binding motif at their extreme carboxy termini. Depending upon whether this motif is phosphorylated, E6 can recognize PDZ domain-containing proteins or members of the 14-3-3 family of proteins. We show here that DNA damage response pathways directly signal to the E6 PBM, resulting in Chk1- and Chk2-driven phosphorylation. This phosphorylation is particularly pronounced following treatment of cells with a variety of different chemotherapeutic drugs. A direct functional consequence of this signaling is to confer an enhanced ability upon E6 to inhibit p53 transcriptional activity in a proteasome-independent but phosphorylation-dependent manner. These results are the first example of DNA damage signaling pathways regulating PBM-PDZ interactions and provide the mechanistic link between E6 PBM function and perturbation of p53 activity.
Collapse
|
25
|
Rizou M, Frangou EA, Marineli F, Prakoura N, Zoidakis J, Gakiopoulou H, Liapis G, Kavvadas P, Chatziantoniou C, Makridakis M, Vlahou A, Boletis J, Vlahakos D, Goumenos D, Daphnis E, Iatrou C, Charonis AS. The family of 14-3-3 proteins and specifically 14-3-3σ are up-regulated during the development of renal pathologies. J Cell Mol Med 2018; 22:4139-4149. [PMID: 29956451 PMCID: PMC6111864 DOI: 10.1111/jcmm.13691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney disease, the end result of most renal and some systemic diseases, is a common condition where renal function is compromised due to fibrosis. During renal fibrosis, calreticulin, a multifunctional chaperone of the endoplasmic reticulum (ER) is up‐regulated in tubular epithelial cells (TECs) both in vitro and in vivo. Proteomic analysis of cultured TECs overexpressing calreticulin led to the identification of the family of 14‐3‐3 proteins as key proteins overexpressed as well. Furthermore, an increased expression in the majority of 14‐3‐3 family members was observed in 3 different animal models of renal pathologies: the unilateral ureteric obstruction, the nephrotoxic serum administration and the ischaemia‐reperfusion. In all these models, the 14‐3‐3σ isoform (also known as stratifin) was predominantly overexpressed. As in all these models ischaemia is a common denominator, we showed that the ischaemia‐induced transcription factor HIF1α is specifically associated with the promoter region of the 14‐3‐3σ gene. Finally, we evaluated the expression of the family of 14‐3‐3 proteins and specifically 14‐3‐3σ in biopsies from IgA nephropathy and membranous nephropathy patients. These results propose an involvement of 14‐3‐3σ in renal pathology and provide evidence for the first time that hypoxia may be responsible for its altered expression.
Collapse
Affiliation(s)
- Myrto Rizou
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleni A Frangou
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Filio Marineli
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Niki Prakoura
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laikon University Hospital, Nephrology Clinic, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Jerome Zoidakis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Harikleia Gakiopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, and Laikon Hospital, Athens, Greece
| | - George Liapis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, and Laikon Hospital, Athens, Greece
| | | | | | | | - Antonia Vlahou
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - John Boletis
- Laikon University Hospital, Nephrology Clinic, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Demetrios Vlahakos
- Division of Nephrology, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitrios Goumenos
- Department of Nephrology, Medical School of Patras, University Hospital of Patras, Rio, Greece
| | - Evgenios Daphnis
- Medical School of the University of Crete, University Hospital of Iraklion, Iraklion, Greece
| | - Christos Iatrou
- Center for Nephrology "G. Papadakis", General Hospital of Nikaia-Piraeus, Athens, Greece
| | | |
Collapse
|
26
|
Wakabayashi K, Umahara T, Hirokawa K, Hanyu H, Uchihara T. 14-3-3 protein sigma isoform co-localizes with phosphorylated α-synuclein in Lewy bodies and Lewy neurites in patients with Lewy body disease. Neurosci Lett 2018; 674:171-175. [DOI: 10.1016/j.neulet.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 01/12/2023]
|
27
|
Xie F, Ling L, van Dam H, Zhou F, Zhang L. TGF-β signaling in cancer metastasis. Acta Biochim Biophys Sin (Shanghai) 2018; 50:121-132. [PMID: 29190313 DOI: 10.1093/abbs/gmx123] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The transforming growth factor (TGF)-β signaling events are well known to control diverse processes and numerous responses, such as cell proliferation, differentiation, apoptosis, and migration. TGF-β signaling plays context-dependent roles in cancer: in pre-malignant cells TGF-β primarily functions as a tumor suppressor, while in the later stages of cancer TGF-β signaling promotes invasion and metastasis. Recent studies have also suggested that the cross-talk between TGF-β signaling and other signaling pathways, such as Hippo, Wnt, EGFR/RAS, and PI3K/AKT pathways, may substantially contribute to our current understanding of TGF-β signaling and cancer. As a result of the wide-ranging effects of TGF-β, blockade of TGF-β and its downstream signaling components provides multiple therapeutic opportunities. Therefore, the outlook for anti-TGF-β signaling therapy for numerous diseases appears bright and will provide valuable information and thinking on the drug molecular design. In this review, we focus on recent insights into the regulation of TGF-β signaling in cancer metastasis which may contribute to the development of novel cancer-targeting therapies.
Collapse
Affiliation(s)
- Feng Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Ling
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Hans van Dam
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Long Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
28
|
Yang Z, Jin Q, Hu W, Dai L, Xue Z, Man D, Zhou L, Xie H, Wu J, Zheng S. 14-3-3σ downregulation suppresses ICC metastasis via impairing migration, invasion, and anoikis resistance of ICC cells. Cancer Biomark 2017; 19:313-325. [PMID: 28482619 DOI: 10.3233/cbm-160476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND 14-3-3σ protein plays an important role in multiple cellular processes. The role of 14-3-3σ in the progression of intrahepatic cholangiocarcinoma (ICC) has not been well understood. OBJECTIVE We performed this research to explore the relationship between 14-3-3σ level and clinical characteristics and prognosis of ICC patients. Besides, we used ICC cell lines HCCC-9810 and RBE to assess the biological function of 14-3-3σ. METHODS We examined 14-3-3σ expression in 28 ICC tissues and matched paratumor tissues by quantitative real-time PCR and immunohistochemistry. Additionally, ICC tissue array from 100 patients and normal liver tissue array from 24 healthy people were also analyzed by immunohistochemistry. 14-3-3σ was knocked down in ICC cell lines and the functions and mechanisms of 14-3-3σ were assessed. RESULTS 14-3-3σ is highly expressed in ICC tissues and high expression of 14-3-3σ correlates poor overall survival in ICC patients. Knocking down of 14-3-3σ in ICC cell lines reduced cells migration, invasion and anoikis resistance. Furthermore, 14-3-3σ-silenced ICC cells showed significantly decreased invasion-related protein MMP2 and MMP9 expression. CONCLUSIONS Our results demonstrate prognostic value of 14-3-3σ and its role in metastasis, which is associated with ICC cell lines migration, invasion and anoikis resistance.
Collapse
Affiliation(s)
- Zhenjie Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Qianjun Jin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, Zhejiang, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Wendi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China
| | - Longfei Dai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China
| | - Zhengze Xue
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Da Man
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China
| | - Lin Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou 310000, Zhejiang, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou 310000, Zhejiang, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou 310000, Zhejiang, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou 310000, Zhejiang, China
| |
Collapse
|
29
|
Kim JO, Kim SR, Lim KH, Kim JH, Ajjappala B, Lee HJ, Choi JI, Baek KH. Deubiquitinating enzyme USP37 regulating oncogenic function of 14-3-3γ. Oncotarget 2017; 6:36551-76. [PMID: 26427597 PMCID: PMC4742195 DOI: 10.18632/oncotarget.5336] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
14-3-3 is a family of highly conserved protein that is involved in a number of cellular processes. In this study, we identified that the high expression of 14-3-3γ in various cancer cell lines correlates with the invasiveness of the cancer cells. Overexpression of 14-3-3γ causes changes to the morphologic characteristics of cell transformation, and promotes cell migration and invasion. The cells overexpressed with 14-3-3γ have been shown to stimulate foci and tumor formation in SCID-NOD mice in concert with signaling components as reported with the 14-3-3β. In our previous study, we demonstrated that 14-3-3γ inhibits apoptotic cell death and mediates the promotion of cell proliferation in immune cell lines. Earlier, binding partners for 14-3-3γ were defined by screening. We found that USP37, one of deubiquitinating enzymes (DUBs), belongs to this binding partner group. Therefore, we investigated whether 14-3-3γ mediates proliferation in cancer cells, and 14-3-3γ by USP37 is responsible for promoting cell proliferation. Importantly, we found that USP37 regulates the stability of ubiquitin-conjugated 14-3-3γ through its catalytic activity. This result implies that the interactive behavior between USP37 and 14-3-3γ could be involved in the regulation of 14-3-3γ degradation. When all these findings are considered together, USP37 is shown to be a specific DUB that prevents 14-3-3γ degradation, which may contribute to malignant transformation via MAPK signaling pathway, possibly providing a new target for therapeutic objectives of cancer.
Collapse
Affiliation(s)
- Jin-Ock Kim
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - So-Ra Kim
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Key-Hwan Lim
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Jun-Hyun Kim
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Brijesh Ajjappala
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Hey-Jin Lee
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Jee-In Choi
- Department of Rehabilitation Medicine, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| |
Collapse
|
30
|
Ma W, Kong Q, Mantyla JJ, Yang Y, Ohlrogge JB, Benning C. 14-3-3 protein mediates plant seed oil biosynthesis through interaction with AtWRI1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:228-235. [PMID: 27322486 DOI: 10.1111/tpj.13244] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/12/2016] [Accepted: 06/17/2016] [Indexed: 05/10/2023]
Abstract
Plant 14-3-3 proteins are phosphopeptide-binding proteins, belonging to a large family of proteins involved in numerous physiological processes including primary metabolism, although knowledge about the function of 14-3-3s in plant lipid metabolism is sparse. WRINKLED1 (WRI1) is a key transcription factor that governs plant oil biosynthesis. At present, AtWRI1-interacting partners remain largely unknown. Here, we show that 14-3-3 proteins are able to interact with AtWRI1, both in yeast and plant cells. Transient co-expression of 14-3-3- and AtWRI1-encoding cDNAs led to increased oil biosynthesis in Nicotiana benthamiana leaves. Stable transgenic plants overproducing a 14-3-3 protein also displayed increased seed oil content. Co-production of a 14-3-3 protein with AtWRI1 enhanced the transcriptional activity of AtWRI1. The 14-3-3 protein was found to increase the stability of AtWRI1. A possible 14-3-3 binding motif was identified in one of the two AP2 domains of AtWRI1, which was also found to be critical for the interaction of AtWRI1 with an E3 ligase linker protein. Thus, we hypothesize a regulatory mechanism by which the binding of 14-3-3 to AtWRI1 interferes with the interaction of AtWRI1 and the E3 ligase, thereby protecting AtWRI1 from degradation. Taken together, our studies identified AtWRI1 as a client of 14-3-3 proteins and provide insights into a role of 14-3-3 in mediating plant oil biosynthesis.
Collapse
Affiliation(s)
- Wei Ma
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Que Kong
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jenny J Mantyla
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yang Yang
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - John B Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
31
|
Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway. Sci Rep 2016; 6:29926. [PMID: 27416811 PMCID: PMC4945937 DOI: 10.1038/srep29926] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/24/2016] [Indexed: 12/15/2022] Open
Abstract
Metabolomics can be used to identify potential markers and discover new targets for future therapeutic interventions. Here, we developed a novel application of the metabonomics method based on gas chromatography-mass spectrometry (GC/MS) analysis and principal component analysis (PCA) for rapidly exploring the anticancer mechanism of physapubenolide (PB), a cytotoxic withanolide isolated from Physalis species. PB inhibited the proliferation of hepatocellular carcinoma cells in vitro and in vivo, accompanied by apoptosis-related biochemical events, including the cleavage of caspase-3/7/9 and PARP. Metabolic profiling analysis revealed that PB disturbed the metabolic pattern and significantly decreased lactate production. This suggests that the suppression of glycolysis plays an important role in the anti-tumour effects induced by PB, which is further supported by the decreased expression of glycolysis-related genes and proteins. Furthermore, the increased level of p53 and decreased expression of p-Akt were observed, and the attenuated glycolysis and enhanced apoptosis were reversed in the presence of Akt cDNA or p53 siRNA. These results confirm that PB exhibits anti-cancer activities through the Akt-p53 pathway. Our study not only reports for the first time the anti-tumour mechanism of PB, but also suggests that PB is a promising therapeutic agent for use in cancer treatments and that metabolomic approaches provide a new strategy to effectively explore the molecular mechanisms of promising anticancer compounds.
Collapse
|
32
|
Hirano A, Nakagawa T, Yoshitane H, Oyama M, Kozuka-Hata H, Lanjakornsiripan D, Fukada Y. USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock. PLoS One 2016; 11:e0154263. [PMID: 27123980 PMCID: PMC4849774 DOI: 10.1371/journal.pone.0154263] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/11/2016] [Indexed: 12/24/2022] Open
Abstract
Mammalian Cryptochromes, CRY1 and CRY2, function as principal regulators of a transcription-translation-based negative feedback loop underlying the mammalian circadian clockwork. An F-box protein, FBXL3, promotes ubiquitination and degradation of CRYs, while FBXL21, the closest paralog of FBXL3, ubiquitinates CRYs but leads to stabilization of CRYs. Fbxl3 knockout extremely lengthened the circadian period, and deletion of Fbxl21 gene in Fbxl3-deficient mice partially rescued the period-lengthening phenotype, suggesting a key role of CRY protein stability for maintenance of the circadian periodicity. Here, we employed a proteomics strategy to explore regulators for the protein stability of CRYs. We found that ubiquitin-specific protease 7 (USP7 also known as HAUSP) associates with CRY1 and CRY2 and stabilizes CRYs through deubiquitination. Treatment with USP7-specific inhibitor or Usp7 knockdown shortened the circadian period of the cellular rhythm. We identified another CRYs-interacting protein, TAR DNA binding protein 43 (TDP-43), an RNA-binding protein. TDP-43 stabilized CRY1 and CRY2, and its knockdown also shortened the circadian period in cultured cells. The present study identified USP7 and TDP-43 as the regulators of CRY1 and CRY2, underscoring the significance of the stability control process of CRY proteins for period determination in the mammalian circadian clockwork.
Collapse
Affiliation(s)
- Arisa Hirano
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Tomoki Nakagawa
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
| | - Darin Lanjakornsiripan
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–0033, Japan
- * E-mail:
| |
Collapse
|
33
|
CSN6 deregulation impairs genome integrity in a COP1-dependent pathway. Oncotarget 2016; 6:11779-93. [PMID: 25957415 PMCID: PMC4494904 DOI: 10.18632/oncotarget.3151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/17/2015] [Indexed: 02/07/2023] Open
Abstract
Understanding genome integrity and DNA damage response are critical to cancer treatment. In this study, we identify CSN6's biological function in regulating genome integrity. Constitutive photomorphogenic 1 (COP1), an E3 ubiquitin ligase regulated by CSN6, is downregulated by DNA damage, but the biological consequences of this phenomenon are poorly understood. p27Kip1 is a critical CDK inhibitor involved in cell cycle regulation, but its response to DNA damage remains unclear. Here, we report that p27Kip1 levels are elevated after DNA damage, with concurrent reduction of COP1 levels. Mechanistic studies showed that during DNA damage response COP1's function as an E3 ligase of p27 is compromised, thereby reducing the ubiquitin-mediated degradation of p27Kip1. Also, COP1 overexpression leads to downregulation of p27Kip1, thereby promoting the expression of mitotic kinase Aurora A. Overexpression of Aurora A correlates with poor survival. These findings provide new insight into CSN6-COP1-p27Kip1-Aurora A axis in DNA damage repair and tumorigenesis.
Collapse
|
34
|
Luo H, Cowen L, Yu G, Jiang W, Tang Y. SMG7 is a critical regulator of p53 stability and function in DNA damage stress response. Cell Discov 2016; 2:15042. [PMID: 27462439 PMCID: PMC4860962 DOI: 10.1038/celldisc.2015.42] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
The p53 tumor suppressor functions as a transcription factor and plays a pivotal role in regulation of cellular response to DNA damage by activating various genes including those involved in cell cycle arrest. p53 stability is essential for its function during stress response; however, the molecular mechanism for DNA damage-induced stabilization of p53 is not fully understood. In our present study, we have identified SMG7 (suppressor with morphological defects in genitalia 7), also known as EST1C, as a novel p53-binding protein. SMG7 is an mRNA surveillance factor implicated in degradation of p53 mRNA-containing nonsense mutations, yet it is completely unknown whether SMG7 regulates p53 function. Here, we show that SMG7 has a crucial role in p53-mediated response to genotoxic stress by regulating p53 stability. Using somatic gene knockout, we found that deletion of SMG7 abrogates DNA damage-induced p53 stabilization, although it exhibits minimal effect on the basal levels of p53. Importantly, loss of SMG7 impairs p53-mediated activation of p21 and cell cycle arrest following DNA damage. Pharmacological inhibition of Mdm2, a major E3 ubiquitin ligase for p53, restored p53 stability in gamma-irradiated SMG7-deficient cells. Furthermore, SMG7 physically interacts with Mdm2 and promotes ATM-mediated inhibitory phosphorylation of Mdm2 following ionizing radiation. Therefore, our present data demonstrate that SMG7 is critical for p53 function in DNA damage response, and reveal the SMG7-mediated phosphorylation of Mdm2 as a previously unknown mechanism for p53 regulation.
Collapse
Affiliation(s)
- Hongwei Luo
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Lauren Cowen
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Guowu Yu
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Wenguo Jiang
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Yi Tang
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| |
Collapse
|
35
|
Chen J, Wu F, Pei HL, Gu WD, Ning ZH, Shao YJ, Huang J. Analysis of the correlation between P53 and Cox-2 expression and prognosis in esophageal cancer. Oncol Lett 2015; 10:2197-2203. [PMID: 26622818 PMCID: PMC4579898 DOI: 10.3892/ol.2015.3624] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 06/22/2015] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to explore the importance of P53 and Cox-2 protein expression in esophageal cancer and assess their influence on prognosis. The expression of P53 and Cox-2 was assessed in esophageal cancer samples from 195 patients subjected to radical surgery at Changzhou First People's Hospital (Changzhou, China) between May 2010 and December 2011. Expression of P53 and Cox-2 proteins were detected in 60.5% (118/195) and 69.7% (136/195) of the samples, respectively, and were co-expressed in 43.1% (84/195) of the samples. A correlation was identified between P53 expression and overall survival (OS) (P=0.0351) as well as disease-free survival (DFS) (P=0.0307). In addition, the co-expression of P53 and Cox-2 also correlated with OS (P=0.0040) and DFS (P=0.0042). P53 expression (P=0.023), TNM staging (P<0.001) and P53/Cox-2 co-expression (P=0.009) were identified as independent factors affecting OS in patients with esophageal cancer via a Cox multivariate regression model analysis. A similar analysis also identified P53 expression (P=0.020), TNM staging (P<0.001) and P53/Cox-2 co-expression (P=0.008) as independent prognostic factors influencing DFS in these patients. Binary logistic regression analysis demonstrated a correlation between P53 expression (P=0.012), TNM staging (P<0.001), tumor differentiation level (P=0.023) and P53/Cox-2 co-expression (P=0.021), and local recurrence or distant esophageal cancer metastasis. The results of the present study indicate that P53 and Cox-2 proteins may act synergistically in the development of esophageal cancer, and the assessment of P53/Cox-2 co-expression status in esophageal cancer biopsies may become an important diagnostic criterion to evaluate the prognosis of patients with esophageal cancer.
Collapse
Affiliation(s)
- Jun Chen
- Department of Radiation Oncology, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Fang Wu
- Department of Oncology, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Hong-Lei Pei
- Department of Radiation Oncology, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Wen-Dong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Zhong-Hua Ning
- Department of Radiation Oncology, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Ying-Jie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Jin Huang
- Department of Radiation Oncology, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
36
|
Phan L, Chou PC, Velazquez-Torres G, Samudio I, Parreno K, Huang Y, Tseng C, Vu T, Gully C, Su CH, Wang E, Chen J, Choi HH, Fuentes-Mattei E, Shin JH, Shiang C, Grabiner B, Blonska M, Skerl S, Shao Y, Cody D, Delacerda J, Kingsley C, Webb D, Carlock C, Zhou Z, Hsieh YC, Lee J, Elliott A, Ramirez M, Bankson J, Hazle J, Wang Y, Li L, Weng S, Rizk N, Wen YY, Lin X, Wang H, Wang H, Zhang A, Xia X, Wu Y, Habra M, Yang W, Pusztai L, Yeung SC, Lee MH. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming. Nat Commun 2015; 6:7530. [PMID: 26179207 PMCID: PMC4507299 DOI: 10.1038/ncomms8530] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/18/2015] [Indexed: 12/16/2022] Open
Abstract
Extensive reprogramming of cellular energy metabolism is a hallmark of cancer. Despite its importance, the molecular mechanism controlling this tumour metabolic shift remains not fully understood. Here we show that 14-3-3σ regulates cancer metabolic reprogramming and protects cells from tumorigenic transformation. 14-3-3σ opposes tumour-promoting metabolic programmes by enhancing c-Myc poly-ubiquitination and subsequent degradation. 14-3-3σ demonstrates the suppressive impact on cancer glycolysis, glutaminolysis, mitochondrial biogenesis and other major metabolic processes of tumours. Importantly, 14-3-3σ expression levels predict overall and recurrence-free survival rates, tumour glucose uptake and metabolic gene expression in breast cancer patients. Thus, these results highlight that 14-3-3σ is an important regulator of tumour metabolism, and loss of 14-3-3σ expression is critical for cancer metabolic reprogramming. We anticipate that pharmacologically elevating the function of 14-3-3σ in tumours could be a promising direction for targeted anticancer metabolism therapy development in future.
Collapse
Affiliation(s)
- Liem Phan
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Ping-Chieh Chou
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Guermarie Velazquez-Torres
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Ismael Samudio
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth Parreno
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yaling Huang
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Chieh Tseng
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Thuy Vu
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Chris Gully
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Chun-Hui Su
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Edward Wang
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Jian Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyun-Ho Choi
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Enrique Fuentes-Mattei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji-Hyun Shin
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Christine Shiang
- 1] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA. [2] Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brian Grabiner
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Marzenna Blonska
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen Skerl
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiping Shao
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dianna Cody
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jorge Delacerda
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Kingsley
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Douglas Webb
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Colin Carlock
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Zhongguo Zhou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun-Chih Hsieh
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaehyuk Lee
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Elliott
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marc Ramirez
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jim Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongxing Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Li
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaofan Weng
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nibal Rizk
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu Ye Wen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aijun Zhang
- Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Xuefeng Xia
- Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mouhammed Habra
- Department of Endocrinology Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Yang
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lajos Pusztai
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sai-Ching Yeung
- 1] Department of Endocrinology Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mong-Hong Lee
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| |
Collapse
|
37
|
Huang EY, Wang FS, Chen YM, Chen YF, Wang CC, Lin IH, Huang YJ, Yang KD. Amifostine alleviates radiation-induced lethal small bowel damage via promotion of 14-3-3σ-mediated nuclear p53 accumulation. Oncotarget 2015; 5:9756-69. [PMID: 25230151 PMCID: PMC4259435 DOI: 10.18632/oncotarget.2386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Amifostine (AM) is a radioprotector that scavenges free radicals and is used in patients undergoing radiotherapy. p53 has long been implicated in cell cycle arrest for cellular repair after radiation exposure. We therefore investigated the protective p53-dependent mechanism of AM on small bowel damage after lethal whole-abdominal irradiation (WAI). AM increased both the survival rate of rats and crypt survival following lethal 18 Gy WAI. The p53 inhibitor PFT-α compromised AM-mediated effects when administered prior to AM administration. AM significantly increased clonogenic survival in IEC-6 cells expressing wild type p53 but not in p53 knockdown cells. AM significantly increased p53 nuclear accumulation and p53 tetramer expression before irradiation through the inhibition of p53 degradation. AM inhibited p53 interactions with MDM2 but enhanced p53 interactions with 14-3-3σ. Knockdown of 14-3-3σ also compromised the effect of AM on clonogenic survival and p53 nuclear accumulation in IEC-6 cells. For the first time, our data reveal that AM alleviates lethal small bowel damage through the induction of 14-3-3σ and subsequent accumulation of p53. Enhancement of the p53/14-3-3σ interaction results in p53 tetramerization in the nucleus that rescues lethal small bowel damage.
Collapse
Affiliation(s)
- Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung District, Kaohsiung 833, Taiwan. Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taiwan. School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taiwan
| | - Feng-Sheng Wang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taiwan. Department of Medical Research, Niao-Sung District, Kaohsiung 833, Taiwan. Center for Laboratory Animals, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung District, Kaohsiung 833, Taiwan
| | - Yu-Min Chen
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung District, Kaohsiung 833, Taiwan
| | - Yi-Fan Chen
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung District, Kaohsiung 833, Taiwan
| | - Chung-Chi Wang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung District, Kaohsiung 833, Taiwan
| | - I-Hui Lin
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung District, Kaohsiung 833, Taiwan
| | - Yu-Jie Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung District, Kaohsiung 833, Taiwan
| | - Kuender D Yang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taiwan. Department of Medical Research, Show Chwan Memorial Hospital in Chang Bing, Chang Bing Industrial Center, Lu-Kang, Changhua 505, Taiwan. Institute of Clinical Medicine, National Yang Ming University, Taiwan
| |
Collapse
|
38
|
Morrison CD, Schiemann WP. Tipping the balance between good and evil: aberrant 14-3-3ζ expression drives oncogenic TGF-β signaling in metastatic breast cancers. Breast Cancer Res 2015; 17:92. [PMID: 26160166 PMCID: PMC4702299 DOI: 10.1186/s13058-015-0603-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor beta (TGF-β) readily suppresses the development of early-stage breast cancers, an activity that gives way to tumor promotion in their late-stage counterparts. The molecular mechanisms underlying this mysterious switch in TGF-β function remain murky. In addressing this conundrum, Xu et al. observed aberrant 14-3-3ζ expression to prevent the formation of tumor-suppressive Smad2/3:p53 complexes, while simultaneously driving the generation of oncogenic Smad2/3:Gli2 complexes. Once formed, Smad2/3:Gli2 complexes stimulate the expression of parathyroid hormone-related protein necessary for breast cancer metastasis to bone. This viewpoint highlights 14-3-3ζ as an essential driver of oncogenic signaling by Smad2/3 and TGF-β in metastatic breast cancers.
Collapse
Affiliation(s)
- Chevaun D Morrison
- Case Comprehensive Cancer Center, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
39
|
Zhu L, Liu R, Zhang W, Qian S, Wang JH. MicroRNA-205 regulates ubiquitin specific peptidase 7 protein expression in hepatocellular carcinoma cells. Mol Med Rep 2015; 12:4652-4656. [PMID: 26129839 DOI: 10.3892/mmr.2015.3998] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 01/09/2015] [Indexed: 11/05/2022] Open
Abstract
Ubiquitin specific peptidase 7 (UPS7) has a critical role in the development and progression of cancer, at least in part, through its regulation of p53 protein stability. However, its molecular determinants remain to be elucidated. In the present study, it was identified that microRNA‑205 (miR‑205) may negatively regulate UPS7 protein levels through targeting its 3'‑untranslated region in hepatocellular carcinoma (HCC) cells. As a result, miR‑205 mimics inhibited USP7 protein levels while antisense miR‑205 enhanced USP7 protein levels, thereby modulating the p53 signaling pathway and cell proliferation levels. In conclusion, the data presents a novel molecule for the dysregulated expression of USP7 in HCC, which may assist in elucidating mechanisms underlying the tumorigenesis of HCC.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Rong Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Sheng Qian
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian-Hua Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
40
|
Xu J, Acharya S, Sahin O, Zhang Q, Saito Y, Yao J, Wang H, Li P, Zhang L, Lowery FJ, Kuo WL, Xiao Y, Ensor J, Sahin AA, Zhang XHF, Hung MC, Zhang JD, Yu D. 14-3-3ζ turns TGF-β's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell 2015; 27:177-92. [PMID: 25670079 PMCID: PMC4325275 DOI: 10.1016/j.ccell.2014.11.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/10/2014] [Accepted: 11/24/2014] [Indexed: 12/01/2022]
Abstract
Transforming growth factor β (TGF-β) functions as a tumor suppressor in premalignant cells but as a metastasis promoter in cancer cells. The dichotomous functions of TGF-β are proposed to be dictated by different partners of its downstream effector Smads. However, the mechanism for the contextual changes of Smad partners remained undefined. Here, we demonstrate that 14-3-3ζ destabilizes p53, a Smad partner in premalignant mammary epithelial cells, by downregulating 14-3-3σ, thus turning off TGF-β's tumor suppression function. Conversely, 14-3-3ζ stabilizes Gli2 in breast cancer cells, and Gli2 partners with Smads to activate PTHrP and promote TGF-β-induced bone metastasis. The 14-3-3ζ-driven contextual changes of Smad partners from p53 to Gli2 may serve as biomarkers and therapeutic targets of TGF-β-mediated cancer progression.
Collapse
Affiliation(s)
- Jia Xu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sunil Acharya
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Ozgur Sahin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingling Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yohei Saito
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lin Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Frank J Lowery
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Wen-Ling Kuo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joe Ensor
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan
| | - Jitao David Zhang
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche, Ltd., 4070 Basel, Switzerland
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Abstract
TGF-β/SMAD signaling has long been known to exhibit a dual role in cancer, questioning what determines its context-dependent functions. In this issue of Cancer Cell, Xu and colleagues describe a critical role of the adaptor protein 14-3-3ζ in modulating SMAD activities by changing its interaction partners during breast cancer progression.
Collapse
Affiliation(s)
- Peter ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, the Netherlands; Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, 75124 Uppsala, Sweden.
| | - Hans van Dam
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, the Netherlands; Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, 75124 Uppsala, Sweden
| |
Collapse
|
42
|
Li C, Bai J, Hao X, Zhang S, Hu Y, Zhang X, Yuan W, Hu L, Cheng T, Zetterberg A, Lee MH, Zhang J. Multi-gene fluorescence in situ hybridization to detect cell cycle gene copy number aberrations in young breast cancer patients. Cell Cycle 2014; 13:1299-305. [PMID: 24621502 DOI: 10.4161/cc.28201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a disease of cell cycle, and the dysfunction of cell cycle checkpoints plays a vital role in the occurrence and development of breast cancer. We employed multi-gene fluorescence in situ hybridization (M-FISH) to investigate gene copy number aberrations (CNAs) of 4 genes (Rb1, CHEK2, c-Myc, CCND1) that are involved in the regulation of cell cycle, in order to analyze the impact of gene aberrations on prognosis in the young breast cancer patients. Gene copy number aberrations of these 4 genes were more frequently observed in young breast cancer patients when compared with the older group. Further, these CNAs were more frequently seen in Luminal B type, Her2 overexpression, and tiple-negative breast cancer (TNBC) type in young breast cancer patients. The variations of CCND1, Rb1, and CHEK2 were significantly correlated with poor survival in the young breast cancer patient group, while the amplification of c-Myc was not obviously correlated with poor survival in young breast cancer patients. Thus, gene copy number aberrations (CNAs) of cell cycle-regulated genes can serve as an important tool for prognosis in young breast cancer patients.
Collapse
Affiliation(s)
- Chunyan Li
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| | - Jingchao Bai
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| | - Xiaomeng Hao
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| | - Sheng Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| | - Yunhui Hu
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| | - Xiaobei Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| | - Weiping Yuan
- Beijing Union Medical College Institute of Hematology and Blood Diseases Hospital; Chinese Academy of Medical Sciences; Tianjin, People's Republic of China
| | - Linping Hu
- Beijing Union Medical College Institute of Hematology and Blood Diseases Hospital; Chinese Academy of Medical Sciences; Tianjin, People's Republic of China
| | - Tao Cheng
- Beijing Union Medical College Institute of Hematology and Blood Diseases Hospital; Chinese Academy of Medical Sciences; Tianjin, People's Republic of China
| | - Anders Zetterberg
- Clinical Pathology Department of the Karolinska Hospital; Karolinska Institute; Solna, Sweden
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Program in Cancer Biology; The University of Texas Graduate School of Biomedical Sciences at Houston; Houston, TX USA; Program in Genes and Development; The University of Texas Graduate School of Biomedical Sciences at Houston; Houston, TX USA
| | - J Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy; Tianjin Medical University; Ministry of Education; Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin, People's Republic of China
| |
Collapse
|
43
|
Levav-Cohen Y, Goldberg Z, Tan KH, Alsheich-Bartok O, Zuckerman V, Haupt S, Haupt Y. The p53-Mdm2 loop: a critical juncture of stress response. Subcell Biochem 2014; 85:161-86. [PMID: 25201194 DOI: 10.1007/978-94-017-9211-0_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The presence of a functional p53 protein is a key factor for the proper suppression of cancer development. A loss of p53 activity, by mutations or inhibition, is often associated with human malignancies. The p53 protein integrates various stress signals into a growth restrictive cellular response. In this way, p53 eliminates cells with a potential to become cancerous. Being a powerful decision maker, it is imperative that p53 will be activated properly, efficiently and temporarily in response to stress. Equally important is that p53 activation will be extinguished upon recovery from stress, and that improper activation of p53 will be avoided. Failure to achieve these aims is likely to have catastrophic consequences for the organism. The machinery that governs this tight regulation is largely based on the major inhibitor of p53, Mdm2, which both blocks p53 activities and promotes its destabilization. The interplay between p53 and Mdm2 involves a complex network of positive and negative feedback loops. Relief from Mdm2 suppression is required for p53 to be stabilized and activated in response to stress. Protection from Mdm2 entails a concerted action of modifying enzymes and partner proteins. The association of p53 with the PML-nuclear bodies may provide an infrastructure in which this complex regulatory network can be orchestrated. In this chapter we use examples to illustrate the regulatory machinery that drives this network.
Collapse
Affiliation(s)
- Yaara Levav-Cohen
- Lautenberg Center, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhang SN, Pei DS, Zheng JN. The COP9 signalosome subunit 6 (CSN6): a potential oncogene. Cell Div 2013; 8:14. [PMID: 24286178 PMCID: PMC4175502 DOI: 10.1186/1747-1028-8-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/18/2013] [Indexed: 01/11/2023] Open
Abstract
CSN6 is one subunit of the constitutive photomorphogenesis 9 (COP9) signalosome (CSN), which is an evolutionarily conserved multiprotein complex found in plants and animals and originally described as a repressor of light-dependent growth and transcription in Arabidopsis. CSN is homologous to the 19S lid subcomplex of the 26S proteasome, thus it has been postulated to be a regulator of the ubiquitin-proteasome pathway. In mammalian cells, it consists of eight subunits (CSN1-CSN8). Among the CSN subunits, CSN5 and CSN6 are the only two that each contains an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylating activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More and more studies about CSN6 are emerging, and its overexpression is found in many types of cancers. Evidence has shown that CSN6 is a molecule platform between protein degradation and signal transduction. Here, we provide a summary of human CSN6, especially its roles in cancer, hoping that it can lay the groundwork for cancer prevention or therapy.
Collapse
Affiliation(s)
| | - Dong-Sheng Pei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, Jiangsu, P,R, China.
| | | |
Collapse
|
45
|
Flanagan JM, Wilhelm-Benartzi CS, Metcalf M, Kaye SB, Brown R. Association of somatic DNA methylation variability with progression-free survival and toxicity in ovarian cancer patients. Ann Oncol 2013; 24:2813-8. [PMID: 24114859 DOI: 10.1093/annonc/mdt370] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We have addressed whether inter-individual methylation variation in somatic (white blood cells, WBCs) DNA of ovarian cancer patients provides potential for prognostic and/or pharmacoepigenetic stratification. PATIENTS AND METHODS WBC DNA methylation was analysed by bisulphite pyrosequencing at ataxia telangiectasia mutated (ATM), estrogen receptor 1 (ESR1), progesterone receptor (PGR), mutL homologue 1 (MLH1), breast cancer susceptibility gene (BRCA1), secreted frizzled-related protein 1 (SFRP1), stratifin (SFN), retinoic acid receptor beta (RARB) loci and the repetitive element LINE1 in 880 SCOTROC1 trial patients [paclitaxel (Taxol)-carboplatin versus docetaxel (Taxotere)-carboplatin as primary chemotherapy for stage Ic-IV epithelial ovarian cancer]. RESULTS We observed no significant associations (P < 0.005, after correction for multiple testing) for progression-free survival (PFS) using test and validation sets. However, we did identify mean SFN methylation associated with PFS (hazard ratio, HR = 1.01 per 1% increase in methylation, q = 0.028); particularly in the paclitaxel (HR = 1.01, q = 0.006), but not in the docetaxel arm in stratified analyses. Furthermore, higher methylation within the ESR1 gene was associated with CA125 response (odds ratio, OR = 1.06, q = 0.04) and with neuropathy (HR = 0.95, q = 0.002), but only in the paclitaxel arm of the trial. CONCLUSIONS This is the first study linking DNA methylation variability in WBC to clinical outcomes for any tumour type; the data generated on novel prognostic and pharmacoepigenetic DNA methylation biomarkers in the circulation now need independent further evaluation.
Collapse
Affiliation(s)
- J M Flanagan
- Epigenetics Unit, Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London
| | | | | | | | | |
Collapse
|
46
|
Kig C, Beullens M, Beke L, Van Eynde A, Linders JT, Brehmer D, Bollen M. Maternal embryonic leucine zipper kinase (MELK) reduces replication stress in glioblastoma cells. J Biol Chem 2013; 288:24200-12. [PMID: 23836907 DOI: 10.1074/jbc.m113.471433] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK) belongs to the subfamily of AMP-activated Ser/Thr protein kinases. The expression of MELK is very high in glioblastoma-type brain tumors, but it is not clear how this contributes to tumor growth. Here we show that the siRNA-mediated loss of MELK in U87 MG glioblastoma cells causes a G1/S phase cell cycle arrest accompanied by cell death or a senescence-like phenotype that can be rescued by the expression of siRNA-resistant MELK. This cell cycle arrest is mediated by an increased expression of p21(WAF1/CIP1), an inhibitor of cyclin-dependent kinases, and is associated with the hypophosphorylation of the retinoblastoma protein and the down-regulation of E2F target genes. The increased expression of p21 can be explained by the consecutive activation of ATM (ataxia telangiectasia mutated), Chk2, and p53. Intriguingly, the activation of p53 in MELK-deficient cells is not due to an increased stability of p53 but stems from the loss of MDMX (mouse double minute-X), an inhibitor of p53 transactivation. The activation of the ATM-Chk2 pathway in MELK-deficient cells is associated with the accumulation of DNA double-strand breaks during replication, as demonstrated by the appearance of γH2AX foci. Replication stress in these cells is also illustrated by an increased number of stalled replication forks and a reduced fork progression speed. Our data indicate that glioblastoma cells have elevated MELK protein levels to better cope with replication stress during unperturbed S phase. Hence, MELK inhibitors hold great potential for the treatment of glioblastomas as such or in combination with DNA-damaging therapies.
Collapse
Affiliation(s)
- Cenk Kig
- Laboratory of Biosignaling and Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
47
|
Aktary Z, Kulak S, Mackey J, Jahroudi N, Pasdar M. Plakoglobin interacts with the transcription factor p53 and regulates the expression of 14-3-3σ. J Cell Sci 2013; 126:3031-42. [PMID: 23687381 DOI: 10.1242/jcs.120642] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plakoglobin (γ-catenin), a constituent of the adherens junction and desmosomes, has signaling capabilities typically associated with tumor/metastasis suppression through mechanisms that remain undefined. To determine the role of plakoglobin during tumorigenesis and metastasis, we expressed plakoglobin in human tongue squamous cell carcinoma (SCC9) cells and compared the mRNA profiles of parental SCC9 cells and their plakoglobin-expressing transfectants (SCC9-PG). We detected several p53-target genes whose levels were altered upon plakoglobin expression. In this study, we identified the p53 regulated tumor suppressor 14-3-3σ as a direct plakoglobin-p53 target gene. Coimmunoprecipitation experiments revealed that plakoglobin and p53 interact, and chromatin immunoprecipitation and electrophoretic mobility shift assays revealed that plakoglobin and p53 associate with the 14-3-3σ promoter. Furthermore, luciferase reporter assays showed that p53 transcriptional activity is increased in the presence of plakoglobin. Finally, knockdown of plakoglobin in MCF-7 cells followed by luciferase assays confirmed that p53 transcriptional activity is enhanced in the presence of plakoglobin. Our data suggest that plakoglobin regulates gene expression in conjunction with p53 and that plakoglobin may regulate p53 transcriptional activity, which may account, in part, for the tumor/metastasis suppressor activity of plakoglobin.
Collapse
Affiliation(s)
- Zackie Aktary
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
48
|
Yoon GM, Kieber JJ. 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. THE PLANT CELL 2013; 25:1016-28. [PMID: 23512855 PMCID: PMC3634674 DOI: 10.1105/tpc.113.110106] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/22/2013] [Accepted: 03/01/2013] [Indexed: 05/19/2023]
Abstract
14-3-3 proteins are a family of conserved phospho-specific binding proteins involved in diverse physiological processes. Plants have large 14-3-3 gene families, and many binding partners have been identified, though relatively few functions have been defined. Here, we demonstrate that 14-3-3 proteins interact with multiple 1-aminocyclopropane-1-carboxylate synthase (ACS) isoforms in Arabidopsis thaliana. ACS catalyzes the generally rate-limiting step in the biosynthesis of the phytohormone ethylene. This interaction increases the stability of the ACS proteins. 14-3-3s also interact with the ETHYLENE-OVERPRODUCER1 (ETO1)/ETO1-LIKE (EOLs), a group of three functionally redundant proteins that are components of a CULLIN-3 E3 ubiquitin ligase that target a subset of the ACS proteins for rapid degradation by the 26S proteasome. In contrast with ACS, the interaction with 14-3-3 destabilizes the ETO1/EOLs. The level of the ETO1/EOLs in vivo plays a role in mediating ACS protein turnover, with increased levels leading to a decrease in ACS protein levels. These studies demonstrate that regulation of ethylene biosynthesis occurs by a mechanism in which 14-3-3 proteins act through a direct interaction and stabilization of ACS and through decreasing the abundance of the ubiquitin ligases that target a subset of ACS proteins for degradation.
Collapse
|
49
|
Shi D, Gu W. Dual Roles of MDM2 in the Regulation of p53: Ubiquitination Dependent and Ubiquitination Independent Mechanisms of MDM2 Repression of p53 Activity. Genes Cancer 2012; 3:240-8. [PMID: 23150757 DOI: 10.1177/1947601912455199] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MDM2 oncogenic protein is the principal cellular antagonist of the p53 tumor suppresser gene. p53 activity needs exquisite control to elicit appropriate responses to differential cellular stress conditions. p53 becomes stabilized and active upon various types of stresses. However, too much p53 is not beneficial to cells and causes lethality. At the steady state, p53 activity needs to be leashed for cell survival. Early studies suggested that the MDM2 oncoprotein negatively regulates p53 activity through the induction of p53 protein degradation. MDM2 serves as an E3 ubiquitin ligase of p53; it catalyzes polyubiquitination and subsequently induces proteasome degradation to downregulate p53 protein level. However, the mechanism by which MDM2 represses p53 is not a single mode. Emerging evidence reveals another cellular location of MDM2-p53 interaction. MDM2 is recruited to chromatin, specifically the p53 responsive promoter regions, in a p53 dependent manner. MDM2 is proposed to directly inhibit p53 transactivity at chromatin. This article provides an overview of the mechanism by which p53 is repressed by MDM2 in both ubiquitination dependent and ubiquitination independent pathways.
Collapse
Affiliation(s)
- Dingding Shi
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | |
Collapse
|
50
|
14-3-3σ expression is associated with poor pathological complete response to neoadjuvant chemotherapy in human breast cancers. Breast Cancer Res Treat 2012; 134:229-36. [PMID: 22315133 DOI: 10.1007/s10549-012-1976-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
14-3-3σ is a tumor suppressor gene induced by p53 in response to DNA damage and reportedly associated with resistance to chemotherapy. The aim of this study was to investigate whether 14-3-3σ expression is also associated with resistance to neoadjuvant chemotherapy consisting of paclitaxel followed by 5-FU/epirubicin/cyclophosphamide (P-FEC) in human breast cancer patients. A total of 123 primary breast cancer patients treated with neoadjuvant chemotherapy (P-FEC) were included in this study. Immunohistochemistry of 14-3-3σ and p53 as well as direct sequencing of TP53 were performed using the tumor biopsy samples obtained prior to neoadjuvant chemotherapy. Thirty-eight of the tumors (31%) were positive for 14-3-3σ. There was no significant association between 14-3-3σ expression and TP53 mutation or p53 expression. However, 14-3-3σ expression showed a significantly (P=0.009) negative association with pathological complete response (pCR) to P-FEC, and multivariate analysis demonstrated that only 14-3-3σ (P=0.015) and estrogen receptor (P=0.021) were significantly and independently associated with pCR. The combination of 14-3-3σ expression and TP53 mutation status had an additive negative effect on pCR, i.e., pCR rates were 45.5% for 14-3-3σ negative/TP53 mutant tumors, 24.6% for 14-3-3σ negative/TP53 wild tumors, 23.1% for 14-3-3σ positive/TP53 mutant tumors, and 0% for 14-3-3σ positive/TP53 wild tumors. These results demonstrate that 14-3-3σ expression is significantly associated with resistance to P-FEC and this association is independent of other biological markers. The combination of 14-3-3σ expression and TP53 mutation status has an additively negative effect on the response to P-FEC.
Collapse
|