1
|
Rauch DA, Ramos PV, Khanfar M, Harding J, Joseph A, Fahad A, Simonson P, Risch I, Griffith O, Griffith M, Ratner L. Single-Cell Transcriptomic Analysis of Kaposi Sarcoma. PLoS Pathog 2025; 21:e1012233. [PMID: 40168402 PMCID: PMC11984749 DOI: 10.1371/journal.ppat.1012233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 04/10/2025] [Accepted: 11/25/2024] [Indexed: 04/03/2025] Open
Abstract
Kaposi Sarcoma (KS) is a complex tumor caused by KS-associated herpesvirus 8 (KSHV). Histological analysis reveals a mixture of "spindle cells", vascular-like spaces, extravasated erythrocytes, and immune cells. In order to elucidate the infected and uninfected cell types in KS tumors, we examined twenty-five skin and blood samples from sixteen subjects by single cell RNA sequence analyses. Two populations of KSHV-infected cells were identified, one of which represented a CD34-negative proliferative fraction of endothelial cells, and the second representing CD34-positive cells expressing endothelial genes found in a variety of cell types including high endothelial venules, fenestrated capillaries, and endothelial tip cells. Although both infected clusters contained cells expressing lytic and latent KSHV genes, the CD34+ cells expressed more K5 and less K12. Novel cellular biomarkers were identified in the KSHV infected cells, including the sodium channel SCN9A. The number of KSHV positive cells was found to be less than 10% of total tumor cells in all samples and correlated inversely with tumor-infiltrating immune cells. T-cell receptor clones were expanded in KS tumors and blood, although in differing magnitudes. Changes in cellular composition in KS tumors after treatment with antiretroviral therapy alone, or immunotherapy were noted. These studies demonstrate the feasibility of single cell analyses to identify prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Daniel A. Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Paula Valiño Ramos
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Mariam Khanfar
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - John Harding
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Anam Fahad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Paul Simonson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Isabel Risch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Obi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| |
Collapse
|
2
|
Lacunza E, Fink V, Naipauer J, Salas ME, Gun AM, Goldman MJ, Zhu J, Williams S, Figueroa MI, Cahn P, Coso O, Cesarman E, Ramos JC, Abba MC. Integrative Functional Genomics Analysis of Kaposi Sarcoma Cohorts. RESEARCH SQUARE 2025:rs.3.rs-6146471. [PMID: 40162228 PMCID: PMC11952665 DOI: 10.21203/rs.3.rs-6146471/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Kaposi sarcoma (KS) is an AIDS-defining cancer and a significant global health challenge caused by KS-associated herpesvirus (KSHV). NGS-based approaches have profiled KS lesions in a minimal number of studies compared with other neoplastic diseases. Here we present a compiled and harmonized dataset of 131 KS and non-tumor cutaneous samples in the context of their predicted pathway activities, immune infiltrate, KSHV and HIV gene expression profiles, and their associated clinical data representing patient populations from Argentina, United States (USA), and Sub-Saharan Africa cohorts. RNA-seq data from 9 Argentinian KS lesions were generated and integrated with previously published datasets derived from the USA and sub-Saharan African cohorts from Tanzania, Zambia, and Uganda. An unsupervised analysis of 131 KS-related samples allowed us to identify four KS clusters based on their host and KSHV gene expression profiles, immune infiltrate, and the activity of specific signaling pathways. The compiled RNA-seq profile is shared with the research community through the UCSC Xena browser for further visualization, download, and analysis (https://kaposi.xenahubs.net/). These resources will allow biologists without bioinformatics knowledge to explore and correlate the host and viral transcriptome in a curated dataset of different KS RNA-seq-based cohorts, which can lead to novel biological insights and biomarker discovery.
Collapse
Affiliation(s)
| | - Valeria Fink
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Julian Naipauer
- Instituto de Fisiología (IFIBYNE), Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | | | - Ana M Gun
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Mary J Goldman
- UC Santa Cruz Genomics Institute, University of California
| | - Jingchun Zhu
- UC Santa Cruz Genomics Institute, University of California
| | | | - María I Figueroa
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Pedro Cahn
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Omar Coso
- Instituto de Fisiología (IFIBYNE), Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
3
|
Sgadari C, Scoppio B, Picconi O, Tripiciano A, Gaiani FM, Francavilla V, Arancio A, Campagna M, Palladino C, Moretti S, Monini P, Brambilla L, Ensoli B. Clinical Efficacy of the HIV Protease Inhibitor Indinavir in Combination with Chemotherapy for Advanced Classic Kaposi Sarcoma Treatment: A Single-Arm, Phase II Trial in the Elderly. CANCER RESEARCH COMMUNICATIONS 2024; 4:2112-2122. [PMID: 39028943 PMCID: PMC11324028 DOI: 10.1158/2767-9764.crc-24-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/04/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Kaposi sarcoma is a rare angioproliferative disease associated with human herpes virus-8 (HHV-8) infection. Kaposi sarcoma is frequent and aggressive in HIV-infected people, whereas the classic form (CKS) generally has an indolent course. Notably, all conventional therapies against Kaposi sarcoma have only temporary efficacy. We have previously shown that indinavir, a HIV protease-inhibitor with direct antiangiogenic and antitumor activity, is safe and effective in patients with early CKS, whereas effects are less prominent in advanced disease, probably due to the larger tumor mass. Therefore, the clinical response to indinavir was assessed in patients with advanced CKS after debulking chemotherapy. This was a monocentric phase 2 trial in elderly with progressive/advanced CKS treated with debulking chemotherapy and indinavir combined, followed by a maintenance phase with indinavir alone. Secondary endpoints included safety and Kaposi sarcoma biomarker evaluation.All evaluable patients (22) responded to debulking therapy. Out of these, 16 entered the indinavir maintenance phase. The overall response rate at end of maintenance was 75% (estimated median response-duration 43 months). Moreover, most responders showed further clinical improvements (lesion number/nodularity) during maintenance and post-treatment follow-up. Notably, after relapse, progressors did not require systemic Kaposi sarcoma therapy and showed clinical improvements (including disease stabilization) remaining on study. Responders also showed immune status amelioration with a consistent B-cell increase and positive changes of other biomarkers, including anti-HHV-8 natural killer activity. In advanced CKS a strategy combining indinavir and chemotherapy is safe and associated with high and durable response rates and it could be rapidly adopted for the clinical management of these patients. SIGNIFICANCE This phase-2 trial showed that the HIV protease inhibitor indinavir may boost and extend the duration of the effects of chemotherapy in elderly with advanced progressive classic Kaposi sarcoma, without additional toxicity. Further, the amelioration of the immune status seen in responders suggests a better control of HHV-8 infection and tumor-cell killing. Thus, indinavir combined with chemotherapy may represent an important tool for the clinical management of classic Kaposi sarcoma in elderly patients.
Collapse
Affiliation(s)
- Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | - Biancamaria Scoppio
- Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Francesca Maria Gaiani
- Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | | | - Angela Arancio
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | - Massimo Campagna
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | - Clelia Palladino
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | - Lucia Brambilla
- Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
4
|
Rauch DA, Ramos PV, Khanfar M, Harding J, Joseph A, Griffith O, Griffith M, Ratner L. Single-Cell Transcriptomic Analysis of Kaposi Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592010. [PMID: 38746135 PMCID: PMC11092626 DOI: 10.1101/2024.05.01.592010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Kaposi Sarcoma (KS) is a complex tumor caused by KS-associated herpesvirus 8 (KSHV). Histological analysis reveals a mixture of "spindle cells", vascular-like spaces, extravasated erythrocytes, and immune cells. In order to elucidate the infected and uninfected cell types in KS tumors, we examined skin and blood samples from twelve subjects by single cell RNA sequence analyses. Two populations of KSHV-infected cells were identified, one of which represented a proliferative fraction of lymphatic endothelial cells, and the second represented an angiogenic population of vascular endothelial tip cells. Both infected clusters contained cells expressing lytic and latent KSHV genes. Novel cellular biomarkers were identified in the KSHV infected cells, including the sodium channel SCN9A. The number of KSHV positive tumor cells was found to be in the 6% range in HIV-associated KS, correlated inversely with tumor-infiltrating immune cells, and was reduced in biopsies from HIV-negative individuals. T-cell receptor clones were expanded in KS tumors and blood, although in differing magnitudes. Changes in cellular composition in KS tumors were identified in subjects treated with antiretroviral therapy alone, or immunotherapy. These studies demonstrate the feasibility of single cell analyses to identify prognostic and predictive biomarkers. Author Summary Kaposi sarcoma (KS) is a malignancy caused by the KS-associated herpesvirus (KSHV) that causes skin lesions, and may also be found in lymph nodes, lungs, gastrointestinal tract, and other organs in immunosuppressed individuals more commonly than immunocompetent subjects. The current study examined gene expression in single cells from the tumor and blood of these subjects, and identified the characteristics of the complex mixtures of cells in the tumor. This method also identified differences in KSHV gene expression in different cell types and associated cellular genes expressed in KSHV infected cells. In addition, changes in the cellular composition could be elucidated with therapeutic interventions.
Collapse
|
5
|
Yogev Y, Schaffer M, Shlapobersky M, Jean MM, Wormser O, Drabkin M, Halperin D, Kassem R, Livoff A, Tsitrina AA, Asna N, Birk OS. A role of BPTF in viral oncogenicity delineated through studies of heritable Kaposi sarcoma. J Med Virol 2024; 96:e29436. [PMID: 38380509 DOI: 10.1002/jmv.29436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Kaposi sarcoma (KS), caused by Herpesvirus-8 (HHV-8; KSHV), shows sporadic, endemic, and epidemic forms. While familial clustering of KS was previously recorded, the molecular basis of hereditary predilection to KS remains largely unknown. We demonstrate through genetic studies that a dominantly inherited missense mutation in BPTF segregates with a phenotype of classical KS in multiple immunocompetent individuals in two families. Using an rKSHV.219-infected CRISPR/cas9-model, we show that BPTFI2012T mutant cells exhibit higher latent-to-lytic ratio, decreased virion production, increased LANA staining, and latent phenotype in viral transcriptomics. RNA-sequencing demonstrated that KSHV infection dysregulated oncogenic-like response and P53 pathways, MAPK cascade, and blood vessel development pathways, consistent with KS. BPTFI2012T also enriched pathways of viral genome regulation and replication, immune response, and chemotaxis, including downregulation of IFI16, SHFL HLAs, TGFB1, and HSPA5, all previously associated with KSHV infection and tumorigenesis. Many of the differentially expressed genes are regulated by Rel-NF-κB, which regulates immune processes, cell survival, and proliferation and is pivotal to oncogenesis. We thus demonstrate BPTF mutation-mediated monogenic hereditary predilection of KSHV virus-induced oncogenesis, and suggest BPTF as a drug target.
Collapse
Affiliation(s)
- Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Moshe Schaffer
- Department of Oncology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Mark Shlapobersky
- Department of Pathology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Matan M Jean
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Max Drabkin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Riad Kassem
- Department of Dermatology, Sheba Medical Center, Ramat Gan, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alejandro Livoff
- Department of Pathology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Department of Pathology, Galilee Medical Center, and The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Alexandra A Tsitrina
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Noam Asna
- Department of Oncology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Genetics Institute, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
6
|
Zhang P, Wang J, Zhang X, Wang X, Jiang L, Gu X. Identification of AIDS-Associated Kaposi Sarcoma: A Functional Genomics Approach. Front Genet 2020; 10:1376. [PMID: 32038721 PMCID: PMC6992650 DOI: 10.3389/fgene.2019.01376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Kaposi sarcoma-associated herpes virus (KSHV) is one of the most common causal agents of Kaposi Sarcoma (KS) in individuals with HIV-infections. The virus has gained attention over the past few decades due to its remarkable pathogenic mechanisms. A group of genes, ORF71, ORF72, and ORF73, are expressed as polycistronic mRNAs and the functions of ORF71 and ORF72 in KSHV are already reported in the literature. However, the function of ORF73 has remained a mystery. The aim of this study is to conduct comprehensive exploratory experiments to clarify the role of ORF73 in KSHV pathology and discover markers of AIDS-associated KSHV-induced KS by bioinformatic approaches. METHODS AND RESULTS We searched for homologues of ORF-73 and attempted to predict protein-protein interactions (PPI) based on GeneCards and UniProtKB, utilizing Position-Specific Iterated BLAST (PSI-BLAST). We applied Gene Ontology (GO) and KEGG pathway analyses to identify highly conserved regions between ORF-73 and p53to help us identify potential markers with predominant hits and interactions in the KEGG pathway associated with host apoptosis and cell arrest. The protein p53 is selected because it is an important tumor suppressor antigen. To identify the potential roles of the candidate markers at the molecular level, we used PSIPRED keeping the conserved domains as the major parameters to predict secondary structures. We based the FUGE interpretation consolidations of the sequence-structure comparisons on distance homology, where the score for the amino acids matching the insertion/deletion (indels) detected were based on structures compared to the FUGE database of structural profiles. We also calculated the compatibility scores of sequence alignments accordingly. Based on the PSI-BLAST homologues, we checked the disordered structures predicted using PSI-Pred and DISO-Pred for developing a hidden Markov model (HMM). We further applied these HMMs models based on the alignment of constructed 3D models between the known structure and the HMM of our sequence. Moreover, stable homology and structurally conserved domains confirmed that ORF-73 maybe an important prognostic marker for AIDS-associated KS. CONCLUSION Collectively, similar variants of ORF-73 markers involved in the immune response may interact with targeted host proteins as predicted by our computational analysis. This work also suggests the existence of potential conformational changes that need to be further explored to help elucidate the role of immune signaling during KS towards the development of therapeutic applications.
Collapse
Affiliation(s)
- Peng Zhang
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Public Health, Shanghai General Practice Medical Education and Research Center, Shanghai, China
| | - Jiafeng Wang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhang
- Department of Implant Dentistry, Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaolan Wang
- College of Nursing and Health Management, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Liying Jiang
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
7
|
Chen J, Dai L, Goldstein A, Zhang H, Tang W, Forrest JC, Post SR, Chen X, Qin Z. Identification of new antiviral agents against Kaposi's sarcoma-associated herpesvirus (KSHV) by high-throughput drug screening reveals the role of histamine-related signaling in promoting viral lytic reactivation. PLoS Pathog 2019; 15:e1008156. [PMID: 31790497 PMCID: PMC6907871 DOI: 10.1371/journal.ppat.1008156] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/12/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human cancers, such as Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). Current treatment options for KSHV infection and virus associated diseases are sometimes ineffective, therefore, more effectively antiviral agents are urgently needed. As a herpesvirus, lytic replication is critical for KSHV pathogenesis and oncogenesis. In this study, we have established a high-throughput screening assay by using an inducible KSHV+ cell-line, iSLK.219. After screening a compound library that consisted of 1280 Food and Drug Administration (FDA)-approved drugs, 15 hit compounds that effectively inhibited KSHV virion production were identified, most of which have never been reported with anti-KSHV activities. Interestingly, 3 of these drugs target histamine receptors or signaling. Our data further confirmed that antagonists targeting different histamine receptors (HxRs) displayed excellent inhibitory effects on KSHV lytic replication from induced iSLK.219 or BCBL-1 cells. In contrast, histamine and specific agonists of HxRs promoted viral lytic replication from induced iSLK.219 or KSHV-infected primary cells. Mechanistic studies indicated that downstream MAPK and PI3K/Akt signaling pathways were required for histamine/receptors mediated promotion of KSHV lytic replication. Direct knockdown of HxRs in iSLK.219 cells effectively blocked viral lytic gene expression during induction. Using samples from a cohort of HIV+ patients, we found that the KSHV+ group has much higher levels of histamine in their plasma and saliva than the KSHV- group. Taken together, our data have identified new anti-KSHV agents and provided novel insights into the molecular bases of host factors that contribute to lytic replication and reactivation of this oncogenic herpesvirus.
Collapse
Affiliation(s)
- Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Alana Goldstein
- Departments of Diagnostic Sciences, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Haiwei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, China
| | - Wei Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, China
| | - J. Craig Forrest
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Steven R. Post
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Xulin Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, China
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- * E-mail: (XC); (ZQ)
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (XC); (ZQ)
| |
Collapse
|
8
|
Javadi S, Menias CO, Karbasian N, Shaaban A, Shah K, Osman A, Jensen CT, Lubner MG, Gaballah AH, Elsayes KM. HIV-related Malignancies and Mimics: Imaging Findings and Management. Radiographics 2018; 38:2051-2068. [PMID: 30339518 DOI: 10.1148/rg.2018180149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The risk of developing malignancy is higher in patients with human immunodeficiency virus (HIV) infection than in non-HIV-infected patients. Several factors including immunosuppression, viral coinfection, and high-risk lifestyle choices lead to higher rates of cancer in the HIV-infected population. A subset of HIV-related malignancies are considered to be acquired immunodeficiency syndrome (AIDS)-defining malignancies, as their presence confirms the diagnosis of AIDS in an HIV-infected patient. The introduction of highly active antiretroviral therapy (HAART) has led to a significant drop in the rate of AIDS-defining malignancies, including Kaposi sarcoma, non-Hodgkin lymphoma, and invasive cervical carcinoma. However, non-AIDS-defining malignancies (eg, Hodgkin lymphoma, lung cancer, hepatocellular carcinoma, and head and neck cancers) now account for an increasing number of cancer cases diagnosed in HIV-infected patients. Although the number has decreased, AIDS-defining malignancies account for 15%-19% of all deaths in HIV-infected patients in the post-HAART era. Most HIV-related malignancies in HIV-infected patients manifest at an earlier age with a more aggressive course than that of non-HIV-related malignancies. Understanding common HIV-related malignancies and their specific imaging features is crucial for making an accurate and early diagnosis, which impacts management. Owing to the weakened immune system of HIV-infected patients, other entities such as various infections, particularly opportunistic infections, are prevalent in these patients. These processes can have confounding clinical and imaging manifestations that mimic malignancy. This article reviews the most common AIDS-defining and non-AIDS-defining malignancies, the role of imaging in their diagnosis, and the imaging mimics of malignancies in HIV-infected patients. ©RSNA, 2018.
Collapse
Affiliation(s)
- Sanaz Javadi
- From the Departments of Diagnostic Radiology (S.J., K.S., A.O., C.T.J., K.M.E.) and Interventional Radiology (N.K.), University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030; Department of Diagnostic Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.); Department of Radiology, University of Utah, Salt Lake City, Utah (A.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Department of Radiology, University of Missouri Health Care, Columbia, Mo (A.H.G.)
| | - Christine O Menias
- From the Departments of Diagnostic Radiology (S.J., K.S., A.O., C.T.J., K.M.E.) and Interventional Radiology (N.K.), University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030; Department of Diagnostic Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.); Department of Radiology, University of Utah, Salt Lake City, Utah (A.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Department of Radiology, University of Missouri Health Care, Columbia, Mo (A.H.G.)
| | - Niloofar Karbasian
- From the Departments of Diagnostic Radiology (S.J., K.S., A.O., C.T.J., K.M.E.) and Interventional Radiology (N.K.), University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030; Department of Diagnostic Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.); Department of Radiology, University of Utah, Salt Lake City, Utah (A.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Department of Radiology, University of Missouri Health Care, Columbia, Mo (A.H.G.)
| | - Akram Shaaban
- From the Departments of Diagnostic Radiology (S.J., K.S., A.O., C.T.J., K.M.E.) and Interventional Radiology (N.K.), University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030; Department of Diagnostic Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.); Department of Radiology, University of Utah, Salt Lake City, Utah (A.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Department of Radiology, University of Missouri Health Care, Columbia, Mo (A.H.G.)
| | - Komal Shah
- From the Departments of Diagnostic Radiology (S.J., K.S., A.O., C.T.J., K.M.E.) and Interventional Radiology (N.K.), University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030; Department of Diagnostic Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.); Department of Radiology, University of Utah, Salt Lake City, Utah (A.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Department of Radiology, University of Missouri Health Care, Columbia, Mo (A.H.G.)
| | - Adam Osman
- From the Departments of Diagnostic Radiology (S.J., K.S., A.O., C.T.J., K.M.E.) and Interventional Radiology (N.K.), University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030; Department of Diagnostic Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.); Department of Radiology, University of Utah, Salt Lake City, Utah (A.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Department of Radiology, University of Missouri Health Care, Columbia, Mo (A.H.G.)
| | - Corey T Jensen
- From the Departments of Diagnostic Radiology (S.J., K.S., A.O., C.T.J., K.M.E.) and Interventional Radiology (N.K.), University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030; Department of Diagnostic Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.); Department of Radiology, University of Utah, Salt Lake City, Utah (A.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Department of Radiology, University of Missouri Health Care, Columbia, Mo (A.H.G.)
| | - Meghan G Lubner
- From the Departments of Diagnostic Radiology (S.J., K.S., A.O., C.T.J., K.M.E.) and Interventional Radiology (N.K.), University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030; Department of Diagnostic Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.); Department of Radiology, University of Utah, Salt Lake City, Utah (A.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Department of Radiology, University of Missouri Health Care, Columbia, Mo (A.H.G.)
| | - Ayman H Gaballah
- From the Departments of Diagnostic Radiology (S.J., K.S., A.O., C.T.J., K.M.E.) and Interventional Radiology (N.K.), University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030; Department of Diagnostic Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.); Department of Radiology, University of Utah, Salt Lake City, Utah (A.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Department of Radiology, University of Missouri Health Care, Columbia, Mo (A.H.G.)
| | - Khaled M Elsayes
- From the Departments of Diagnostic Radiology (S.J., K.S., A.O., C.T.J., K.M.E.) and Interventional Radiology (N.K.), University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030; Department of Diagnostic Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.); Department of Radiology, University of Utah, Salt Lake City, Utah (A.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Department of Radiology, University of Missouri Health Care, Columbia, Mo (A.H.G.)
| |
Collapse
|
9
|
Zhang Y, Li LF, Munir M, Qiu HJ. RING-Domain E3 Ligase-Mediated Host-Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses. Front Immunol 2018; 9:1083. [PMID: 29872431 PMCID: PMC5972323 DOI: 10.3389/fimmu.2018.01083] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023] Open
Abstract
The RING-domain E3 ligases (RING E3s), a group of E3 ligases containing one or two RING finger domains, are involved in various cellular processes such as cell proliferation, immune regulation, apoptosis, among others. In the host, a substantial number of the RING E3s have been implicated to inhibit viral replication through regulating immune responses, including activation and inhibition of retinoic acid-inducible gene I-like receptors, toll-like receptors, and DNA receptor signaling pathways, modulation of cell-surface expression of major histocompatibility complex, and co-stimulatory molecules. During the course of evolution and adaptation, viruses encode RING E3s to antagonize host immune defense, such as the infected cell protein 0 of herpes simplex virus type 1, the non-structural protein 1 of rotavirus, and the K3 and K5 of Kaposi’s sarcoma-associated herpesvirus. In addition, recent studies suggest that viruses can hijack the host RING E3s to facilitate viral replication. Based on emerging and interesting discoveries, the RING E3s present novel links among the host and viruses. Herein, we focus on the latest research progresses in the RING E3s-mediated host–virus interactions and discuss the outlooks of the RING E3s for future research.
Collapse
Affiliation(s)
- Yuexiu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lian-Feng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, City of Lancaster, United Kingdom
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
10
|
Gao H, Song Y, Liu C, Liang Q. KSHV strategies for host dsDNA sensing machinery. Virol Sin 2016; 31:466-471. [PMID: 27933565 DOI: 10.1007/s12250-016-3877-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
The innate immune system utilizes pattern recognition receptors cyclic GMP-AMP synthase (cGAS) to sense cytosolic double-stranded (ds) DNA and initiate type 1 interferon signaling and autophagy pathway, which collaborate to limit pathogen infections as well as alarm the adaptive immune response. The genomes of herpesviruses are large dsDNA, which represent a major class of pathogen signatures recognized by cellular DNA sensor cGAS. However, to successfully establish the persistent infection, herpesviruses have evolved their viral genes to modulate different aspects of host immune signaling. This review summarizes the evasion strategies of host cGAS DNA sensing pathway by Kaposi's Sarcoma-associated Herpesvirus (KSHV) and their contributions to KSHV life cycles.
Collapse
Affiliation(s)
- Hang Gao
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yanyan Song
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Chengrong Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiming Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
11
|
Quistad SD, Lim YW, Silva GGZ, Nelson CE, Haas AF, Kelly LW, Edwards RA, Rohwer FL. Using viromes to predict novel immune proteins in non-model organisms. Proc Biol Sci 2016; 283:20161200. [PMID: 27581878 PMCID: PMC5013795 DOI: 10.1098/rspb.2016.1200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022] Open
Abstract
Immunity is mostly studied in a few model organisms, leaving the majority of immune systems on the planet unexplored. To characterize the immune systems of non-model organisms alternative approaches are required. Viruses manipulate host cell biology through the expression of proteins that modulate the immune response. We hypothesized that metagenomic sequencing of viral communities would be useful to identify both known and unknown host immune proteins. To test this hypothesis, a mock human virome was generated and compared to the human proteome using tBLASTn, resulting in 36 proteins known to be involved in immunity. This same pipeline was then applied to reef-building coral, a non-model organism that currently lacks traditional molecular tools like transgenic animals, gene-editing capabilities, and in vitro cell cultures. Viromes isolated from corals and compared with the predicted coral proteome resulted in 2503 coral proteins, including many proteins involved with pathogen sensing and apoptosis. There were also 159 coral proteins predicted to be involved with coral immunity but currently lacking any functional annotation. The pipeline described here provides a novel method to rapidly predict host immune components that can be applied to virtually any system with the potential to discover novel immune proteins.
Collapse
Affiliation(s)
- Steven D Quistad
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Yan Wei Lim
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Genivaldo Gueiros Z Silva
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Craig E Nelson
- Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, HI 96822, USA
| | - Andreas F Haas
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Linda Wegley Kelly
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Robert A Edwards
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Forest L Rohwer
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| |
Collapse
|
12
|
Genome-Wide Mapping of the Binding Sites and Structural Analysis of Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 2 Reveal that It Is a DNA-Binding Transcription Factor. J Virol 2015; 90:1158-68. [PMID: 26537687 DOI: 10.1128/jvi.01392-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/14/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The oncogenic herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is known to encode four viral interferon regulatory factors (vIRF1 to -4) to subvert the host antiviral immune response, but their detailed DNA-binding profiles as transcription factors in the host remain uncharacterized. Here, we first performed genome-wide vIRF2-binding site mapping in the human genome using chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq). vIRF2 was capable of binding to the promoter regions of 100 putative target genes. Importantly, we confirmed that vIRF2 can specifically interact with the promoters of the genes encoding PIK3C3, HMGCR, and HMGCL, which are associated with autophagosome formation or tumor progression and metastasis, and regulate their transcription in vivo. The crystal structure of the vIRF2 DNA-binding domain (DBD) (referred to here as vIRF2DBD) showed variable loop conformations and positive-charge distributions different from those of vIRF1 and cellular IRFs that are associated with DNA-binding specificities. Structure-based mutagenesis revealed that Arg82 and Arg85 are required for the in vitro DNA-binding activity of vIRF2DBD and can abolish the transcription regulation function of vIRF2 on the promoter reporter activity of PIK3C3, HMGCR, and HMGCL. Collectively, our study provided unique insights into the DNA-binding potency of vIRF2 and suggested that vIRF2 could act as a transcription factor of its target genes in the host antiviral immune response. IMPORTANCE The oncogenic herpesvirus KSHV is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. KSHV has developed a unique mechanism to subvert the host antiviral immune responses by encoding four homologues of cellular interferon regulatory factors (vIRF1 to -4). However, none of their DNA-binding profiles in the human genome have been characterized until now, and the structural basis for their diverse DNA-binding properties remain poorly understood. In this study, we performed the first genome-wide vIRF2-binding site mapping in the human genome and found vIRF2 can bind to the promoter regions of 100 target cellular genes. X-ray structure analysis and functional studies provided unique insights into its DNA-binding potency and regulation of target gene expression. Our study suggested that vIRF2 could act as a transcription factor of its target genes and contribute to KSHV infection and pathogenesis through versatile functions.
Collapse
|
13
|
Sousa-Squiavinato ACM, Silvestre RN, Elgui De Oliveira D. Biology and oncogenicity of the Kaposi sarcoma herpesvirus K1 protein. Rev Med Virol 2015; 25:273-85. [PMID: 26192396 DOI: 10.1002/rmv.1843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 12/30/2022]
Abstract
The Kaposi sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, is a gammaherpesvirus etiologically linked to the development of Kaposi sarcoma, primary effusion lymphomas, and multicentric Castleman disease in humans. KSHV is unique among other human herpesviruses because of the elevated number of viral products that mimic human cellular proteins, such as a viral cyclin, a viral G protein-coupled receptor, anti-apoptotic proteins (e.g., v-bcl2 and v-FLIP), viral interferon regulatory factors, and CC chemokine viral homologues. Several KSHV products have oncogenic properties, including the transmembrane K1 glycoprotein. KSHV K1 is encoded in the viral ORFK1, which is the most variable portion of the viral genome, commonly used to discriminate among viral genotypes. The extracellular region of K1 has homology with the light chain of lambda immunoglobulin, and its cytoplasmic region contains an immunoreceptor tyrosine-based activation motif (ITAM). KSHV K1 ITAM activates several intracellular signaling pathways, notably PI3K/AKT. Consequently, K1 expression inhibits proapoptotic proteins and increases the life-span of KSHV-infected cells. Another remarkable effect of K1 activity is the production of inflammatory cytokines and proangiogenic factors, such as vascular endothelial growth factor. KSHV K1 immortalizes primary human endothelial cells and transforms rodent fibroblasts in vitro; moreover, K1 induces tumors in vivo in transgenic mice expressing this viral protein. This review aims to consolidate and discuss the current knowledge on this intriguing KSHV protein, focusing on activities of K1 that can contribute to the pathogenesis of KSHV-associated human cancers.
Collapse
Affiliation(s)
| | - Renata Nacasaki Silvestre
- Viral Carcinogenesis and Cancer Biology Research Group (ViriCan) at Botucatu Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Deilson Elgui De Oliveira
- Viral Carcinogenesis and Cancer Biology Research Group (ViriCan) at Botucatu Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil.,Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
14
|
Interference with the Autophagic Process as a Viral Strategy to Escape from the Immune Control: Lesson from Gamma Herpesviruses. J Immunol Res 2015; 2015:546063. [PMID: 26090494 PMCID: PMC4451563 DOI: 10.1155/2015/546063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/13/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
We summarized the most recent findings on the role of autophagy in antiviral immune response. We described how viruses have developed strategies to subvert the autophagic process. A particular attention has been given to Epstein-Barr and Kaposi's sarcoma associated Herpesvirus, viruses studied for many years in our laboratory. These two viruses belong to γ-Herpesvirus subfamily and are associated with several human cancers. Besides the effects on the immune response, we have described how autophagy subversion by viruses may also concur to the enhancement of their replication and to viral tumorigenesis.
Collapse
|
15
|
Verweij MC, Horst D, Griffin BD, Luteijn RD, Davison AJ, Ressing ME, Wiertz EJHJ. Viral inhibition of the transporter associated with antigen processing (TAP): a striking example of functional convergent evolution. PLoS Pathog 2015; 11:e1004743. [PMID: 25880312 PMCID: PMC4399834 DOI: 10.1371/journal.ppat.1004743] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Herpesviruses are large DNA viruses that are highly abundant within their host populations. Even in the presence of a healthy immune system, these viruses manage to cause lifelong infections. This persistence is partially mediated by the virus entering latency, a phase of infection characterized by limited viral protein expression. Moreover, herpesviruses have devoted a significant part of their coding capacity to immune evasion strategies. It is believed that the close coexistence of herpesviruses and their hosts has resulted in the evolution of viral proteins that specifically attack multiple arms of the host immune system. Cytotoxic T lymphocytes (CTLs) play an important role in antiviral immunity. CTLs recognize their target through viral peptides presented in the context of MHC molecules at the cell surface. Every herpesvirus studied to date encodes multiple immune evasion molecules that effectively interfere with specific steps of the MHC class I antigen presentation pathway. The transporter associated with antigen processing (TAP) plays a key role in the loading of viral peptides onto MHC class I molecules. This is reflected by the numerous ways herpesviruses have developed to block TAP function. In this review, we describe the characteristics and mechanisms of action of all known virus-encoded TAP inhibitors. Orthologs of these proteins encoded by related viruses are identified, and the conservation of TAP inhibition is discussed. A phylogenetic analysis of members of the family Herpesviridae is included to study the origin of these molecules. In addition, we discuss the characteristics of the first TAP inhibitor identified outside the herpesvirus family, namely, in cowpox virus. The strategies of TAP inhibition employed by viruses are very distinct and are likely to have been acquired independently during evolution. These findings and the recent discovery of a non-herpesvirus TAP inhibitor represent a striking example of functional convergent evolution.
Collapse
Affiliation(s)
- Marieke C. Verweij
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniëlle Horst
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bryan D. Griffin
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rutger D. Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrew J. Davison
- MRC—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Maaike E. Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Identification of the Essential Role of Viral Bcl-2 for Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication. J Virol 2015; 89:5308-17. [PMID: 25740994 DOI: 10.1128/jvi.00102-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) evades host defenses through tight suppression of autophagy by targeting each step of its signal transduction: by viral Bcl-2 (vBcl-2) in vesicle nucleation, by viral FLIP (vFLIP) in vesicle elongation, and by K7 in vesicle maturation. By exploring the roles of KSHV autophagy-modulating genes, we found, surprisingly, that vBcl-2 is essential for KSHV lytic replication, whereas vFLIP and K7 are dispensable. Knocking out vBcl-2 from the KSHV genome resulted in decreased lytic gene expression at the mRNA and protein levels, a lower viral DNA copy number, and, consequently, a dramatic reduction in the amount of progeny infectious viruses, as also described in the accompanying article (A. Gelgor, I. Kalt, S. Bergson, K. F. Brulois, J. U. Jung, and R. Sarid, J Virol 89:5298-5307, 2015). More importantly, the antiapoptotic and antiautophagic functions of vBcl-2 were not required for KSHV lytic replication. Using a comprehensive mutagenesis analysis, we identified that glutamic acid 14 (E14) of vBcl-2 is critical for KSHV lytic replication. Mutating E14 to alanine totally blocked KSHV lytic replication but showed little or no effect on the antiapoptotic and antiautophagic functions of vBcl-2. Our study indicates that vBcl-2 harbors at least three important and genetically separable functions to modulate both cellular signaling and the virus life cycle. IMPORTANCE The present study shows for the first time that vBcl-2 is essential for KSHV lytic replication. Removal of the vBcl-2 gene results in a lower level of KSHV lytic gene expression, impaired viral DNA replication, and consequently, a dramatic reduction in the level of progeny production. More importantly, the role of vBcl-2 in KSHV lytic replication is genetically separated from its antiapoptotic and antiautophagic functions, suggesting that the KSHV Bcl-2 carries a novel function in viral lytic replication.
Collapse
|
17
|
Son M, Lee M, Ryu E, Moon A, Jeong CS, Jung YW, Park GH, Sung GH, Cho H, Kang H. Genipin as a novel chemical activator of EBV lytic cycle. J Microbiol 2015; 53:155-65. [DOI: 10.1007/s12275-015-4672-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/22/2022]
|
18
|
KSHV reactivation and novel implications of protein isomerization on lytic switch control. Viruses 2015; 7:72-109. [PMID: 25588053 PMCID: PMC4306829 DOI: 10.3390/v7010072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 12/26/2022] Open
Abstract
In Kaposi’s sarcoma-associated herpesvirus (KSHV) oncogenesis, both latency and reactivation are hypothesized to potentiate tumor growth. The KSHV Rta protein is the lytic switch for reactivation. Rta transactivates essential genes via interactions with cofactors such as the cellular RBP-Jk and Oct-1 proteins, and the viral Mta protein. Given that robust viral reactivation would facilitate antiviral responses and culminate in host cell lysis, regulation of Rta’s expression and function is a major determinant of the latent-lytic balance and the fate of infected cells. Our lab recently showed that Rta transactivation requires the cellular peptidyl-prolyl cis/trans isomerase Pin1. Our data suggest that proline‑directed phosphorylation regulates Rta by licensing binding to Pin1. Despite Pin1’s ability to stimulate Rta transactivation, unchecked Pin1 activity inhibited virus production. Dysregulation of Pin1 is implicated in human cancers, and KSHV is the latest virus known to co-opt Pin1 function. We propose that Pin1 is a molecular timer that can regulate the balance between viral lytic gene expression and host cell lysis. Intriguing scenarios for Pin1’s underlying activities, and the potential broader significance for isomerization of Rta and reactivation, are highlighted.
Collapse
|
19
|
Abstract
Cellular apoptosis is of major importance in the struggle between virus and host. Although many viruses use various strategies to control the cell death machinery by encoding anti-apoptotic virulence factors, it is now becoming clear that, in addition to their role in inhibiting apoptosis, these factors function in multiple immune and metabolic pathways to promote fitness and pathogenesis. In this Progress article, we discuss novel functions of viral anti-apoptotic factors in the regulation of autophagy, in the nuclear factor-κB (NF-κB) pathway and in interferon signalling, with a focus on persistent and oncogenic gammaherpesviruses. If viral anti-apoptotic proteins are to be properly exploited as targets for antiviral drugs, their diverse and complex roles should be considered.
Collapse
Affiliation(s)
- Chengyu Liang
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California 90033, USA
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
20
|
Tacyildiz N, Dincaslan HU, Ozdemir H, Yavuz G, Unal E, Ikinciogullari A, Dogu F, Guloglu D, Suskan E, Kose K. The seroprevalence of Kaposi's sarcoma associated herpes virus and human herpes virus-6 in pediatric patients with cancer and healthy children in a Turkish pediatric oncology center. Indian J Med Paediatr Oncol 2014; 35:221-5. [PMID: 25336794 PMCID: PMC4202619 DOI: 10.4103/0971-5851.142039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Many studies have tried to be establish a pathogenic role for human herpesvirus-6 and -8 (HHV-6, HHV-8) in malignant diseases, but whether these viruses plays a role in these pathologies remains unclear. HHV-6 and HHV-8 seropositivity were shown in a healthy population. There is no published data in Turkey about seroprevalence of these viruses. We aimed to determine the seroprevalence of HHV-6 and HHV-8 in pediatric cancer patients and to compare with healthy Turkish children's viral seroprevalence. PATIENTS AND METHODS Ninety-three pediatric cancer patients and 43 age-matched healthy children were included in the study. All sera were screened for antibodies to HHV-6 and HHV-8 by ELISA. RESULTS HHV-8 immunoglobulin G (IgG) was positive in 3.3% of lymphoma patients, in 4.8% of acute lymphoblastic leukemia (ALL) patients, in 4.8% of retinoblastoma patients and in 7% of healthy children. There was no significant difference in HHV-8 seroprevelance between these groups. HHV-6 seroprevalence was 81% in ALL patients, 70% in lymphoma group, 81% in retinoblastoma patients and 69.8% in healthy children. Although there was no significant difference in HHV-6 prevalence between healthy children and pediatric cancer patients, HHV-6 seropositivity tended to be higher in retinoblastoma patients under age of 4 years (odds ratio: 2.925). CONCLUSION HHV-6 seroprevalence was higher than HHV-8 seropositivity in our study. Viral studies related HHV-6 seroprevelance in retinoblastoma patients would be useful to clarify if there is any etiological association between HHV-6 and retinoblastoma.
Collapse
Affiliation(s)
- Nurdan Tacyildiz
- Department of Pediatrics Oncology, Ankara University Medical School, Ankara, Turkey
| | | | - Halil Ozdemir
- Department of Pediatric Infection Diseases, Ankara University Medical School, Ankara, Turkey
| | - Gulsan Yavuz
- Department of Pediatrics Oncology, Ankara University Medical School, Ankara, Turkey
| | - Emel Unal
- Department of Pediatrics Oncology, Ankara University Medical School, Ankara, Turkey
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology, Ankara University Medical School, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology, Ankara University Medical School, Ankara, Turkey
| | - Deniz Guloglu
- Department of Pediatric Immunology, Ankara University Medical School, Ankara, Turkey
| | - Emine Suskan
- Department of Pediatrics, Ankara University Medical School, Ankara, Turkey
| | - Kenan Kose
- Department of Biostatistics, Ankara University Medical School, Ankara, Turkey
| |
Collapse
|
21
|
Interplay between Kaposi's sarcoma-associated herpesvirus and the innate immune system. Cytokine Growth Factor Rev 2014; 25:597-609. [PMID: 25037686 DOI: 10.1016/j.cytogfr.2014.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/16/2014] [Indexed: 02/04/2023]
Abstract
Understanding of the innate immune response to viral infections is rapidly progressing, especially with regards to the detection of DNA viruses. Kaposi's sarcoma-associated herpesvirus (KSHV) is a large dsDNA virus that is responsible for three human diseases: Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease. The major target cells of KSHV (B cells and endothelial cells) express a wide range of pattern recognition receptors (PRRs) and play a central role in mobilizing inflammatory responses. On the other hand, KSHV encodes an array of immune evasion genes, including several pirated host genes, which interfere with multiple aspects of the immune response. This review summarizes current understanding of innate immune recognition of KSHV and the role of immune evasion genes that shape the antiviral and inflammatory responses.
Collapse
|
22
|
Hu Z, Usherwood EJ. Immune escape of γ-herpesviruses from adaptive immunity. Rev Med Virol 2014; 24:365-78. [PMID: 24733560 DOI: 10.1002/rmv.1791] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/23/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two γ-herpesviruses identified in humans and are strongly associated with the development of malignancies. Murine γ-herpesvirus (MHV-68) is a naturally occurring rodent pathogen, representing a unique experimental model for dissecting γ-herpesvirus infection and the immune response. These γ-herpesviruses actively antagonize the innate and adaptive antiviral responses, thereby efficiently establishing latent or persistent infections and even promoting development of malignancies. In this review, we summarize immune evasion strategies of γ-herpesviruses. These include suppression of MHC-I-restricted and MHC-II-restricted antigen presentation, impairment of dendritic cell functions, downregulation of costimulatory molecules, activation of virus-specific regulatory T cells, and induction of inhibitory cytokines. There is a focus on how both γ-herpesvirus-derived and host-derived immunomodulators interfere with adaptive antiviral immunity. Understanding immune-evasive mechanisms is essential for developing future immunotherapies against EBV-driven and KSHV-driven tumors.
Collapse
Affiliation(s)
- Zhuting Hu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
23
|
Alibek K, Baiken Y, Kakpenova A, Mussabekova A, Zhussupbekova S, Akan M, Sultankulov B. Implication of human herpesviruses in oncogenesis through immune evasion and supression. Infect Agent Cancer 2014; 9:3. [PMID: 24438207 PMCID: PMC3904197 DOI: 10.1186/1750-9378-9-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/07/2014] [Indexed: 12/20/2022] Open
Abstract
All human herpesviruses (HHVs) have been implicated in immune system evasion and suppression. Moreover, two HHV family members, i.e. EBV and KSHV, are recognised as oncogenic viruses. Our literature review summarises additional examples of possible oncogenic mechanisms that have been attributed to other HHVs. In general, HHVs affect almost every cancer-implicated branch of the immune system, namely tumour-promoting inflammation, immune evasion, and immunosuppression. Some HHVs accomplish these effects by inhibiting apoptotic pathways and by promoting proliferation. Mechanisms related to immunosupression and low grade chronic inflammation could eventually result in the initiation and progression of cancer. In this article we open a discussion on the members of Herpesviridae, their immune evasion and suppression mechanisms, and their possible role in cancer development. We conclude that discerning the mechanisms of interplay between HHV, immune system, and cancer is essential for the development of novel preventative and therapeutic approaches for cancer treatment and prophylaxis.
Collapse
Affiliation(s)
| | | | - Ainur Kakpenova
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| | | | | | | | | |
Collapse
|
24
|
The Kaposi's sarcoma-associated herpesvirus (KSHV)-induced 5-lipoxygenase-leukotriene B4 cascade plays key roles in KSHV latency, monocyte recruitment, and lipogenesis. J Virol 2013; 88:2131-56. [PMID: 24335295 DOI: 10.1128/jvi.02786-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). KS lesions are characterized by endothelial cells with multiple copies of the latent KSHV episomal genome, lytic replication in a low percentage of infiltrating monocytes, and inflammatory cytokines plus growth factors. We demonstrated that KSHV utilizes inflammatory cyclooxygenase 2/prostaglandin E2 to establish and maintain latency (Sharma-Walia, N., A. G. Paul, V. Bottero, S. Sadagopan, M. V. Veettil, N. Kerur, and B. Chandran, PLoS Pathog 6:e1000777, 2010 [doi:10.1371/journal.ppat.1000777]). Here, we evaluated the role of 5-lipoxygenase (5LO) and its chemotactic metabolite leukotriene B4 (LTB4) in KSHV biology. Abundant staining of 5LO was detected in human KS tissue sections. We observed elevated levels of 5LO and high levels of secretion of LTB4 during primary KSHV infection of endothelial cells and in PEL B cells (BCBL-1 and BC-3 cells). Blocking the 5LO/LTB4 cascade inhibited viral latent ORF73, immunomodulatory K5, viral macrophage inflammatory protein 1 (MIP-1), and viral MIP-2 gene expression, without much effect on lytic switch ORF50, immediate early lytic K8, and viral interferon-regulatory factor 2 gene expression. 5LO inhibition significantly downregulated latent viral Cyclin and latency-associated nuclear antigen 2 levels in PEL cells. 5LO/LTB4 inhibition downregulated TH2-related cytokine secretion, elevated TH1-related cytokine secretion, and reduced human monocyte recruitment, adhesion, and transendothelial migration. 5LO/LTB4 inhibition reduced fatty acid synthase (FASN) promoter activity and its expression. Since FASN, a key enzyme required in lipogenesis, is important in KSHV latency, these findings collectively suggest that 5LO/LTB4 play important roles in KSHV biology and that effective inhibition of the 5LO/LTB4 pathway could potentially be used in treatment to control KS/PEL.
Collapse
|
25
|
Verma SC, Cai Q, Kreider E, Lu J, Robertson ES. Comprehensive analysis of LANA interacting proteins essential for viral genome tethering and persistence. PLoS One 2013; 8:e74662. [PMID: 24040311 PMCID: PMC3770571 DOI: 10.1371/journal.pone.0074662] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 08/05/2013] [Indexed: 12/12/2022] Open
Abstract
Kaposi’s sarcoma associated herpesvirus is tightly linked to multiple human malignancies including Kaposi’s sarcoma (KS), Primary Effusion Lymphoma (PEL) and Multicentric Castleman’s Disease (MCD). KSHV like other herpesviruses establishes life-long latency in the infected host by persisting as chromatin and tethering to host chromatin through the virally encoded protein Latency Associated Nuclear Antigen (LANA). LANA, a multifunctional protein, is capable of binding to a large number of cellular proteins responsible for transcriptional regulation of various cellular and viral pathways involved in blocking cell death and promoting cell proliferation. This leads to enhanced cell division and replication of the viral genome, which segregates faithfully in the dividing tumor cells. The mechanism of genome segregation is well known and the binding of LANA to nucleosomal proteins, throughout the cell cycle, suggests that these interactions play an important role in efficient segregation. Various biochemical methods have identified a large number of LANA binding proteins, including histone H2A/H2B, histone H1, MeCP2, DEK, CENP-F, NuMA, Bub1, HP-1, and Brd4. These nucleosomal proteins may have various functions in tethering of the viral genome during specific phases of the viral life cycle. Therefore, we performed a comprehensive analysis of their interaction with LANA using a number of different assays. We show that LANA binds to core nucleosomal histones and also associates with other host chromatin proteins including histone H1 and high mobility group proteins (HMGs). We used various biochemical assays including co-immunoprecipitation and in-vivo localization by split GFP and fluorescence resonance energy transfer (FRET) to demonstrate their association.
Collapse
Affiliation(s)
- Subhash C. Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, Nevada, United States of America
- * E-mail: (ESR); (SCV)
| | - Qiliang Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine of Fudan University, Shanghai, China
| | - Edward Kreider
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jie Lu
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (ESR); (SCV)
| |
Collapse
|
26
|
Feng P, Moses A, Früh K. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses. Curr Opin Virol 2013; 3:285-95. [PMID: 23735334 DOI: 10.1016/j.coviro.2013.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/01/2013] [Accepted: 05/14/2013] [Indexed: 01/05/2023]
Abstract
γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies.
Collapse
Affiliation(s)
- Pinghui Feng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
27
|
|
28
|
Dissection of functional sites in herpesvirus saimiri complement control protein homolog. J Virol 2012; 87:282-95. [PMID: 23077301 DOI: 10.1128/jvi.01867-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus saimiri is known to encode a homolog of human complement regulators named complement control protein homolog (CCPH). We have previously reported that this virally encoded inhibitor effectively inactivates complement by supporting factor I-mediated inactivation of complement proteins C3b and C4b (termed cofactor activity), as well as by accelerating the irreversible decay of the classical/lectin and alternative pathway C3 convertases (termed decay-accelerating activity). To fine map its functional sites, in the present study, we have generated a homology model of CCPH and performed substitution mutagenesis of its conserved residues. Functional analyses of 24 substitution mutants of CCPH indicated that (i) amino acids R118 and F144 play a critical role in imparting C3b and C4b cofactor activities, (ii) amino acids R35, K142, and K191 are required for efficient decay of the C3 convertases, (iii) positively charged amino acids of the linker regions, which are dubbed to be critical for functioning in other complement regulators, are not crucial for its function, and (iv) S100K and G110D mutations substantially enhance its decay-accelerating activities without affecting the cofactor activities. Overall, our data point out that ionic interactions form a major component of the binding interface between CCPH and its interacting partners.
Collapse
|
29
|
ORF45 of Kaposi's sarcoma-associated herpesvirus inhibits phosphorylation of interferon regulatory factor 7 by IKKε and TBK1 as an alternative substrate. J Virol 2012; 86:10162-72. [PMID: 22787218 DOI: 10.1128/jvi.05224-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Open reading frame 45 (ORF45) of Kaposi's sarcoma-associated herpesvirus (KSHV) is an immediate-early and tegument protein that plays critical roles in antagonizing host antiviral responses. We have previously shown (Zhu et al, Proc. Natl. Acad. Sci. U. S. A., 99:5573-5578, 2002) that ORF45 suppresses activation of interferon regulatory factor 7 (IRF7), a crucial regulator of type I interferon gene expression, by blocking its virus-induced phosphorylation and nuclear accumulation. We report here further characterization of the mechanisms by which ORF45 inhibits IRF7 phosphorylation. In most cell types, IRF7 is phosphorylated and activated by IKKε and TBK1 after viral infection. We found that phosphorylation of IRF7 on Ser477 and Ser479 by IKKε or TBK1 is inhibited by ORF45. The inhibition is specific to IRF7 because phosphorylation of its close relative IRF3 is not affected by ORF45, implying that ORF45 does not inactivate the kinases directly. In fact, we found that ORF45 is phosphorylated efficiently on Ser41 and Ser162 by IKKε and TBK1. We demonstrated that ORF45 competes with the associated IRF7 and inhibits its phosphorylation by IKKε or TBK1 by acting as an alternative substrate.
Collapse
|
30
|
Construction and manipulation of a new Kaposi's sarcoma-associated herpesvirus bacterial artificial chromosome clone. J Virol 2012; 86:9708-20. [PMID: 22740391 DOI: 10.1128/jvi.01019-12] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient genetic modification of herpesviruses such as Kaposi's sarcoma-associated herpesvirus (KSHV) has come to rely on bacterial artificial chromosome (BAC) technology. In order to facilitate this approach, we generated a new KSHV BAC clone, called BAC16, derived from the rKSHV.219 virus, which stems from KSHV and Epstein-Barr virus-coinfected JSC1 primary effusion lymphoma (PEL) cells. Restriction enzyme and complete sequencing data demonstrate that the KSHV of JSC1 PEL cells showed a minimal level of sequence variation across the entire viral genome compared to the complete genomic sequence of other KSHV strains. BAC16 not only stably propagated in both Escherichia coli and mammalian cells without apparent genetic rearrangements, but also was capable of robustly producing infectious virions (∼5 × 10(7)/ml). We also demonstrated the utility of BAC16 by generating deletion mutants of either the K3 or K5 genes, whose products are E3 ligases of the membrane-associated RING-CH (MARCH) family. While previous studies have shown that individual expression of either K3 or K5 results in efficient downregulation of the surface expression of major histocompatibility complex class I (MHC-I) molecules, we found that K5, but not K3, was the primary factor critical for the downregulation of MHC-I surface expression during KSHV lytic reactivation or following de novo infection. The data presented here demonstrate the utility of BAC16 for the generation and characterization of KSHV knockout and mutant recombinants and further emphasize the importance of functional analysis of viral genes in the context of the KSHV genome besides the study of individual gene expression.
Collapse
|
31
|
Human herpesvirus 8 interferon regulatory factor-mediated BH3-only protein inhibition via Bid BH3-B mimicry. PLoS Pathog 2012; 8:e1002748. [PMID: 22685405 PMCID: PMC3369933 DOI: 10.1371/journal.ppat.1002748] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 04/27/2012] [Indexed: 12/17/2022] Open
Abstract
Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of host cells. For HHV-8, viral interferon regulatory factor-1 (vIRF-1) contributes to this process in part via inhibitory interactions with BH3-only protein (BOP) Bim, recently identified as an interaction partner of vIRF-1. Here we recognize that the Bim-binding domain (BBD) of vIRF-1 resembles a region (BH3-B) of Bid, another BOP, which interacts intramolecularly with the functional BH3 domain of Bid to inhibit it pro-apoptotic activity. Indeed, vIRF-1 was found to target Bid in addition to Bim and to interact, via its BBD region, with the BH3 domain of each. In functional assays, BBD could substitute for BH3-B in the context of Bid, to suppress Bid-induced apoptosis in a BH3-binding-dependent manner, and vIRF-1 was able to protect transfected cells from apoptosis induced by Bid. While vIRF-1 can mediate nuclear sequestration of Bim, this was not the case for Bid, and inhibition of Bid and Bim by vIRF-1 could occur independently of nuclear localization of the viral protein. Consistent with this finding, direct BBD-dependent inactivation by vIRF-1 of Bid-induced mitochondrial permeabilization was demonstrable in vitro and isolated BBD sequences were also active in this assay. In addition to Bim and Bid BH3 domains, BH3s of BOPs Bik, Bmf, Hrk, and Noxa also were found to bind BBD, while those of both pro- and anti-apoptotic multi-BH domain Bcl-2 proteins were not. Finally, the significance of Bid to virus replication was demonstrated via Bid-depletion in HHV-8 infected cells, which enhanced virus production. Together, our data demonstrate and characterize BH3 targeting and associated inhibition of BOP pro-apoptotic activity by vIRF-1 via Bid BH3-B mimicry, identifying a novel mechanism of viral evasion from host cell defenses. Viruses possess mechanisms of subverting host cell defenses against infection and virus replication; these mechanisms are essential to the virus life cycle. Here, we identify and characterize a novel mechanism of HHV-8 mediated inhibition of virus-induced programmed cell death (apoptosis). This function is specified by viral interferon regulator factor homologue vIRF-1, which binds to and directly inhibits pro-death activities of so-called BH3-only proteins (BOPs), induced and activated by stress signals such as those occurring in infected cells. The BH3 domains of BOPs mediate their pro-apoptotic functions, and it is these domains that are targeted by vIRF-1, via a region resembling a BH3-interacting and -inhibitory domain, termed BH3-B, present in one of the vIRF-1 targeted BOPs, Bid. The targeted BOP BH3 domains share characteristic and conserved features. As shown previously for Bim, depletion of Bid leads to enhanced HHV-8 productive replication, demonstrating that Bid, also, is a biologically significant negative regulator of virus replication and suggesting that its control by vIRF-1 is of functional importance. To our knowledge, this is the first report of viral targeting and inhibition of BOP activity via Bid BH3-B mimicry; our studies therefore expand the known mechanisms of viral evasion from antiviral defenses of the host.
Collapse
|
32
|
Boyle JP, Monie TP. Computational analysis predicts the Kaposi's sarcoma-associated herpesvirus tegument protein ORF63 to be alpha helical. Proteins 2012; 80:2063-70. [PMID: 22513832 PMCID: PMC3437474 DOI: 10.1002/prot.24097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 01/07/2023]
Abstract
The innate immune response provides our first line of defence against infection. Over the course of evolution, pathogens have evolved numerous strategies to either avoid activating or to limit the effectiveness of the innate immune system. The Kaposi's sarcoma-associated herpesvirus (KSHV) contains tegument proteins in the virion that contribute to immune evasion and aid the establishment of viral infection. For example, the KSHV tegument protein ORF63 modulates inflammasome activation to inhibit the innate immune response against the virus. Understanding the likely structure of proteins involved in immune evasion enables potential mechanisms of action to be proposed. To understand more fully how ORF63 modulates the innate immune system we have utilized widely available bioinformatics tools to analyze the primary protein sequence of ORF63 and to predict its secondary and tertiary structure. We found that ORF63 is predicted to be almost entirely alpha-helical and may possess similarity to HEAT repeat containing proteins. Consequently, ORF63 is unlikely to be a viral homolog of the NLR protein family. ORF63 may inhibit the innate immune response by flexibly interacting with its target protein and inhibiting the recruitment of protein co-factors and/or conformational changes required for immune signaling.
Collapse
Affiliation(s)
- Joseph P Boyle
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
33
|
Lee HR, Brulois K, Wong L, Jung JU. Modulation of Immune System by Kaposi's Sarcoma-Associated Herpesvirus: Lessons from Viral Evasion Strategies. Front Microbiol 2012; 3:44. [PMID: 22403573 PMCID: PMC3293256 DOI: 10.3389/fmicb.2012.00044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 01/27/2012] [Indexed: 12/14/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), a member of the herpesvirus family, has evolved to establish a long-term, latent infection of cells such that while they carry the viral genome gene expression is highly restricted. Latency is a state of cryptic viral infection associated with genomic persistence in their host and this hallmark of KSHV infection leads to several clinical-epidemiological diseases such as KS, a plasmablastic variant of multicentric Castleman's disease, and primary effusion lymphoma upon immune suppression of infected hosts. In order to sustain efficient life-long persistency as well as their life cycle, KSHV dedicates a large portion of its genome to encode immunomodulatory proteins that antagonize its host's immune system. In this review, we will describe our current knowledge of the immune evasion strategies employed by KSHV at distinct stages of its viral life cycle to control the host's immune system.
Collapse
Affiliation(s)
- Hye-Ra Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | | | | | | |
Collapse
|
34
|
The intertransmembrane region of Kaposi's sarcoma-associated herpesvirus modulator of immune recognition 2 contributes to B7-2 downregulation. J Virol 2012; 86:5288-96. [PMID: 22379101 DOI: 10.1128/jvi.00219-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), a human tumor virus, encodes two homologous membrane-associated E3 ubiquitin ligases, modulator of immune recognition 1 (MIR1) and MIR2, to evade host immunity. Both MIR1 and MIR2 downregulate the surface expression of major histocompatibility complex class I (MHC I) molecules through ubiquitin-mediated endocytosis followed by lysosomal degradation. Since MIR2 additionally downregulates a costimulatory molecule (B7-2) and an integrin ligand (intercellular adhesion molecule 1 [ICAM-1]), MIR2 is thought to be a more important molecule for immune evasion than MIR1; however, the molecular basis of the MIR2 substrate specificity remains unclear. To address this issue, we determined which regions of B7-2 and MIR2 are required for MIR2-mediated B7-2 downregulation. Experiments with chimeras made by swapping domains between human B7-2 and CD8α, a non-MIR2 substrate, and between MIR1 and MIR2 demonstrated a significant contribution of the juxtamembrane (JM) region of B7-2 and the intertransmembrane (ITM) region of MIR2 to MIR2-mediated downregulation. Structure prediction and mutagenesis analyses indicate that Phe119 and Ser120 in the MIR2 ITM region and Asp244 in the B7-2 JM region contribute to the recognition of B7-2 by MIR2. This finding provides new insight into the molecular basis of substrate recognition by MIR family members.
Collapse
|
35
|
Latent Kaposi's sarcoma-associated herpesvirus infection of monocytes downregulates expression of adaptive immune response costimulatory receptors and proinflammatory cytokines. J Virol 2012; 86:3916-23. [PMID: 22278234 DOI: 10.1128/jvi.06437-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) infection is associated with the development of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. We report the establishment of a monocytic cell line latently infected with KSHV (KSHV-THP-1). We profiled viral and cytokine gene expression in the KSHV-THP-1 cells compared to that in uninfected THP-1 cells and found that several genes involved in the host immune response were downregulated during latent infection, including genes for CD80, CD86, and the cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). Thus, KSHV minimizes its immunological signature by suppressing key immune response factors, enabling persistent infection and evasion from host detection.
Collapse
|
36
|
Restrepo CS, Chen MM, Martinez-Jimenez S, Carrillo J, Restrepo C. Chest neoplasms with infectious etiologies. World J Radiol 2011; 3:279-88. [PMID: 22224176 PMCID: PMC3251813 DOI: 10.4329/wjr.v3.i12.279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 09/19/2011] [Accepted: 10/11/2011] [Indexed: 02/06/2023] Open
Abstract
A wide spectrum of thoracic tumors have known or suspected viral etiologies. Oncogenic viruses can be classified by the type of genomic material they contain. Neoplastic conditions found to have viral etiologies include post-transplant lymphoproliferative disease, lymphoid granulomatosis, Kaposi’s sarcoma, Castleman’s disease, recurrent respiratory papillomatosis, lung cancer, malignant mesothelioma, leukemia and lymphomas. Viruses involved in these conditions include Epstein-Barr virus, human herpes virus 8, human papillomavirus, Simian virus 40, human immunodeficiency virus, and Human T-lymphotropic virus. Imaging findings, epidemiology and mechanism of transmission for these diseases are reviewed in detail to gain a more thorough appreciation of disease pathophysiology for the chest radiologist.
Collapse
|
37
|
Abstract
Gammaherpesviruses such as Epstein-Barr virus (EBV, human herpesvirus 4) and Kaposi sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) establish lifelong infection in the host. To further this lifestyle, they encode homologs of cellular cytokines and cytokine receptors with the overarching goal to escape from or to blunt host antiviral defenses. EBV encodes mimics of human interleukin (hIL)-10 and a G protein-coupled receptor protein with sequence similarity to CXCR, whereas KSHV encodes homologs of hIL-6, 3 CC chemokine ligands, and a G protein-coupled receptor with sequence similarity to IL8 receptor alpha. This review focuses on the EBV IL-10 homolog and the KSHV IL-6 homolog with respect to virus biology and pathogenesis of the virus-associated diseases.
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, USA
| | | |
Collapse
|
38
|
|
39
|
Verma SC, Lu J, Cai Q, Kosiyatrakul S, McDowell ME, Schildkraut CL, Robertson ES. Single molecule analysis of replicated DNA reveals the usage of multiple KSHV genome regions for latent replication. PLoS Pathog 2011; 7:e1002365. [PMID: 22072974 PMCID: PMC3207954 DOI: 10.1371/journal.ppat.1002365] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/22/2011] [Indexed: 12/17/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV), an etiologic agent of Kaposi's sarcoma, Body Cavity Based Lymphoma and Multicentric Castleman's Disease, establishes lifelong latency in infected cells. The KSHV genome tethers to the host chromosome with the help of a latency associated nuclear antigen (LANA). Additionally, LANA supports replication of the latent origins within the terminal repeats by recruiting cellular factors. Our previous studies identified and characterized another latent origin, which supported the replication of plasmids ex-vivo without LANA expression in trans. Therefore identification of an additional origin site prompted us to analyze the entire KSHV genome for replication initiation sites using single molecule analysis of replicated DNA (SMARD). Our results showed that replication of DNA can initiate throughout the KSHV genome and the usage of these regions is not conserved in two different KSHV strains investigated. SMARD also showed that the utilization of multiple replication initiation sites occurs across large regions of the genome rather than a specified sequence. The replication origin of the terminal repeats showed only a slight preference for their usage indicating that LANA dependent origin at the terminal repeats (TR) plays only a limited role in genome duplication. Furthermore, we performed chromatin immunoprecipitation for ORC2 and MCM3, which are part of the pre-replication initiation complex to determine the genomic sites where these proteins accumulate, to provide further characterization of potential replication initiation sites on the KSHV genome. The ChIP data confirmed accumulation of these pre-RC proteins at multiple genomic sites in a cell cycle dependent manner. Our data also show that both the frequency and the sites of replication initiation vary within the two KSHV genomes studied here, suggesting that initiation of replication is likely to be affected by the genomic context rather than the DNA sequences.
Collapse
Affiliation(s)
- Subhash C. Verma
- Department of Microbiology & Immunology, University of Nevada, Reno, School of Medicine, Center for Molecular Medicine, Reno, Nevada, United States of America
| | - Jie Lu
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qiliang Cai
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Settapong Kosiyatrakul
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maria E. McDowell
- Department of Microbiology & Immunology, University of Nevada, Reno, School of Medicine, Center for Molecular Medicine, Reno, Nevada, United States of America
| | - Carl L. Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erle S. Robertson
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
40
|
Evasion and subversion of interferon-mediated antiviral immunity by Kaposi's sarcoma-associated herpesvirus: an overview. J Virol 2011; 85:10934-44. [PMID: 21775463 DOI: 10.1128/jvi.00687-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Viral invasion of a host cell triggers immune responses with both innate and adaptive components. The innate immune response involving the induction of type I interferons (alpha and beta interferons [IFN-α and -β]) constitutes the first line of antiviral defenses. The type I IFNs signal the transcription of a group of antiviral effector proteins, the IFN-stimulated genes (ISGs), which target distinct viral components and distinct stages of the viral life cycle, aiming to eliminate invading viruses. In the case of Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma (KS), a sudden upsurge of type I IFN-mediated innate antiviral signals is seen immediately following both primary de novo infection and viral lytic reactivation from latency. Potent subversion of these responses thus becomes mandatory for the successful establishment of a primary infection following viral entry as well as for efficient viral assembly and egress. This review gives a concise overview of the induction of the type I IFN signaling pathways in response to viral infection and provides a comprehensive understanding of the antagonizing effects exerted by KSHV on type I IFN pathways wielded at various stages of the viral life cycle. Information garnered from this review should result in a better understanding of KSHV biology essential for the development of immunotherapeutic strategies targeted toward KSHV-associated malignancies.
Collapse
|
41
|
Abstract
Interferon regulatory factor 7 (IRF7) was originally identified in the context of Epstein-Barr virus (EBV) infection, and has since emerged as the crucial regulator of type I interferons (IFNs) against pathogenic infections, which activate IRF7 by triggering signaling cascades from pathogen recognition receptors (PRRs) that recognize pathogenic nucleic acids. Moreover, IRF7 is a multifunctional transcription factor, underscored by the fact that it is associated with EBV latency, in which IRF7 is induced as well as activated by the EBV principal oncoprotein latent membrane protein-1 (LMP1). Aberrant production of type I IFNs is associated with many types of diseases such as cancers and autoimmune disorders. Thus, tight regulation of IRF7 expression and activity is imperative in dictating appropriate type I IFN production for normal IFN-mediated physiological functions. Posttranslational modifications have important roles in regulation of IRF7 activity, exemplified by phosphorylation, which is indicative of its activation. Furthermore, mounting evidence has shed light on the importance of regulatory ubiquitination in activation of IRF7. Albeit these exciting findings have been made in the past decade since its discovery, many questions related to IRF7 remain to be addressed.
Collapse
|
42
|
Construction and characterization of an infectious murine gammaherpesivrus-68 bacterial artificial chromosome. J Biomed Biotechnol 2010; 2011:926258. [PMID: 21197474 PMCID: PMC3006494 DOI: 10.1155/2011/926258] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/15/2010] [Indexed: 01/11/2023] Open
Abstract
Here we describe the cloning of a sequenced WUMS isolate of murine gammaherpesvirus-68 (MHV-68, γHV-68, also known as MuHV-4) as a bacterial artificial chromosome (BAC). We engineered the insertion of the BAC sequence flanked by loxP sites into the left end of the viral genome before the M1 open reading frame. The infectious viruses were reconstituted following transfection of the MHV-68 BAC DNA into cells. The MHV-68 BAC-derived virus replicated indistinguishably from the wild-type virus in cultured cells. Excision of the BAC insert was efficiently achieved by coexpressing the Cre recombinase. Although the BAC insertion did not significantly affect acute productive infection in the lung, it severely compromised the ability of MHV-68 to establish splenic latency. Removal of the BAC sequence restored the wild-type level of latency. Site-specific mutagenesis was carried out by RecA-mediated recombination to demonstrate that this infectious BAC clone can be used for genetic studies of MHV-68.
Collapse
|
43
|
Abstract
Due to the oncogenic potential associated with persistent infection of human gamma-herpesviruses, including Epstein-Barr virus (EBV or HHV-4) and Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8), vaccine development has focused on subunit vaccines. However, the results using an animal model of mouse infection with a related rodent virus, murine gamma-herpesvirus 68 (MHV-68, γHV-68, or MuHV-4), have shown that the only effective vaccination strategy is based on live attenuated viruses, including viruses engineered to be incapable of establishing persistence. Vaccination with a virus lacking persistence would eliminate many potential complications. Progress in understanding persistent infections of EBV and KSHV raises the possibility of engineering a live attenuated virus without persistence. Therefore, we should keep the option open for developing a live EBV or KSHV vaccine.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, School of Medicine, University of California at Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
44
|
Abstract
The year 2011 marks the centenary of Francis Peyton Rous's landmark experiments on an avian cancer virus. Since then, seven human viruses have been found to cause 10-15% of human cancers worldwide. Viruses have been central to modern cancer research and provide profound insights into both infectious and non-infectious cancer causes. This diverse group of viruses reveals unexpected connections between innate immunity, immune sensors and tumour suppressor signalling that control both viral infection and cancer. This Timeline article describes common features of human tumour viruses and discusses how new technologies can be used to identify infectious causes of cancer.
Collapse
Affiliation(s)
- Patrick S Moore
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
45
|
|
46
|
Dong X, Feng H, Sun Q, Li H, Wu TT, Sun R, Tibbetts SA, Chen ZJ, Feng P. Murine gamma-herpesvirus 68 hijacks MAVS and IKKbeta to initiate lytic replication. PLoS Pathog 2010; 6:e1001001. [PMID: 20686657 PMCID: PMC2912392 DOI: 10.1371/journal.ppat.1001001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 06/16/2010] [Indexed: 12/25/2022] Open
Abstract
Upon viral infection, the mitochondrial antiviral signaling (MAVS)-IKKβ pathway is activated to restrict viral replication. Manipulation of immune signaling events by pathogens has been an outstanding theme of host-pathogen interaction. Here we report that the loss of MAVS or IKKβ impaired the lytic replication of gamma-herpesvirus 68 (γHV68), a model herpesvirus for human Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. γHV68 infection activated IKKβ in a MAVS-dependent manner; however, IKKβ phosphorylated and promoted the transcriptional activation of the γHV68 replication and transcription activator (RTA). Mutational analyses identified IKKβ phosphorylation sites, through which RTA-mediated transcription was increased by IKKβ, within the transactivation domain of RTA. Moreover, the lytic replication of recombinant γHV68 carrying mutations within the IKKβ phosphorylation sites was greatly impaired. These findings support the conclusion that γHV68 hijacks the antiviral MAVS-IKKβ pathway to promote viral transcription and lytic infection, representing an example whereby viral replication is coupled to host immune activation. Innate immunity represents the first line of defense against pathogen infection. Recent studies uncovered an array of sensors that detect pathogen-associated molecular patterns and induce antiviral cytokine production via two closely related kinase complexes, i.e., the IKKα/β/γ and TBK-1/IKKε. To counteract host immune defense, herpesviruses have evolved diverse strategies to evade, manipulate, and exploit host immune responses. Here we report that infection by murine gamma-herpesvirus 68 (γHV68), a model gamma-herpesvirus for human Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus, activated the IKKβ kinase and IKKβ was usurped to promote viral transcriptional activation. As such, uncoupling IKKβ from transcriptional activation by biochemical and genetic approaches impaired γHV68 lytic replication. Our study represents an example whereby viral lytic replication is coupled to host innate immune activation and sheds light on herpesvirus exploitation of immune responses.
Collapse
Affiliation(s)
- Xiaonan Dong
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Hao Feng
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qinmiao Sun
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Chao Yang District, Beijing, People's Republic of China
| | - Haiyan Li
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, Louisiana, United States of America
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Scott A. Tibbetts
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, Louisiana, United States of America
| | - Zhijian J. Chen
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Pinghui Feng
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Zhu FX, Sathish N, Yuan Y. Antagonism of host antiviral responses by Kaposi's sarcoma-associated herpesvirus tegument protein ORF45. PLoS One 2010; 5:e10573. [PMID: 20485504 PMCID: PMC2868026 DOI: 10.1371/journal.pone.0010573] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/15/2010] [Indexed: 12/19/2022] Open
Abstract
Virus infection of a cell generally evokes an immune response by the host to defeat the intruder in its effort. Many viruses have developed an array of strategies to evade or antagonize host antiviral responses. Kaposi's sarcoma-associated herpesvirus (KSHV) is demonstrated in this report to be able to prevent activation of host antiviral defense mechanisms upon infection. Cells infected with wild-type KSHV were permissive for superinfection with vesicular stomatitis virus (VSV), suggesting that KSHV virions fail to induce host antiviral responses. We previously showed that ORF45, a KSHV immediate-early protein as well as a tegument protein of virions, interacts with IRF-7 and inhibits virus-mediated type I interferon induction by blocking IRF-7 phosphorylation and nuclear translocation (Zhu et al., Proc. Natl. Acad. Sci. USA. 99:5573-5578, 2002). Here, using an ORF45-null recombinant virus, we demonstrate a profound role of ORF45 in inhibiting host antiviral responses. Infection of cells with an ORF45-null mutant recombinant KSHV (BAC-stop45) triggered an immune response that resisted VSV super-infection, concomitantly associated with appreciable increases in transcription of type I IFN and downstream anti-viral effector genes. Gain-of-function analysis showed that ectopic expression of ORF45 in human fibroblast cells by a lentivirus vector decreased the antiviral responses of the cells. shRNA-mediated silencing of IRF-7, that predominantly regulates both the early and late phase induction of type I IFNs, clearly indicated its critical contribution to the innate antiviral responses generated against incoming KSHV particles. Thus ORF45 through its targeting of the crucial IRF-7 regulated type I IFN antiviral responses significantly contributes to the KSHV survival immediately following a primary infection allowing for progression onto subsequent stages in its life-cycle.
Collapse
Affiliation(s)
- Fan Xiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Narayanan Sathish
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yan Yuan
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
48
|
Abstract
A20 possesses both deubiquitinase (DUB) and ubiquitin E3 ligase activities that are required for termination of Toll-like receptor (TLR) signaling leading to NF-kappaB activation and for blockage of tumor necrosis factor (TNF)-induced cytotoxicity and apoptosis. A20 is induced by the Epstein-Barr virus (EBV) oncoprotein LMP1. However, its dual ubiquitin-editing activities have not been investigated in the context of either EBV infection or IRF7 responses. Both A20 and IRF7 have oncogenic properties. We have recently shown that LMP1 activates IRF7 through K63-linked ubiquitination which requires RIP1 and TRAF6, but how this ubiquitination event is regulated has not been studied. Here, we show that A20 negatively regulates IRF7 transcriptional activity induced by LMP1. Deletion or mutation of A20 C-terminal zinc finger motifs had no effect on the inhibition of IRF7 activity, whereas DUB-deficient truncation or point mutation ablated the ability of A20 to inhibit IRF7. Correspondingly, the A20 N-terminal DUB domain, but not the C-terminal E3 ligase domain, interacts physically with IRF7. Transient expression of A20 reduced K63-linked ubiquitination of IRF7 in vivo, but an in vitro deubiquitination assay with purified constituents shows that IRF7 did not act as a substrate for A20 DUB activity. Moreover, A20 interacts with IRF7 endogenously in latently EBV-infected type 3 Raji cells, in which expression of both A20 and IRF7 is constitutively induced by the considerable level of endogenous LMP1. Knockdown of endogenous A20 in Raji cells by expression of A20 short hairpin RNA (shRNA) vectors increases endogenous IRF7 activity and ubiquitination, as well as the protein level of LMP1, a target of IRF7. Thus, A20 negatively regulates LMP1-stimulated IRF7 ubiquitination and activity in EBV latency, and its DUB activity is indispensable for this function. Finally, we discussed the regulation and function of IRFs in EBV latency.
Collapse
|
49
|
Lee HR, Kim MH, Lee JS, Liang C, Jung JU. Viral interferon regulatory factors. J Interferon Cytokine Res 2010; 29:621-7. [PMID: 19715458 DOI: 10.1089/jir.2009.0067] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Upon viral infection, the major defensive strategy employed by the host immune system is the activation of the interferon (IFN)-mediated antiviral pathway, which is overseen by IFN regulatory factors (IRFs). In order to complete their life cycles, viruses must find a way to modulate the host IFN-mediated immune response. Kaposi's sarcoma-associated herpesvirus (KSHV), a human tumor-inducing herpesvirus, has developed a unique mechanism for antagonizing cellular IFN-mediated antiviral activity by incorporating viral homolog of the cellular IRFs, called vIRFs, into its genome. Here, we summarize the novel evasion mechanisms by which KSHV, through its vIRFs, circumvents IFN-mediated innate immune responses and deregulates the cell growth control mechanism.
Collapse
Affiliation(s)
- Hye-Ra Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | |
Collapse
|
50
|
|