1
|
Tamuli B, Biswas S. A Comprehensive Methodology for Immortalizing Tumor-Infiltrating B Lymphocytes from Epithelial Cancers. Methods Mol Biol 2025; 2909:245-256. [PMID: 40029526 DOI: 10.1007/978-1-0716-4442-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Epithelial cancers are often infiltrated with prognostically relevant lymphocytes, including T and B lymphocytes. Isolation, expansion, and immortalization of lymphocytes from epithelial tumors are immensely important in basic tumor immunology research and clinical translation. Here, we outline in detail the process of separating viable B lymphocytes from surgically removed epithelial tumors and their immortalization and cryopreservation methods. Overall, this state-of-the-art procedure aids in bulk and specific antigen-reactive antibody production from tumor-infiltrating B cells. Also, sequence information can be deduced by cutting-edge sequencing methods from these immortalized pools of B lymphocytes.
Collapse
Affiliation(s)
- Baishali Tamuli
- Cancer Immune Environment and Therapeutics Lab, Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Subir Biswas
- Cancer Immune Environment and Therapeutics Lab, Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
2
|
Zhang S, Liu N, Cao P, Qin Q, Li J, Yang L, Xin Y, Jiang M, Zhang S, Yang J, Lu J. LncRNA BC200 promotes the development of EBV-associated nasopharyngeal carcinoma by competitively binding to miR-6834-5p to upregulate TYMS expression. Int J Biol Macromol 2024; 278:134837. [PMID: 39179085 DOI: 10.1016/j.ijbiomac.2024.134837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is closely related to Epstein-Barr virus (EBV) infection. Long noncoding RNAs (lncRNAs) play important roles in cancers. However, the molecular mechanism underlying the roles of lncRNAs in EBV-associated NPC remains largely unclear. In this study, we confirmed that the expression of the lncRNA brain cytoplasmic 200 (BC200) was significantly increased in EBV-infected NPC cells and tissues. BC200 facilitated the growth and migration of NPC cells, suggesting that it participated in NPC progression by functioning as an oncogene. Mechanistically, BC200 was found to act as a ceRNA by sponging and inhibiting miR-6834-5p. Thymidylate synthetase (TYMS), whose high expression was reported to be an independent indicator of poor prognosis in NPC via an unknown mechanism, was identified as a target gene of miR-6834-5p in the present study. BC200 upregulated TYMS expression in a manner that depends on miR-6834-5p. TYMS was abnormally upregulated in EBV-positive NPC cells and tissues, and its ectopic expression contributed to the proliferation and migration of NPC cells. This study highlights the role of lncRNA BC200, which is upregulated by EBV, in promoting the development of NPC, suggesting that BC200-mediated ceRNA network may be valuable biomarkers for the diagnosis and treatment of EBV-associated NPC.
Collapse
Affiliation(s)
- Senmiao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Na Liu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Qingshuang Qin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Jing Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Li Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Yujie Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Mingjuan Jiang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Siwei Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Jing Yang
- Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Jianhong Lu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
3
|
Xu H, Xiang X, Ding W, Dong W, Hu Y. The Research Progress on Immortalization of Human B Cells. Microorganisms 2023; 11:2936. [PMID: 38138080 PMCID: PMC10746006 DOI: 10.3390/microorganisms11122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Human B cell immortalization that maintains the constant growth characteristics and antibody expression of B cells in vitro is very critical for the development of antibody drugs and products for the diagnosis and bio-therapeutics of human diseases. Human B cell immortalization methods include Epstein-Barr virus (EBV) transformation, Simian virus 40 (SV40) virus infection, in vitro genetic modification, and activating CD40, etc. Immortalized human B cells produce monoclonal antibodies (mAbs) very efficiently, and the antibodies produced in this way can overcome the immune rejection caused by heterologous antibodies. It is an effective way to prepare mAbs and an important method for developing therapeutic monoclonal antibodies. Currently, the US FDA has approved more than 100 mAbs against a wide range of illnesses such as cancer, autoimmune diseases, infectious diseases, and neurological disorders. This paper reviews the research progress of human B cell immortalization, its methods, and future directions as it is a powerful tool for the development of monoclonal antibody preparation technology.
Collapse
Affiliation(s)
- Huiting Xu
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Jiading District, Shanghai 201802, China;
| | - Xinxin Xiang
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- Hengyang Medical College, University of South China, Hengyang 421200, China
| | - Weizhe Ding
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- Peking-Tsinghua-NIBS Joint Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Dong
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Jiading District, Shanghai 201802, China;
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Yadav M, Uikey BN, Rathore SS, Gupta P, Kashyap D, Kumar C, Shukla D, Vijayamahantesh, Chandel AS, Ahirwar B, Singh AK, Suman SS, Priyadarshi A, Amit A. Role of cytokine in malignant T-cell metabolism and subsequent alternation in T-cell tumor microenvironment. Front Oncol 2023; 13:1235711. [PMID: 37746258 PMCID: PMC10513393 DOI: 10.3389/fonc.2023.1235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
T cells are an important component of adaptive immunity and T-cell-derived lymphomas are very complex due to many functional sub-types and functional elasticity of T-cells. As with other tumors, tissues specific factors are crucial in the development of T-cell lymphomas. In addition to neoplastic cells, T- cell lymphomas consist of a tumor micro-environment composed of normal cells and stroma. Numerous studies established the qualitative and quantitative differences between the tumor microenvironment and normal cell surroundings. Interaction between the various component of the tumor microenvironment is crucial since tumor cells can change the microenvironment and vice versa. In normal T-cell development, T-cells must respond to various stimulants deferentially and during these courses of adaptation. T-cells undergo various metabolic alterations. From the stage of quiescence to attention of fully active form T-cells undergoes various stage in terms of metabolic activity. Predominantly quiescent T-cells have ATP-generating metabolism while during the proliferative stage, their metabolism tilted towards the growth-promoting pathways. In addition to this, a functionally different subset of T-cells requires to activate the different metabolic pathways, and consequently, this regulation of the metabolic pathway control activation and function of T-cells. So, it is obvious that dynamic, and well-regulated metabolic pathways are important for the normal functioning of T-cells and their interaction with the microenvironment. There are various cell signaling mechanisms of metabolism are involved in this regulation and more and more studies have suggested the involvement of additional signaling in the development of the overall metabolic phenotype of T cells. These important signaling mediators include cytokines and hormones. The impact and role of these mediators especially the cytokines on the interplay between T-cell metabolism and the interaction of T-cells with their micro-environments in the context of T-cells lymphomas are discussed in this review article.
Collapse
Affiliation(s)
- Megha Yadav
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Blessi N. Uikey
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Priyanka Gupta
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Diksha Kashyap
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Chanchal Kumar
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Vijayamahantesh
- Department of Immunology and Microbiology, University of Missouri, Columbia, SC, United States
| | - Arvind Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Bharti Ahirwar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Shashi Shekhar Suman
- Department of Zoology, Udayana Charya (UR) College, Lalit Narayan Mithila University, Darbhanga, India
| | - Amit Priyadarshi
- Department of Zoology, Veer Kunwar Singh University, Arrah, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
5
|
Dojcinov SD, Quintanilla-Martinez L. How I Diagnose EBV-Positive B- and T-Cell Lymphoproliferative Disorders. Am J Clin Pathol 2023; 159:14-33. [PMID: 36214507 DOI: 10.1093/ajcp/aqac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Epstein-Barr virus (EBV)-associated lymphoproliferative disorders (LPDs) encompass a group of well-defined entities of B-, T-, and natural killer (NK)-cell derivation. The diagnosis of these disorders is challenging because of clinical and morphologic features that may overlap with other benign and malignant EBV+ lymphoproliferations. This review describes our approach to the diagnosis of EBV-associated LPDs. METHODS Two cases are presented that illustrate how we diagnose EBV-associated LPDs. The first case represents a systemic EBV+ T-cell lymphoma of childhood and the second case an EBV+ mucocutaneous ulcer. The clinicopathologic features that help distinguish these entities from biological and morphologic mimickers are emphasized. RESULTS The accurate diagnosis of EBV-associated LPDs requires the incorporation of histologic and immunophenotypic features, the assessment of the EBV latency program, and, most important, complete clinical findings. Clonality analysis is not helpful in distinguishing benign from malignant EBV+ LPDs. CONCLUSIONS The better understanding of EBV-associated LPDs has resulted in the recognition of well-defined entities of B-, T-, and NK-cell derivation and consequently improvement of their treatment with curative intent. It is critical to distinguish benign from malignant EBV+ LPDs to avoid overtreatment.
Collapse
Affiliation(s)
- Stefan D Dojcinov
- All Wales Lymphoma Panel, Swansea Bay University Health Board and Swansea University, Swansea, Wales
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
6
|
Tornesello ML, Cerasuolo A, Starita N, Tornesello AL, Bonelli P, Tuccillo FM, Buonaguro L, Isaguliants MG, Buonaguro FM. The Molecular Interplay between Human Oncoviruses and Telomerase in Cancer Development. Cancers (Basel) 2022; 14:5257. [PMID: 36358677 PMCID: PMC9659228 DOI: 10.3390/cancers14215257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 08/29/2023] Open
Abstract
Human oncoviruses are able to subvert telomerase function in cancer cells through multiple strategies. The activity of the catalytic subunit of telomerase (TERT) is universally enhanced in virus-related cancers. Viral oncoproteins, such as high-risk human papillomavirus (HPV) E6, Epstein-Barr virus (EBV) LMP1, Kaposi's sarcoma-associated herpesvirus (HHV-8) LANA, hepatitis B virus (HBV) HBVx, hepatitis C virus (HCV) core protein and human T-cell leukemia virus-1 (HTLV-1) Tax protein, interact with regulatory elements in the infected cells and contribute to the transcriptional activation of TERT gene. Specifically, viral oncoproteins have been shown to bind TERT promoter, to induce post-transcriptional alterations of TERT mRNA and to cause epigenetic modifications, which have important effects on the regulation of telomeric and extra-telomeric functions of the telomerase. Other viruses, such as herpesviruses, operate by integrating their genomes within the telomeres or by inducing alternative lengthening of telomeres (ALT) in non-ALT cells. In this review, we recapitulate on recent findings on virus-telomerase/telomeres interplay and the importance of TERT-related oncogenic pathways activated by cancer-causing viruses.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | | | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| |
Collapse
|
7
|
Shafiee A, Shamsi S, Kohandel Gargari O, Beiky M, Allahkarami MM, Miyanaji AB, Aghajanian S, Mozhgani SH. EBV associated T- and NK-cell lymphoproliferative diseases: A comprehensive overview of clinical manifestations and novel therapeutic insights. Rev Med Virol 2022; 32:e2328. [PMID: 35122349 DOI: 10.1002/rmv.2328] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Abstract
EBV is a ubiquitous virus that infects nearly all people around the world. Most infected people are asymptomatic and do not show serious sequelae, while others may develop Epstein-Barr virus (EBV)-positive T and NK-cell lymphoproliferations characterised by EBV-infected T or NK cells. These disorders are more common in Asian and Latin American people, suggesting genetic predisposition as a contributing factor. The revised WHO classification classifies the lymphoproliferative diseases as: extranodal NK/T-cell lymphoma nasal type (ENKTL), aggressive NK-cell leukemia (ANKL), primary EBV-positive nodal T or NK cell lymphoma (NNKTL), systemic EBV-positive T-cell lymphoproliferative disease of childhood (STCLC), systemic chronic active EBV infection (sys CAEBV), hydroa-vacciniforme (HV) and severe mosquito bite allergy (SMBA). Recent advances in the molecular pathogenesis of these diseases have led to the development of new therapeutic strategies. Due to the infrequency of the diseases and broad clinicopathological overlap, the diagnosis and classification are challenging for both clinicians and pathologists. In this article, we aim to review the recent pathological findings which can be helpful for designing new drugs, clinical presentations and differential diagnoses, and suggested therapeutic interventions to provide a better understanding of these rare disorders.
Collapse
Affiliation(s)
- Arman Shafiee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sahel Shamsi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Maryam Beiky
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Sepehr Aghajanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
8
|
Zanelli M, Sanguedolce F, Palicelli A, Zizzo M, Martino G, Caprera C, Fragliasso V, Soriano A, Gozzi F, Cimino L, Masia F, Moretti M, Foroni M, De Marco L, Pellegrini D, De Raeve H, Ricci S, Tamagnini I, Tafuni A, Cavazza A, Merli F, Pileri SA, Ascani S. EBV-Driven Lymphoproliferative Disorders and Lymphomas of the Gastrointestinal Tract: A Spectrum of Entities with a Common Denominator (Part 3). Cancers (Basel) 2021; 13:6021. [PMID: 34885131 PMCID: PMC8656853 DOI: 10.3390/cancers13236021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022] Open
Abstract
EBV is the first known oncogenic virus involved in the development of several tumors. The majority of the global population are infected with the virus early in life and the virus persists throughout life, in a latent stage, and usually within B lymphocytes. Despite the worldwide diffusion of EBV infection, EBV-associated diseases develop in only in a small subset of individuals often when conditions of immunosuppression disrupt the balance between the infection and host immune system. EBV-driven lymphoid proliferations are either of B-cell or T/NK-cell origin, and range from disorders with an indolent behavior to aggressive lymphomas. In this review, which is divided in three parts, we provide an update of EBV-associated lymphoid disorders developing in the gastrointestinal tract, often representing a challenging diagnostic and therapeutic issue. Our aim is to provide a practical diagnostic approach to clinicians and pathologists who face this complex spectrum of disorders in their daily practice. In this part of the review, the chronic active EBV infection of T-cell and NK-cell type, its systemic form; extranodal NK/T-cell lymphoma, nasal type and post-transplant lymphoproliferative disorders are discussed.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | | | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Alessandra Soriano
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Fabrizio Gozzi
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Francesco Masia
- Dipartimento di Medicina, Università degli Studi di Perugia, 05100 Terni, Italy; (F.M.); (M.M.)
| | - Marina Moretti
- Dipartimento di Medicina, Università degli Studi di Perugia, 05100 Terni, Italy; (F.M.); (M.M.)
| | - Moira Foroni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Loredana De Marco
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - David Pellegrini
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Hendrik De Raeve
- Pathology, University Hospital Brussels, 1090 Brussels, Belgium;
- Pathology, O.L.V. Hospital Aalst, 9300 Aalst, Belgium
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Ione Tamagnini
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Alessandro Tafuni
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Francesco Merli
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano A. Pileri
- Haematopathology Division, European Institute of Oncology-IEO IRCCS Milan, 20141 Milan, Italy;
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| |
Collapse
|
9
|
New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021; 13:cancers13215451. [PMID: 34771613 PMCID: PMC8582580 DOI: 10.3390/cancers13215451] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV) infection is associated with various lymphomas and carcinomas as well as other diseases in humans. The transmembrane protein LMP1 plays versatile roles in EBV life cycle and pathogenesis, by perturbing, reprograming, and regulating a large range of host cellular mechanisms and functions, which have been increasingly disclosed but not fully understood so far. We summarize recent research progress on LMP1 signaling, including the novel components LIMD1, p62, and LUBAC in LMP1 signalosome and LMP1 novel functions, such as its induction of p62-mediated selective autophagy, regulation of metabolism, induction of extracellular vehicles, and activation of NRF2-mediated antioxidative defense. A comprehensive understanding of LMP1 signal transduction and functions may allow us to leverage these LMP1-regulated cellular mechanisms for clinical purposes. Abstract The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.
Collapse
|
10
|
Wang L, Howell MEA, Sparks-Wallace A, Zhao J, Hensley CR, Nicksic CA, Horne SR, Mohr KB, Moorman JP, Yao ZQ, Ning S. The Ubiquitin Sensor and Adaptor Protein p62 Mediates Signal Transduction of a Viral Oncogenic Pathway. mBio 2021; 12:e0109721. [PMID: 34488443 PMCID: PMC8546576 DOI: 10.1128/mbio.01097-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/11/2021] [Indexed: 02/04/2023] Open
Abstract
The Epstein-Barr virus (EBV) protein LMP1 serves as a paradigm that engages complicated ubiquitination-mediated mechanisms to activate multiple transcription factors. p62 is a ubiquitin sensor and a signal-transducing adaptor that has multiple functions in diverse contexts. However, the interaction between p62 and oncogenic viruses is poorly understood. We recently reported a crucial role for p62 in oncovirus-mediated oxidative stress by acting as a selective autophagy receptor. In this following pursuit, we further discovered that p62 is upregulated in EBV type 3 compared to type 1 latency, with a significant contribution from NF-κB and AP1 activities downstream of LMP1 signaling. In turn, p62 participates in LMP1 signal transduction through its interaction with TRAF6, promoting TRAF6 ubiquitination and activation. As expected, short hairpin RNA (shRNA)-mediated knockdown (KD) of p62 transcripts reduces LMP1-TRAF6 interaction and TRAF6 ubiquitination, as well as p65 nuclear translocation, which was assessed by Amnis imaging flow cytometry. Strikingly, LMP1-stimulated NF-κB, AP1, and Akt activities are all markedly reduced in p62-/- mouse embryo fibroblasts (MEFs) and in EBV-negative Burkitt's lymphoma (BL) cell lines with CRISPR-mediated knockout (KO) of the p62-encoding gene. However, EBV-positive BL cell lines (type 3 latency) with CRISPR-mediated KO of the p62-encoding gene failed to survive. In consequence, shRNA-mediated p62 KD impairs the ability of LMP1 to regulate its target gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of lymphoblastic cell lines (LCLs). These important findings have revealed a previously unrecognized novel role for p62 in EBV latency and oncogenesis, which advances our understanding of the mechanism underlying virus-mediated oncogenesis. IMPORTANCE As a ubiquitin sensor and a signal-transducing adaptor, p62 is crucial for NF-κB activation, which involves the ubiquitin machinery, in diverse contexts. However, whether p62 is required for EBV LMP1 activation of NF-κB is an open question. In this study, we provide evidence that p62 is upregulated in EBV type 3 latency and, in turn, p62 mediates LMP1 signal transduction to NF-κB, AP1, and Akt by promoting TRAF6 ubiquitination and activation. In consequence, p62 deficiency negatively regulates LMP1-mediated gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of LCLs. These important findings identified p62 as a novel signaling component of the key viral oncogenic signaling pathway.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Mary E. A. Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Ayrianna Sparks-Wallace
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Juan Zhao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Culton R. Hensley
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Camri A. Nicksic
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Shanna R. Horne
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Kaylea B. Mohr
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jonathan P. Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, Tennessee, USA
| | - Zhi Q. Yao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, Tennessee, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
11
|
Bauer M, Jasinski-Bergner S, Mandelboim O, Wickenhauser C, Seliger B. Epstein-Barr Virus-Associated Malignancies and Immune Escape: The Role of the Tumor Microenvironment and Tumor Cell Evasion Strategies. Cancers (Basel) 2021; 13:cancers13205189. [PMID: 34680337 PMCID: PMC8533749 DOI: 10.3390/cancers13205189] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The Epstein–Barr virus, also termed human herpes virus 4, is a human pathogenic double-stranded DNA virus. It is highly prevalent and has been linked to the development of 1–2% of cancers worldwide. EBV-associated malignancies encompass various structural and epigenetic alterations. In addition, EBV-encoded gene products and microRNAs interfere with innate and adaptive immunity and modulate the tumor microenvironment. This review provides an overview of the characteristic features of EBV with a focus on the intrinsic and extrinsic immune evasion strategies, which contribute to EBV-associated malignancies. Abstract The detailed mechanisms of Epstein–Barr virus (EBV) infection in the initiation and progression of EBV-associated malignancies are not yet completely understood. During the last years, new insights into the mechanisms of malignant transformation of EBV-infected cells including somatic mutations and epigenetic modifications, their impact on the microenvironment and resulting unique immune signatures related to immune system functional status and immune escape strategies have been reported. In this context, there exists increasing evidence that EBV-infected tumor cells can influence the tumor microenvironment to their own benefit by establishing an immune-suppressive surrounding. The identified mechanisms include EBV gene integration and latent expression of EBV-infection-triggered cytokines by tumor and/or bystander cells, e.g., cancer-associated fibroblasts with effects on the composition and spatial distribution of the immune cell subpopulations next to the infected cells, stroma constituents and extracellular vesicles. This review summarizes (i) the typical stages of the viral life cycle and EBV-associated transformation, (ii) strategies to detect EBV genome and activity and to differentiate various latency types, (iii) the role of the tumor microenvironment in EBV-associated malignancies, (iv) the different immune escape mechanisms and (v) their clinical relevance. This gained information will enhance the development of therapies against EBV-mediated diseases to improve patient outcome.
Collapse
Affiliation(s)
- Marcus Bauer
- Department of Pathology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 14, 06112 Halle (Saale), Germany; (M.B.); (C.W.)
| | - Simon Jasinski-Bergner
- Department of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany;
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, En Kerem, P.O. Box 12271, Jerusalem 91120, Israel;
| | - Claudia Wickenhauser
- Department of Pathology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 14, 06112 Halle (Saale), Germany; (M.B.); (C.W.)
| | - Barbara Seliger
- Department of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-(345)-557-1357
| |
Collapse
|
12
|
Zanelli M, Sanguedolce F, Palicelli A, Zizzo M, Martino G, Caprera C, Fragliasso V, Soriano A, Valle L, Ricci S, Cavazza A, Merli F, Pileri SA, Ascani S. EBV-Driven Lymphoproliferative Disorders and Lymphomas of the Gastrointestinal Tract: A Spectrum of Entities with a Common Denominator (Part 1). Cancers (Basel) 2021; 13:4578. [PMID: 34572803 PMCID: PMC8465149 DOI: 10.3390/cancers13184578] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
EBV is the most common persistent virus in humans. The interaction of EBV with B lymphocytes, which are considered the virus reservoir, is at the base of the life-long latent infection. Under circumstances of immunosuppression, the balance between virus and host immune system is altered and hence, EBV-associated lymphoid proliferations may originate. These disorders encompass several entities, ranging from self-limited diseases with indolent behavior to aggressive lymphomas. The virus may infect not only B-cells, but even T- and NK-cells. The occurrence of different types of lymphoid disorders depends on both the type of infected cells and the state of host immunity. EBV-driven lymphoproliferative lesions can rarely occur in the gastrointestinal tract and may be missed even by expert pathologists due to both the uncommon site of presentation and the frequent overlapping morphology and immunophenotypic features shared by different entities. The aim of this review is to provide a comprehensive overview of the current knowledge of EBV-associated lymphoproliferative disorders, arising within the gastrointestinal tract. The review is divided in three parts. In this part, the available data on EBV biology, EBV-positive mucocutaneous ulcer, EBV-positive diffuse large B-cell lymphoma, not otherwise specified and classic Hodgkin lymphoma are discussed.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | | | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Luca Valle
- Anatomic Pathology, Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | - Francesco Merli
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano A. Pileri
- Haematopathology Division, European Institute of Oncology-IEO IRCCS Milan, 20141 Milan, Italy;
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| |
Collapse
|
13
|
Zanelli M, Sanguedolce F, Palicelli A, Zizzo M, Martino G, Caprera C, Fragliasso V, Soriano A, Valle L, Ricci S, Gozzi F, Cimino L, Cavazza A, Merli F, Pileri SA, Ascani S. EBV-Driven Lymphoproliferative Disorders and Lymphomas of the Gastrointestinal Tract: A Spectrum of Entities with a Common Denominator (Part 2). Cancers (Basel) 2021; 13:4527. [PMID: 34572754 PMCID: PMC8469260 DOI: 10.3390/cancers13184527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) is a common pathogen infecting people primarily early in life. The virus has the ability to persist throughout a person's life, usually in B lymphocytes. Conditions of immunodeficiency as well as the introduction of immunosuppressive therapies and the advent of transplant technologies has brought immunodeficiency-associated lymphoproliferative disorders into view, which are often driven by EBV. The group of EBV-associated lymphoproliferative disorders includes different entities, with distinct biological features, ranging from indolent disorders, which may even spontaneously regress, to aggressive lymphomas requiring prompt and adequate treatment. These disorders are often diagnostically challenging due to their overlapping morphology and immunophenotype. Both nodal and extra-nodal sites, including the gastrointestinal tract, may be involved. This review, divided in three parts, summarizes the clinical, pathological, molecular features and treatment strategies of EBV-related lymphoproliferative disorders occurring in the gastrointestinal tract and critically analyzes the major issues in the differential diagnosis. In this part of the review, we discuss plasmablastic lymphoma, extra-cavitary primary effusion lymphoma and Burkitt lymphoma.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | | | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Luca Valle
- Anatomic Pathology, Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | - Fabrizio Gozzi
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | - Francesco Merli
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano A. Pileri
- Haematopathology Division, European Institute of Oncology-IEO IRCCS Milan, 20141 Milan, Italy;
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| |
Collapse
|
14
|
Wu Y, Wang D, Wei F, Xiong F, Zhang S, Gong Z, Shi L, Li X, Xiang B, Ma J, Deng H, He Y, Liao Q, Zhang W, Li X, Li Y, Guo C, Zeng Z, Li G, Xiong W. EBV-miR-BART12 accelerates migration and invasion in EBV-associated cancer cells by targeting tubulin polymerization-promoting protein 1. FASEB J 2020; 34:16205-16223. [PMID: 33094864 DOI: 10.1096/fj.202001508r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Epstein-Barr virus (EBV) infection leads to cancers with an epithelial origin, such as nasopharyngeal cancer and gastric cancer, as well as multiple blood cell-based malignant tumors, such as lymphoma. Interestingly, EBV is also the first virus found to carry genes encoding miRNAs. EBV encodes 25 types of pre-miRNAs which are finally processed into 44 mature miRNAs. Most EBV-encoded miRNAs were found to be involved in the occurrence and development of EBV-related tumors. However, the function of EBV-miR-BART12 remains unclear. The findings of the current study revealed that EBV-miR-BART12 binds to the 3'UTR region of Tubulin Polymerization-Promoting Protein 1 (TPPP1) mRNA and downregulates TPPP1, thereby promoting the invasion and migration of EBV-related cancers, such as nasopharyngeal cancer and gastric cancer. The mechanism underlying this process was found to be the inhibition of TPPP1 by EBV-miRNA-BART12, which, in turn, inhibits the acetylation of α-tubulin, and promotes the dynamic assembly of microtubules, remodels the cytoskeleton, and enhances the acetylation of β-catenin. β-catenin activates epithelial to mesenchymal transition (EMT). These two processes synergistically promote the invasion and metastasis of tumor cells. To the best of our knowledge, this is the first study to reveal the role of EBV-miRNA-BART12 in the development of EBV-related tumors as well as the mechanism underlying this process, and suggests potential targets and strategies for the treatment of EBV-related tumors.
Collapse
Affiliation(s)
- Yingfen Wu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fang Wei
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jian Ma
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenling Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
15
|
Germini D, Sall FB, Shmakova A, Wiels J, Dokudovskaya S, Drouet E, Vassetzky Y. Oncogenic Properties of the EBV ZEBRA Protein. Cancers (Basel) 2020; 12:E1479. [PMID: 32517128 PMCID: PMC7352903 DOI: 10.3390/cancers12061479] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary infection, it can persist in the host throughout their lifetime in a latent form, from which it can reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA can deregulate the immune surveillance, allow the immune escape, and favor tumor progression. It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described in this review outline its importance in EBV-related malignancies.
Collapse
Affiliation(s)
- Diego Germini
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Fatimata Bintou Sall
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Laboratory of Hematology, Aristide Le Dantec Hospital, Cheikh Anta Diop University, Dakar 12900, Senegal
| | - Anna Shmakova
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Joëlle Wiels
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Emmanuel Drouet
- CIBB-IBS UMR 5075 Université Grenoble Alpes, 38044 Grenoble, France;
| | - Yegor Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
16
|
Identification and Cloning of a New Western Epstein-Barr Virus Strain That Efficiently Replicates in Primary B Cells. J Virol 2020; 94:JVI.01918-19. [PMID: 32102884 DOI: 10.1128/jvi.01918-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) causes human cancers, and epidemiological studies have shown that lytic replication is a risk factor for some of these tumors. This fits with the observation that EBV M81, which was isolated from a Chinese patient with nasopharyngeal carcinoma, induces potent virus production and increases the risk of genetic instability in infected B cells. To find out whether this property extends to viruses found in other parts of the world, we investigated 22 viruses isolated from Western patients. While one-third of the viruses hardly replicated, the remaining viruses showed variable levels of replication, with three isolates replicating at levels close to that of M81 in B cells. We cloned one strongly replicating virus into a bacterial artificial chromosome (BAC); the resulting recombinant virus (MSHJ) retained the properties of its nonrecombinant counterpart and showed similarities to M81, undergoing lytic replication in vitro and in vivo after 3 weeks of latency. In contrast, B cells infected with the nonreplicating Western B95-8 virus showed early but abortive replication accompanied by cytoplasmic BZLF1 expression. Sequencing confirmed that rMSHJ is a Western virus, being genetically much closer to B95-8 than to M81. Spontaneous replication in rM81- and rMSHJ-infected B cells was dependent on phosphorylated Btk and was inhibited by exposure to ibrutinib, opening the way to clinical intervention in patients with abnormal EBV replication. As rMSHJ contains the complete EBV genome and induces lytic replication in infected B cells, it is ideal to perform genetic analyses of all viral functions in Western strains and their associated diseases.IMPORTANCE The Epstein-Barr virus (EBV) infects the majority of the world population but causes different diseases in different countries. Evidence that lytic replication, the process that leads to new virus progeny, is linked to cancer development is accumulating. Indeed, viruses such as M81 that were isolated from Far Eastern nasopharyngeal carcinomas replicate strongly in B cells. We show here that some viruses isolated from Western patients, including the MSHJ strain, share this property. Moreover, replication of both M81 and of MSHJ was sensitive to ibrutinib, a commonly used drug, thereby opening an opportunity for therapeutic intervention. Sequencing of MSHJ showed that this virus is quite distant from M81 and is much closer to nonreplicating Western viruses. We conclude that Western EBV strains are heterogeneous, with some viruses being able to replicate more strongly and therefore being potentially more pathogenic than others, and that the virus sequence information alone cannot predict this property.
Collapse
|
17
|
Rafiq M, Hayward A, Warren-Gash C, Denaxas S, Gonzalez-Izquierdo A, Lyratzopoulos G, Thomas S. Allergic disease, corticosteroid use, and risk of Hodgkin lymphoma: A United Kingdom nationwide case-control study. J Allergy Clin Immunol 2020; 145:868-876. [PMID: 31730878 PMCID: PMC7057259 DOI: 10.1016/j.jaci.2019.10.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Immunodeficiency syndromes (acquired/congenital/iatrogenic) are known to increase Hodgkin lymphoma (HL) risk, but the effects of allergic immune dysregulation and corticosteroids are poorly understood. OBJECTIVE We sought to assess the risk of HL associated with allergic disease (asthma, eczema, and allergic rhinitis) and corticosteroid use. METHODS We conducted a case-control study using the United Kingdom Clinical Practice Research Datalink (CPRD) linked to hospital data. Multivariable logistic regression investigated associations between allergic diseases and HL after adjusting for established risk factors. Potential confounding or effect modification by steroid treatment were examined. RESULTS One thousand two hundred thirty-six patients with HL were matched to 7416 control subjects. Immunosuppression was associated with 6-fold greater odds of HL (adjusted odds ratio [aOR], 6.18; 95% CI, 3.04-12.57), with minimal change after adjusting for steroids. Any prior allergic disease or eczema alone was associated with 1.4-fold increased odds of HL (aOR, 1.41 [95% CI, 1.24-1.60] and 1.41 [95% CI, 1.20-1.65], respectively). These associations decreased but remained significant after adjustment for steroids (aOR, 1.25 [95% CI, 1.09-1.43] and 1.27 [95% CI, 1.08-1.49], respectively). There was no effect modification by steroid use. Previous steroid treatment was associated with 1.4-fold greater HL odds (aOR, 1.38; 95% CI, 1.20-1.59). CONCLUSIONS In addition to established risk factors (immunosuppression and infectious mononucleosis), allergic disease and eczema are risk factors for HL. This association is only partially explained by steroids, which are associated with increased HL risk. These findings add to the growing evidence that immune system malfunction after allergic disease or immunosuppression is central to HL development.
Collapse
Affiliation(s)
- Meena Rafiq
- Institute of Health Informatics, UCL, London, United Kingdom.
| | - Andrew Hayward
- Institute of Epidemiology and Health Care, UCL, London, United Kingdom
| | - Charlotte Warren-Gash
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Spiros Denaxas
- Institute of Health Informatics, UCL, London, United Kingdom
| | | | | | - Sara Thomas
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
18
|
Chatterjee S, Angelov L, Ahluwalia MS, Yeaney GA. Epstein-Barr virus-associated primary central nervous system lymphoma in a patient with diffuse cutaneous systemic sclerosis on long-term mycophenolate mofetil. Joint Bone Spine 2019; 87:163-166. [PMID: 31669807 DOI: 10.1016/j.jbspin.2019.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/09/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Epstein Barr virus (EBV)-associated primary central nervous system lymphoma (ePCNSL) is increasingly recognized in immunocompromised subjects, including patients receiving systemic immunosuppressive therapy. Here, we report the first case of primary CNS lymphoma associated with EBV in a patient with diffuse cutaneous systemic sclerosis (dcSSc) receiving long-term mycophenolate mofetil (MMF). CASE REPORT A 51-year-old female with dcSSc had been on MMF 2 grams daily, which was initiated for a rapidly rising modified Rodnan skin score (mRSS), severe pruritus, and progressive joint contractures. She had an impressive response to this therapy with a significant decrease in her mRSS. Her condition remained stable for the next five years, after which she developed worsening headaches for 2-3 weeks, associated with dizziness, gait instability, and left homonymous hemianopia. MRI scan of the brain revealed a solitary 2.4cm peripherally enhancing right parietal lobe mass. Excised tissue from the right parietal lobe mass showed EBV-associated diffuse large B cell lymphoma. She received four cycles of chemotherapy (high dose methotrexate and rituximab). Currently, her condition is being monitored. Her left homonymous hemianopia persists. CONCLUSION Because of a favorable toxicity profile, MMF is increasingly being used as long-term immunomodulatory therapy for a wide variety of autoimmune disorders. Nevertheless, patients on long-term MMF should still undergo regular CNS surveillance, not only for opportunistic infections but also for opportunistic malignancies such as PCNSL. Progressive focal or non-focal neurological deficits should always raise the alarm. Prompt evaluation and management can prevent irreversible neurological sequelae.
Collapse
Affiliation(s)
- Soumya Chatterjee
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Staff, Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, Ohio 44195, United States.
| | - Lilyana Angelov
- Neurological Surgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Section of Spinal Radiosurgery and Director of BBTC's Primary CNS Lymphoma Program, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Manmeet S Ahluwalia
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Brain Metastasis Research Program, and the Associate Director, Clinical Trials, Operations in the BBTC, Neurological Institute, Cleveland Clinic, Section Head of NeuroOncology Outcomes, Staff, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Gabrielle A Yeaney
- Pathology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Section Head, Ocular Pathology, Division of Neuropathology, Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio 44195, United States
| |
Collapse
|
19
|
Sethi TK, Kovach AE, Grover NS, Huang LC, Lee LA, Rubinstein SM, Wang Y, Morgan DS, Greer JP, Park SI, Ann Thompson-Arildsen M, Yenamandra A, Vnencak-Jones CL, Reddy NM. Clinicopathologic correlates of MYD88 L265P mutation and programmed cell death (PD-1) pathway in primary central nervous system lymphoma. Leuk Lymphoma 2019; 60:2880-2889. [PMID: 31184237 DOI: 10.1080/10428194.2019.1620942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Primary central nervous system lymphoma (PCNSL) patients have a poorer prognosis than systemic lymphoma. Gain-of-function MYD88 c.794T > C (p. L265P) mutation and programed cell death-1 (PD-1) pathway alterations are potential targetable pathways. Our study objective was to determine the clinicopathologic correlates of MYD88 mutation and PD-1 alterations in PCNSL and the impact of Epstein-Barr virus (EBV) infection. We studied 53 cases including 13 EBV-associated (EBVpos) PCNSL, 49% harbored MYD88 mutation, none seen in EBVpos PCNSL. MYD88 protein expression did not correlate with MYD88 mutation. T-cell and macrophage infiltration was common. All PD-L1-positive tumors were EBVpos. Two PD-L1 positive tumors showed 9p24.1/PD-L1 locus alterations by Fluorescence In Situ Hybridization. T cells and macrophages expressed PD-1 and/or PD-L1 in 98% and 83% cases, respectively. MYD88 mutation or protein expression and PD-1 or PD-L1 expression did not predict outcome. We hypothesize that EBVpos PCNSL has a distinct activation mechanism, independent of genetic alterations.
Collapse
Affiliation(s)
- Tarsheen K Sethi
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandra E Kovach
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Natalie S Grover
- Division of Hematology-Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Li-Ching Huang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Laura A Lee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel M Rubinstein
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yang Wang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David S Morgan
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John P Greer
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mary Ann Thompson-Arildsen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ashwini Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cindy L Vnencak-Jones
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nishitha M Reddy
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
20
|
Visalli RJ, Schwartz AM, Patel S, Visalli MA. Identification of the Epstein Barr Virus portal. Virology 2019; 529:152-159. [PMID: 30710799 DOI: 10.1016/j.virol.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Little is known about Epstein Barr Virus (EBV) proteins that participate in viral DNA cleavage and packaging. Genes encoding potential terminase subunit and portal protein homologs include BGRF1/BDRF1, BALF3, BFRF1A and BBRF1 respectively. EBV mutants with deletions in one or more of these genes were impaired for DNA packaging (Pavlova et al., 2013). In the current study, BBRF1 oligomers were purified from recombinant baculovirus infected insect cell extracts. Transmission electron microscopy revealed that purified EBV portals retained features typically found in other portals including a central channel with clip, stem and wing/crown domains. Although compounds have been identified that target DNA encapsidation in human cytomegalovirus, herpes simplex viruses and varicella-zoster virus, the identification of new EBV targets has lagged significantly. Characterization of the EBV portal will direct studies aimed at developing potential small molecular inhibitors of the EBV encapsidation process.
Collapse
Affiliation(s)
- Robert J Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Adam M Schwartz
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Shivam Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Melissa A Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
| |
Collapse
|
21
|
Vistarop AG, Cohen M, Huaman F, Irazu L, Rodriguez M, De Matteo E, Preciado MV, Chabay PA. The interplay between local immune response and Epstein-Barr virus-infected tonsillar cells could lead to viral infection control. Med Microbiol Immunol 2018; 207:319-327. [PMID: 30046954 DOI: 10.1007/s00430-018-0553-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Epstein Barr virus (EBV) gains access to the host through tonsillar crypts. Our aim was to characterize microenvironment composition around EBV+ cells in tonsils from pediatric carriers, to disclose its role on viral pathogenesis. LMP1 expression, assessed by immunohistochemistry (IHC), was used to discriminate EBV + and - zones in 41 tonsil biopsies. Three regions were defined: Subepithelial (SE), interfollicular (IF) and germinal center (GC). CD8, GrB, CD68, IL10, Foxp3, PD1, CD56 and CD4 markers were evaluated by IHC; positive cells/100 total cells were counted. CD8+, GrB+, CD68+ and IL10+ cells were prevalent in EBV+ zones at the SE region (p < 0.0001, p = 0.03, p = 0.002 and p = 0.002 respectively, Wilcoxon test). CD4+ and CD68+ cell count were higher in EBV + GC (p = 0.01 and p = 0.0002 respectively, Wilcoxon test). Increment of CD8, GrB and CD68 at the SE region could indicate a specific response that may be due to local homing at viral entry, which could be counterbalanced by IL10, an immunosuppressive cytokine. Additionally, it could be hypothesized that CD4 augment at the GC may be involved in the EBV-induced B-cell growth control at this region, in which macrophages could also participate.
Collapse
Affiliation(s)
- Aldana G Vistarop
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina. .,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina.
| | - Melina Cohen
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| | - Fuad Huaman
- Histopathological Laboratory, National Academy of Medicine, Buenos Aires, Argentina
| | - Lucia Irazu
- National Institute of Infectious Diseases, National Laboratories and Health Institutes Administration "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Marcelo Rodriguez
- National Institute of Infectious Diseases, National Laboratories and Health Institutes Administration "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Elena De Matteo
- Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - María Victoria Preciado
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| | - Paola A Chabay
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| |
Collapse
|
22
|
Fernandes Q, Merhi M, Raza A, Inchakalody VP, Abdelouahab N, Zar Gul AR, Uddin S, Dermime S. Role of Epstein-Barr Virus in the Pathogenesis of Head and Neck Cancers and Its Potential as an Immunotherapeutic Target. Front Oncol 2018; 8:257. [PMID: 30035101 PMCID: PMC6043647 DOI: 10.3389/fonc.2018.00257] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The role of Epstein-Barr virus (EBV) infection in the development and progression of tumor cells has been described in various cancers. Etiologically, EBV is a causative agent in certain variants of head and neck cancers such as nasopharyngeal cancer. Proteins expressed by the EVB genome are involved in invoking and perpetuating the oncogenic properties of the virus. However, these protein products were also identified as important targets for therapeutic research in the past decades, particularly within the context of immunotherapy. The adoptive transfer of EBV-targeted T-cells as well as the development of EBV vaccines has opened newer lines of research to conceptualize novel therapeutic approaches toward the disease. This review addresses the most important aspects of the association of EBV with head and neck cancers from an immunological perspective. It also aims to highlight the current and future prospects of enhanced EBV-targeted immunotherapies.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassima Abdelouahab
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Rehman Zar Gul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
23
|
Williams M, Ariza ME. EBV Positive Diffuse Large B Cell Lymphoma and Chronic Lymphocytic Leukemia Patients Exhibit Increased Anti-dUTPase Antibodies. Cancers (Basel) 2018; 10:E129. [PMID: 29723986 PMCID: PMC5977102 DOI: 10.3390/cancers10050129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
The Epstein-Barr virus (EBV), which is a ubiquitous γ-herpesvirus, establishes a latent infection in more than 90% of the global adult population. EBV-associated malignancies have increased by 14.6% over the last 20 years, and account for approximately 1.5% of all cancers worldwide and 1.8% of all cancer deaths. However, the potential involvement/contribution of lytic proteins to the pathophysiology of EBV-associated cancers is not well understood. We have previously demonstrated that the EBV-deoxyuridine triphosphate nucleotidohydrolase (dUTPase) modulates innate and adaptive immune responses by engaging the Toll-Like Receptor 2 (TLR2), which leads to the modulation of downstream genes involved in oncogenesis, chronic inflammation, and in effector T-cell function. Furthermore, examination of serum samples from diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia patients revealed the presence of increased levels of anti-dUTPase antibodies in both cohorts compared to controls with the highest levels (3.67-fold increase) observed in DLBCL female cases and the lowest (2.12-fold increase) in DLBCL males. Using computer-generated algorithms, dUTPase amino acid sequence alignments, and functional studies of BLLF3 mutants, we identified a putative amino acid motif involved with TLR2 interaction. These findings suggest that the EBV-dUTPase: TLR2 interaction is a potential molecular target that could be used for developing novel therapeutics (small molecules/vaccines).
Collapse
Affiliation(s)
- Marshall Williams
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Maria Eugenia Ariza
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
García-Barchino MJ, Sarasquete ME, Panizo C, Morscio J, Martinez A, Alcoceba M, Fresquet V, Gonzalez-Farre B, Paiva B, Young KH, Robles EF, Roa S, Celay J, Larrayoz M, Rossi D, Gaidano G, Montes-Moreno S, Piris MA, Balanzategui A, Jimenez C, Rodriguez I, Calasanz MJ, Larrayoz MJ, Segura V, Garcia-Muñoz R, Rabasa MP, Yi S, Li J, Zhang M, Xu-Monette ZY, Puig-Moron N, Orfao A, Böttcher S, Hernandez-Rivas JM, Miguel JS, Prosper F, Tousseyn T, Sagaert X, Gonzalez M, Martinez-Climent JA. Richter transformation driven by Epstein-Barr virus reactivation during therapy-related immunosuppression in chronic lymphocytic leukaemia. J Pathol 2018; 245:61-73. [PMID: 29464716 DOI: 10.1002/path.5060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/19/2018] [Accepted: 02/15/2018] [Indexed: 12/22/2022]
Abstract
The increased risk of Richter transformation (RT) in patients with chronic lymphocytic leukaemia (CLL) due to Epstein-Barr virus (EBV) reactivation during immunosuppressive therapy with fludarabine other targeted agents remains controversial. Among 31 RT cases classified as diffuse large B-cell lymphoma (DLBCL), seven (23%) showed EBV expression. In contrast to EBV- tumours, EBV+ DLBCLs derived predominantly from IGVH-hypermutated CLL, and they also showed CLL-unrelated IGVH sequences more frequently. Intriguingly, despite having different cellular origins, clonally related and unrelated EBV+ DLBCLs shared a previous history of immunosuppressive chemo-immunotherapy, a non-germinal centre DLBCL phenotype, EBV latency programme type II or III, and very short survival. These data suggested that EBV reactivation during therapy-related immunosuppression can transform either CLL cells or non-tumoural B lymphocytes into EBV+ DLBCL. To investigate this hypothesis, xenogeneic transplantation of blood cells from 31 patients with CLL and monoclonal B-cell lymphocytosis (MBL) was performed in Rag2-/- IL2γc-/- mice. Remarkably, the recipients' impaired immunosurveillance favoured the spontaneous outgrowth of EBV+ B-cell clones from 95% of CLL and 64% of MBL patients samples, but not from healthy donors. Eventually, these cells generated monoclonal tumours (mostly CLL-unrelated but also CLL-related), recapitulating the principal features of EBV+ DLBCL in patients. Accordingly, clonally related and unrelated EBV+ DLBCL xenografts showed indistinguishable cellular, virological and molecular features, and synergistically responded to combined inhibition of EBV replication with ganciclovir and B-cell receptor signalling with ibrutinib in vivo. Our study underscores the risk of RT driven by EBV in CLL patients receiving immunosuppressive therapies, and provides the scientific rationale for testing ganciclovir and ibrutinib in EBV+ DLBCL. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
MESH Headings
- Adult
- Aged
- B-Lymphocytes/drug effects
- B-Lymphocytes/pathology
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/pathology
- Epstein-Barr Virus Infections/drug therapy
- Epstein-Barr Virus Infections/pathology
- Female
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/genetics
- Humans
- Immunosuppressive Agents/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Male
- Middle Aged
Collapse
Affiliation(s)
- Maria J García-Barchino
- Division of Haematological Oncology, Centre for Applied Medical Research (CIMA), CIBERONC, University of Navarra, Pamplona, Spain
| | - Maria E Sarasquete
- Department of Haematology, University Hospital, and Institute of Molecular and Cellular Biology of Cancer, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Carlos Panizo
- Department of Haematology, Clinica Universidad de Navarra, CIBERONC, University of Navarra, Pamplona, Spain
| | - Julie Morscio
- KU Leuven, Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Antonio Martinez
- Haematopathology Section, Hospital Clinic, Institut d'Investigacions Biomediques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Miguel Alcoceba
- Department of Haematology, University Hospital, and Institute of Molecular and Cellular Biology of Cancer, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Vicente Fresquet
- Division of Haematological Oncology, Centre for Applied Medical Research (CIMA), CIBERONC, University of Navarra, Pamplona, Spain
| | - Blanca Gonzalez-Farre
- Haematopathology Section, Hospital Clinic, Institut d'Investigacions Biomediques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Bruno Paiva
- Division of Haematological Oncology, Centre for Applied Medical Research (CIMA), CIBERONC, University of Navarra, Pamplona, Spain
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eloy F Robles
- Division of Haematological Oncology, Centre for Applied Medical Research (CIMA), CIBERONC, University of Navarra, Pamplona, Spain
| | - Sergio Roa
- Division of Haematological Oncology, Centre for Applied Medical Research (CIMA), CIBERONC, University of Navarra, Pamplona, Spain
| | - Jon Celay
- Division of Haematological Oncology, Centre for Applied Medical Research (CIMA), CIBERONC, University of Navarra, Pamplona, Spain
| | - Marta Larrayoz
- Division of Haematological Oncology, Centre for Applied Medical Research (CIMA), CIBERONC, University of Navarra, Pamplona, Spain
| | - Davide Rossi
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Santiago Montes-Moreno
- Department of Pathology, Hospital Universitario and Instituto de Formacion e Investigacion Marques de Valdecilla, Santander, Spain
| | - Miguel A Piris
- Department of Pathology, Hospital Universitario and Instituto de Formacion e Investigacion Marques de Valdecilla, Santander, Spain
| | - Ana Balanzategui
- Department of Haematology, University Hospital, and Institute of Molecular and Cellular Biology of Cancer, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Cristina Jimenez
- Department of Haematology, University Hospital, and Institute of Molecular and Cellular Biology of Cancer, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Idoia Rodriguez
- Division of Haematological Oncology, Centre for Applied Medical Research (CIMA), CIBERONC, University of Navarra, Pamplona, Spain
| | - Maria J Calasanz
- Division of Haematological Oncology, Centre for Applied Medical Research (CIMA), CIBERONC, University of Navarra, Pamplona, Spain
- Department of Genetics, School of Medicine, University of Navarra, Pamplona, Spain
| | - Maria J Larrayoz
- Department of Genetics, School of Medicine, University of Navarra, Pamplona, Spain
| | - Victor Segura
- Bio-informatics Unit, Department of Genomics and Proteomics, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | - Maria P Rabasa
- Department of Haematology, Hospital San Pedro, Logroño, Spain
| | - Shuhua Yi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianyong Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mingzhi Zhang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Noemi Puig-Moron
- Department of Haematology, University Hospital, and Institute of Molecular and Cellular Biology of Cancer, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Cancer Research Centre, Institute for Biomedical Research of Salamanca and Department of Medicine and Cytometry Service, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Sebastian Böttcher
- Medical Clinic II, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jesus M Hernandez-Rivas
- Department of Haematology, University Hospital, and Institute of Molecular and Cellular Biology of Cancer, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Jesus San Miguel
- Division of Haematological Oncology, Centre for Applied Medical Research (CIMA), CIBERONC, University of Navarra, Pamplona, Spain
- Department of Haematology, Clinica Universidad de Navarra, CIBERONC, University of Navarra, Pamplona, Spain
| | - Felipe Prosper
- Division of Haematological Oncology, Centre for Applied Medical Research (CIMA), CIBERONC, University of Navarra, Pamplona, Spain
- Department of Haematology, Clinica Universidad de Navarra, CIBERONC, University of Navarra, Pamplona, Spain
| | - Thomas Tousseyn
- KU Leuven, Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Xavier Sagaert
- KU Leuven, Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Marcos Gonzalez
- Department of Haematology, University Hospital, and Institute of Molecular and Cellular Biology of Cancer, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Jose A Martinez-Climent
- Division of Haematological Oncology, Centre for Applied Medical Research (CIMA), CIBERONC, University of Navarra, Pamplona, Spain
| |
Collapse
|
25
|
Giunco S, Petrara MR, Zangrossi M, Celeghin A, De Rossi A. Extra-telomeric functions of telomerase in the pathogenesis of Epstein-Barr virus-driven B-cell malignancies and potential therapeutic implications. Infect Agent Cancer 2018; 13:14. [PMID: 29643934 PMCID: PMC5892012 DOI: 10.1186/s13027-018-0186-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus causally linked to a broad spectrum of both lymphoid and epithelial malignancies. In order to maintain its persistence in host cells and promote tumorigenesis, EBV must restrict its lytic cycle, which would ultimately lead to cell death, selectively express latent viral proteins, and establish an unlimited proliferative potential. The latter step depends on the maintenance of telomere length provided by telomerase. The viral oncoprotein LMP-1 activates TERT, the catalytic component of telomerase. In addition to its canonical role in stabilizing telomeres, TERT may promote EBV-driven tumorigenesis through extra-telomeric functions. TERT contributes toward preserving EBV latency; in fact, through the NOTCH2/BATF pathway, TERT negatively affects the expression of BZLF1, the master regulator of the EBV lytic cycle. In contrast, TERT inhibition triggers a complete EBV lytic cycle, leading to the death of EBV-infected cells. Interestingly, short-term TERT inhibition causes cell cycle arrest and apoptosis, partly by inducing telomere-independent activation of the ATM/ATR/TP53 pathway. Importantly, TERT inhibition also sensitizes EBV-positive tumor cells to antiviral therapy and enhances the pro-apoptotic effects of chemotherapeutic agents. We provide here an overview on how the extra-telomeric functions of TERT contribute to EBV-driven tumorigenesis. We also discuss the potential therapeutic approach of TERT inhibition in EBV-driven malignancies.
Collapse
Affiliation(s)
- Silvia Giunco
- 1Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padova, Italy
| | - Maria Raffaella Petrara
- 2Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| | - Manuela Zangrossi
- 2Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| | - Andrea Celeghin
- 2Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| | - Anita De Rossi
- 1Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padova, Italy.,2Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| |
Collapse
|
26
|
Abstract
The contribution of Epstein-Barr virus (EBV) to the development of specific types of benign lymphoproliferations and malignant lymphomas has been extensively studied since the discovery of the virus over the last 50 years. The importance and better understanding of the EBV-associated lymphoproliferative disorders (LPD) of B, T or natural killer (NK) cell type has resulted in the recognition of new entities like EBV+ mucocutaneous ulcer or the addition of chronic active EBV (CAEBV) infection in the revised 2016 World Health Organization (WHO) lymphoma classification. In this article, we review the definitions, morphology, pathogenesis, and evolving concepts of the various EBV-associated disorders including EBV+ diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS), EBV+ mucocutaneous ulcer, DLBCL associated with chronic inflammation, fibrin-associated DLBCL, lymphomatoid granulomatosis, the EBV+ T and NK-cell LPD of childhood, aggressive NK leukaemia, extranodal NK/T-cell lymphoma, nasal type, and the new provisional entity of primary EBV+ nodal T- or NK-cell lymphoma. The current knowledge regarding the pathogenesis of B-cell lymphomas that can be EBV-associated including Burkitt lymphoma, plasmablastic lymphoma and classic Hodgkin lymphoma will be also explored.
Collapse
|
27
|
Trinchieri G. Natural Killer Cells Detect a Tumor-Produced Growth Factor: A Vestige of Antiviral Resistance? Trends Immunol 2018; 39:357-358. [PMID: 29478770 DOI: 10.1016/j.it.2018.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 01/27/2023]
Abstract
In addition to exogenous ligands derived from pathogens, natural killer (NK) and other innate cells can recognize endogenous ligands that often act as markers of stress or damage. A recent study reports that one of these receptors, human NKp44, recognizes PDGF-DD, providing a rare example of the recognition of a soluble growth factor as a stress signal. The recognition of PDGF-DD induces the secretion of cytokines with antitumor activity.
Collapse
Affiliation(s)
- Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
|
29
|
Barrow AD, Edeling MA, Trifonov V, Luo J, Goyal P, Bohl B, Bando JK, Kim AH, Walker J, Andahazy M, Bugatti M, Melocchi L, Vermi W, Fremont DH, Cox S, Cella M, Schmedt C, Colonna M. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell 2017; 172:534-548.e19. [PMID: 29275861 DOI: 10.1016/j.cell.2017.11.037] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023]
Abstract
Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion.
Collapse
Affiliation(s)
- Alexander D Barrow
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Melissa A Edeling
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vladimir Trifonov
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Piyush Goyal
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Benjamin Bohl
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Jennifer K Bando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Walker
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Mary Andahazy
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Mattia Bugatti
- Department of Pathology, University of Brescia, Brescia 25123, Italy
| | - Laura Melocchi
- Department of Pathology, University of Brescia, Brescia 25123, Italy
| | - William Vermi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology, University of Brescia, Brescia 25123, Italy
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sarah Cox
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christian Schmedt
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Li Q, Rane L, Poiret T, Zou J, Magalhaes I, Ahmed R, Du Z, Vudattu N, Meng Q, Gustafsson-Jernberg Å, Winiarski J, Ringdén O, Maeurer M, Remberger M, Ernberg I. Both high and low levels of cellular Epstein-Barr virus DNA in blood identify failure after hematologic stem cell transplantation in conjunction with acute GVHD and type of conditioning. Oncotarget 2017; 7:30230-40. [PMID: 27102298 PMCID: PMC5058676 DOI: 10.18632/oncotarget.8803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/11/2016] [Indexed: 01/25/2023] Open
Abstract
The level of Epstein-Barr virus DNA in blood has proven to be a biomarker with some predictive value in allogeneic hematopoietic stem cell transplantation patients (HSCT). We evaluated the impact of EBV load on survival of 51 patients (32M/19F, median age: 32 years, from < 1 to 68 years old), who had received HSCT for different types of malignancies (49 cases) or non-malignancies (2 cases). The overall survival [1]was compared between patients with extreme and moderate cell bound EBV DNA levels. Different sources of stem-cells (peripheral blood stem, n = 39; bone marrow, n = 9; or umbilical cord blood, n = 3) were used. Twenty patients received reduced-intensity conditioning regimen while the other 31 received myeloablative conditioning. Patients with high or very low level of cell bound EBV-DNA levels had a shorter OS than those with moderate EBV load: OS at 5 years was 67% vs 90% (p < 0.03). There was a conspicuous relationship between EBV load and the reconstitution dynamics of total and EBV-specific T cells, CD4+ and CD4- CD8- (double negative) T cells in the few patients where it was analyzed. This was not statistically significant. Two other factors were associated to early mortality in addition to high or low EBV load: acute GVHD II-IV (p < 0.02) and pre-transplant conditioning with total body irradiation (TBI) ≥6 Gy, (p < 0.03). All the patients meeting all three criteria died within two years after transplantation. This points to a subgroup of HSCT patients which deserve special attention with improvement of future, personalized treatment.
Collapse
Affiliation(s)
- Qin Li
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Lalit Rane
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Thomas Poiret
- Division of Therapeutic Immunology, Labmed, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Jiezhi Zou
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Isabelle Magalhaes
- Department of Oncology-Pathology (OnkPat), Karolinska University Hospital, Stockholm, Sweden
| | | | - Ziming Du
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nalini Vudattu
- Department of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA
| | - Qingda Meng
- Division of Therapeutic Immunology, Labmed, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Åsa Gustafsson-Jernberg
- Department of Clinical Science, Intervention an Technology (CLINTECH), Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Jacek Winiarski
- Department of Clinical Science, Intervention an Technology (CLINTECH), Karolinska University Hospital, Huddinge, Stockholm, Sweden.,Department of Pediatrics, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Olle Ringdén
- Division of Therapeutic Immunology, Labmed, Karolinska University Hospital, Huddinge, Stockholm, Sweden.,Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Markus Maeurer
- Division of Therapeutic Immunology, Labmed, Karolinska University Hospital, Huddinge, Stockholm, Sweden.,Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Mats Remberger
- Division of Therapeutic Immunology, Labmed, Karolinska University Hospital, Huddinge, Stockholm, Sweden.,Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Rodriguez S, Roussel M, Tarte K, Amé-Thomas P. Impact of Chronic Viral Infection on T-Cell Dependent Humoral Immune Response. Front Immunol 2017; 8:1434. [PMID: 29163507 PMCID: PMC5671495 DOI: 10.3389/fimmu.2017.01434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
During the last decades, considerable efforts have been done to decipher mechanisms supported by microorganisms or viruses involved in the development, differentiation, and function of immune cells. Pathogens and their associated secretome as well as the continuous inflammation observed in chronic infection are shaping both innate and adaptive immunity. Secondary lymphoid organs are functional structures ensuring the mounting of adaptive immune response against microorganisms and viruses. Inside these organs, germinal centers (GCs) are the specialized sites where mature B-cell differentiation occurs leading to the release of high-affinity immunoglobulin (Ig)-secreting cells. Different steps are critical to complete B-cell differentiation process, including proliferation, somatic hypermutations in Ig variable genes, affinity-based selection, and class switch recombination. All these steps require intense interactions with cognate CD4+ helper T cells belonging to follicular helper lineage. Interestingly, pathogens can disturb this subtle machinery affecting the classical adaptive immune response. In this review, we describe how viruses could act directly on GC B cells, either through B-cell infection or by their contribution to B-cell cancer development and maintenance. In addition, we depict the indirect impact of viruses on B-cell response through infection of GC T cells and stromal cells, leading to immune response modulation.
Collapse
Affiliation(s)
- Stéphane Rodriguez
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Mikaël Roussel
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Karin Tarte
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Patricia Amé-Thomas
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| |
Collapse
|
32
|
Lytic EBV infection investigated by detection of Soluble Epstein-Barr virus ZEBRA in the serum of patients with PTLD. Sci Rep 2017; 7:10479. [PMID: 28874674 PMCID: PMC5585268 DOI: 10.1038/s41598-017-09798-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/28/2017] [Indexed: 12/14/2022] Open
Abstract
The ZEBRA protein (encoded by the BZLF1 gene), is the major transcription factor of EBV, expressed upon EBV lytic cycle activation. Several studies highlighted the critical role of EBV lytic infection as a risk factor for lymphoproliferative disorders like post-transplant lymphoproliferative disease (PTLD). Here, we use an antigen-capture ELISA assay specifically designed to detecting the circulating soluble ZEBRA (sZEBRA) in serum samples (threshold value determined at 40ng/mL). We retrospectively investigated a population of 66 transplanted patients comprising 35 PTLD. All the samples from a control population (30 EBV-seronegative subjects and 25 immunocompetent individuals with EBV serological reactivation), classified as sZEBRA < 40ng/mL were assigned as negative. At PTLD diagnosis, EBV genome (quantified by qPCR with EBV DNA>200 copies/mL) and sZEBRA were detectable in 51% and 60% of cases, respectively. In the patients who developed a pathologically-confirmed PTLD, the mean sZEBRA value in cases, was 399 ng/mL +/− 141 versus 53ng/mL +/− 7 in patients who did not (p < 0,001). This is the first report relating to the detection of the circulating ZEBRA in serum specimens, as well as the first analysis dealing with the lytic cycle of EBV in PTLD patients with this new biomarker.
Collapse
|
33
|
Kamranvar SA, Masucci MG. Regulation of Telomere Homeostasis during Epstein-Barr virus Infection and Immortalization. Viruses 2017; 9:v9080217. [PMID: 28792435 PMCID: PMC5580474 DOI: 10.3390/v9080217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The acquisition of unlimited proliferative potential is dependent on the activation of mechanisms for telomere maintenance, which counteracts telomere shortening and the consequent triggering of the DNA damage response, cell cycle arrest, and apoptosis. The capacity of Epstein Barr virus (EBV) to infect B-lymphocytes in vitro and transform the infected cells into autonomously proliferating immortal cell lines underlies the association of this human gamma-herpesvirus with a broad variety of lymphoid and epithelial cell malignancies. Current evidence suggests that both telomerase-dependent and -independent pathways of telomere elongation are activated in the infected cells during the early and late phases of virus-induced immortalization. Here we review the interaction of EBV with different components of the telomere maintenance machinery and the mechanisms by which the virus regulates telomere homeostasis in proliferating cells. We also discuss how these viral strategies may contribute to malignant transformation.
Collapse
Affiliation(s)
- Siamak A Kamranvar
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden.
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
34
|
Mauro FR, Galieni P, Tedeschi A, Laurenti L, Del Poeta G, Reda G, Motta M, Gozzetti A, Murru R, Caputo MD, Campanelli M, Frustaci AM, Innocenti I, Raponi S, Guarini A, Morabito F, Foà R, Gentile M. Factors predicting survival in chronic lymphocytic leukemia patients developing Richter syndrome transformation into Hodgkin lymphoma. Am J Hematol 2017; 92:529-535. [PMID: 28295527 DOI: 10.1002/ajh.24714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
We hereby report the clinical and biologic features of 33 of 4680 (0.7%) patients with chronic lymphocytic leukemia (CLL), managed at 10 Italian centers, who developed Hodgkin lymphoma (HL), a rare variant of Richter syndrome. The median age at CLL and at HL diagnosis were 61 years (range 41-80) and 70 years (range 46-82), respectively, with a median interval from CLL to the diagnosis of HL of 90 months (range 0-258). In 3 cases, CLL and HL were diagnosed simultaneously. Hl was characterized by advanced stage in 79% of cases, International Prognostic Score (IPS) ≥4 in 50%, extranodal involvement in 39%, B symptoms in 70%. Prior treatment for CLL had been received by 82% of patients and included fludarabine in 67%. Coexistence of CLL and HL was detected in the same bioptic tissue in 87% of cases. The most common administered treatment was the ABVD regimen given to 22 patients (66.6%). The complete response (CR) rate after ABVD was 68%, and was influenced by the IPS (P = .03) and interval from the last CLL treatment (P = .057). Survival from HL was also influenced by the IPS (P = .006) and time from the last CLL treatment (P = .047). The achievement of CR with ABVD was the only significant and independent factor predicting survival (P = .037). Taken together, our results show that the IPS and the interval from the prior CLL treatment influence the likelihood of achieving CR after ABVD, which is the most important factor predicting survival of patients with CLL developing HL.
Collapse
Affiliation(s)
- Francesca Romana Mauro
- Hematology; Department of Cellular Biotechnologies and Hematology, Sapienza University; Policlinico Umberto I Rome
| | - Piero Galieni
- U.O.C. Ematologia e Trapianto di Cellule Staminali Emopoietiche, Ospedale Mazzoni; Ascoli Piceno
| | | | | | - Giovanni Del Poeta
- Hematology; Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata; Rome
| | - Gianluigi Reda
- Oncohematology Department; Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico; Milan
| | - Marina Motta
- Department of Hematology; ASST Spedali Civili; Brescia
| | | | - Roberta Murru
- UO Ematologia e CTMO Ospedale Oncologico A. Businco; Cagliari
| | - Maria Denise Caputo
- Hematology; Department of Cellular Biotechnologies and Hematology, Sapienza University; Policlinico Umberto I Rome
| | - Melissa Campanelli
- Hematology; Department of Cellular Biotechnologies and Hematology, Sapienza University; Policlinico Umberto I Rome
| | | | | | - Sara Raponi
- Hematology; Department of Cellular Biotechnologies and Hematology, Sapienza University; Policlinico Umberto I Rome
| | - Anna Guarini
- Hematology; Department of Cellular Biotechnologies and Hematology, Sapienza University; Policlinico Umberto I Rome
| | | | - Robin Foà
- Hematology; Department of Cellular Biotechnologies and Hematology, Sapienza University; Policlinico Umberto I Rome
| | | |
Collapse
|
35
|
Gloghini A, Volpi CC, Gualeni AV, Dolcetti R, Bongarzone I, De Paoli P, Carbone A. Multiple viral infections in primary effusion lymphoma: a model of viral cooperation in lymphomagenesis. Expert Rev Hematol 2017; 10:505-514. [PMID: 28468596 DOI: 10.1080/17474086.2017.1326815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Primary effusion lymphoma (PEL) is a rare B-cell lymphoid neoplasm mainly associated with HIV infection, presenting as pleural, peritoneal, and pericardial effusions. A defining property of PEL is its consistent association with Kaposi sarcoma associated herpesvirus (KSHV) infection, and, in most cases, Epstein Barr virus (EBV) co-infection. On these grounds, a review of the literature related to viral cooperation and lymphomagenesis can help to understand the complex interplay between KSHV and EBV in PEL pathogenesis. Areas covered: In this review, the authors highlight clinical, pathologic, genetic and proteomic features of PEL, in the context of viral cooperation in PEL lymphomagenesis. Expert commentary: Tumour cells are characterized by the overexpression of genes that are involved in inflammation and invasion. Coherently, PEL secretomes are enriched in proteins probably responsible for the particular tropism (cell adhesion and migration) of PEL cells. The development of PEL in HIV+ patients is multifactorial and involves a complex interplay among co-infection with oncogenic viruses (EBV and KSHV), inflammatory factors, and environmental conditions.
Collapse
Affiliation(s)
- Annunziata Gloghini
- a Molecular Pathology, Department of Diagnostic Pathology and Laboratory Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milano , Italy
| | - Chiara C Volpi
- a Molecular Pathology, Department of Diagnostic Pathology and Laboratory Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milano , Italy
| | - Ambra V Gualeni
- a Molecular Pathology, Department of Diagnostic Pathology and Laboratory Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milano , Italy
| | - Riccardo Dolcetti
- b University of Queensland Diamantina Institute, Translational Research Institute , University of Queensland , Brisbane , Australia
| | - Italia Bongarzone
- c Proteomics Laboratory, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milano , Italy
| | - Paolo De Paoli
- d Molecular Virology , Centro di Riferimento Oncologico - IRCCS, National Cancer Institute , Aviano , Italy
| | - Antonino Carbone
- e Department of Pathology , Centro di Riferimento Oncologico - IRCCS, National Cancer Institute , Aviano , Italy
| |
Collapse
|
36
|
Linke-Serinsöz E, Fend F, Quintanilla-Martinez L. Human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) related lymphomas, pathology view point. Semin Diagn Pathol 2017; 34:352-363. [PMID: 28506687 DOI: 10.1053/j.semdp.2017.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The contribution of Epstein Barr virus (EBV) and Kaposi sarcoma herpes virus (KSHV) to the development of specific types of malignant lymphomas occurring in the human immunodeficiency virus (HIV) setting has been extensively studied since the beginning of the HIV epidemic 35 years ago. The introduction of highly active antiretroviral therapies (HAART) in 1996 has changed dramatically the incidence of HIV-related malignancies. Nevertheless, malignant lymphomas continue to be the major group of malignances observed in HIV infected individuals, and the most common cause of cancer related-deaths. Common features of the predominant B-cell lymphomas in the HIV+ setting are the frequent plasmacytoid morphology of the neoplastic cells, advanced stage, aggressive disease and frequent extranodal involvement. In this article, we review the evolving concepts and definitions of the various EBV-associated lymphomas in HIV+ patients, including diffuse large B-cell lymphoma, Burkitt lymphoma, classical Hodgkin lymphoma, plasmablastic lymphoma and primary effusion lymphoma. The current knowledge regarding the pathogenesis of these malignancies, the interplay between HIV and EBV co-infection in the development of certain HIV related lymphomas, and the emerging paradigm that suggests that HIV may play a direct role in lymphomagenesis are explored as well.
Collapse
Affiliation(s)
- Ebru Linke-Serinsöz
- Institute of Pathology, University Hospital Tübingen, Eberhard-Karls-University of Tübingen and Comprehensive Cancer Center, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology, University Hospital Tübingen, Eberhard-Karls-University of Tübingen and Comprehensive Cancer Center, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology, University Hospital Tübingen, Eberhard-Karls-University of Tübingen and Comprehensive Cancer Center, Tübingen, Germany.
| |
Collapse
|
37
|
Short-term inhibition of TERT induces telomere length-independent cell cycle arrest and apoptotic response in EBV-immortalized and transformed B cells. Cell Death Dis 2016; 7:e2562. [PMID: 28032863 PMCID: PMC5260987 DOI: 10.1038/cddis.2016.425] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 01/28/2023]
Abstract
Besides its canonical role in stabilizing telomeres, telomerase reverse transcriptase (TERT) may promote tumorigenesis through extra-telomeric functions. The possible therapeutic effects of BIBR1532 (BIBR), a powerful TERT inhibitor, have been evaluated in different cellular backgrounds, but no data are currently available regarding Epstein-Barr virus (EBV)-driven B-cell malignancies. Our aim was to characterize the biological effects of TERT inhibition by BIBR on EBV-immortalized lymphoblastoid cell lines (LCLs) and fully transformed Burkitt's lymphoma (BL) cell lines. We found that BIBR selectively inhibits telomerase activity in TERT-positive 4134/Late and 4134/TERT+ LCLs and EBV-negative BL41 and EBV-positive BL41/B95.8 BL cell lines. TERT inhibition led to decreased cell proliferation, accumulation of cells in the S-phase and ultimately to increased apoptosis, compared with mock-treated control cells. All these effects occurred within 72 h and were not observed in BIBR-treated TERT-negative 4134/TERT- and U2OS cells. The cell cycle arrest and apoptosis, consequent upon short-term TERT inhibition, were associated with and likely dependent on the activation of the DNA damage response (DDR), highlighted by the increased levels of γH2AX and activation of ATM and ATR pathways. Analyses of the mean and range of telomere lengths and telomere dysfunction-induced foci indicated that DDR after short-term TERT inhibition was not related to telomere dysfunction, thus suggesting that TERT, besides stabilizing telomere, may protect DNA via telomere-independent mechanisms. Notably, TERT-positive LCLs treated with BIBR in combination with fludarabine or cyclophosphamide showed a significant increase in the number of apoptotic cells with respect to those treated with chemotherapeutic agents alone. In conclusion, TERT inhibition impairs cell cycle progression and enhances the pro-apoptotic effects of chemotherapeutic agents in TERT-positive cells. These results support new therapeutic applications of TERT inhibitors in EBV-driven B-cell malignancies.
Collapse
|
38
|
Shabani M, Nichols KE, Rezaei N. Primary immunodeficiencies associated with EBV-Induced lymphoproliferative disorders. Crit Rev Oncol Hematol 2016; 108:109-127. [PMID: 27931829 DOI: 10.1016/j.critrevonc.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/10/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022] Open
Abstract
Primary immunodeficiency diseases (PIDs) are a subgroup of inherited immunological disorders that increase susceptibility to viral infections. Among the range of viral pathogens involved, EBV remains a major threat because of its high prevalence of infection among the adult population and its tendency to progress to life-threatening lymphoproliferative disorders (LPDs) and/or malignancy. The high mortality in immunodeficient patients with EBV-driven LPDs, despite institution of diverse and often intensive treatments, prompts the need to better study these PIDs to identify and understand the affected molecular pathways that increase susceptibility to EBV infection and progression. In this article, we have provided a detailed literature review of the reported cases of EBV-driven LPDs in patients with PID. We discuss the PIDs associated with development of EBV-LPDs. Then, we review the nature and the therapeutic outcome of common EBV- driven LPDs in the PID patients and review the mechanisms common to the major PIDs. Deep study of these common pathways and gaining a better insight into the disease nature and outcomes, may lead to earlier diagnosis of the disease, choosing the best treatment modalities available and development of novel therapeutic strategies to decrease morbidity and mortality brought about by EBV infection.
Collapse
Affiliation(s)
- Mahsima Shabani
- Research Center for Immunodeficiencies, Children's Medical School, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; International Hematology/Oncology Of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical School, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| |
Collapse
|
39
|
BZLF1 Attenuates Transmission of Inflammatory Paracrine Senescence in Epstein-Barr Virus-Infected Cells by Downregulating Tumor Necrosis Factor Alpha. J Virol 2016; 90:7880-93. [PMID: 27334596 DOI: 10.1128/jvi.00999-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/16/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Recent studies have shown that inflammatory responses trigger and transmit senescence to neighboring cells and activate the senescence-associated secretory phenotype (SASP). Latent Epstein-Barr virus (EBV) infection induces increased secretion of several inflammatory factors, whereas lytic infections evade the antiviral inflammatory response. However, the changes in and roles of the inflammatory microenvironment during the switch between EBV life cycles remain unknown. In the present study, we demonstrate that latent EBV infection in EBV-positive cells triggers the SASP in neighboring epithelial cells. In contrast, lytic EBV infection abolishes this phenotype. BZLF1 attenuates the transmission of paracrine senescence during lytic EBV infection by downregulating tumor necrosis factor alpha (TNF-α) secretion. A mutant BZLF1 protein, BZLF1Δ207-210, that cannot inhibit TNF-α secretion while maintaining viral transcription, fails to block paracrine senescence, whereas a neutralizing antibody against TNF-α is sufficient to restore its inhibition. Furthermore, latent EBV infection induces oxidative stress in neighboring cells, while BZLF1-mediated downregulation of TNF-α reduces reactive oxygen species (ROS) levels in neighboring cells, and ROS scavengers alleviate paracrine senescence. These results suggest that lytic EBV infection attenuates the transmission of inflammatory paracrine senescence through BZLF1 downregulation of TNF-α secretion and alters the inflammatory microenvironment to allow virus propagation and persistence. IMPORTANCE The senescence-associated secretory phenotype (SASP), an important tumorigenic process, is triggered and transmitted by inflammatory factors. The different life cycles of Epstein-Barr virus (EBV) infection in EBV-positive cells employ distinct strategies to modulate the inflammatory response and senescence. The elevation of inflammatory factors during latent EBV infection promotes the SASP in uninfected cells. In contrast, during the viral lytic cycle, BZLF1 suppresses the production of TNF-α, resulting in the attenuation of paracrine inflammatory senescence. This finding indicates that EBV evades inflammatory senescence during lytic infection and switches from facilitating tumor-promoting SASP to generating a virus-propagating microenvironment, thereby facilitating viral spread in EBV-associated diseases.
Collapse
|
40
|
Regulation of EBV LMP1-triggered EphA4 downregulation in EBV-associated B lymphoma and its impact on patients' survival. Blood 2016; 128:1578-89. [PMID: 27338098 DOI: 10.1182/blood-2016-02-702530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV), an oncogenic human virus, is associated with several lymphoproliferative disorders, including Burkitt lymphoma, Hodgkin disease, diffuse large B-cell lymphoma (DLBCL), and posttransplant lymphoproliferative disorder (PTLD). In vitro, EBV transforms primary B cells into lymphoblastoid cell lines (LCLs). Recently, several studies have shown that receptor tyrosine kinases (RTKs) play important roles in EBV-associated neoplasia. However, details of the involvement of RTKs in EBV-regulated B-cell neoplasia and malignancies remain largely unclear. Here, we found that erythropoietin-producing hepatocellular receptor A4 (EphA4), which belongs to the largest RTK Eph family, was downregulated in primary B cells post-EBV infection at the transcriptional and translational levels. Overexpression and knockdown experiments confirmed that EBV-encoded latent membrane protein 1 (LMP1) was responsible for this EphA4 suppression. Mechanistically, LMP1 triggered the extracellular signal-regulated kinase (ERK) pathway and promoted Sp1 to suppress EphA4 promoter activity. Functionally, overexpression of EphA4 prevented LCLs from proliferation. Pathologically, the expression of EphA4 was detected in EBV(-) tonsils but not in EBV(+) PTLD. In addition, an inverse correlation of EphA4 expression and EBV presence was verified by immunochemical staining of EBV(+) and EBV(-) DLBCL, suggesting EBV infection was associated with reduced EphA4 expression. Analysis of a public data set showed that lower EphA4 expression was correlated with a poor survival rate of DLBCL patients. Our findings provide a novel mechanism by which EphA4 can be regulated by an oncogenic LMP1 protein and explore its possible function in B cells. The results provide new insights into the role of EphA4 in EBV(+) PTLD and DLBCL.
Collapse
|
41
|
Shi Y, Peng SL, Yang LF, Chen X, Tao YG, Cao Y. Co-infection of Epstein-Barr virus and human papillomavirus in human tumorigenesis. CHINESE JOURNAL OF CANCER 2016; 35:16. [PMID: 26801987 PMCID: PMC4724123 DOI: 10.1186/s40880-016-0079-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
Viral infections contribute to approximately 12% of cancers worldwide, with the vast majority occurring in developing countries and areas. Two DNA viruses, Epstein-Barr virus (EBV) and human papillomavirus (HPV), are associated with 38% of all virus-associated cancers. The probability of one patient infected with these two distinct types of viruses is increasing. Here, we summarize the co-infection of EBV and HPV in human malignancies and address the possible mechanisms for the co-infection of EBV and HPV during tumorigenesis.
Collapse
Affiliation(s)
- Ying Shi
- Cancer Research Institute, Central South University, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Changsha, 410078, Hunan, P. R. China.
| | - Song-Ling Peng
- Cancer Research Institute, Central South University, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Changsha, 410078, Hunan, P. R. China.
| | - Li-Fang Yang
- Cancer Research Institute, Central South University, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Changsha, 410078, Hunan, P. R. China.
| | - Xue Chen
- Cancer Research Institute, Central South University, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Changsha, 410078, Hunan, P. R. China.
| | - Yong-Guang Tao
- Cancer Research Institute, Central South University, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Changsha, 410078, Hunan, P. R. China.
| | - Ya Cao
- Cancer Research Institute, Central South University, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Changsha, 410078, Hunan, P. R. China.
| |
Collapse
|
42
|
Amato T, Abate F, Piccaluga P, Iacono M, Fallerini C, Renieri A, De Falco G, Ambrosio MR, Mourmouras V, Ogwang M, Calbi V, Rabadan R, Hummel M, Pileri S, Leoncini L, Bellan C. Clonality Analysis of Immunoglobulin Gene Rearrangement by Next-Generation Sequencing in Endemic Burkitt Lymphoma Suggests Antigen Drive Activation of BCR as Opposed to Sporadic Burkitt Lymphoma. Am J Clin Pathol 2016; 145:116-127. [PMID: 26712879 PMCID: PMC4778259 DOI: 10.1093/ajcp/aqv011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Recent studies using next-generation sequencing (NGS) analysis disclosed the importance of the intrinsic activation of the B-cell receptor (BCR) pathway in the pathogenesis of sporadic Burkitt lymphoma (sBL) due to mutations of TCF3/ID3 genes. Since no definitive data are available on the genetic landscape of endemic Burkitt (eBL), we first assessed the mutation frequency of TCF3/ID3 in eBL compared with sBL and subsequently the somatic hypermutation status of the BCR to answer whether an extrinsic activation of BCR signaling could also be demonstrated in Burkitt lymphoma. METHODS We assessed the mutations of TCF3/ID3 by RNAseq and the BCR status by NGS analysis of the immunoglobulin genes (IGs). RESULTS We detected mutations of TCF3/ID3 in about 30% of the eBL cases. This rate is significantly lower than that detected in sBL (64%). The NGS analysis of IGs revealed intraclonal diversity, suggesting an active targeted somatic hypermutation process in eBL compared with sBL. CONCLUSIONS These findings support the view that the antigenic pressure plays a key role in the pathogenetic pathways of eBL, which may be partially distinct from those driving sBL development.
Collapse
Affiliation(s)
- Teresa Amato
- From the Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Abate
- Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, NY
| | - Pierpaolo Piccaluga
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Michele Iacono
- Roche Tissue Diagnostic & Sequencing, Roche Diagnostic S.P.A. Monza (MB), Italy
| | - Chiara Fallerini
- From the Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandra Renieri
- From the Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giulia De Falco
- From the Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Vaselious Mourmouras
- From the Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | | | - Roul Rabadan
- Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, NY
| | - Michael Hummel
- Institut Fur Pathologie, Campus Benjamin Franklin, Charitè, Universitatsmedizin, Berlin, Germany
| | - Stefano Pileri
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Lorenzo Leoncini
- From the Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Cristiana Bellan
- From the Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
43
|
Effects of mTOR and calcineurin inhibitors combined therapy in Epstein-Barr virus positive and negative Burkitt lymphoma cells. Int Immunopharmacol 2015; 30:9-17. [PMID: 26613512 DOI: 10.1016/j.intimp.2015.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/21/2015] [Accepted: 11/16/2015] [Indexed: 11/23/2022]
Abstract
Post-transplant lymphoproliferative disorder is a severe complication in solid organ transplant recipients, which is highly associated with Epstein-Barr virus infection in pediatric patients and occasionally presents as Burkitt- or Burkitt-like lymphoma. The mammalian target of rapamycin (mTOR) pathway has been described as a possible antitumor target whose inhibition may influence lymphoma development and proliferation after pediatric transplantation. We treated Epstein-Barr virus positive (Raji and Daudi) and negative (Ramos) human Burkitt lymphoma derived cells with mTOR inhibitor everolimus alone and in combination with clinically relevant immunosuppressive calcineurin inhibitors (tacrolimus or cyclosporin A). Cell proliferation, toxicity, and mitochondrial metabolic activity were analyzed. The effect on mTOR Complex 1 downstream targets p70 S6 kinase, eukaryotic initiation factor 4G, and S6 ribosomal protein activation was also investigated. We observed that treatment with everolimus alone significantly decreased Burkitt lymphoma cell proliferation and mitochondrial metabolic activity. Everolimus in combination with cyclosporin A had a stronger suppressive effect in Epstein-Barr virus negative but not in Epstein-Barr virus positive cells. In contrast, tacrolimus completely abolished the everolimus-mediated suppressive effects. Moreover, we showed a significant decrease in activation of mTOR Complex 1 downstream targets after treatment with everolimus that was attenuated when combined with tacrolimus, but not with cyclosporin A. For the first time we showed the competitive effect between everolimus and tacrolimus when used as combination therapy on Burkitt lymphoma derived cells. Thus, according to our in vitro data, the combination of calcineurin inhibitor cyclosporin A with everolimus is preferred to the combination of tacrolimus and everolimus.
Collapse
|
44
|
Dolcetti R. Cross-talk between Epstein-Barr virus and microenvironment in the pathogenesis of lymphomas. Semin Cancer Biol 2015; 34:58-69. [DOI: 10.1016/j.semcancer.2015.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 12/13/2022]
|
45
|
Abate F, Ambrosio MR, Mundo L, Laginestra MA, Fuligni F, Rossi M, Zairis S, Gazaneo S, De Falco G, Lazzi S, Bellan C, Rocca BJ, Amato T, Marasco E, Etebari M, Ogwang M, Calbi V, Ndede I, Patel K, Chumba D, Piccaluga PP, Pileri S, Leoncini L, Rabadan R. Distinct Viral and Mutational Spectrum of Endemic Burkitt Lymphoma. PLoS Pathog 2015; 11:e1005158. [PMID: 26468873 PMCID: PMC4607508 DOI: 10.1371/journal.ppat.1005158] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/19/2015] [Indexed: 12/15/2022] Open
Abstract
Endemic Burkitt lymphoma (eBL) is primarily found in children in equatorial regions and represents the first historical example of a virus-associated human malignancy. Although Epstein-Barr virus (EBV) infection and MYC translocations are hallmarks of the disease, it is unclear whether other factors may contribute to its development. We performed RNA-Seq on 20 eBL cases from Uganda and showed that the mutational and viral landscape of eBL is more complex than previously reported. First, we found the presence of other herpesviridae family members in 8 cases (40%), in particular human herpesvirus 5 and human herpesvirus 8 and confirmed their presence by immunohistochemistry in the adjacent non-neoplastic tissue. Second, we identified a distinct latency program in EBV involving lytic genes in association with TCF3 activity. Third, by comparing the eBL mutational landscape with published data on sporadic Burkitt lymphoma (sBL), we detected lower frequencies of mutations in MYC, ID3, TCF3 and TP53, and a higher frequency of mutation in ARID1A in eBL samples. Recurrent mutations in two genes not previously associated with eBL were identified in 20% of tumors: RHOA and cyclin F (CCNF). We also observed that polyviral samples showed lower numbers of somatic mutations in common altered genes in comparison to sBL specimens, suggesting dual mechanisms of transformation, mutation versus virus driven in sBL and eBL respectively.
Collapse
Affiliation(s)
- Francesco Abate
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | | | - Lucia Mundo
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Maria Antonella Laginestra
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Fabio Fuligni
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Maura Rossi
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Sakellarios Zairis
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Sara Gazaneo
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Giulia De Falco
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Stefano Lazzi
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Cristiana Bellan
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Bruno Jim Rocca
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Teresa Amato
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Elena Marasco
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Maryam Etebari
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | | | | | | | | | | | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Stefano Pileri
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
- Unit of Haematopathology, European Institute of Oncology, Milan and Bologna University School of Medicine, Bologna, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Raul Rabadan
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| |
Collapse
|
46
|
Novel roles and therapeutic targets of Epstein-Barr virus-encoded latent membrane protein 1-induced oncogenesis in nasopharyngeal carcinoma. Expert Rev Mol Med 2015; 17:e15. [PMID: 26282825 DOI: 10.1017/erm.2015.13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV) was first discovered 50 years ago as an oncogenic gamma-1 herpesvirus and infects more than 90% of the worldwide adult population. Nasopharyngeal carcinoma (NPC) poses a serious health problem in southern China and is one of the most common cancers among the Chinese. There is now strong evidence supporting a role for EBV in the pathogenesis of NPC. Latent membrane protein 1 (LMP1), a primary oncoprotein encoded by EBV, alters several functional and oncogenic properties, including transformation, cell death and survival in epithelial cells in NPC. LMP1 may increase protein modification, such as phosphorylation, and initiate aberrant signalling via derailed activation of host adaptor molecules and transcription factors. Here, we summarise the novel features of different domains of LMP1 and several new LMP1-mediated signalling pathways in NPC. When then focus on the potential roles of LMP1 in cancer stem cells, metabolism reprogramming, epigenetic modifications and therapy strategies in NPC.
Collapse
|
47
|
Carroll V, Garzino-Demo A. HIV-associated lymphoma in the era of combination antiretroviral therapy: shifting the immunological landscape. Pathog Dis 2015; 73:ftv044. [PMID: 26121984 DOI: 10.1093/femspd/ftv044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2015] [Indexed: 12/22/2022] Open
Abstract
HIV infection increases the risk of many types of cancer, including lymphoma. Combination antiretroviral therapy (cART) has reduced, but not eliminated, the risk of HIV-associated lymphoma. There has been a substantial shift in the subtypes of lymphoma observed in HIV-infected patients treated with cART. In this review, we will first outline these changes based on epidemiological studies and describe the impact of cART on lymphoma risk and mortality. Then, we will discuss some immunological factors that may contribute to the increased risk of lymphoma persisting after the administration of cART, including immunological non-response to therapy, chronic B-cell activation and dysfunction, T follicular helper cells, natural killer cells and altered lymphopoiesis. A better understanding of the pathophysiologic mechanisms of HIV-associated lymphoma under effective cART will inform future treatment strategies.
Collapse
Affiliation(s)
- Virginia Carroll
- Institute of Human Virology, and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201-1009, USA
| | - Alfredo Garzino-Demo
- Institute of Human Virology, and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201-1009, USA Department of Molecular Medicine, University of Padova, Padova 35121, Italy
| |
Collapse
|
48
|
Martorelli D, Muraro E, Mastorci K, Dal Col J, Faè DA, Furlan C, Giagulli C, Caccuri F, Rusnati M, Fiorentini S, Carbone A, Caruso A, Dolcetti R. A natural HIV p17 protein variant up-regulates the LMP-1 EBV oncoprotein and promotes the growth of EBV-infected B-lymphocytes: implications for EBV-driven lymphomagenesis in the HIV setting. Int J Cancer 2015; 137:1374-85. [PMID: 25704763 DOI: 10.1002/ijc.29494] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 02/12/2015] [Indexed: 01/11/2023]
Abstract
Human immunodeficiency virus p17 matrix protein is released by infected cells and may accumulate within lymphoid tissues where it may deregulate the biological activities of different cell populations by binding to CXCR1 and CXCR2 cellular receptors. S75X, a natural p17 variant, was recently shown to enhance the malignant properties of lymphoma cells. We investigated a reference p17 protein and the S75X variant for their ability to bind to Epstein-Barr virus (EBV)-infected primary and fully transformed B-lymphocytes and trigger downstream effects of potential pathogenic relevance. We demonstrate that EBV infection of primary B-lymphocytes or the ectopic expression of the latent membrane protein-1 viral oncoprotein in EBV-negative B-cells up-regulates CXCR2, but not CXCR1. Multispectral imaging flow cytometry showed that EBV-infected primary B-cells more efficiently bind and internalize p17 proteins as compared with activated B-lymphocytes. The S75X variant bound more efficiently to EBV-infected primary and fully transformed B-lymphocytes compared with reference p17, because of a higher affinity to CXCR2, and enhanced the proliferation of these cells, an effect associated with cyclin D2 and D3 up-regulation and increased interleukin-6 production. Notably, the S75X variant markedly up-regulated latent membrane protein-1 expression at both mRNA and protein levels and enhanced the activation of Akt, ERK1/2 and STAT3 signaling, thereby contributing to EBV(+) B-cell growth promotion. These results indicate that EBV infection sensitizes B-lymphocytes to CXCR2-mediated effects of p17 proteins and provide evidence supporting a possible contribution of natural p17 variants to EBV-driven lymphomagenesis in the human immunodeficiency virus setting.
Collapse
Affiliation(s)
- Debora Martorelli
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Elena Muraro
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Katy Mastorci
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Jessica Dal Col
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Damiana Antonia Faè
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Chiara Furlan
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy.,Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Cinzia Giagulli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Simona Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Antonino Carbone
- Pathology Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| |
Collapse
|
49
|
Anastasiadou E, Garg N, Bigi R, Yadav S, Campese AF, Lapenta C, Spada M, Cuomo L, Botta A, Belardelli F, Frati L, Ferretti E, Faggioni A, Trivedi P. Epstein-Barr virus infection induces miR-21 in terminally differentiated malignant B cells. Int J Cancer 2015; 137:1491-7. [PMID: 25704079 DOI: 10.1002/ijc.29489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/11/2015] [Indexed: 11/08/2022]
Abstract
The association of Epstein-Barr virus (EBV) with plasmacytoid malignancies is now well established but how the virus influences microRNA expression in such cells is not known. We have used multiple myeloma (MM) cell lines to address this issue and find that an oncomiR, miR-21 is induced after in vitro EBV infection. The PU.1 binding site in miR-21 promoter was essential for its activation by the virus. In accordance with its noted oncogenic functions, miR-21 induction in EBV infected MM cells caused downregulation of p21 and an increase in cyclin D3 expression. EBV infected MM cells were highly tumorigenic in SCID mice. Given the importance of miR-21 in plasmacytoid malignancies, our findings that EBV could further exacerbate the disease by inducing miR-21 has interesting implications both in terms of diagnosis and future miR based therapeutical approaches for the virus associated plasmacytoid tumors.
Collapse
Affiliation(s)
- Eleni Anastasiadou
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Neha Garg
- Department of Molecular Medicine, La Sapienza University, Rome, Italy
| | - Rachele Bigi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Shivangi Yadav
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | | | - Caterina Lapenta
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Massimo Spada
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Laura Cuomo
- Department of Clinical Pathology, San Filippo Neri Hospital, Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Filippo Belardelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Luigi Frati
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | | | - Alberto Faggioni
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| |
Collapse
|
50
|
Carbone A, Gloghini A, Kwong YL, Younes A. Diffuse large B cell lymphoma: using pathologic and molecular biomarkers to define subgroups for novel therapy. Ann Hematol 2014; 93:1263-77. [PMID: 24870942 PMCID: PMC4082139 DOI: 10.1007/s00277-014-2116-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/19/2014] [Indexed: 12/22/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) comprises specific subtypes, disease entities, and other not otherwise specified (NOS) lymphomas. This review will focus on DLBCL NOS because of their prevalence and their heterogeneity with respect to morphology, clinical presentation, biology, and response to treatment. Gene expression profiling of DLBCL NOS has identified molecular subgroups that correlate with prognosis and may have relevance for treatment based on signaling pathways. New technologies have revealed that the "activated B cell" subgroup is linked to activation of the nuclear factor kB (NF-kB) pathway, with mutations found in CD79A/B, CARD11, and MYD88, and loss of function mutations in TNFAIP3. The "germinal center B cell-like" subgroup is linked to mutational changes in EZH2 and CREBBP. Biomarkers that are related to pathways promoting tumor cell growth and survival in DLBCL have been recognized, although their predictive role requires clinical validation. Immunohistochemistry for detecting the expression of these biomarkers is a practical technique that could provide a rational for clinical trial design.
Collapse
Affiliation(s)
- Antonino Carbone
- Department of Pathology, Centro di Riferimento Oncologico (CRO) Aviano, Istituto Nazionale Tumori, IRCCS, Via F. Gallini 2, 33081, Aviano, Italy,
| | | | | | | |
Collapse
|