1
|
Yang M, Xuan Y, Hao P, Li Y, Zhang C, Zhao W, Zhang Y, Zhang X, Zhou X, Zhu H, Li H, Yang Y, Wang J, Yan R, Qu Y, Ke X. TRAF2 mediates Wnt-induced β-catenin nuclear translocation by associating with the nuclear pore complex. Life Sci 2025:123722. [PMID: 40393561 DOI: 10.1016/j.lfs.2025.123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/25/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
AIMS Colorectal cancer (CRC), driven by Wnt/β-catenin hyperactivation, relies on nuclear import of β-catenin, but the underlying mechanism is not fully clarified. Given that tumor necrosis factor receptor-associated factor 2 (TRAF2) is a positive regulator of Wnt signaling by directly interacting with β-catenin, we aim to demonstrate the role of TRAF2 in Wnt-induced β-catenin nuclear translocation. MATERIALS AND METHODS Wild-type and TRAF2 knockout cells (generated via CRISPR-Cas9) were utilized to validate the role of TRAF2 in β-catenin nuclear translocation through immunofluorescence and nucleoplasm separation assay. Proteomic profiling of TRAF2 condensates and interactomes was performed to identify proteins linked to nucleocytoplasmic transport. The interactions among TRAF2, β-catenin, nucleoporins (Nups) and B-cell lymphoma 9 (BCL9), as well as the inhibitory effects of small molecule liquidambaric acid (LDA) on these interactions were confirmed using proximity ligation assay (PLA), fluorescence resonance energy transfer (FRET), and co-immunoprecipitation (Co-IP) in cellular models and small intestine of mice. KEY FINDINGS TRAF2 is required for Wnt-induced β-catenin nuclear translocation. TRAF2 interacts with numerous Nups within the nuclear pore complex (NPC), and is upregulated upon Wnt stimulation. In the small intestine of mice, TRAF2/Nups interaction is mainly detected in the crypts-regions known to harbor colorectal cancer stem cells, as well as in APCmin/+ intestinal organoids. Of note, TRAF2 is indispensable for β-catenin interaction with Nups and the known chaperone BCL9. Finally, LDA blocks TRAF2/Nups interaction, inhibiting β-catenin nuclear translocation. SIGNIFICANCE This study unveils TRAF2-mediated nucleocytoplasmic transport as a druggable mechanism, advancing targeted therapies against Wnt-driven colorectal cancers.
Collapse
Affiliation(s)
- Min Yang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Ying Xuan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Piliang Hao
- School of Life Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Yushu Li
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Chengqian Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Weiwei Zhao
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yiyuan Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xianglian Zhou
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Hongyan Zhu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Huihui Li
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yan Yang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Jiaqi Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Rong Yan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| |
Collapse
|
2
|
Jauregi-Miguel A, Söderholm S, Weiss T, Nordin A, Ghezzi V, Brütsch SM, Pagella P, van de Grift Y, Zambanini G, Ulisse J, Mattia A, Deviatiiarov R, Faustini E, Moparthi L, Zhong W, Björnsson B, Sandström P, Lundqvist E, Lottersberger F, Koch S, Moor AE, Sun XF, von Castelmur E, Sheng G, Cantù C. The developmental factor TBX3 engages with the Wnt/β-catenin transcriptional complex in colorectal cancer to regulate metastasis genes. Proc Natl Acad Sci U S A 2025; 122:e2419691122. [PMID: 40343989 PMCID: PMC12088458 DOI: 10.1073/pnas.2419691122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/28/2025] [Indexed: 05/11/2025] Open
Abstract
Wnt signaling orchestrates gene expression in a plethora of processes during development and adult cell homeostasis via the action of nuclear β-catenin. Yet, little is known about how β-catenin generates context-specific transcriptional outcomes. Understanding this will reveal how aberrant Wnt/β-catenin signaling causes neoplasia specifically of the colorectal epithelium. We have previously identified the transcription factor TBX3 as a tissue-specific component of the Wnt/β-catenin nuclear complex during mouse forelimb development. In this study, we show that TBX3 is functionally active in human colorectal cancer (CRC). Here, genome-wide binding and transcriptomics analyses reveal that TBX3 regulates cancer metastasis genes in cooperation with Wnt/β-catenin. Proteomics proximity labeling performed across Wnt pathway activation shows that TBX3 engages with several transcription factors and chromatin remodeling complexes found at Wnt responsive elements (WRE). Protein sequence and structure analysis of TBX3 revealed short motifs, including an exposed Asn-Pro-Phe (NPF), that mediate these interactions. Deletion of these motifs abrogates TBX3's proximity to its protein partners and its ability to enhance the Wnt-dependent transcription. TBX3 emerges as a key modulator of the oncogenic activity of Wnt/β-catenin in CRC, and its mechanism of action exposes protein-interaction surfaces as putative druggable targets.
Collapse
Affiliation(s)
- Amaia Jauregi-Miguel
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
| | - Simon Söderholm
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
- Science for Life Laboratory, SciLifeLab, Linköping University, Linköping58183, Sweden
| | - Tamina Weiss
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
- Science for Life Laboratory, SciLifeLab, Linköping University, Linköping58183, Sweden
| | - Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
- Science for Life Laboratory, SciLifeLab, Linköping University, Linköping58183, Sweden
| | - Valeria Ghezzi
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
| | - Salome M. Brütsch
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
| | - Pierfrancesco Pagella
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
- Department of Physics, Chemistry, and Biology, Division of Biophysics and Bioengineering, Faculty of Science and Engineering, Linköping University, Linköping58183, Sweden
| | - Yorick van de Grift
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
- Science for Life Laboratory, SciLifeLab, Linköping University, Linköping58183, Sweden
| | - Gianluca Zambanini
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
| | - Jacopo Ulisse
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
| | - Alessandro Mattia
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan420012, Russian Federation
- Endocrinology Research Center, Moscow115478, Russian Federation
- Graduate School of Medicine, Juntendo University, Tokyo113-8421, Japan
| | - Elena Faustini
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
| | - Lavanya Moparthi
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
| | - Wenjing Zhong
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
| | - Bergthor Björnsson
- Department of Surgery in Linköping, Linköping University, Linköping58225, Sweden
- Department of Biomedicine and Clinical Sciences, Linköping University, Linköping58225, Sweden
| | - Per Sandström
- Department of Surgery in Linköping, Linköping University, Linköping58225, Sweden
- Department of Biomedicine and Clinical Sciences, Linköping University, Linköping58225, Sweden
| | - Erik Lundqvist
- Department of Biomedicine and Clinical Sciences, Linköping University, Linköping58225, Sweden
- Department of Surgery, Vrinnevi Hospital, Norrköping, Linköping University, Norrköping60379, Sweden
| | - Francisca Lottersberger
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
| | - Stefan Koch
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
| | - Andreas E. Moor
- Department of Biosystems Science and Engineering, Federal Institute of Technology Zürich, Basel4056, Switzerland
| | - Xiao-Feng Sun
- Department of Oncology, Division of Surgery, Orthopedics and Oncology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
- Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
| | - Eleonore von Castelmur
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Physics, Chemistry and Biology, Division of Chemistry, Faculty of Science and Engineering, Linköping University, Linköping58183, Sweden
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto860-8555, Japan
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping58225, Sweden
- Science for Life Laboratory, SciLifeLab, Linköping University, Linköping58183, Sweden
| |
Collapse
|
3
|
Cheng VWT, Vaughn-Beaucaire P, Shaw GC, Kriegs M, Droop A, Psakis G, Mittelbronn M, Humphries M, Esteves F, Hayes J, Cockle JV, Knipp S, Rohwedder A, Ismail A, Rominiyi O, Collis SJ, Mavria G, Samarasekara J, Ladbury JE, Ketchen S, Morton R, Fagan S, Tams D, Myers K, McGarrity-Cottrell C, Dunning M, Boissinot M, Michalopoulos G, Prior S, Lam YW, Morrison EE, Short SC, Lawler SE, Brüning-Richardson A. ARHGAP12 and ARHGAP29 exert distinct regulatory effects on switching between two cell morphological states through GSK-3 activity. Cell Rep 2025; 44:115361. [PMID: 40053455 DOI: 10.1016/j.celrep.2025.115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 12/26/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer cells undergo morphological changes and phenotype switching to promote invasion into healthy tissues. Manipulating the transitional morphological states in cancer cells to prevent tumor dissemination may enhance survival and improve treatment response. We describe two members of the RhoGTPase activating protein (ARHGAP) family, ARHGAP12 and ARHGAP29, as regulators of transitional morphological states in glioma via Src kinase signaling events, leading to morphological changes that correspond to phenotype switching. Moreover, we establish a link between glycogen synthase kinase 3 (GSK-3) inhibition and β-catenin translocation in altering transcription of ARHGAP12 and ARHGAP29. Silencing ARHGAP12 causes loss of N-cadherin and adoption of mesenchymal morphology, a characteristic feature of aggressive cellular behavior. In patients with glioblastoma (GBM), we identify a link between ARHGAP12 and ARHGAP29 co-expression and recurrence after treatment. Consequently, we propose that further investigation of how ARHGAPs regulate transitional morphological events to drive cancer dissemination is warranted.
Collapse
Affiliation(s)
- Vinton W T Cheng
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, University of Leeds, Leeds LS9 7TF, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Philippa Vaughn-Beaucaire
- School of Applied Sciences, Joseph Priestley Building, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Gary C Shaw
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, University of Leeds, Leeds LS9 7TF, UK
| | - Malte Kriegs
- Department of Radiobiology & Radiation Oncology and UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Alastair Droop
- Wellcome Trust Genome Campus, Wellcome Trust Institute, Hinxton CB10 1RQ, UK
| | - George Psakis
- School of Applied Sciences, Joseph Priestley Building, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Michel Mittelbronn
- Luxembourg Centre of Neuropathology, Luxembourg Institute of Health, L-3555 Dudelange, Luxembourg; National Center of Pathology (NCP), Laboratoire National de Santé (LNS), L-3555 Dudelange, Luxembourg; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, 28 Esch-sur-Alzette, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg; Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
| | - Matt Humphries
- National Pathology Imaging Cooperative, Leeds Teaching Hospitals NHS Trust, St James's University Hospital, Leeds LS9 7TF, UK
| | - Filomena Esteves
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, University of Leeds, Leeds LS9 7TF, UK
| | - Josie Hayes
- REVOLUTION Medicines, Redwood City, California 94036, USA
| | | | - Sabine Knipp
- School of Applied Sciences, Joseph Priestley Building, University of Huddersfield, Huddersfield HD1 3DH, UK; Zentrum fuer Medizinische Forschung, Johannes Kepler University, Linz, Austria
| | - Arndt Rohwedder
- Zentrum fuer Medizinische Forschung, Johannes Kepler University, Linz, Austria; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Azzam Ismail
- Pathology Department, Leeds Teaching Hospitals NHS Trust, St James's University Hospital, Leeds LS9 7TF, UK
| | - Ola Rominiyi
- Department of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Spencer J Collis
- Department of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Georgia Mavria
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, University of Leeds, Leeds LS9 7TF, UK
| | | | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie Ketchen
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, University of Leeds, Leeds LS9 7TF, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Ruth Morton
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, University of Leeds, Leeds LS9 7TF, UK
| | - Sarah Fagan
- School of Applied Sciences, Joseph Priestley Building, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Daniel Tams
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, University of Leeds, Leeds LS9 7TF, UK
| | - Katie Myers
- Sheffield Bioinformatics Core, Faculty of Health, University of Sheffield, Sheffield, S10 2RX, UK
| | | | - Mark Dunning
- Sheffield Bioinformatics Core, Faculty of Health, University of Sheffield, Sheffield, S10 2RX, UK
| | - Marjorie Boissinot
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, University of Leeds, Leeds LS9 7TF, UK
| | - George Michalopoulos
- School of Applied Sciences, Joseph Priestley Building, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Sally Prior
- School of Applied Sciences, Joseph Priestley Building, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Yun Wah Lam
- School of Applied Sciences, Joseph Priestley Building, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Ewan E Morrison
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, University of Leeds, Leeds LS9 7TF, UK
| | - Susan C Short
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, University of Leeds, Leeds LS9 7TF, UK
| | - Sean E Lawler
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, Rhode Island 02903, USA
| | - Anke Brüning-Richardson
- School of Applied Sciences, Joseph Priestley Building, University of Huddersfield, Huddersfield HD1 3DH, UK.
| |
Collapse
|
4
|
Zhao X, Lai H, Li G, Qin Y, Chen R, Labrie M, Stommel JM, Mills GB, Ma D, Gao Q, Fang Y. Rictor orchestrates β-catenin/FOXO balance by maintaining redox homeostasis during development of ovarian cancer. Oncogene 2025:10.1038/s41388-025-03351-x. [PMID: 40133477 DOI: 10.1038/s41388-025-03351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/14/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Rictor/mTORC2 has been demonstrated to have important roles in cancer development and progression in a number of solid and hematologic malignancies. However, little is known about the role of Rictor/mTORC2 in ovarian cancer pathophysiology. Herein, using conditional Rictor knockout mice, we were able to demonstrate that Rictor deletion disrupted glutathione metabolism through AKT/Nrf2 signaling pathway and induced intracellular oxidative stress during the malignant transformation of Kras/Pten-mutant ovarian surface epithelial cells. Elevated reactive oxygen species and activated FOXO3a in Rictor-deleted cells strikingly shifts the functional interaction of β-catenin from TCF to FOXO3a, which strongly inhibits classical Wnt/β-catenin signaling. Our findings emphasize a pivotal role for Rictor in orchestrating crosstalk between the PI3K/AKT and Wnt/β-catenin signaling in the development of ovarian cancer. Illustration of Rictor/mTORC2 in promoting tumor onset by regulating glutathione metabolism and mediating oncogenic signaling.
Collapse
Affiliation(s)
- Xuejiao Zhao
- National Clinical Research Center for Obstetrics and Gynaecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiling Lai
- Department of Gynecology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guannan Li
- National Clinical Research Center for Obstetrics and Gynaecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Qin
- National Clinical Research Center for Obstetrics and Gynaecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruqi Chen
- National Clinical Research Center for Obstetrics and Gynaecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marilyne Labrie
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jayne M Stommel
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Ding Ma
- National Clinical Research Center for Obstetrics and Gynaecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qinglei Gao
- National Clinical Research Center for Obstetrics and Gynaecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- National Clinical Research Center for Obstetrics and Gynaecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Mei H, Luo Q, Weng J, Hao J, Cai J, Zhou R, Bian C, Ye Y, Luo S, Wen Y. The miR-1269a/PCDHGA9/CXCR4/β-catenin pathway promotes colorectal cancer invasion and metastasis. Cell Mol Biol Lett 2024; 29:144. [PMID: 39587482 PMCID: PMC11590219 DOI: 10.1186/s11658-024-00656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related death. This research focuses on investigating the impact and underlying molecular mechanisms of protocadherin gamma subfamily A, 9 (PCDHGA9) on the invasion and metastasis of CRC, aiming to identify more precise molecular markers for the diagnosis and prognosis of CRC. METHODS PCDHGA9 expression was detected using quantitative real-time quantitative polymerase chain reaction (RT-qPCR) in 63 pairs of colorectal cancer tissues. Differential gene expression from high-throughput sequencing was analyzed using ingenuity pathway analysis (IPA) to explore the biological functions of PCDHGA9 and its potential regulated genes. Bioinformatics tools were employed to explore potential upstream regulatory microRNAs of PCDHGA9. Dual-luciferase assays were performed to demonstrate the regulation between PCDHGA9 and miR-1269a. Protein mass spectrometry suggested an interaction between PCDHGA9 and HOXA1. JASPAR predicted that HOXA1 may act as a transcription factor of CXCR4. Coimmunoprecipitation, dual-luciferase assays, and nuclear-cytoplasmic fractionation experiments confirmed the molecular mechanism involving PCDHGA9, CXCR4, HOXA1, and β-catenin. Transwell, wound healing, and western blot assays were conducted to confirm the impact of PCDHGA9, miR-1269a, and CXCR4 on the invasion, metastasis, and epithelial-mesenchymal transition (EMT) functions of CRC cells in in vitro experiments. A whole-body fluorescence imaging system was used to evaluate the combined impact of miR-1269a and PCDHGA9 on the invasion and metastasis of CRC in in vivo experiments. RESULTS The expression of PCDHGA9 was found to be lower in CRC tissues compared with their corresponding adjacent tissues. Low expression of PCDHGA9 potentially correlated with worse prognosis and increased chances of invasion and metastasis in CRC. miR-1269a was highly expressed in CRC tissues and acted as a negative regulator for PCDHGA9, promoting invasion, migration, and EMT of CRC cells. PCDHGA9's interaction with HOXA1 downregulated CXCR4, a transcription factor, leading to accumulation of β-catenin and further promoting invasion, migration, and EMT of CRC cells. CONCLUSIONS PCDHGA9, acting as a tumor suppressor, is downregulated by miR-1269a. The low level of PCDHGA9 activates the Wnt/β-catenin pathway by releasing its interaction with HOXA1, promoting the expression of CXCR4, and causing invasion, migration, and EMT in CRC.
Collapse
Affiliation(s)
- Haitao Mei
- Department of Gastrointestinal Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, 200071, China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
- Department of Colorectal Surgery, Changzheng Hospital, Navy Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Qingshan Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Junyong Weng
- Department of Colorectal Surgery, Changzheng Hospital, Navy Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
| | - Jialing Hao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Jinfeng Cai
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Runkai Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Ce Bian
- Department of Colorectal Surgery, Changzheng Hospital, Navy Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Yingzi Ye
- Department of Infectious Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Shengzheng Luo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China.
| | - Yugang Wen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China.
| |
Collapse
|
6
|
Fang H, Shi X, Gao J, Yan Z, Wang Y, Chen Y, Zhang J, Guo W. TMEM209 promotes hepatocellular carcinoma progression by activating the Wnt/β-catenin signaling pathway through KPNB1 stabilization. Cell Death Discov 2024; 10:438. [PMID: 39414762 PMCID: PMC11484822 DOI: 10.1038/s41420-024-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy in the liver, with a poor prognosis. Transmembrane protein 209 (TMEM209) involves multiple biological processes, such as substance transportation and signal transduction, and is abundantly expressed in tumor tissues. However, the relationship between TMEM209 and HCC has not been comprehensively elucidated. In this study, we aimed to illustrate this issue by in vitro and in vivo experiments. Bioinformatic analysis and clinical sample validation revealed that TMEM209 was upregulated in HCC and correlated with reduced survival duration. Functionally, TMEM209 promoted the proliferation, migration, invasion, and EMT of HCC cells in vitro and facilitated tumor growth and metastasis in xenograft models. Mechanistically, TMEM209 promoted the proliferation and metastasis of HCC in a KPNB1-dependent manner. Specifically, TMEM209 could bind to KPNB1, thereby competitively blocking the interaction between KPNB1 and the E3 ubiquitin ligase RING finger and CHY zinc finger domain-containing protein 1 (RCHY1) and preventing K48-associated ubiquitination degradation of KPNB1. Ultimately, the Wnt/β-catenin signaling pathway was activated, contributing to the progression of the malignant phenotype of HCC. In conclusion, the molecular mechanism underlying the TMEM209/KPNB1/Wnt/β-catenin axis in HCC progression was elucidated. TMEM209 is a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Haoran Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Yun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jiacheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Deng J, Zhou J, Jiang B. Advances in the role of membrane-bound transcription factors in carcinogenesis and therapy. Discov Oncol 2024; 15:559. [PMID: 39404930 PMCID: PMC11480308 DOI: 10.1007/s12672-024-01414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Protein shuttling between the cytoplasm and nucleus is a unique phenomenon in eukaryotic organisms, integral to various cellular functions. Membrane-bound transcription factors (MTFs), a specialized class of nucleocytoplasmic shuttling proteins, are anchored to the cell membrane and enter the nucleus upon ligand binding to exert their transcriptional regulatory functions. MTFs are crucial in cellular signal transduction, and aberrant nucleocytoplasmic shuttling of MTFs is closely associated with tumor initiation, progression, and resistance to anticancer therapies. Studies have demonstrated that MTFs, such as human epidermal growth factor receptor (HER), fibroblast growth factor receptor (FGFR), β-catenin, Notch, insulin-like growth factor 1 receptor (IGF-1R), and insulin receptor (IR), play critical roles in tumorigenesis and cancer progression. Targeted therapies developed against HERs and FGFRs, among these MTFs, have yielded significant success in cancer treatment. However, the development of drug resistance remains a major challenge. As research on MTFs progress, it is anticipated that additional MTF-targeted therapies will be developed to enhance cancer treatment. In this review, we summarized recent advancements in the study of MTFs and their roles in carcinogenesis and therapy, aiming to provide valuable insights into the potential of targeting MTF pathways for the reseach of therapeutic strategies.
Collapse
Affiliation(s)
- JiaLi Deng
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| | - Jie Zhou
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| | - BinYuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China.
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China.
| |
Collapse
|
8
|
Yuan M, Shi H, Wang B, Cai J, Yu W, Wang W, Qian Q, Wang Y, Zhou X, Liu J. Targeting SOCS2 alleviates myocardial fibrosis by reducing nuclear translocation of β-catenin. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119804. [PMID: 39084528 DOI: 10.1016/j.bbamcr.2024.119804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/25/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Myocardial fibrosis is an important pathological feature of dilated cardiomyopathy (DCM). The roles of SOCS2 in fibrosis of different organs are controversial. Herein, we investigated the function and potential mechanism of SOCS2 in myocardial fibrosis. METHODS Bioinformatics, immunohistochemistry (IHC), immunofluorescence (IF), western blot (WB), real-time fluorescence quantitative PCR (qPCR), rat primary myocardial fibroblasts (rCFs) culture, doxorubicin (DOX) induced mouse dilated cardiomyopathy (DCM) model, and in vivo adeno-associated virus (AAV) infection were used to explore the role of SOCS2 in DCM. RESULTS Bioinformatics analysis showed that SOCS2 was positively correlated with fibrosis related factors. SOCS2 was significantly upregulated in patients and mice with DCM. In vivo experiments showed that targeted inhibition of cardiac SOCS2 could improve mouse cardiac function and alleviate myocardial fibrosis. Further research demonstrated that SOCS2 promoted the transformation of myofibroblasts. Knockdown of SOCS2 reduced the nuclear localization of β-catenin, which inhibited the fibrogenic effect of Wnt/β-catenin pathway. In addition, bioinformatics analysis suggested that lymphoid enhancer binding factor 1 (LEF1) was significantly positively correlated with SOCS2. Finally, dual luciferase assays demonstrated that LEF1 could bind to the promoter region of SOCS2, thereby mediating its transcriptional activation. CONCLUSION SOCS2 could activate the Wnt/β-catenin by regulating the nuclear translocation of β-catenin, which induces the transcriptional activation of SOCS2. Overall, these results indicated a positive feedback activation phenomenon between SOCS2, β-catenin and LEF1 in DCM. These results suggested that inhibition of SOCS2 could effectively alleviate the progression of myocardial fibrosis and improve cardiac function.
Collapse
Affiliation(s)
- Ming Yuan
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Hongjie Shi
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jie Cai
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Wenjun Yu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Wei Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Qiaofeng Qian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Yumou Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Xianwu Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China.
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China.
| |
Collapse
|
9
|
Sun S, Gong YD, Kang JS, Dong MS, Choi Y. A small molecule compound 759 inhibits the wnt/beta-catenin signaling pathway via increasing the Axin protein stability. Med Oncol 2024; 41:147. [PMID: 38733492 DOI: 10.1007/s12032-024-02314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 05/13/2024]
Abstract
Wnt/β-catenin signaling plays important role in cancers. Compound 759 is one of the compounds previously screened to identify inhibitors of the Wnt/β-catenin pathway in A549 cells [Lee et al. in Bioorg Med Chem Lett 20:5900-5904, 2010]. However, the mechanism by which Compound 759 induces the inhibition of the Wnt/β-catenin pathway remains unknown. In our study, we employed various assays to comprehensively evaluate the effects of Compound 759 on lung cancer cells. Our results demonstrated that Compound 759 significantly suppressed cell proliferation and Wnt3a-induced Topflash activity and arrested the cell cycle at the G1 stage. Changes in Wnt/β-catenin signaling-related protein expression, gene activity, and protein stability including Axin, and p21, were achieved through western blot and qRT-PCR analysis. Compound 759 treatment upregulated the mRNA level of p21 and increased Axin protein levels without altering the mRNA expression in A549 cells. Co-treatment of Wnt3a and varying doses of Compound 759 dose-dependently increased the amounts of Axin1 in the cytosol and inhibited β-catenin translocation into the nucleus. Moreover, Compound 759 reduced tumor size and weight in the A549 cell-induced tumor growth in the in vivo tumor xenograft mouse model. Our findings indicate that Compound 759 exhibits potential anti-cancer activity by inhibiting the Wnt/β-catenin signaling pathway through the increase of Axin1 protein stability.
Collapse
Affiliation(s)
- Seunghan Sun
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Dae Gong
- Innovative Drug-Like Library Research Center, Dongguk University, Seoul, 04625, Republic of Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, 28116, Republic of Korea
| | - Mi-Sook Dong
- College of Pharmacy, Ewha Womans University, Ewhayeodae-gil, Seoul, 03760, Republic of Korea.
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
10
|
Kaya-Yasar Y, Engin S, Barut EN, Inan C, Saygin I, Erkoseoglu I, Sezen SF. The contribution of the WNT pathway to the therapeutic effects of montelukast in experimental murine airway inflammation induced by ovalbumin and lipopolysaccharide. Drug Dev Res 2024; 85:e22178. [PMID: 38528652 DOI: 10.1002/ddr.22178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
The wingless/integrase-1 (WNT) pathway involved in the pathogenesis of inflammatory airway diseases has recently generated considerable research interest. Montelukast, a leukotriene receptor antagonist, provides therapeutic benefits in allergic asthma involving eosinophils. We aimed to investigate the role of the WNT pathway in the therapeutic actions of montelukast (MT) in a mixed type of allergic-acute airway inflammation model induced by ovalbumin (OVA) and lipopolysaccharide (LPS) in mice. Female mice were sensitized with intraperitoneal OVA-Al(OH)3 administration in the initiation phase and intranasal OVA followed by LPS administration in the challenge phase. The mice were divided into eight groups: control, asthmatic, and control/asthmatic treated with XAV939 (inhibitor of the canonical WNT pathway), LGK-974 (inhibitor of the secretion of WNT ligands), or MT at different doses. The inhibition of the WNT pathway prevented tracheal 5-HT and bradykinin hyperreactivity, while only the inhibition of the canonical WNT pathway partially reduced 5-HT and bradykinin contractions compared to the inflammation group. Therefore, MT treatment hindered 5-HT and bradykinin hyperreactivity associated with airway inflammation. Furthermore, MT prevented the increases in the phosphorylated GSK-3β and WNT5A levels, which had been induced by airway inflammation, in a dose-dependent manner. Conversely, the MT application caused a further increase in the fibronectin levels, while there was no significant alteration in the phosphorylation of the Smad-2 levels in the isolated lungs of the mice. The MT treatment reversed the increase in the mRNA expression levels of interleukin-17A. An increase in eosinophil and neutrophil counts was observed in bronchoalveolar lavage fluid samples obtained from the mice in the inflammation group, which was hampered by the MT treatment. The inhibition of the WNT pathway did not alter inflammatory cytokine expression or cell infiltration. The WNT pathway mediated the therapeutic effects of MT due to the inhibition of GSK-3β phosphorylation as well as the reduction of WNT5A levels in a murine airway inflammation model.
Collapse
Affiliation(s)
- Yesim Kaya-Yasar
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Seckin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Cihan Inan
- Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Ismail Saygin
- Department of Pathology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ilknur Erkoseoglu
- Department of Medical Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Sena F Sezen
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
- Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
11
|
Dev A, Vachher M, Prasad CP. β-catenin inhibitors in cancer therapeutics: intricacies and way forward. Bioengineered 2023; 14:2251696. [PMID: 37655825 PMCID: PMC10478749 DOI: 10.1080/21655979.2023.2251696] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
β-catenin is an evolutionary conserved, quintessential, multifaceted protein that plays vital roles in cellular homeostasis, embryonic development, organogenesis, stem cell maintenance, cell proliferation, migration, differentiation, apoptosis, and pathogenesis of various human diseases including cancer. β-catenin manifests both signaling and adhesive features. It acts as a pivotal player in intracellular signaling as a component of versatile WNT signaling cascade involved in embryonic development, homeostasis as well as in carcinogenesis. It is also involved in Ca2+ dependent cell adhesion via interaction with E-cadherin at the adherens junctions. Aberrant β-catenin expression and its nuclear accumulation promote the transcription of various oncogenes including c-Myc and cyclinD1, thereby contributing to tumor initiation, development, and progression. β-catenin's expression is closely regulated at various levels including its stability, sub-cellular localization, as well as transcriptional activity. Understanding the molecular mechanisms of regulation of β-catenin and its atypical expression will provide researchers not only the novel insights into the pathogenesis and progression of cancer but also will help in deciphering new therapeutic avenues. In the present review, we have summarized the dual functions of β-catenin, its role in signaling, associated mutations as well as its role in carcinogenesis and tumor progression of various cancers. Additionally, we have discussed the challenges associated with targeting β-catenin molecule with the presently available drugs and suggested the possible way forward in designing new therapeutic alternatives against this oncogene.
Collapse
Affiliation(s)
- Arundhathi Dev
- Department of Medical Oncology (Laboratory), DR BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology (Laboratory), DR BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Hua H, Su T, Han L, Zhang L, Huang Y, Zhang N, Yang M. LINC01226 promotes gastric cancer progression through enhancing cytoplasm-to-nucleus translocation of STIP1 and stabilizing β-catenin protein. Cancer Lett 2023; 577:216436. [PMID: 37806517 DOI: 10.1016/j.canlet.2023.216436] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Gastric cancer (GC) remains one of the most common malignances and the leading cause of cancer-related mortality worldwide. Although the critical role of several long non-coding RNAs (lncRNAs) transcribed from several GC-risk loci has been established, we still know little about the biological significance of these lncRNAs at most gene loci and how they play in cell signaling. In the present study, we identified a novel oncogenic lncRNA LINC01226 transcribed from the 1p35.2 GC-risk locus. LINC01226 shows markedly higher expression levels in GC specimens compared with those in normal tissues. High expression of LINC01226 is evidently correlated with worse prognosis of GC cases. In line with these, oncogenic LINC01226 promotes proliferation, migration and metastasis of GC cells ex vivo and in vivo. Importantly, LINC01226 binds to STIP1 protein, leads to disassembly of the STIP1-HSP90 complex, elevates interactions between HSP90 and β-catenin, stabilizes β-catenin protein, activates the Wnt/β-catenin signaling and, thereby, promote GC progression. Together, our findings uncovered a novel layer regulating the Wnt signaling in cancers and uncovers a new epigenetic mode of GC tumorigenesis. These discoveries also shed new light on the importance of functional lncRNAs as innovative therapeutic targets through precisely controlling protein-protein interactions in cancers.
Collapse
Affiliation(s)
- Hui Hua
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Tao Su
- Shandong University Cancer Center, Jinan, Shandong Province, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Shandong University Cancer Center, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
13
|
Qarri A, Rinkevich B. Transient impacts of UV-B irradiation on whole body regeneration in a colonial urochordate. Dev Biol 2023; 503:83-94. [PMID: 37619713 DOI: 10.1016/j.ydbio.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Within the chordates, only some colonial ascidians experience whole body regeneration (WBR), where amputated small colonial fragments containing blood-vessels have the capability to regenerate the entire functional adult zooid within 1-3 weeks. Studying WBR in small colonial fragments taken at different blastogenic stages (the weekly developmental process characteristic to botryllid ascidians) from the ascidian Botrylloides leachii, about half of the fragments were able to complete regeneration (cWBR) three weeks following separation, about half were still in uncomplete, running regeneration (rWBR), and only a small percentage died. cWBR significantly increased in fragments that originated from a late blastogenic stage compared to an early stage. Most B. leachii populations reside in shallow waters, under variable daily natural UV irradiation, and it is of interest to elucidate irradiation effects on development and regeneration. Here, we show that UV-B irradiation resulted in enhanced mortality, with abnormal morphological changes in surviving fragments, yet with non-significant cWBR vs. rWBRs. Further, UV-B irradiation influenced the proportion of blood cells (morula cells, hemoblasts) and of multinucleated cells, a new WBR-associated cell type. At 24-h post-amputation we observed enhanced expression of β-catenin (a signaling pathway that plays indispensable roles in cell renewal and regeneration), H3 and PCNA in all cell types of non-irradiated as compared to irradiated fragments. These elevated levels were considerably reduced 9-days later. Since WBR is a highly complex phenomenon, the employment of specific experimental conditions, as UV-B irradiation, alongside blastogenesis (the weekly developmental process), elucidates undisclosed facets of this unique biological occurrence such as transient expression of signature genes.
Collapse
Affiliation(s)
- Andy Qarri
- Israel Oceanographic & Limnological Research, National Institute of Oceanography, POB 9753, Tel Shikmona 3109701, Haifa, Israel; The Department of Maritime Civilizations, Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa 3498838, Israel.
| | - Baruch Rinkevich
- Israel Oceanographic & Limnological Research, National Institute of Oceanography, POB 9753, Tel Shikmona 3109701, Haifa, Israel
| |
Collapse
|
14
|
Li T, Xiong X, Wang Y, Li Y, Liu Y, Zhang M, Li C, Yu T, Cao W, Chen S, Zhang H, Wang X, Lv L, Zhou Y, Liang H, Li X, Shan H. Neuroepithelial cell-transforming 1 promotes cardiac fibrosis via the Wnt/β-catenin signaling pathway. iScience 2023; 26:107888. [PMID: 37766986 PMCID: PMC10520536 DOI: 10.1016/j.isci.2023.107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/15/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This study found that the level of neuroepithelial cell-transforming gene 1 protein (NET1) was significantly increased in a mouse cardiac fibrosis model. Moreover, the expression level of NET1 was increased in cardiac fibrosis induced by TGF-β1, suggesting that NET1 was involved in the pathological process of cardiac fibrosis. Overexpression of NET1 promoted β-catenin expression in the nucleus and significantly increased the proliferation and migration of cardiac fibroblasts. NET1 may form a complex with β-catenin through GSK3β. Knockdown of β-catenin alleviated the effects of NET1 overexpression on collagen production and cell migration. In the heart of NET1 knockout mice, NET1 knockout can reduce the expression of β-catenin, α-SMA, and collagen content induced by MI. In conclusion, NET1 may regulate the activation of Wnt/β-catenin and TGF/Smads signaling pathway, promote collagen synthesis in fibroblasts, and participate in cardiac fibrosis. Thus, NET1 may be a potential therapeutic target in cardiac fibrosis.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xue Xiong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yujing Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yue Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yao Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Mingxiu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Chao Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, P.R. China
| | - Wei Cao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shuangshuang Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Huizhen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaona Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lifang Lv
- The Centre of Functional Experiment Teaching, School of Basic Medicine, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yuhong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, P.R. China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, P.R. China
| |
Collapse
|
15
|
Mukhopadhyay C, Zhou P. Role(s) of G3BPs in Human Pathogenesis. J Pharmacol Exp Ther 2023; 387:100-110. [PMID: 37468286 PMCID: PMC10519580 DOI: 10.1124/jpet.122.001538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Ras-GTPase-activating protein (SH3 domain)-binding proteins (G3BP) are RNA binding proteins that play a critical role in stress granule (SG) formation. SGs protect critical mRNAs from various environmental stress conditions by regulating mRNA stability and translation to maintain regulated gene expression. Recent evidence suggests that G3BPs can also regulate mRNA expression through interactions with RNA outside of SGs. G3BPs have been associated with a number of disease states, including cancer progression, invasion, metastasis, and viral infections, and may be useful as a cancer therapeutic target. This review summarizes the biology of G3BP including their structure, function, localization, role in cancer progression, virus replication, mRNA stability, and SG formation. We will also discuss the potential of G3BPs as a therapeutic target. SIGNIFICANCE STATEMENT: This review will discuss the molecular mechanism(s) and functional role(s) of Ras-GTPase-activating protein (SH3 domain)-binding proteins in the context of stress granule formation, interaction with viruses, stability of RNA, and tumorigenesis.
Collapse
Affiliation(s)
- Chandrani Mukhopadhyay
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York
| |
Collapse
|
16
|
Arvelo F, Sojo F. Transición epitelio – mesenquima y cáncer. INVESTIGACIÓN CLÍNICA 2023; 64:379-404. [DOI: 10.54817/ic.v64n3a10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cancer cell migration and invasion are critical components of metastatic disease, the leading cause of death in cancer patients. The epithe-lium-mesenchyme-transition (EMT) and mesenchyme-epithelium-transition (MET) are pathways involved in cancer metastasis. This process involves the degradation of cell-cell and cell-extracellular matrix junctions and the subse-quent loss of regulation of binding proteins such as E-cadherin. Cells undergo a reorganization of the cytoskeleton. These alterations are associated with a change in cell shape from epithelial to mesenchymal morphology. Understand-ing EMT and MET’s molecular and cellular basis provides fundamental insights into cancer etiology and may lead to new therapeutic strategies. In this review, we discuss some of the regulatory mechanisms and pathological role of epitheli-al-mesenchymal plasticity, focusing on the knowledge about the complexity and dynamics of this phenomenon in cancer
Collapse
Affiliation(s)
- Francisco Arvelo
- Fundación Instituto de Estudios Avanzados-IDEA, Area Salud, Caracas-Venezuela. Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| | - Felipe Sojo
- Fundación Instituto de Estudios Avanzados-IDEA, Area Salud, Caracas-Venezuela. Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
17
|
Hou Y, Yu W, Wu G, Wang Z, Leng S, Dong M, Li N, Chen L. Carcinogenesis promotion in oral squamous cell carcinoma: KDM4A complex-mediated gene transcriptional suppression by LEF1. Cell Death Dis 2023; 14:510. [PMID: 37553362 PMCID: PMC10409759 DOI: 10.1038/s41419-023-06024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent cancer of the mouth, characterised by rapid progression and poor prognosis. Hence, an urgent need exists for the development of predictive targets for early diagnosis, prognosis determination, and clinical therapy. Dysregulation of lymphoid enhancer-binding factor 1 (LEF1), an important transcription factor involved in the Wnt-β-catenin pathway, contributes to the poor prognosis of OSCC. Herein, we aimed to explore the correlation between LEF1 and histone lysine demethylase 4 A (KDM4A). Results show that the KDM4A complex is recruited by LEF1 and specifically binds the LATS2 promoter region, thereby inhibiting its expression, and consequently promoting cell proliferation and impeding apoptosis in OSCC. We also established NOD/SCID mouse xenograft models using CAL-27 cells to conduct an in vivo analysis of the roles of LEF1 and KDM4A in tumour growth, and our findings show that cells stably suppressing LEF1 or KDM4A have markedly decreased tumour-initiating capacity. Overall, the results of this study demonstrate that LEF1 plays a pivotal role in OSCC development and has potential to serve as a target for early diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Yiming Hou
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Wenqian Yu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Zhaoling Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Shuai Leng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Ming Dong
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China.
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China.
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China.
| |
Collapse
|
18
|
Cai Z, Shen Z, Zhao J, Zhang H, Guo Z, Xia Q, Liang H, Liu J, Tan L, Sheng H, Zhu S. AQP8 may affect glioma proliferation and growth by regulating GSK-3β phosphorylation and nuclear transport of β-catenin. Int J Dev Neurosci 2023. [PMID: 37081713 DOI: 10.1002/jdn.10261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
PURPOSE The purpose of this work is to examine the impact of AQP8 on the proliferation and development of human glioma cell lines A172 and U251 and to determine if aquaporin 8 (AQP8) is associated with GSK-3β phosphorylation and nuclear transport of β-catenin in the Wnt signaling pathway. METHODS AQP8 knockdown cell lines were constructed using a CRISPR/Cas9 double vector lentivirus infection. SAM/dCas9 was used to construct AQP8 overexpression cell lines and the CV084 lentivirus vector was used to construct AQP8 rescue cell lines. AQP8 and its mRNA, and phosphorylated GSK-3β, β-catenin, and other related proteins, were detected using western blot and qRT-PCR. Glioma cell apoptosis was detected using Hoechst 33342 dye. The migration of glioma cells was discovered using a wound healing assay. β-catenin localization in cells was detected using immunofluorescence staining. RESULTS The proliferative and migratory capacities of A172 and U251 cells were significantly enhanced after AQP8 overexpression. The Wnt signaling pathways appeared to have higher levels of phosphorylated GSK-3β and β-catenin, and a rise in the fluorescence intensity ratio of β-catenin in the nucleus and cytoplasm, which suggests that β-catenin translocated into the nucleus, while AQP8 knockdown produced the opposite effect. Further, overexpression of AQP8 in AQP8 knockdown cell lines rescued the reduction of related protein levels caused by AQP8 knockdown. CONCLUSION High AQP8 expression promotes proliferation and growth of glioma cells, a process associated with phosphorylation of GSK-3β and nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Ziling Cai
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Zihao Shen
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Zhao
- Xi'an Hospital of TCM, Xi'an, Shaanxi, China
| | - Hao Zhang
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Zhen Guo
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Qingqian Xia
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Hang Liang
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Junnan Liu
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Lihao Tan
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Huajun Sheng
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Shujuan Zhu
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Ahandoust S, Li K, Sun X, Li BY, Yokota H, Na S. Intracellular and extracellular moesins differentially regulate Src activity and β-catenin translocation to the nucleus in breast cancer cells. Biochem Biophys Res Commun 2023; 639:62-69. [PMID: 36470073 DOI: 10.1016/j.bbrc.2022.11.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
It is increasingly recognized that a single protein can have multiple, sometimes paradoxical, roles in cell functions as well as pathological conditions depending on its cellular locations. Here we report that moesins (MSNs) in the intracellular and extracellular domains present opposing roles in pro-tumorigenic signaling in breast cancer cells. Using live cell imaging with fluorescence resonance energy transfer (FRET)- and green fluorescent protein (GFP)-based biosensors, we investigated the molecular mechanism underlying the cellular location-dependent effect of MSN on Src and β-catenin signaling in MDA-MB-231 breast cancer cells. Inhibition of intracellular MSN decreased the activities of Src and FAK, whereas overexpression of intracellular MSN increased them. By contrast, extracellular MSN decreased the activities of Src, FAK, and RhoA, as well as β-catenin translocation to the nucleus. Consistently, Western blotting and MTT-based analysis showed that overexpression of intracellular MSN elevated the expression of oncogenic genes, such as p-Src, β-catenin, Lrp5, MMP9, Runx2, and Snail, as well as cell viability, whereas extracellular MSN suppressed them. Conditioned medium derived from MSN-overexpressing mesenchymal stem cells or osteocytes showed the anti-tumor effects by inhibiting the Src activity and β-catenin translocation to the nucleus as well as the activities of FAK and RhoA and MTT-based cell viability. Conditioned medium derived from MSN-inhibited cells increased the Src activity, but it did not affect the activities of FAK and RhoA. Silencing CD44 and/or FN1 in MDA-MB-231 cells blocked the suppression of Src activity and β-catenin accumulation in the nucleus by extracellular MSN. Collectively, the results suggest that cellular location-specific MSN is a strong regulator of Src and β-catenin signaling in breast cancer cells, and that extracellular MSN exerts tumor-suppressive effects via its interaction with CD44 and FN1.
Collapse
Affiliation(s)
- Sina Ahandoust
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Kexin Li
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xun Sun
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
20
|
PLA2G7/PAF-AH as Potential Negative Regulator of the Wnt Signaling Pathway Mediates Protective Effects in BRCA1 Mutant Breast Cancer. Int J Mol Sci 2023; 24:ijms24010882. [PMID: 36614323 PMCID: PMC9821466 DOI: 10.3390/ijms24010882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Past studies have confirmed that aberrant activation of the Wnt/β-catenin signaling is associated with tumorigenesis and metastasis in breast cancer, while the role of platelet-activating factor acetylhydrolase (PLA2G7/PAF-AH) in this signaling pathway remains unclear. In this study, we analyze the functional impact of PAF-AH on BRCA1 mutant breast cancer and explore its relationship to the Wnt signaling pathway. By performing immunohistochemistry, PAF-AH expression and β-catenin expression were examined in both BRCA1 WT and BRCA1 mutant breast cancer specimens. The BRCA1 mutant breast cancer cell line HCC1937 was used for in vitro experiments to assess the impact of PAF-AH on cellular functions. The intracellular distribution of β-catenin depending on PLA2G7/PAF-AH expression was investigated by immunocytochemistry. Significantly higher nuclear expression levels of PAF-AH were found in BRCA1 mutant tissue specimens than in BRCA1 WT samples. Cell viability, proliferation, and the motility rate of HCC1937 were significantly enhanced after PLA2G7 silencing, which indicated a protective role of PAF-AH in breast cancer. Nuclear PAF-AH expressed correlatedly with membranous β-catenin. PLA2G7 silencing provoked the β-catenin translocation from the membrane to the nucleus and activated Wnt signaling downstream genes. Our data showed a protective effect of high PAF-AH expression in BRCA1 mutant breast cancer. PAF-AH may achieve its protective effect by negatively regulating the Wnt pathway. In conclusion, our research sheds new light on the regulatory pathways in BRCA1 mutant breast cancer.
Collapse
|
21
|
Xiong Y, Mi BB, Lin Z, Hu YQ, Yu L, Zha KK, Panayi AC, Yu T, Chen L, Liu ZP, Patel A, Feng Q, Zhou SH, Liu GH. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil Med Res 2022; 9:65. [PMID: 36401295 PMCID: PMC9675067 DOI: 10.1186/s40779-022-00426-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Bone, cartilage, and soft tissue regeneration is a complex spatiotemporal process recruiting a variety of cell types, whose activity and interplay must be precisely mediated for effective healing post-injury. Although extensive strides have been made in the understanding of the immune microenvironment processes governing bone, cartilage, and soft tissue regeneration, effective clinical translation of these mechanisms remains a challenge. Regulation of the immune microenvironment is increasingly becoming a favorable target for bone, cartilage, and soft tissue regeneration; therefore, an in-depth understanding of the communication between immune cells and functional tissue cells would be valuable. Herein, we review the regulatory role of the immune microenvironment in the promotion and maintenance of stem cell states in the context of bone, cartilage, and soft tissue repair and regeneration. We discuss the roles of various immune cell subsets in bone, cartilage, and soft tissue repair and regeneration processes and introduce novel strategies, for example, biomaterial-targeting of immune cell activity, aimed at regulating healing. Understanding the mechanisms of the crosstalk between the immune microenvironment and regeneration pathways may shed light on new therapeutic opportunities for enhancing bone, cartilage, and soft tissue regeneration through regulation of the immune microenvironment.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yi-Qiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Kang-Kang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Adriana C Panayi
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany
| | - Zhen-Ping Liu
- Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany.,Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Anish Patel
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China.
| | - Shuan-Hu Zhou
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
22
|
Jin G, Zhang Z, Wan J, Wu X, Liu X, Zhang W. G3BP2: Structure and Function. Pharmacol Res 2022; 186:106548. [DOI: 10.1016/j.phrs.2022.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
23
|
Immunohistochemical staining of LEF-1 is a useful marker for distinguishing WNT-activated medulloblastomas. Diagn Pathol 2022; 17:69. [PMID: 36096860 PMCID: PMC9469524 DOI: 10.1186/s13000-022-01250-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives To investigate lymphoid enhancer factor 1 (LEF-1) protein expression in medulloblastomas (MBs) and its correlation with molecular grouping of MBs. Methods Expressions of LEF-1 and β-catenin were detected by immunohistochemistry, and molecular grouping was performed based on the NanoString and sequencing techniques for 30 MBs. Results By genetic defining, 3 MBs were WNT-activated, 11 were SHH-activated, 3 were in Group 3 and 13 in Group 4 respectively. Nuclear LEF-1 staining was found in 8 MBs using immunohistochemical method. Three out of 8 showed diffuse and strong nuclear LEF-1 staining which were proved to be WNT-activated genetically, while the other 5 MBs with focal staining were SHH-activated genetically. The expression of LEF-1 protein was significantly correlated with genetically defined WNT-activated MBs (P < 0.0001). We also found focal nuclear β-catenin expression ( less than 1% of tumor cells) in 5 MBs. LEF-1 positivity was significantly correlated nuclear β-catenin expression (p < 0.001). Conclusions Immunohistochemical staining of LEF-1 can be used as a supplement for β-catenin to diagnosis WNT-activated Medulloblastomas, when β-catenin is difficult to recognize for its cytoplasm/membrane staining background. Diffuse nuclear staining of LEF-1 indicates WNT-activated MB.
Collapse
|
24
|
Fu L, Deng R, Huang Y, Yang X, Jiang N, Zhou J, Lin C, Chen S, Wu L, Cui Q, Yun J. DGKA interacts with SRC/FAK to promote the metastasis of non-small cell lung cancer. Cancer Lett 2022; 532:215585. [PMID: 35131384 DOI: 10.1016/j.canlet.2022.215585] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/25/2022]
Abstract
Metastasis is responsible for the high mortality rate of lung cancer, but its underlying molecular mechanisms are poorly understood. Here, we demonstrated that the expression of diacylglycerol kinase alpha (DGKA) was elevated in the metastatic lesions of non-small cell lung cancer (NSCLC) and correlated with poor survival. Mechanistic studies revealed a direct physical interaction as well as a mutual regulation among DGKA, proto-oncogene tyrosine-protein kinase Src (SRC), and focal adhesion kinase 1 (FAK) proteins. The C-terminal domain of DGKA was responsible for the SRC SH3 domain binding, while the catalytic domain of DGKA interacted with the FREM domain of FAK. DGKA phosphorylated the SRC protein at Tyr416 and the FAK protein at Tyr397 to form and activate the DGKA/SRC/FAK complex, thus initiating the downstream WNT/β-catenin and VEGF signaling pathways, promoting epithelial-mesenchymal transition (EMT) and angiogenesis, and resulting in the metastasis of NSCLC. DGKA knockdown inhibited the invasive phenotype of NSCLC cells in vitro. Pharmacologic ablation of DGKA inhibited the metastasis of NSCLC cells in vivo, and this was reversed by the overexpression of DGKA. These results suggested that DGKA was a potential prognostic biomarker as well as a promising therapeutic target for NSCLC, especially when there was lymphatic or distant metastasis.
Collapse
Affiliation(s)
- Lingyi Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ru Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Neng Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jing Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Censhan Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Shilu Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Liyan Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Qian Cui
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
25
|
Alaña L, Nunes-Xavier CE, Zaldumbide L, Martin-Guerrero I, Mosteiro L, Alba-Pavón P, Villate O, García-Obregón S, González-García H, Herraiz R, Astigarraga I, Pulido R, García-Ariza M. Identification and Functional Analysis of a Novel CTNNB1 Mutation in Pediatric Medulloblastoma. Cancers (Basel) 2022; 14:cancers14020421. [PMID: 35053583 PMCID: PMC8773623 DOI: 10.3390/cancers14020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary We have analyzed a panel of 88 pediatric medulloblastoma tumors for exon 3 mutations from the CTNNB1 gene and identified eight missense point-mutations and one in-frame deletion. We describe and functionally characterize a novel CTNNB1 in-frame deletion (c.109-111del, pSer37del, ΔS37) found in a pediatric patient with a classic medulloblastoma, WNT-activated grade IV (WHO 2016). To the best of our knowledge, this mutation has not been previously reported in medulloblastoma, and it is uncertain its role in the disease development and progression. Our analysis discloses gain-of-function properties for the new ΔS37 β-catenin variant. Abstract Medulloblastoma is the primary malignant tumor of the Central Nervous System (CNS) most common in pediatrics. We present here, the histological, molecular, and functional analysis of a cohort of 88 pediatric medulloblastoma tumor samples. The WNT-activated subgroup comprised 10% of our cohort, and all WNT-activated patients had exon 3 CTNNB1 mutations and were immunostained for nuclear β-catenin. One novel heterozygous CTNNB1 mutation was found, which resulted in the deletion of β-catenin Ser37 residue (ΔS37). The ΔS37 β-catenin variant ectopically expressed in U2OS human osteosarcoma cells displayed higher protein expression levels than wild-type β-catenin, and functional analysis disclosed gain-of-function properties in terms of elevated TCF/LEF transcriptional activity in cells. Our results suggest that the stabilization and nuclear accumulation of ΔS37 β-catenin contributed to early medulloblastoma tumorigenesis.
Collapse
Affiliation(s)
- Lide Alaña
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Correspondence: ; Tel.: +34-946-006-000 (ext. 2401)
| | - Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (C.E.N.-X.); (R.P.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0310 Oslo, Norway
| | - Laura Zaldumbide
- Department of Pathology, Hospital Universitario de Cruces, Osakidetza, Plaza de Cruces 12, 48903 Barakaldo, Spain; (L.Z.); (L.M.)
| | - Idoia Martin-Guerrero
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Department of Genetics, Physical Anthropology and Animal Pathology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | - Lorena Mosteiro
- Department of Pathology, Hospital Universitario de Cruces, Osakidetza, Plaza de Cruces 12, 48903 Barakaldo, Spain; (L.Z.); (L.M.)
| | - Piedad Alba-Pavón
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
| | - Olatz Villate
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
| | - Susana García-Obregón
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Department of Physiology, Faculty of Medicine and Nursing, Campus de Leioa, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | - Hermenegildo González-García
- Oncohematology Pediatric Unit, Department of Pediatrics, Hospital Universitario de Valladolid, C/Ramon y Cajal n°3, 47003 Valladolid, Spain; (H.G.-G.); (R.H.)
| | - Raquel Herraiz
- Oncohematology Pediatric Unit, Department of Pediatrics, Hospital Universitario de Valladolid, C/Ramon y Cajal n°3, 47003 Valladolid, Spain; (H.G.-G.); (R.H.)
| | - Itziar Astigarraga
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Pediatric Oncohematology Unit, Pediatrics Department, Hospital Universitario Cruces, Osakidetza, Plaza de Cruces 12, 48903 Barakaldo, Spain
- Pediatrics Department, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Plaza de Cruces 12, 48903 Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (C.E.N.-X.); (R.P.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Miguel García-Ariza
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Pediatric Oncohematology Unit, Pediatrics Department, Hospital Universitario Cruces, Osakidetza, Plaza de Cruces 12, 48903 Barakaldo, Spain
| |
Collapse
|
26
|
Han F, Zhang L, Liao S, Zhang Y, Qian L, Hou F, Gong J, Lai M, Zhang H. The interaction between S100A2 and KPNA2 mediates NFYA nuclear import and is a novel therapeutic target for colorectal cancer metastasis. Oncogene 2022; 41:657-670. [PMID: 34802034 DOI: 10.1038/s41388-021-02116-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022]
Abstract
Nucleocytoplasmic transport of proteins is disrupted and dysregulated in cancer cells. Nuclear pore complexes and cargo proteins are two main transportation regulators. However, the mechanism regulating nucleocytoplasmic transport in cancer remains elusive. Here, we identified a S100A2/KPNA2 cotransport complex that transports the tumor-associated transcription factor NFYA in colorectal cancer (CRC). Through the S100A2/KNPA2 complex, depending on its interaction with S100A2, NFYA is transported to the nucleus and inhibits the transcriptional activity of E-cadherin, which in turn promotes CRC metastasis. Targeting the S100A2/KPNA2 binding sites with the specific inhibitor delanzomib is a potential therapeutic approach for CRC.
Collapse
Affiliation(s)
- Fengyan Han
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Lei Zhang
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Shaoxia Liao
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Lili Qian
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Feijun Hou
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Jingwen Gong
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Maode Lai
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
27
|
Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S, Paul MK. Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today 2022; 27:82-101. [PMID: 34252612 DOI: 10.1016/j.drudis.2021.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
WNT/β-catenin signaling orchestrates various physiological processes, including embryonic development, growth, tissue homeostasis, and regeneration. Abnormal WNT/β-catenin signaling is associated with various cancers and its inhibition has shown effective antitumor responses. In this review, we discuss the pathway, potential targets for the development of WNT/β-catenin inhibitors, available inhibitors, and their specific molecular interactions with the target proteins. We also discuss inhibitors that are in clinical trials and describe potential new avenues for therapeutically targeting the WNT/β-catenin pathway. Furthermore, we introduce emerging strategies, including artificial intelligence (AI)-assisted tools and technology-based actionable approaches, to translate WNT/β-catenin inhibitors to the clinic for cancer therapy.
Collapse
Affiliation(s)
- Avradip Chatterjee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India; Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India
| | - Bharti Bisht
- Department of Thoracic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Shelley Bhattacharya
- Environmental Toxicology Laboratory, Department of Zoology (Centre for Advanced Studies), Visva Bharati (A Central University), Santiniketan 731235, India
| | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Nucleoporin 93 mediates β-catenin nuclear import to promote hepatocellular carcinoma progression and metastasis. Cancer Lett 2021; 526:236-247. [PMID: 34767927 DOI: 10.1016/j.canlet.2021.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Nuclear pore complex (NPC) embedded in the nuclear envelope, is the only channel for macromolecule nucleocytoplasmic transportation and has important biological functions. However, the deregulation of specific nucleoporins (Nups) and NPC-Nup-based mechanisms and their function in tumour progression remain poorly understood. Here, we aimed to identify the Nups that contribute to HCC progression and metastasis in 729 primary hepatocellular carcinoma (HCC) cases using molecular, cytological, and biochemical techniques. Our results revealed elevated Nup93 expression in HCC tissues, especially in cases with metastasis, and was linked to worse prognosis. Furthermore, Nup93 knockdown suppressed HCC cell metastasis and proliferation, while Nup93 overexpression promoted these activities. We observed that Nup93 promotes HCC metastasis and proliferation by regulating β-catenin translocation. In addition, we found that Nup93 interacted with β-catenin directly, independent of importin. Furthermore, LEF1 and β-catenin facilitated the Nup93-mediated metastasis and proliferation in HCC via a positive feedback loop. Thus, our findings provide novel insights into the mechanisms underlying the Nup93-induced promotion of HCC metastasis and suggest potential therapeutic targets in the LEF1-Nup93-β-catenin pathway for HCC therapeutics.
Collapse
|
29
|
Yang Y, Wu H, Fan S, Bi Y, Hao M, Shang J. Cancer‑associated fibroblast‑derived LRRC15 promotes the migration and invasion of triple‑negative breast cancer cells via Wnt/β‑catenin signalling pathway regulation. Mol Med Rep 2021; 25:2. [PMID: 34726255 PMCID: PMC8600416 DOI: 10.3892/mmr.2021.12518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive tumour subtype associated with poor prognosis. The function of leucine-rich repeat-containing protein 15 (LRRC15), a member of the leucine-rich repeat superfamily, in TNBC has not yet been elucidated. The aim of this study was to identify the combined role of LRRC15 and Wnt/β-catenin signalling pathway in the development of TNBC. The expression of LRRC15 in TNBC tissues was analysed using data from The Cancer Genome Atlas. Cell migration and invasion assays were conducted to study the function of LRRC15 in TNBC. The expression of Wnt/β-catenin signalling proteins was analysed via western blotting. The effect of LRRC15 on β-catenin nuclear localisation was measured by performing western blotting and luciferase assays. It was found that high LRRC15 expression was associated with poor prognosis in patients with TNBC. High expression of LRRC15 in cancer-associated fibroblasts (CAFs) promoted cell migration and invasion in TNBC cells. In addition, TNBC cells with LRRC15 overexpression in CAFs showed an aberrant increase in β-catenin activity concomitant with nuclear localisation of β-catenin, which inhibited its degradation. These results showed that LRRC15 promoted tumour migration and invasion in TNBC cells by regulating the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Yang Yang
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Haiying Wu
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Shaoxia Fan
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Yanqing Bi
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Min Hao
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Jian Shang
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
30
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 2021; 6:307. [PMID: 34456337 PMCID: PMC8403677 DOI: 10.1038/s41392-021-00701-5] [Citation(s) in RCA: 389] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling has been broadly implicated in human cancers and experimental cancer models of animals. Aberrant activation of Wnt/β-catenin signaling is tightly linked with the increment of prevalence, advancement of malignant progression, development of poor prognostics, and even ascendence of the cancer-associated mortality. Early experimental investigations have proposed the theoretical potential that efficient repression of this signaling might provide promising therapeutic choices in managing various types of cancers. Up to date, many therapies targeting Wnt/β-catenin signaling in cancers have been developed, which is assumed to endow clinicians with new opportunities of developing more satisfactory and precise remedies for cancer patients with aberrant Wnt/β-catenin signaling. However, current facts indicate that the clinical translations of Wnt/β-catenin signaling-dependent targeted therapies have faced un-neglectable crises and challenges. Therefore, in this study, we systematically reviewed the most updated knowledge of Wnt/β-catenin signaling in cancers and relatively targeted therapies to generate a clearer and more accurate awareness of both the developmental stage and underlying limitations of Wnt/β-catenin-targeted therapies in cancers. Insights of this study will help readers better understand the roles of Wnt/β-catenin signaling in cancers and provide insights to acknowledge the current opportunities and challenges of targeting this signaling in cancers.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Changhao Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Martin E, Agazie YM. SHP2 potentiates the oncogenic activity of beta-catenin to promote triple-negative breast cancer. Mol Cancer Res 2021; 19:1946-1956. [PMID: 34389690 DOI: 10.1158/1541-7786.mcr-21-0060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Previous studies have reported dysregulated cytoplasmic and nuclear expression of the β-catenin protein in triple-negative breast cancer (TNBC) in the absence of Wnt signaling pathway dysregulation. However, the mechanism that sustains β-catenin protein dysregulation independent of Wnt signaling is not understood. In this study, we show that SHP2 is essential for β-catenin protein stability and for sustaining the cytoplasmic and nuclear pools in TNBC cells. The first evidence for this possibility came from immunofluorescence (IF) and immunoblotting (IB) studies that showed that inhibition of SHP2 induces E-cadherin expression and depletion of cytoplasmic and nuclear β-catenin, which in turn confers adherence junction mediated cell-cell adhesion. We further show that SHP2 promotes β-catenin protein stability by mediating the inactivation of GSK3β through its positive effect on Akt and ERK1/2 activation, which was confirmed by direct pharmacological inhibition of the PI3K-Akt and the MEK-ERK signaling pathway. Finally, we show that SHP2-stabilized β-catenin contributes to TNBC cell growth, transformation, CSC properties, and tumorigenesis and metastasis. Overall, the findings in this report show that SHP2 mediates β-catenin protein stability to promote TNBC. Implications: Data presented in this article demonstrates that SHP2 positively regulates β-catenin protein stability, which in turn promotes triple-negative breast cancer cell transformation, tumorigenesis, and metastasis.
Collapse
Affiliation(s)
| | - Yehenew M Agazie
- Department of Biochemistry and WVU Cancer Institute, West Virginia University
| |
Collapse
|
32
|
Combined evaluation of proliferation and apoptosis to calculate IC 50 of VPA-induced PANC-1 cells and assessing its effect on the Wnt signaling pathway. Med Oncol 2021; 38:109. [PMID: 34357487 DOI: 10.1007/s12032-021-01560-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most deadly cancers. Since most patients develop resistance to conventional treatments, new approaches are in urgency. Valproic acid (VPA) was shown to induce apoptosis and reduce proliferation in PANC-1 cells. Wnt signaling pathway is known to be involved in apoptosis and PDAC onset. However, VPA-induced apoptosis and its impact on Wnt signaling in PDACs are not linked, yet. We aimed to calculate IC50 of VPA-induced PANC-1 cells by combined analyses of proliferation and apoptosis, while assessing its effect on Wnt signaling pathway. PANC-1 was induced with increased VPA doses and time points. Three independent proliferation and apoptosis assays were performed utilizing carboxyfluorescein succinimidyl ester and Annexin V/PI staining, respectively. Flow cytometry measurements were analyzed by CellQuest and NovoExpress. Taqman hydrolysis probes and SYBR Green PCR Mastermix were assessed in expression analyses of Wnt components utilizing 2-ΔΔCt method. Cell proliferation was inhibited by 50% at 2.5 mM VPA that evoked a significant apoptotic response. Among the screened Wnt components and target genes, only LEF1 exhibited significant four-fold upregulation at this concentration. In conclusion, cancer studies mostly utilize MTT or BrdU assays in estimating cell proliferation and calculating IC50 of drugs, which provided conflicting VPA dosages utilizing PANC-1 cells. Our novel combined approach enabled specific, accurate and reproducible IC50 calculation at single cell basis with no apparent effect on Wnt signaling components. Future studies are needed to clarify the role of LEF1 in this model.
Collapse
|
33
|
Pan K, Lee W, Chou C, Yang Y, Chang Y, Chien M, Hsiao M, Hua K. Direct interaction of β-catenin with nuclear ESM1 supports stemness of metastatic prostate cancer. EMBO J 2021; 40:e105450. [PMID: 33347625 PMCID: PMC7883293 DOI: 10.15252/embj.2020105450] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt/β-catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/β-catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell-specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/β-catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of β-catenin to stabilize β-catenin-TCF4 complex and facilitate the transactivation of Wnt/β-catenin signaling targets. Accordingly, activated β-catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/β-catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Ke‐Fan Pan
- Graduate Institute of ToxicologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Wei‐Jiunn Lee
- Department of UrologySchool of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Department of Medical Education and ResearchWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Cancer CenterWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Chun‐Chi Chou
- Department of Obstetrics & GynecologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yi‐Chieh Yang
- Graduate Institute of Clinical MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Department of Medical ResearchTungs’ Taichung Metro Harbor HospitalTaichungTaiwan
| | - Yu‐Chan Chang
- Department of Biomedical Imaging and Radiological ScienceNational Yang‐Ming UniversityTaipeiTaiwan
| | - Ming‐Hsien Chien
- Graduate Institute of Clinical MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Pulmonary Research CenterWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipeiTaiwan
- Traditional Herbal Medicine Research CenterTaipei Medical University HospitalTaipeiTaiwan
| | - Michael Hsiao
- The Genomics Research CenterAcademia SinicaTaipeiTaiwan
| | - Kuo‐Tai Hua
- Graduate Institute of ToxicologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
34
|
CHIP promotes Wnt signaling and regulates Arc stability by recruiting and polyubiquitinating LEF1 or Arc. Cell Death Discov 2021; 7:5. [PMID: 33431799 PMCID: PMC7801388 DOI: 10.1038/s41420-020-00394-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 11/25/2022] Open
Abstract
The carboxyl terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase, participates in many cellular processes such as protein degradation, trafficking, autophagy, apoptosis, and multiple signaling transductions. The mutant of CHIP (p.T246M) causes the spinocerebellar autosomal recessive 16 (SCAR16), a neurodegenerative disease characterized by spinocerebellar atrophy. Previous studies have shown that Wnt signaling and activity-regulated cytoskeleton-associated protein (Arc) play important roles in neurodegenerative diseases. However, the mechanisms by which CHIP regulates Wnt signaling and the stability of Arc that may affect SCAR16 are still unclear. We show that overexpression of CHIP promoted the activation of Wnt signaling, and enhanced the interaction between LEF1 and β-catenin through heightening the K63-linked polyubiquitin chains attached to LEF1, while the knockdown of CHIP had the opposite effect. Moreover, we verified that Wnt signaling was inhibited in the rat models of SCAR16 induced by the CHIP (p.T246M) mutant. CHIP also accelerated the degradation of Arc and regulated the interaction between Arc and GSK3β by heightening the K48- or K63-linked polyubiquitin chains, which further potentiated the interaction between GSK3β and β-catenin. Our data identify that CHIP is an undescribed regulator of Wnt signaling and Arc stability which may be related to the occurrence of SCAR16.
Collapse
|
35
|
Reis K, Arbiser JL, Hjerpe A, Dobra K, Aspenström P. Inhibitors of cytoskeletal dynamics in malignant mesothelioma. Oncotarget 2020; 11:4637-4647. [PMID: 33400741 PMCID: PMC7747860 DOI: 10.18632/oncotarget.27843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022] Open
Abstract
Malignant mesotheliomas (MMs) are highly aggressive mesenchymal tumors that originate from mesothelial cells lining serosal cavities; i.e., the pleura, peritoneum, and pericardium. Classically, there is a well-established link between asbestos exposure, oxidative stress, release of reactive oxygen species, and chronic inflammatory mediators that leads to progression of MMs. MMs have an intermediate phenotype, with co-expression of mesenchymal and epithelial markers and dysregulated communication between the mesothelium and the microenvironment. We have previously shown that the organization and function of key cytoskeletal components can distinguish highly invasive cell lines from those more indolent. Here, we used these tools to study three different types of small-molecule inhibitors, where their common feature is their influence on production of reactive oxygen species. One of these, imipramine blue, was particularly effective in counteracting some key malignant properties of highly invasive MM cells. This opens a new possibility for targeted inhibition of MMs based on well-established molecular mechanisms.
Collapse
Affiliation(s)
- Katarina Reis
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Atlanta, GA, USA
| | - Anders Hjerpe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Qiu Y, Zhou J, Zhang D, Song H, Qian L. Bile salt-dependent lipase promotes the barrier integrity of Caco-2 cells by activating Wnt/β-catenin signaling via LRP6 receptor. Cell Tissue Res 2020; 383:1077-1092. [PMID: 33245415 DOI: 10.1007/s00441-020-03316-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/30/2020] [Indexed: 01/13/2023]
Abstract
Bile salt-dependent lipase (BSDL) within intestinal lumen can be endocytosed by enterocytes and support the intestinal barrier function. However, the epithelial-supporting effect of this protein has not been verified in a human cell line and neither the direct signaling pathway nor the function of endocytosis in this process has been clearly identified. We sought to investigate the signaling pathway and the membrane receptor through which BSDL might exert these effects using intestinal epithelial cells. Caco-2 cells were treated with recombinant BSDL, and the barrier function, cell proliferation, and activation of the Wnt signaling pathway were assessed. The effect of Wnt signaling activation induced by BSDL and BSDL endocytosis was investigated in LRP6-silenced and non-silenced cells. Moreover, caveolae- and clathrin-dependent endocytosis inhibitors were also applied respectively to analyze their effects on Wnt signaling activation induced by BSDL. BSDL treatment increased the barrier function but not proliferation of Caco-2 cells. It also induced β-catenin nuclear translocation and activated Wnt target gene transcription. Moreover, in the Wnt pathway, BSDL increased the levels of non-phosphorylated-β-catenin (Ser33/37/Thr41) and phosphorylated-β-catenin (Ser552). Notably, the silencing of LRP6 expression impaired BSDL endocytosis and decreased BSDL-induced β-catenin nuclear translocation. The inhibition of BSDL endocytosis induced by caveolae-mediated endocytosis inhibitor was stronger than that by clathrin-mediated endocytosis inhibitor, and the Wnt signaling activation associated with its endocytosis was also most likely caveolae-dependent. Our findings suggested that LRP6, a canonical Wnt pathway co-receptor, can mediate BSDL endocytosis and then activate Wnt signaling in Caco-2 cells.
Collapse
Affiliation(s)
- Yaqi Qiu
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jiefei Zhou
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Dandan Zhang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Huanlei Song
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Linxi Qian
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
37
|
Lei L, Wang Y, Zheng YW, Fei LR, Shen HY, Li ZH, Huang WJ, Yu JH, Xu HT. Overexpression of Nemo-like Kinase Promotes the Proliferation and Invasion of Lung Cancer Cells and Indicates Poor Prognosis. Curr Cancer Drug Targets 2020; 19:674-680. [PMID: 30451112 DOI: 10.2174/1568009618666181119150521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nemo-like kinase (NLK) is an evolutionarily conserved MAP kinaserelated kinase involved in the pathogenesis of several human cancers. OBJECTIVE The aim of this study was to investigate the expression and role of NLK in lung cancers, and its underlying mechanisms. METHODS We examined the expression of NLK in lung cancer tissues through western blot analysis. We enhanced or knocked down NLK expression by gene transfection or RNA interference, respectively, in lung cancer cells, and examined expression alterations of key proteins in the Wnt signaling pathway and in epithelial-mesenchymal transition (EMT). We also examined the roles of NLK in the proliferation and invasiveness of lung cancer cells by cell proliferation, colony formation, and Matrigel invasion assays. RESULTS NLK expression was found to be significantly higher in lung cancer tissue samples than in corresponding healthy lung tissue samples. Overexpression of NLK correlated with poor prognosis of patients with lung cancer. Overexpression of NLK upregulated β-catenin, TCF4, and Wnt target genes such as cyclin D1, c-Myc, and MMP7. N-cadherin and TWIST, the key proteins in EMT, were upregulated, while E-cadherin expression was reduced. Additionally, proliferation, colony formation, and invasion turned out to be enhanced in NLK-overexpressing cells. After NLK knockdown in lung cancer cells, we obtained the opposite results. CONCLUSION NLK is overexpressed in lung cancers and indicates poor prognosis. Overexpression of NLK activates the Wnt signaling pathway and EMT and promotes the proliferation and invasiveness of lung cancer cells.
Collapse
Affiliation(s)
- Lei Lei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Yuan Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Yi-Wen Zheng
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Liang-Ru Fei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Hao-Yue Shen
- 100K80B, Clinical Medicine of Seven-year Programme, China Medical University, Shenyang 110001, China
| | - Zhi-Han Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Wen-Jing Huang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Juan-Han Yu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Hong-Tao Xu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| |
Collapse
|
38
|
Chen Y, Fu Z, Li D, Yue Y, Liu X. Optimizations of a novel fluorescence polarization-based high-throughput screening assay for β-catenin/LEF1 interaction inhibitors. Anal Biochem 2020; 612:113966. [PMID: 32956692 DOI: 10.1016/j.ab.2020.113966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 01/20/2023]
Abstract
Aberrant activation of the Wnt/β-catenin signaling pathway is prominent in the development and metastasis of non-small cell lung cancer (NSCLC). Highly effective inhibition of this pathway highlights a therapeutic avenue against NSCLC. Moreover, β-catenin/LEF1 interaction regulates β-catenin nuclear transport as well as the transcriptions of the key oncogenes in Wnt/β-catenin signaling pathway. Therefore, interruption of this interaction would be a promising therapeutic strategy for NSCLC metastasis. To date, no economical and rapid high-throughput screening (HTS) assay has been reported for the discovery of β-catenin/LEF1 interaction inhibitors. In this study, we developed a novel fluorescence polarization (FP)-based HTS assay to identify β-catenin/LEF1 interaction inhibitors. The FITC-LEF1 sequence, incubation time, temperature, and DMSO resistance were optimized, and then a high Z' factor of 0.77 was achieved. A pilot screening of a natural product library via this established FP screening assay identified sanguinarine analogues as potential β-catenin/LEF1 interaction inhibitors. GST pull-down and surface plasmon resonance (SPR) assay demonstrated that β-catenin/LEF1 interaction is a potential anticancer target of sanguinarine in vitro. This newly developed FP screening assay will be vital for the rapid discovery of novel Wnt inhibitors targeting β-catenin/LEF1 interaction.
Collapse
Affiliation(s)
- Yunyu Chen
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, 241002, China
| | - Zhenghao Fu
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, 241002, China
| | - Dongsheng Li
- Department of Medicinal Chemistry, Shanghai Synergy Pharmaceutical Sciences Co., Ltd., Shanghai, 201203, China
| | - Yuhuan Yue
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, China.
| | - Xiaoping Liu
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
39
|
Chung PC, Hsieh PC, Lan CC, Hsu PC, Sung MY, Lin YH, Tzeng IS, Chiu V, Cheng CF, Kuo CY. Role of Chrysophanol in Epithelial-Mesenchymal Transition in Oral Cancer Cell Lines via a Wnt-3-Dependent Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8373715. [PMID: 33014112 PMCID: PMC7512067 DOI: 10.1155/2020/8373715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022]
Abstract
Oral cancer belongs to the group of head and neck cancers. If not diagnosed or treated early, it can be life threatening. Epithelial-mesenchymal transition (EMT) plays an important role in tumor formation and progression. An increase in the presence of the EMT phenotype causes tumor cell proliferation, migration, invasion, and poor prognosis. Therefore, attenuating carcinogenesis via EMT inhibition is a good strategy. Herein, we will determine the pharmacological effects of chrysophanol on the EMT in FaDu cells. To analyze EMT, we detected the expression EMT markers, including α-SMA, β-catenin, vimentin, N-cadherin, E-cadherin, phospho-GSK-3β, and nuclear translocations of p65 and β-catenin by western blotting. Additionally, accumulating evidence indicates that reactive oxygen species (ROS) mediate EMT. Our results showed that the level of ROS was significantly increased after chrysophanol treatment. We further speculated that chrysophanol-mediated EMT and metastasis are involved in the Wnt-3-dependent signaling pathway. The inhibition of the EMT phenotype and metastasis and accumulation of ROS caused by chrysophanol was reversed by treatment with the Wnt-3 agonist Bml 284. Therefore, our findings indicated that chrysophanol altered EMT formation, ROS accumulation, and metastasis via the Wnt-3-dependent signaling pathway.
Collapse
Affiliation(s)
- Ping-Chen Chung
- Department of Anesthesia, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Po-Chih Hsu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Yi Sung
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ya-Hsuan Lin
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - I.-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Valeria Chiu
- Division of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
40
|
Advani D, Gupta R, Tripathi R, Sharma S, Ambasta RK, Kumar P. Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochem Int 2020; 140:104841. [PMID: 32853752 DOI: 10.1016/j.neuint.2020.104841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
The disease heterogeneity and little therapeutic progress in neurodegenerative diseases justify the need for novel and effective drug discovery approaches. Drug repurposing is an emerging approach that reinvigorates the classical drug discovery method by divulging new therapeutic uses of existing drugs. The common biological background and inverse tuning between cancer and neurodegeneration give weight to the conceptualization of repurposing of anticancer drugs as novel therapeutics. Many studies are available in the literature, which highlights the success story of anticancer drugs as repurposed therapeutics. Among them, kinase inhibitors, developed for various oncology indications evinced notable neuroprotective effects in neurodegenerative diseases. In this review, we shed light on the salient role of multiple protein kinases in neurodegenerative disorders. We also proposed a feasible explanation of the action of kinase inhibitors in neurodegenerative disorders with more attention towards neurodegenerative disorders. The problem of neurotoxicity associated with some anticancer drugs is also highlighted. Our review encourages further research to better encode the hidden potential of anticancer drugs with the aim of developing prospective repurposed drugs with no toxicity for neurodegenerative disorders.
Collapse
Affiliation(s)
- Dia Advani
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rohan Gupta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
41
|
Computational methods-guided design of modulators targeting protein-protein interactions (PPIs). Eur J Med Chem 2020; 207:112764. [PMID: 32871340 DOI: 10.1016/j.ejmech.2020.112764] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) play a pivotal role in extensive biological processes and are thus crucial to human health and the development of disease states. Due to their critical implications, PPIs have been spotlighted as promising drug targets of broad-spectrum therapeutic interests. However, owing to the general properties of PPIs, such as flat surfaces, featureless conformations, difficult topologies, and shallow pockets, previous attempts were faced with serious obstacles when targeting PPIs and almost portrayed them as "intractable" for decades. To date, rapid progress in computational chemistry and structural biology methods has promoted the exploitation of PPIs in drug discovery. These techniques boost their cost-effective and high-throughput traits, and enable the study of dynamic PPI interfaces. Thus, computational methods represent an alternative strategy to target "undruggable" PPI interfaces and have attracted intense pharmaceutical interest in recent years, as exemplified by the accumulating number of successful cases. In this review, we first introduce a diverse set of computational methods used to design PPI modulators. Herein, we focus on the recent progress in computational strategies and provide a comprehensive overview covering various methodologies. Importantly, a list of recently-reported successful examples is highlighted to verify the feasibility of these computational approaches. Finally, we conclude the general role of computational methods in targeting PPIs, and also discuss future perspectives on the development of such aids.
Collapse
|
42
|
Gajos-Michniewicz A, Czyz M. WNT Signaling in Melanoma. Int J Mol Sci 2020; 21:E4852. [PMID: 32659938 PMCID: PMC7402324 DOI: 10.3390/ijms21144852] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
WNT-signaling controls important cellular processes throughout embryonic development and adult life, so any deregulation of this signaling can result in a wide range of pathologies, including cancer. WNT-signaling is classified into two categories: β-catenin-dependent signaling (canonical pathway) and β-catenin-independent signaling (non-canonical pathway), the latter can be further divided into WNT/planar cell polarity (PCP) and calcium pathways. WNT ligands are considered as unique directional growth factors that contribute to both cell proliferation and polarity. Origin of cancer can be diverse and therefore tissue-specific differences can be found in WNT-signaling between cancers, including specific mutations contributing to cancer development. This review focuses on the role of the WNT-signaling pathway in melanoma. The current view on the role of WNT-signaling in cancer immunity as well as a short summary of WNT pathway-related drugs under investigation are also provided.
Collapse
Affiliation(s)
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92–215 Lodz, Poland;
| |
Collapse
|
43
|
Yang F, Zhang Y, Zhu J, Wang J, Jiang Z, Zhao C, Yang Q, Huang Y, Yao W, Pang W, Han L, Zhou J. Laminar Flow Protects Vascular Endothelial Tight Junctions and Barrier Function via Maintaining the Expression of Long Non-coding RNA MALAT1. Front Bioeng Biotechnol 2020; 8:647. [PMID: 32671044 PMCID: PMC7330101 DOI: 10.3389/fbioe.2020.00647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 01/05/2023] Open
Abstract
Atherosclerotic plaque preferentially develops in arterial curvatures and branching regions, where endothelial cells constantly experience disturbed blood flow. By contrast, the straight arteries are generally protected from plaque formation due to exposure of endothelial cells to vaso-protective laminar blood flow. However, the role of flow patterns on endothelial barrier function remains largely unclear. This study aimed to investigate new mechanisms underlying the blood flow pattern-regulated endothelial integrity. Exposure of human endothelial cells to pulsatile shear (PS, mimicking the laminar flow) compared to oscillatory shear (OS, mimicking the disturbed flow) increased the expressions of long non-coding RNA MALAT1 and tight junction proteins ZO1 and Occludin. This increase was abolished by knocking down MALAT1 or Nesprin1 and 2. PS promoted the association between Nesprin1 and SUN2 at the nuclear envelopes, and induced a nuclear translocation of β-catenin, likely through enhancing the interaction between β-catenin and Nesprin1. In the in vivo study, mice were treated via intraperitoneal injection with β-catenin agonist SKL2001 or its inhibitor XAV939, and they were then subjected to Evans blue injection to assess aortic endothelial permeability. The aortas exhibited a reduced wall permeability to Evans blue in SKL2001-treated mice whereas an enhanced permeability in XAV939-treated mice. We concluded that laminar flow promotes nuclear localization of Nesprins, which facilitates the nuclear access of β-catenin to stimulate MALAT1 transcription, resulting in increased expressions of ZO1 and Occludin to protect endothelial barrier function.
Collapse
Affiliation(s)
- Fangfang Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Yunpeng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Juanjuan Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Zhitong Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Chuanrong Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Qianru Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Yu Huang
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Lili Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| |
Collapse
|
44
|
Deregulated PTEN/PI3K/AKT/mTOR signaling in prostate cancer: Still a potential druggable target? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118731. [PMID: 32360668 DOI: 10.1016/j.bbamcr.2020.118731] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/13/2023]
Abstract
Although the prognosis of patients with localized prostate cancer is good after surgery, with a favorable response to androgen deprivation therapy, about one third of them invariably relapse, and progress to castration-resistant prostate cancer. Overall, prostate cancer therapies remain scarcely effective, thus it is mandatory to devise alternative treatments enhancing the efficacy of surgical castration and hormone administration. Dysregulation of the phosphoinositide 3-kinase pathway has attracted growing attention in prostate cancer due to the highly frequent association of epigenetic and post-translational modifications as well as to genetic alterations of both phosphoinositide 3-kinase and PTEN to onset and/or progression of this malignancy, and to resistance to canonical androgen-deprivation therapy. Here we provide a summary of the biological functions of the major players of this cascade and their deregulation in prostate cancer, summarizing the results of preclinical and clinical studies with PI3K signaling inhibitors and the reasons of failure independent from genomic changes.
Collapse
|
45
|
Mis M, O’Brien S, Steinhart Z, Lin S, Hart T, Moffat J, Angers S. IPO11 mediates βcatenin nuclear import in a subset of colorectal cancers. J Cell Biol 2020; 219:e201903017. [PMID: 31881079 PMCID: PMC7041691 DOI: 10.1083/jcb.201903017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/09/2019] [Accepted: 11/07/2019] [Indexed: 01/11/2023] Open
Abstract
Activation of Wnt signaling entails βcatenin protein stabilization and translocation to the nucleus to regulate context-specific transcriptional programs. The majority of colorectal cancers (CRCs) initiate following APC mutations, resulting in Wnt ligand-independent stabilization and nuclear accumulation of βcatenin. The mechanisms underlying βcatenin nucleocytoplasmic shuttling remain incompletely defined. Using a novel, positive selection, functional genomic strategy, DEADPOOL, we performed a genome-wide CRISPR screen and identified IPO11 as a required factor for βcatenin-mediated transcription in APC mutant CRC cells. IPO11 (Importin-11) is a nuclear import protein that shuttles cargo from the cytoplasm to the nucleus. IPO11-/- cells exhibit reduced nuclear βcatenin protein levels and decreased βcatenin target gene activation, suggesting IPO11 facilitates βcatenin nuclear import. IPO11 knockout decreased colony formation of CRC cell lines and decreased proliferation of patient-derived CRC organoids. Our findings uncover a novel nuclear import mechanism for βcatenin in cells with high Wnt activity.
Collapse
Affiliation(s)
- Monika Mis
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Siobhan O’Brien
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zachary Steinhart
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Yu S, Cao S, Hong S, Lin X, Guan H, Chen S, Zhang Q, Lv W, Li Y, Xiao H. miR-3619-3p promotes papillary thyroid carcinoma progression via Wnt/β-catenin pathway. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:643. [PMID: 31930044 PMCID: PMC6944574 DOI: 10.21037/atm.2019.10.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 04/27/2025]
Abstract
BACKGROUND It is well known that the dysregulation of microRNAs (miRNAs) has been identified in papillary thyroid carcinoma (PTC), but their roles in the progression and metastasis of PTC remain unclear. MicroRNA-3619-3p (miR-3619-3p) is associated with cancer progression as an oncogene which is predicted to target at the Wnt/β-catenin signaling pathway. Our study aimed to investigate the role of miR-3619-3p on PTC cell migration and invasion, as well as the underlying mechanisms. METHODS The expression of miR-3619-3p in 36 PTC tissues and corresponding tumor-adjacent tissues, as well as 3 PTC cell lines (BCPAP, K1, TPC-1) and the normal thyroid epithelial cell line (N-thy-ori 3-1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between miR-3619-3p expression and clinicopathologic status of PTC patients was analyzed. Migration, invasion, and wound healing, were used to evaluate the role of miR-3619-3p in PTC. The activation of β-catenin and the possible molecular pathway were detected by western blotting. RESULTS The expression of miR-3619-3p in PTC tissues was significantly higher than the corresponding tumor-adjacent tissues (P<0.01), and its high expression positively correlated with extrathyroidal invasion, multicentricity, and cervical lymph node metastasis. Moreover, the miR-3619-3p was also up-regulated in PTC cell lines when compared to N-thy-ori 3-1. MiR-3619-3p enhanced the capabilities of migration and invasion in PTC cell lines. Furthermore, miR-3619-3p activated Wnt/β-catenin pathway via maintaining the mRNA stability of β-catenin. CONCLUSIONS miR-3619-3p promoted PTC cell migration and invasion as an oncogene via activating the Wnt/β-catenin pathway through increasing the stability of β-catenin.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Siting Cao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaorong Lin
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hongyu Guan
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shuwei Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Quan Zhang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
47
|
Qiu T, Li W, Zhang F, Wang B, Ying J. Major challenges in accurate mutation detection of multifocal lung adenocarcinoma by next-generation sequencing. Cancer Biol Ther 2019; 21:170-177. [PMID: 31651223 DOI: 10.1080/15384047.2019.1674070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Many patients with advanced non-small cell lung cancer manifested with metastasis, and molecular heterogeneity may exhibit between primary and metastatic tumors. We sought to investigate the clinical detection strategy of primary and metastatic tumors in Chinese patients with NSCLC.Methods: Here, 77 paired tumors of Chinese patients with lung adenocarcinoma were analyzed, and 1836 mutation in hotspot regions of 22 genes were identified by next-generation sequencing. The expression of ALK in these paired tumors was also detected by immunohistochemistry.Results: The results showed that the concordance rate in multiple pulmonary nodules, primary-LN metastasis pairs and primary-distant metastasis pairs was 67.7%, 94.1% and 86.7%, respectively. In multiple pulmonary nodules, the concordance rate was 100% when the pathologic diagnosis was intrapulmonary metastasis, whereas the concordance rate was 23.1% when the pathologic diagnosis was multiple primary tumors. TP53 and CTNNB1 mutations were detected as the recurrent alterations in LN metastasis. Moreover, the concordance of ALK status was observed in these pairs.Conclusions: Our data suggested that hotspot mutations and ALK status in the primary-metastasis pairs had a high concordance in lung adenocarcinoma. Clinical detection of one lesion may be enough to identify the key alterations except that patients are diagnosed with multiple primary tumors or have disease progression after benefiting from target therapy.
Collapse
Affiliation(s)
- Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fanshuang Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingning Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Lang CMR, Chan CK, Veltri A, Lien WH. Wnt Signaling Pathways in Keratinocyte Carcinomas. Cancers (Basel) 2019; 11:cancers11091216. [PMID: 31438551 PMCID: PMC6769728 DOI: 10.3390/cancers11091216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The skin functions as a barrier between the organism and the surrounding environment. Direct exposure to external stimuli and the accumulation of genetic mutations may lead to abnormal cell growth, irreversible tissue damage and potentially favor skin malignancy. Skin homeostasis is coordinated by an intricate signaling network, and its dysregulation has been implicated in the development of skin cancers. Wnt signaling is one such regulatory pathway orchestrating skin development, homeostasis, and stem cell activation. Aberrant regulation of Wnt signaling cascades not only gives rise to tumor initiation, progression and invasion, but also maintains cancer stem cells which contribute to tumor recurrence. In this review, we summarize recent studies highlighting functional evidence of Wnt-related oncology in keratinocyte carcinomas, as well as discussing preclinical and clinical approaches that target oncogenic Wnt signaling to treat cancers. Our review provides valuable insight into the significance of Wnt signaling for future interventions against keratinocyte carcinomas.
Collapse
Affiliation(s)
| | - Chim Kei Chan
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Anthony Veltri
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Wen-Hui Lien
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium.
| |
Collapse
|
49
|
Bhattacharya I, Barman N, Maiti M, Sarkar R. Assessment of beta-catenin expression by immunohistochemistry in colorectal neoplasms and its role as an additional prognostic marker in colorectal adenocarcinoma. Med Pharm Rep 2019; 92:246-252. [PMID: 31460505 PMCID: PMC6709962 DOI: 10.15386/mpr-1218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/07/2019] [Accepted: 04/14/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer is one of the world's biggest health care challenges, with colorectal cancer (CRC) being one of the three most frequently encountered malignancy worldwide. The main cause of mortality associated with CRC is tumour invasion and metastasis. Pathogenesis of CRC is a multistep process, during which different molecular pathways come into play. The cardinal genomic alteration that has been found universally present in CRC is a mutation in the adenomatous polyposis coli gene (APC). APC mutation causes unrestricted action of the Wnt signaling pathway which subsequently enhances the intracellular accumulation of a protein called beta-catenin, responsible for cell proliferation, differentiation and enhanced survival of colorectal epithelial cells. AIM This study was conducted to analyze beta-catenin expression in various colorectal neoplasms, and its change with respect to different grades and stage of colorectal adenocarcinoma. STUDY DESIGN This was a cross-sectional observational study. METHODS A total of 66 cases were enrolled in this study. Census method of sampling was used. Data was collected using a pre-designed, pretested semi-structured schedule on dependent variables like beta-catenin expression and independent variables like clinico-pathological profile including dietary history, macroscopic findings, histological type, histological grade, stage and other relevant parameters.An institution based cross sectional observational study was performed between February 2016 and July 2017. Representative sections taken from the specimens included in the study were subjected to histopathological examination followed by immunohistochemistry [IHC] for beta-catenin expression; the data obtained were analyzed by mean ± SD, Student t test, Chi-square/ Fisher Exact test using statistical software SPSS 18.0. RESULTS A statistically significant correlation (P = 0.004), of beta-catenin localization and IHC score was noted between the benign, premalignant and malignant neoplasms following a gradual transition from a membranous to a nuclear positivity; also, a significant (P<0.001) correlation between beta-catenin nuclear score and the corresponding American Joint Committee on Cancer (AJCC) stage of colorectal adenocarcinoma was also found in this study. CONCLUSION The purpose of this study was to determine the change in beta-catenin expression which demonstrates a gradual shift from a membranous to subsequent cytoplasmic and nuclear positivity from normal colorectal tissue to benign, premalignant and malignant neoplasms respectively. This property of beta-catenin can determine the malignant potential of various premalignant neoplasms of the large intestine, thus aiding in an early initiation of prophylactic treatment, which can prevent the development of an invasive disease. The membranous, cytoplasmic and nuclear scores show a linear progression with the advancing stages of colorectal carcinoma, making beta-catenin a prognostic marker in malignant colorectal neoplasms.
Collapse
Affiliation(s)
| | | | - Moumita Maiti
- Pathology Department, Nilratan Sircar Medical College and Hospital, India
| | - Ranu Sarkar
- Pathology Department, Nilratan Sircar Medical College and Hospital, India
| |
Collapse
|
50
|
Chan C, Guo N, Duan X, Han W, Xue L, Bryan D, Wightman SC, Khodarev NN, Weichselbaum RR, Lin W. Systemic miRNA delivery by nontoxic nanoscale coordination polymers limits epithelial-to-mesenchymal transition and suppresses liver metastases of colorectal cancer. Biomaterials 2019; 210:94-104. [PMID: 31060867 PMCID: PMC6579118 DOI: 10.1016/j.biomaterials.2019.04.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022]
Abstract
Though early detection and treatment of primary tumors has significantly improved in recent years, metastatic disease remains among the most significant challenges in cancer therapy. Cancer cells can disseminate before the primary tumor is detected to form micro or gross metastases, requiring toxic systemic therapies. To prevent and suppress metastases, we have developed a nontoxic, long-circulating nanoscale coordination polymer (NCP) protecting microRNA (miRNA) in circulation and releasing it in tumors. PtIV(en)2 [en = ethylenediamine] containing NCPs (PtEN) can release a nontoxic, kinetically inert PtII(en)2 compound and carbon dioxide which aids the endosomal escape of its miRNA cargo, miR-655-3p. Without the presence of the PtEN core, the miRNA showed cellular uptake but no effect. When transfected into human colorectal HCT116 cells by NCPs, this oligometastatic miRNA limited proliferation and epithelial-to-mesenchymal transition by preventing β-catenin nuclear translocation and tumor cell invasion. Systemic administrations of PtEN/miR-655-3p sustained effective transfection to reduce liver colonization and tumor burden in a xenogenic hepatic metastatic model of HCT116 without any observable toxicity.
Collapse
Affiliation(s)
- Christina Chan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Nining Guo
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaopin Duan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbo Han
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Lai Xue
- Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Darren Bryan
- Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Sean C Wightman
- Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA.
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|