1
|
Garre E, Rhost S, Gustafsson A, Szeponik L, Araujo TF, Quiding-Järbrink M, Helou K, Ståhlberg A, Landberg G. Breast cancer patient-derived scaffolds enhance the understanding of PD-L1 regulation and T cell cytotoxicity. Commun Biol 2025; 8:621. [PMID: 40240529 PMCID: PMC12003762 DOI: 10.1038/s42003-025-08054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
Recent advances as well as obstacles for immune-based cancer treatment strategies, highlight the notable impact of patient cancer microenvironments on the immune cells and immune targets. Here, we use patient-derived scaffolds (PDS) generated from 110 primary breast cancers to monitor the impact of the cancer microenvironment on immune regulators. Pronounced variation in PD-L1 expression is observed in cancer cells adapted to different patient scaffolds. This variation is further linked to clinical observations and correlated with specific proteins detected in the cell-free PDSs using mass spectrometry. When adding T cells to the PDS-based cancer cultures, the killing efficiency of activated T cells vary between the cultures, whereas non-activated T cells modulate the cancer cell PD-L1 expression to treatment-predictive values, matching killing capacities of activated T cells. Surviving cancer cells show enrichment in cancer stem cell and epithelial-to-mesenchymal transition (EMT) features, suggesting that T cells may not efficiently target cells with metastatic potential. We conclude that clinically relevant insights in how to optimally target and guide immune-based cancer therapies can be obtained by including patient-derived scaffolds and cues from the cancer microenvironment in cancer patient handling and drug development.
Collapse
Affiliation(s)
- Elena Garre
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Sara Rhost
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anna Gustafsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Louis Szeponik
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thais Fenz Araujo
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Abubakar M, Ahearn TU, Duggan MA, Lawrence S, Adjei EK, Clegg-Lamptey JN, Yarney J, Wiafe-Addai B, Awuah B, Wiafe S, Nyarko K, Aitpillah FS, Ansong D, Hewitt SM, Brinton LA, Figueroa JD, Garcia-Closas M, Edusei L, Titiloye N. Contribution of Prediagnostic Host Factors to Shaping the Stromal Microenvironment of Breast Cancer among Sub-Saharan African Women. Cancer Epidemiol Biomarkers Prev 2025; 34:462-473. [PMID: 38958945 PMCID: PMC11966112 DOI: 10.1158/1055-9965.epi-24-0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The stromal microenvironment (SME) is integral to breast cancer biology, impacting metastatic proclivity and treatment response. Emerging data indicate that host factors may impact the SME, but the relationship between prediagnostic host factors and SME phenotype remains poorly characterized, particularly among women of African ancestry. METHODS We conducted a case-only analysis involving 792 patients with breast cancer (17-84 years) from the Ghana Breast Health Study. High-accuracy machine-learning algorithms were applied to standard H&E-stained images to characterize SME phenotypes [including percent tumor-associated connective tissue stroma, Ta-CTS (%); tumor-associated stromal cellular density, Ta-SCD (%)]. Associations between prediagnostic host factors and SME phenotypes were assessed in multivariable linear regression models. RESULTS Decreasing Ta-CTS and increasing Ta-SCD were associated with aggressive, mostly high-grade tumors (P-value < 0.001). Several prediagnostic host factors were associated with Ta-SCD independently of tumor characteristics. Compared with nulliparous women, parous women had higher levels of Ta-SCD [mean (standard deviation, SD) = 31.3% (7.6%) vs. 28.9% (7.1%); P-value = 0.01]. Similarly, women with a positive family history of breast cancer had higher levels of Ta-SCD than those without family history [mean (SD) = 33.0% (7.5%)] vs. 30.9% (7.6%); P-value = 0.03]. Conversely, increasing body size was associated with decreasing Ta-SCD [mean (SD) = 31.6% (7.4%), 31.4% (7.3%), and 30.1% (8.0%) for slight, average, and large body sizes, respectively; P-value = 0.005]. CONCLUSIONS Epidemiological risk factors were associated with varying degrees of stromal cellularity in tumors, independently of clinicopathological characteristics. IMPACT The findings raise the possibility that epidemiological risk factors may partly influence tumor biology via the stromal microenvironment. See related In the Spotlight, p. 459.
Collapse
Affiliation(s)
- Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Thomas U. Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maire A. Duggan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Scott Lawrence
- Molecular and Digital Pathology Laboratory, Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, Maryland
| | | | | | | | | | | | - Seth Wiafe
- Loma Linda University, School of Public Health, Loma Linda, California
| | | | | | - Daniel Ansong
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Stephen M. Hewitt
- Center for cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Louise A. Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jonine D. Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Usher Institute and Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
3
|
Malla R, Bhamidipati P, Samudrala AS, Nuthalapati Y, Padmaraju V, Malhotra A, Rolig AS, Malhotra SV. Exosome-Mediated Cellular Communication in the Tumor Microenvironment Imparts Drug Resistance in Breast Cancer. Cancers (Basel) 2025; 17:1167. [PMID: 40227747 PMCID: PMC11987792 DOI: 10.3390/cancers17071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
Globally, breast cancer (BC) is the leading cause of cancer-related death for women. BC is characterized by heterogeneity, aggressive behavior, and high metastatic potential. Chemotherapy, administered as monotherapy or adjuvant therapy, remains a cornerstone of treatment; however, acquired drug resistance is a significant clinical challenge. Deciphering mechanisms of drug resistance will be central to developing more efficient treatment options and improving patient outcomes. The current review examines the multifaceted nature of exosomes in conferring drug resistance in BC through complex communication networks within the tumor microenvironment. We further explore recent advances in understanding how exosomes contribute to resistance against established chemotherapeutic agents such as tamoxifen, paclitaxel, doxorubicin, platinum-based drugs, trastuzumab, and newer immunotherapies, such as immune checkpoint inhibitors. Moreover, we discuss existing systematic approaches to investigating the exosome-drug resistance relationship in BC. Finally, we explore promising therapeutic approaches to overcome exosome-dependent drug resistance in BC, highlighting potential avenues for improved treatment efficacy. Investigating the distinct functions and cargo of exosomes offers potential for developing innovative approaches to overcoming treatment resistance.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Priyamvada Bhamidipati
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Anuveda Sree Samudrala
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Yerusha Nuthalapati
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Vasudevaraju Padmaraju
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Aditya Malhotra
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Annah S. Rolig
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Sanjay V. Malhotra
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
4
|
Li F, Chen H, Lu X, Wei Y, Zhao Y, Fu J, Xiao X, Bu H. Combining the tumor-stroma ratio with tumor-infiltrating lymphocytes improves the prediction of pathological complete response in breast cancer patients. Breast Cancer Res Treat 2023; 202:173-183. [PMID: 37528265 DOI: 10.1007/s10549-023-07026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE The tumor-stroma ratio (TSR) is a common histological parameter that measures stromal abundance and is prognostic in breast cancer (BC). However, more evidence is needed on the predictive value of the TSR for the pathological complete response (pCR) to neoadjuvant chemotherapy (NAC). The purpose of this study was to determine the importance of the TSR in predicting pCR in NAC settings. METHOD We evaluated the TSR on pretreatment biopsies of 912 BC patients from four independent Chinese hospitals and investigated the potential value of the TSR for predicting pCR. Meanwhile, stromal tumor-infiltrating lymphocytes (sTILs) were assessed, and we evaluated the predictive value of the combination of sTILs and TSR (TSRILs). RESULTS Patients with low stroma showed a higher pCR rate than those with high stroma among the four independent hospitals, and in multivariate analysis, the TSR was proven to be an independent predictor for pCR to NAC with an odds ratio of 1.945 (95% CI 1.230-3.075, P = 0.004). Moreover, we found that TSRILs could improve the area under the curve (AUC) for predicting pCR from 0.750 to 0.785 (P = 0.039); especially in HER2-negative BCs, the inclusion of TSRILs increased the AUC from 0.801 to 0.835 in the discovery dataset (P = 0.048) and 0.734 to 0.801 in the validation dataset (P = 0.003). CONCLUSION TSR and sTILs can be easily measured in pathological routines and provide predictive information without additional cost; with more evidence from clinical trials, TSRILs could be a candidate to better stratify patients in NAC settings.
Collapse
Affiliation(s)
- Fengling Li
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Transplant Engineering and Immunology of the National Health Commission, West China Hospital, Sichuan University, Chengdu, China
| | - Xunxi Lu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yani Wei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Zhao
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jing Fu
- Department of Pathology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiuli Xiao
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Salemme V, Centonze G, Avalle L, Natalini D, Piccolantonio A, Arina P, Morellato A, Ala U, Taverna D, Turco E, Defilippi P. The role of tumor microenvironment in drug resistance: emerging technologies to unravel breast cancer heterogeneity. Front Oncol 2023; 13:1170264. [PMID: 37265795 PMCID: PMC10229846 DOI: 10.3389/fonc.2023.1170264] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Breast cancer is a highly heterogeneous disease, at both inter- and intra-tumor levels, and this heterogeneity is a crucial determinant of malignant progression and response to treatments. In addition to genetic diversity and plasticity of cancer cells, the tumor microenvironment contributes to tumor heterogeneity shaping the physical and biological surroundings of the tumor. The activity of certain types of immune, endothelial or mesenchymal cells in the microenvironment can change the effectiveness of cancer therapies via a plethora of different mechanisms. Therefore, deciphering the interactions between the distinct cell types, their spatial organization and their specific contribution to tumor growth and drug sensitivity is still a major challenge. Dissecting intra-tumor heterogeneity is currently an urgent need to better define breast cancer biology and to develop therapeutic strategies targeting the microenvironment as helpful tools for combined and personalized treatment. In this review, we analyze the mechanisms by which the tumor microenvironment affects the characteristics of tumor heterogeneity that ultimately result in drug resistance, and we outline state of the art preclinical models and emerging technologies that will be instrumental in unraveling the impact of the tumor microenvironment on resistance to therapies.
Collapse
Affiliation(s)
- Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Pietro Arina
- UCL, Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| |
Collapse
|
6
|
Abubakar M, Ahearn TU, Duggan MA, Lawrence S, Adjei E, Clegg-Lamptey JN, Yarney J, Wiafe-Addai B, Awuah B, Wiafe S, Nyarko K, Aitpillah F, Ansong D, Hewitt SM, Brinton LA, Figueroa JD, Garcia-Closas M, Edusei L, Titiloye N. Associations of breast cancer etiologic factors with stromal microenvironment of primary invasive breast cancers in the Ghana Breast Health Study. RESEARCH SQUARE 2023:rs.3.rs-2791342. [PMID: 37090574 PMCID: PMC10120782 DOI: 10.21203/rs.3.rs-2791342/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background Emerging data suggest that beyond the neoplastic parenchyma, the stromal microenvironment (SME) impacts tumor biology, including aggressiveness, metastatic potential, and response to treatment. However, the epidemiological determinants of SME biology remain poorly understood, more so among women of African ancestry who are disproportionately affected by aggressive breast cancer phenotypes. Methods Within the Ghana Breast Health Study, a population-based case-control study in Ghana, we applied high-accuracy machine-learning algorithms to characterize biologically-relevant SME phenotypes, including tumor-stroma ratio (TSR (%); a metric of connective tissue stroma to tumor ratio) and tumor-associated stromal cellular density (Ta-SCD (%); a tissue biomarker that is reminiscent of chronic inflammation and wound repair response in breast cancer), on digitized H&E-stained sections from 792 breast cancer patients aged 17-84 years. Kruskal-Wallis tests and multivariable linear regression models were used to test associations between established breast cancer risk factors, tumor characteristics, and SME phenotypes. Results Decreasing TSR and increasing Ta-SCD were strongly associated with aggressive, mostly high grade tumors (p-value < 0.001). Several etiologic factors were associated with Ta-SCD, but not TSR. Compared with nulliparous women [mean (standard deviation) = 28.9% (7.1%)], parous women [mean (standard deviation) = 31.3% (7.6%)] had statistically significantly higher levels of Ta-SCD (p-value = 0.01). Similarly, women with a positive family history of breast cancer [FHBC; mean (standard deviation) = 33.0% (7.5%)] had higher levels of Ta-SCD than those with no FHBC [mean (standard deviation) = 30.9% (7.6%); p-value = 0.01]. Conversely, increasing body size was associated with decreasing Ta-SCD [mean (standard deviation) = 32.0% (7.4%), 31.3% (7.3%), and 29.0% (8.0%) for slight, moderate, and large body sizes, respectively, p-value = 0.005]. These associations persisted and remained statistically significantly associated with Ta-SCD in mutually-adjusted multivariable linear regression models (p-value < 0.05). With the exception of body size, which was differentially associated with Ta-SCD by grade levels (p-heterogeneity = 0.04), associations between risk factors and Ta-SCD were not modified by tumor characteristics. Conclusions Our findings raise the possibility that epidemiological factors may act via the SME to impact both risk and biology of breast cancers in this population, underscoring the need for more population-based research into the role of SME in multi-state breast carcinogenesis.
Collapse
|
7
|
Petrosyan V, Dobrolecki LE, Thistlethwaite L, Lewis AN, Sallas C, Srinivasan RR, Lei JT, Kovacevic V, Obradovic P, Ellis MJ, Osborne CK, Rimawi MF, Pavlick A, Shafaee MN, Dowst H, Jain A, Saltzman AB, Malovannaya A, Marangoni E, Welm AL, Welm BE, Li S, Wulf GM, Sonzogni O, Huang C, Vasaikar S, Hilsenbeck SG, Zhang B, Milosavljevic A, Lewis MT. Identifying biomarkers of differential chemotherapy response in TNBC patient-derived xenografts with a CTD/WGCNA approach. iScience 2023; 26:105799. [PMID: 36619972 PMCID: PMC9813793 DOI: 10.1016/j.isci.2022.105799] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/20/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Although systemic chemotherapy remains the standard of care for TNBC, even combination chemotherapy is often ineffective. The identification of biomarkers for differential chemotherapy response would allow for the selection of responsive patients, thus maximizing efficacy and minimizing toxicities. Here, we leverage TNBC PDXs to identify biomarkers of response. To demonstrate their ability to function as a preclinical cohort, PDXs were characterized using DNA sequencing, transcriptomics, and proteomics to show consistency with clinical samples. We then developed a network-based approach (CTD/WGCNA) to identify biomarkers of response to carboplatin (MSI1, TMSB15A, ARHGDIB, GGT1, SV2A, SEC14L2, SERPINI1, ADAMTS20, DGKQ) and docetaxel (c, MAGED4, CERS1, ST8SIA2, KIF24, PARPBP). CTD/WGCNA multigene biomarkers are predictive in PDX datasets (RNAseq and Affymetrix) for both taxane- (docetaxel or paclitaxel) and platinum-based (carboplatin or cisplatin) response, thereby demonstrating cross-expression platform and cross-drug class robustness. These biomarkers were also predictive in clinical datasets, thus demonstrating translational potential.
Collapse
Affiliation(s)
- Varduhi Petrosyan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lacey E. Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lillian Thistlethwaite
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alaina N. Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christina Sallas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Jonathan T. Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vladimir Kovacevic
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
| | - Predrag Obradovic
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
| | - Matthew J. Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - C. Kent Osborne
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mothaffar F. Rimawi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne Pavlick
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maryam Nemati Shafaee
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Heidi Dowst
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander B. Saltzman
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Malovannaya
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Alana L. Welm
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Bryan E. Welm
- Department of Surgery, University of Utah, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Shunqiang Li
- Division of Oncology, Washington University, St. Louis, MO 63130, USA
| | | | - Olmo Sonzogni
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suhas Vasaikar
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan G. Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aleksandar Milosavljevic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T. Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
A CAF-Fueled TIMP-1/CD63/ITGB1/STAT3 Feedback Loop Promotes Migration and Growth of Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14204983. [PMID: 36291767 PMCID: PMC9599197 DOI: 10.3390/cancers14204983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Carcinoma-associated fibroblasts (CAFs) are a major cellular component of the tumor microenvironment and influence cancer cell behavior in numerous ways. A large part of their actions is based on their high secretory activity, leading to the exposure of cancer cells to all kinds of bioactive factors, such as interleukin-6 (IL-6). Here, we present data showing that CAF-derived TIMP-1 activates STAT3 in breast cancer cells in cooperation with CD63 and integrin β1. In turn, STAT3 increases TIMP-1 secretion by breast cancer cells, leading to a TIMP-1/CD63/integrin β1/STAT3 positive feedback loop, which can be further fueled by IL-6. Functionally, this feedback loop is important for the CAF-induced increase in migratory activity and for CAF-induced resistance to the anti-estrogen fulvestrant. Abstract TIMP-1 is one of the many factors that CAFs have been shown to secret. TIMP-1 can act in a tumor-supportive or tumor-suppressive manner. The purpose of this study was to elucidate the role of CAF-secreted TIMP-1 for the effects of CAFs on breast cancer cell behavior. Breast cancer cells were exposed to conditioned medium collected from TIMP-1-secreting CAFs (CAF-CM), and the specific effects of TIMP-1 on protein expression, migration and growth were examined using TIMP-1-specifc siRNA (siTIMP1), recombinant TIMP-1 protein (rhTIMP-1) and TIMP-1 level-rising phorbol ester. We observed that TIMP-1 increased the expression of its binding partner CD63 and induced STAT3 and ERK1/2 activation by cooperating with CD63 and integrin β1. Since TIMP-1 expression was found to be dependent on STAT3, TIMP-1 activated its own expression, resulting in a TIMP-1/CD63/integrin β1/STAT3 feedback loop. IL-6, a classical STAT3 activator, further fueled this loop. Knock-down of each component of the feedback loop prevented the CAF-induced increase in migratory activity and inhibited cellular growth in adherent cultures in the presence and absence of the anti-estrogen fulvestrant. These data show that TIMP-1/CD63/integrin β1/STAT3 plays a role in the effects of CAFs on breast cancer cell behavior.
Collapse
|
9
|
Breast Cancer Patient-Derived Scaffolds Can Expose Unique Individual Cancer Progressing Properties of the Cancer Microenvironment Associated with Clinical Characteristics. Cancers (Basel) 2022; 14:cancers14092172. [PMID: 35565301 PMCID: PMC9103124 DOI: 10.3390/cancers14092172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Despite huge progress in cancer diagnostics and medicine we still lack optimal cancer treatments for patients with aggressive diseases. This problem can be influenced by the biological heterogeneity of cancer cells as well as poorly understood cancer promoting effects of the cancer microenvironment being an important part of the cancer niche. In this study we have specifically monitored the activity of the cancer microenvironment in breast cancer patients using cell-free scaffolds repopulated with reporter cancer cells sensing the activity of the patient environment. The data show that scaffold induced changes in epithelial-mesenchymal transition and pluripotency markers were linked to clinical and prognostic properties of the original cancer and the information was even more precise when matching estrogen receptor status in our system. The findings highlight that patient-derived scaffolds uncover important information about varying malignant promoting properties in the cancer niche and can be used as a complementary diagnostic tool. Abstract Breast cancer is a heterogeneous disease in terms of cellular and structural composition, and besides acquired aggressive properties in the cancer cell population, the surrounding tumor microenvironment can affect disease progression and clinical behaviours. To specifically decode the clinical relevance of the cancer promoting effects of individual tumor microenvironments, we performed a comprehensive test of 110 breast cancer samples using a recently established in vivo-like 3D cell culture platform based on patient-derived scaffolds (PDSs). Cell-free PDSs were recellularized with three breast cancer cell lines and adaptation to the different patient-based microenvironments was monitored by quantitative PCR. Substantial variability in gene expression between individual PDS cultures from different patients was observed, as well as between different cell lines. Interestingly, specific gene expression changes in the PDS cultures were significantly linked to prognostic features and clinical information from the original cancer. This link was even more pronounced when ERα-status of cell lines and PDSs matched. The results support that PDSs cultures, including a cancer cell line of relevant origin, can monitor the activity of the tumor microenvironment and reveal unique information about the malignancy-inducing properties of the individual cancer niche and serve as a future complementary diagnostic tool for breast cancer.
Collapse
|
10
|
Barone I, Caruso A, Gelsomino L, Giordano C, Bonofiglio D, Catalano S, Andò S. Obesity and endocrine therapy resistance in breast cancer: Mechanistic insights and perspectives. Obes Rev 2022; 23:e13358. [PMID: 34559450 PMCID: PMC9285685 DOI: 10.1111/obr.13358] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022]
Abstract
The incidence of obesity, a recognized risk factor for various metabolic and chronic diseases, including numerous types of cancers, has risen dramatically over the recent decades worldwide. To date, convincing research in this area has painted a complex picture about the adverse impact of high body adiposity on breast cancer onset and progression. However, an emerging but overlooked issue of clinical significance is the limited efficacy of the conventional endocrine therapies with selective estrogen receptor modulators (SERMs) or degraders (SERDs) and aromatase inhibitors (AIs) in patients affected by breast cancer and obesity. The mechanisms behind the interplay between obesity and endocrine therapy resistance are likely to be multifactorial. Therefore, what have we actually learned during these years and which are the main challenges in the field? In this review, we will critically discuss the epidemiological evidence linking obesity to endocrine therapeutic responses and we will outline the molecular players involved in this harmful connection. Given the escalating global epidemic of obesity, advances in understanding this critical node will offer new precision medicine-based therapeutic interventions and more appropriate dosing schedule for treating patients affected by obesity and with breast tumors resistant to endocrine therapies.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
11
|
Czapiewski P, Cornelius M, Hartig R, Kalinski T, Haybaeck J, Dittmer A, Dittmer J, Ignatov A, Nass N. BCL3 expression is strongly associated with the occurrence of breast cancer relapse under tamoxifen treatment in a retrospective cohort study. Virchows Arch 2022; 480:529-541. [PMID: 35020071 PMCID: PMC8989858 DOI: 10.1007/s00428-021-03238-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Patients with estrogen receptor positive breast cancer are usually receiving an anti-estrogen therapy by either aromatase inhibitors or selective estrogen receptor mediators such as tamoxifen. Nevertheless, acquired resistance to tamoxifen under treatment frequently hampers therapy. One proposed explanation for this phenomenon is the interaction of the tumor cells with cells of the tumor microenvironment via the Insulin-like growth factor RNA binding protein 5/B-cell lymphoma 3 (IGFBP5/BCL3) axis. Here we investigated whether a high expression of BCL3 either cytoplasmic or nuclear is associated with the occurrence of a relapse under anti-estrogen therapy in patients. Formaldehyde-fixed, paraffin-embedded samples of 180 breast cancer patients were analyzed for BCL3 expression by immunohistochemistry. An immunoreactive score (IRS) was calculated from staining intensity in cytoplasm and nucleus as well as the percentage of positive tumor cells. These scores were correlated with clinico-pathological parameters using cross-tabulation analysis and patients’ relapse free and overall survival by Kaplan–Meier analysis and Cox regression. A tamoxifen-adapted MCF-7 derived cell line was investigated for BCL3 localization by immunofluorescence. The cytosolic BCL3-IRS significantly correlated with the proliferation marker Ki-67, and with the occurrence of a relapse under tamoxifen treatment. Nuclear score correlated only with tamoxifen-relapse. In survival analysis, both scores were highly significant prognostic factors for relapse free, but not for overall survival. This was especially obvious for estrogen receptor positive and HER2/NEU negative cases as well as lobular breast cancer. Tamoxifen-treated, but not aromatase-treated patients had a poor survival when BCL3 scores were high. A tamoxifen adapted cell line exhibited a reduced expression and mainly nuclear localization of BCL3, compared to the parental estrogen receptor positive cell-line MCF-7. Altogether, these data strongly support a function of BCL3 in tamoxifen resistance and its potential use as a predictive biomarker for tamoxifen resistance.
Collapse
Affiliation(s)
- Piotr Czapiewski
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Department of Pathology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany
| | - Maximilian Cornelius
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Roland Hartig
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str.44, 39120, Magdeburg, Germany.,Multi-Parametric Bioimaging and Cytometry Platform, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str.44, 39120, Magdeburg, Germany
| | - Thomas Kalinski
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Johannes Haybaeck
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria.,Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - Angela Dittmer
- Clinic for Gynecology, Martin-Luther University, Halle-Wittenberg Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Jürgen Dittmer
- Clinic for Gynecology, Martin-Luther University, Halle-Wittenberg Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Atanas Ignatov
- Department of Obstetrics and Gynecology, Otto Von Guericke University Magdeburg, Gerhart-Hauptmann Str. 35, 39108, Magdeburg, Germany
| | - Norbert Nass
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Dessau Medical Center, Department for Internal Medicine I, Auenweg 38, 06847, Dessau, Germany.
| |
Collapse
|
12
|
Dittmer J. Biological effects and regulation of IGFBP5 in breast cancer. Front Endocrinol (Lausanne) 2022; 13:983793. [PMID: 36093095 PMCID: PMC9453429 DOI: 10.3389/fendo.2022.983793] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The insulin-like growth factor receptor (IGF1R) pathway plays an important role in cancer progression. In breast cancer, the IGF1R pathway is linked to estrogen-dependent signaling. Regulation of IGF1R activity is complex and involves the actions of its ligands IGF1 and IGF2 and those of IGF-binding proteins (IGFBPs). Six IGFBPs are known that share the ability to form complexes with the IGFs, by which they control the bioavailability of these ligands. Besides, each of the IGFBPs have specific features. In this review, the focus lies on the biological effects and regulation of IGFBP5 in breast cancer. In breast cancer, estrogen is a critical regulator of IGFBP5 transcription. It exerts its effect through an intergenic enhancer loop that is part of the chromosomal breast cancer susceptibility region 2q35. The biological effects of IGFBP5 depend upon the cellular context. By inhibiting or promoting IGF1R signaling, IGFBP5 can either act as a tumor suppressor or promoter. Additionally, IGFBP5 possesses IGF-independent activities, which contribute to the complexity by which IGFBP5 interferes with cancer cell behavior.
Collapse
|
13
|
Wang L, Wang X, Wang T, Zhuang Y, Wang G. Multi-omics analysis defines 5-fluorouracil drug resistance in 3D HeLa carcinoma cell model. BIORESOUR BIOPROCESS 2021; 8:135. [PMID: 38650282 PMCID: PMC10991626 DOI: 10.1186/s40643-021-00486-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022] Open
Abstract
Cervical cancer is a serious health problem in women around the globe. However, the use of clinical drug is seriously dampened by the development of drug resistance. Efficient in vitro tumor model is essential to improve the efficiency of drug screening and the accuracy of clinical application. Multicellular tumor spheroids (MTSs) can in a way recapitulates tumor traits in vivo, thereby representing a powerful transitional model between 2D monolayer culture and xenograft. In this study, based on the liquid overlay method, a protocol for rapid generation of the MTSs with uniform size and high reproducibility in a high-throughput manner was established. As expected, the cytotoxicity results showed that there was enhanced 5-fluorouracil (5-FU) resistance of HeLa carcinoma cells in 3D MTSs than 2D monolayer culture with a resistance index of 5.72. In order to obtain a holistic view of the molecular mechanisms that drive 5-FU resistance in 3D HeLa carcinoma cells, a multi-omics study was applied to discover hidden biological regularities. It was observed that in the 3D MTSs mitochondrial function-related proteins and the metabolites of the tricarboxylic acid cycle (TCA cycle) were significantly decreased, and the cellular metabolism was shifted towards glycolysis. The differences in the protein synthesis, processing, and transportation between 2D monolayer cultures and 3D MTSs were significant, mainly in the heat shock protein family, with the up-regulation of protein folding function in endoplasmic reticulum (ER), which promoted the maintenance of ER homeostasis in the 3D MTSs. In addition, at the transcript and protein level, the expression of extracellular matrix (ECM) proteins (e.g., laminin and collagen) were up-regulated in the 3D MTSs, which enhanced the physical barrier of drug penetration. Summarizing, this study formulates a rapid, scalable and reproducible in vitro model of 3D MTS for drug screening purposes, and the findings establish a critical role of glycolytic metabolism, ER hemostasis and ECM proteins expression profiling in tumor chemoresistance of HeLa carcinoma cells towards 5-FU.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xueting Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Tong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.
- Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
14
|
Li W, Li F, Zhang X, Lin HK, Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther 2021; 6:422. [PMID: 34924561 PMCID: PMC8685280 DOI: 10.1038/s41392-021-00825-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
More and more in-depth studies have revealed that the occurrence and development of tumors depend on gene mutation and tumor heterogeneity. The most important manifestation of tumor heterogeneity is the dynamic change of tumor microenvironment (TME) heterogeneity. This depends not only on the tumor cells themselves in the microenvironment where the infiltrating immune cells and matrix together forming an antitumor and/or pro-tumor network. TME has resulted in novel therapeutic interventions as a place beyond tumor beds. The malignant cancer cells, tumor infiltrate immune cells, angiogenic vascular cells, lymphatic endothelial cells, cancer-associated fibroblastic cells, and the released factors including intracellular metabolites, hormonal signals and inflammatory mediators all contribute actively to cancer progression. Protein post-translational modification (PTM) is often regarded as a degradative mechanism in protein destruction or turnover to maintain physiological homeostasis. Advances in quantitative transcriptomics, proteomics, and nuclease-based gene editing are now paving the global ways for exploring PTMs. In this review, we focus on recent developments in the PTM area and speculate on their importance as a critical functional readout for the regulation of TME. A wealth of information has been emerging to prove useful in the search for conventional therapies and the development of global therapeutic strategies.
Collapse
Affiliation(s)
- Wen Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
| | - Feifei Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China.
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| |
Collapse
|
15
|
Targeted Therapy Modulates the Secretome of Cancer-Associated Fibroblasts to Induce Resistance in HER2-Positive Breast Cancer. Int J Mol Sci 2021; 22:ijms222413297. [PMID: 34948097 PMCID: PMC8706990 DOI: 10.3390/ijms222413297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
The combination of trastuzumab plus pertuzumab plus docetaxel as a first-line therapy in patients with HER2-positive metastatic breast cancer has provided significant clinical benefits compared to trastuzumab plus docetaxel alone. However, despite the therapeutic success of existing therapies targeting HER2, tumours invariably relapse. Therefore, there is an urgent need to improve our understanding of the mechanisms governing resistance, so that specific therapeutic strategies can be developed to provide improved efficacy. It is well known that the tumour microenvironment (TME) has a significant impact on cancer behaviour. Cancer-associated fibroblasts (CAFs) are essential components of the tumour stroma that have been linked to acquired therapeutic resistance and poor prognosis in breast cancer. For this reason, it would be of interest to identify novel biomarkers in the tumour stroma that could emerge as therapeutic targets for the modulation of resistant phenotypes. Conditioned medium experiments carried out in our laboratory with CAFs derived from HER2-positive patients showed a significant capacity to promote resistance to trastuzumab plus pertuzumab therapies in two HER2-positive breast cancer cell lines (BCCLs), even in the presence of docetaxel. In order to elucidate the components of the CAF-conditioned medium that may be relevant in the promotion of BCCL resistance, we implemented a multiomics strategy to identify cytokines, transcription factors, kinases and miRNAs in the secretome that have specific targets in cancer cells. The combination of cytokine arrays, label-free LC-MS/MS quantification and miRNA analysis to explore the secretome of CAFs under treatment conditions revealed several up- and downregulated candidates. We discuss the potential role of some of the most interesting candidates in generating resistance in HER2-positive breast cancer.
Collapse
|
16
|
Hajjarian Z, Nadkarni SK. Technological perspectives on laser speckle micro-rheology for cancer mechanobiology research. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210119-PER. [PMID: 34549559 PMCID: PMC8455299 DOI: 10.1117/1.jbo.26.9.090601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE The ability to measure the micro-mechanical properties of biological tissues and biomaterials is crucial for numerous fields of cancer research, including tumor mechanobiology, tumor-targeting drug delivery, and therapeutic development. AIM Our goal is to provide a renewed perspective on the mainstream techniques used for micro-mechanical evaluation of biological tissues and biomimetic scaffoldings. We specifically focus on portraying the outlook of laser speckle micro-rheology (LSM), a technology that quantifies the mechanical properties of biomaterials and tissues in a rapid, non-contact manner. APPROACH First, we briefly explain the motivation and significance of evaluating the tissue micro-mechanics in various fields of basic and translational cancer research and introduce the key concepts and quantitative metrics used to explain the mechanical properties of tissue. This is followed by reviewing the general active and passive themes of measuring micro-mechanics. Next, we focus on LSM and elaborate on the theoretical grounds and working principles of this technique. Then, the perspective for measuring the micro-mechanical properties via LSM is outlined. Finally, we draw an overview picture of LSM in cancer mechanobiology research. RESULTS With the continued emergence of new approaches for measuring the mechanical attributes of biological tissues, the field of micro-mechanical imaging is at its boom. As one of these competent innovations, LSM presents a tremendous potential for both technical maturation and prospective applications in cancer biomechanics and mechanobiology research. CONCLUSION By elaborating the current viewpoint of LSM, we expect to accelerate the expansion of this approach to new territories in both technological domains and applied fields. This renewed perspective on LSM may also serve as a road map for other micro-mechanical measurement concepts to be applied for answering mechanobiological questions.
Collapse
Affiliation(s)
- Zeinab Hajjarian
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Seemantini K. Nadkarni
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Wu Z, Shi J, Lai C, Li K, Li K, Li Z, Tang Z, Liu C, Xu K. Clinicopathological significance and prognostic value of cancer-associated fibroblasts in prostate cancer patients. Urol Oncol 2021; 39:433.e17-433.e23. [PMID: 34112577 DOI: 10.1016/j.urolonc.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cancer-associated fibroblasts (CAFs) in the tumor microenvironment were considered to play an essential role in tumor growth and development. However, few studies have assessed the prognostic and clinicopathological significance of CAFs in prostate cancer (PCa) patients. METHODS One hundred thirty pairs of PCa tissues and normal adjacent tissues (NATs) were immunostained with fibroblast activation protein and α-smooth muscle actin to quantify CAFs. Bioinformatics analysis was used to uncover the possible biological functions of CAFs. RESULTS More CAFs were identified in PCa tissues than in NATs. High density of CAFs may be associated with advanced-stage disease, higher Gleason scores, lymphatic metastases, higher PSA, and poor biochemical recurrence-free survival in PCa. Bioinformatics analysis showed that CAFs may regulate tumor progression and recurrence through ECM modification, PI3K-Akt signaling pathway and regulation of cytoskeleton. CONCLUSION In summary, our study uncovered the clinicopathological significance and potential mechanism of CAFs and indicated that CAFs may be a useful prognostic biomarker in PCa.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Juanyi Shi
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Cong Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Kuiqing Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhuohang Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhuang Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Cheng Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.
| | - Kewei Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
18
|
Leiva MC, Garre E, Gustafsson A, Svanström A, Bogestål Y, Håkansson J, Ståhlberg A, Landberg G. Breast cancer patient-derived scaffolds as a tool to monitor chemotherapy responses in human tumor microenvironments. J Cell Physiol 2021; 236:4709-4724. [PMID: 33368325 PMCID: PMC8049042 DOI: 10.1002/jcp.30191] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
Breast cancer is a heterogeneous disease where the tumor microenvironment, including extracellular components, plays a crucial role in tumor progression, potentially modulating treatment response. Different approaches have been used to develop three-dimensional models able to recapitulate the complexity of the extracellular matrix. Here, we use cell-free patient-derived scaffolds (PDSs) generated from breast cancer samples that were recellularized with cancer cell lines as an in vivo-like culture system for drug testing. We show that PDS cultured MCF7 cancer cells increased their resistance against the front-line chemotherapy drugs 5-fluorouracil, doxorubicin and paclitaxel in comparison to traditional two-dimensional cell cultures. The gene expression of the environmentally adapted cancer cells was modulated in different ways depending on the drug and the concentration used. High doses of doxorubicin reduced cancer stem cell features, whereas 5-fluorouracil increased stemness and decreased the proliferative phenotype. By using PDSs repopulated with other breast cancer cell lines, T-47D and MDA-MB-231, we observed both general and cell line specific drug responses. In summary, PDSs can be used to examine the extracellular matrix influence on cancer drug responses and for testing novel compounds in in vivo-like microenvironments.
Collapse
Affiliation(s)
- Maria Carmen Leiva
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Elena Garre
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Anna Gustafsson
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Andreas Svanström
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Yalda Bogestål
- Department of Biological FunctionRISE Research Institutes of SwedenBoråsSweden
| | - Joakim Håkansson
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Biological FunctionRISE Research Institutes of SwedenBoråsSweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Center for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Clinical Genetics and GenomicsSahlgrenska University HospitalGothenburgSweden
| | - Göran Landberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
19
|
Establishing an immunocompromised porcine model of human cancer for novel therapy development with pancreatic adenocarcinoma and irreversible electroporation. Sci Rep 2021; 11:7584. [PMID: 33828203 PMCID: PMC8027815 DOI: 10.1038/s41598-021-87228-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
New therapies to treat pancreatic cancer are direly needed. However, efficacious interventions lack a strong preclinical model that can recapitulate patients’ anatomy and physiology. Likewise, the availability of human primary malignant tissue for ex vivo studies is limited. These are significant limitations in the biomedical device field. We have developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 as a large animal model with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. In this proof-of-concept study, these pigs were successfully generated using on-demand genetic modifications in embryos, circumventing the need for breeding and husbandry. Human Panc01 cells injected subcutaneously into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment with growth rates similar to those typically observed in mouse models. Histopathology revealed no immune cell infiltration and tumor morphology was highly consistent with the mouse models. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. The ample tumor tissue produced enabled improved accuracy and modeling of the electrical properties of tumor tissue. Together, this suggests that this model will be useful and capable of bridging the gap of translating therapies from the bench to clinical application.
Collapse
|
20
|
Dieters-Castator D, Dantonio PM, Piaseczny M, Zhang G, Liu J, Kuljanin M, Sherman S, Jewer M, Quesnel K, Kang EY, Köbel M, Siegers GM, Leask A, Hess D, Lajoie G, Postovit LM. Embryonic protein NODAL regulates the breast tumor microenvironment by reprogramming cancer-derived secretomes. Neoplasia 2021; 23:375-390. [PMID: 33784590 PMCID: PMC8041663 DOI: 10.1016/j.neo.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an important mediator of breast cancer progression. Cancer-associated fibroblasts constitute a major component of the TME and may originate from tissue-associated fibroblasts or infiltrating mesenchymal stromal cells (MSCs). The mechanisms by which cancer cells activate fibroblasts and recruit MSCs to the TME are largely unknown, but likely include deposition of a pro-tumorigenic secretome. The secreted embryonic protein NODAL is clinically associated with breast cancer stage and promotes tumor growth, metastasis, and vascularization. Herein, we show that NODAL expression correlates with the presence of activated fibroblasts in human triple-negative breast cancers and that it directly induces Cancer-associated fibroblasts phenotypes. We further show that NODAL reprograms cancer cell secretomes by simultaneously altering levels of chemokines (e.g., CXCL1), cytokines (e.g., IL-6) and growth factors (e.g., PDGFRA), leading to alterations in MSC chemotaxis. We therefore demonstrate a hitherto unappreciated mechanism underlying the dynamic regulation of the TME.
Collapse
Affiliation(s)
| | - Paola M Dantonio
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Matt Piaseczny
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Guihua Zhang
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jiahui Liu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Miljan Kuljanin
- Robarts Research Institute, London, ON, Canada; Department of Biochemistry, Western University, London, ON, Canada
| | - Stephen Sherman
- Robarts Research Institute, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Michael Jewer
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Katherine Quesnel
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Eun Young Kang
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Andrew Leask
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - David Hess
- Robarts Research Institute, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Gilles Lajoie
- Department of Biochemistry, Western University, London, ON, Canada
| | - Lynne-Marie Postovit
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
21
|
Welm BE, Vaklavas C, Welm AL. Toward improved models of human cancer. APL Bioeng 2021; 5:010901. [PMID: 33415312 PMCID: PMC7785323 DOI: 10.1063/5.0030534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Human cancer is a complex and heterogeneous collection of diseases that kills
more than 18 million people every year worldwide. Despite advances in detection,
diagnosis, and treatments for cancers, new strategies are needed to combat
deadly cancers. Models of human cancer continue to evolve for preclinical
research and have culminated in patient-derived systems that better represent
the diversity and complexity of cancer. Still, no model is perfect. This
Perspective attempts to address ways that we can improve the clinical
translatability of models used for cancer research, from the point of view of
researchers who mainly conduct cancer studies in vivo.
Collapse
Affiliation(s)
- Bryan E Welm
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Christos Vaklavas
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
22
|
Daunys S, Janonienė A, Januškevičienė I, Paškevičiūtė M, Petrikaitė V. 3D Tumor Spheroid Models for In Vitro Therapeutic Screening of Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:243-270. [PMID: 33543463 DOI: 10.1007/978-3-030-58174-9_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The anticancer activity of compounds and nanoparticles is most often determined in the cell monolayer. However, three-dimensional (3D) systems, such as tumor spheroids, are more representing the natural tumor microenvironment. They have been shown to have higher invasiveness and resistance to cytotoxic agents and radiotherapy compared to cells growing in 2D monolayer. Furthermore, to improve the prediction of clinical efficacy of drugs, in the past decades, even more sophisticated systems, such as multicellular 3D cultures, closely representing natural tumor microenvironment have been developed. Those cultures are formed from either cell lines or patient-derived tumor cells. Such models are very attractive and could improve the selection of tested materials for clinical trials avoiding unnecessary expensive tests in vivo. The microenvironment in tumor spheroids is different, and those differences or the interaction between several cell populations may contribute to different tumor response to the treatment. Also, different types of nanoparticles may have different behavior in 3D models, depending on their nature, physicochemical properties, the presence of targeting ligands on the surface, etc. Therefore, it is very important to understand in which cases which type of tumor spheroid is more suitable for testing specific types of nanoparticles, which conditions should be used, and which analytical method should be applied.
Collapse
Affiliation(s)
- Simonas Daunys
- Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agnė Janonienė
- Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Indrė Januškevičienė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Miglė Paškevičiūtė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Life Sciences Center, Vilnius University, Vilnius, Lithuania.
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
- Institute of Physiology and Pharmacology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
23
|
Carcinoma-Associated Fibroblasts Promote Growth of Sox2-Expressing Breast Cancer Cells. Cancers (Basel) 2020; 12:cancers12113435. [PMID: 33228022 PMCID: PMC7699386 DOI: 10.3390/cancers12113435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment has a strong impact on the behavior of tumor cells. One major cell type residing in the tumor microenvironment is the carcinoma-associated fibroblast (CAF). We were interested in the effect of CAFs on Sox2 (sex determining region Y (SRY)-box 2), which not only is an essential embryonal stem cell transcription factor, but also plays a role in cancer stem cell activity. We found that long-term exposure of ERα-positive breast cancer cells to the cocktail of CAF-secreted factors strongly increased Sox2 expression involving tumor-related proteins and signaling pathways. However, Sox2 was not only present in those tumor cells that express stem cell markers, but was equally abundant in other tumor cells. By being widely expressed, Sox2 may have functions in non-stem cells. In fact, Sox2 was found to regulate ERα expression, to act anti-apoptotically, to promote cellular growth and to protect cells against the anti-estrogen fulvestrant. Abstract CAFs (Carcinoma-associated fibroblasts) play an important role in cancer progression. For instance, they promote resistance to anti-estrogens, such as fulvestrant. Here, we show that, in ERα-positive breast cancer cell lines, the cocktail of factors secreted by CAFs (CAF-CM) induce the expression of the embryonal stem cell transcription factor Sox2 (sex determining region Y (SRY)-box 2). Long-term exposure to CAF-CM was able to give rise to very high Sox2 levels both in the absence and presence of fulvestrant. IL-6 (interleukin-6), a major component of CAF-CM, failed to raise Sox2 expression. In MCF-7 sublines established in the presence of CAF-CM, almost all cells showed Sox2 expression, whereas long-term treatment of T47D cells with CAF-CM resulted in a ~60-fold increase in the proportions of two distinct populations of Sox2 high and low expresser cells. Exposure of BT474 cells to CAF-CM raised the fraction of Sox2 high expresser cells by ~3-fold. Cell sorting based on CD44 and CD24 expression or ALDH (aldehyde dehydrogenase) activity revealed that most Sox2 high expresser cells were not CD44hi/CD24lo- or ALDH-positive cells suggesting that they were not CSCs (cancer stem cells), though CD44 played a role in Sox2 expression. Functionally, Sox2 was found to protect CAF-CM-treated cells against apoptosis and to allow higher growth activity in the presence of fulvestrant. Mechanistically, the key drivers of Sox2 expression was found to be STAT3 (Signal transducer and activator of transcription 3), Bcl-3 (B-cell lymphoma 3) and the PI3K (Phosphoinositide 3-kinase)/AKT pathway, whose activities/expression can all be upregulated by CAF-CM. These data suggest that CAF-CM induces Sox2 expression in non-CSCs by activating proteins involved in growth control and drug resistance, leading to higher protection against apoptosis.
Collapse
|
24
|
Evidence for Enhanced Exosome Production in Aromatase Inhibitor-Resistant Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21165841. [PMID: 32823947 PMCID: PMC7461508 DOI: 10.3390/ijms21165841] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 01/08/2023] Open
Abstract
Aromatase inhibitors (AIs) represent the standard anti-hormonal therapy for post-menopausal estrogen receptor-positive breast cancer, but their efficacy is limited by the emergence of AI resistance (AIR). Exosomes act as vehicles to engender cancer progression and drug resistance. The goal of this work was to study exosome contribution in AIR mechanisms, using estrogen-dependent MCF-7 breast cancer cells as models and MCF-7 LTED (Long-Term Estrogen Deprived) subline, modeling AIR. We found that exosome secretion was significantly increased in MCF-7 LTED cells compared to MCF-7 cells. MCF-7 LTED cells also exhibited a higher amount of exosomal RNA and proteins than MCF-7 cells. Proteomic analysis revealed significant alterations in the cellular proteome. Indeed, we showed an enrichment of proteins frequently identified in exosomes in MCF-7 LTED cells. The most up-regulated proteins in MCF-7 LTED cells were represented by Rab GTPases, important vesicle transport-regulators in cancer, that are significantly mapped in “small GTPase-mediated signal transduction”, “protein transport” and “vesicle-mediated transport” Gene Ontology categories. Expression of selected Rab GTPases was validated by immunoblotting. Collectively, we evidence, for the first time, that AIR breast cancer cells display an increased capability to release exosomes, which may be associated with an enhanced Rab GTPase expression. These data provide the rationale for further studies directed at clarifying exosome’s role on endocrine therapy, with the aim to offer relevant markers and druggable therapeutic targets for the management of hormone-resistant breast cancers.
Collapse
|
25
|
Identification of candidate mediators of chemoresponse in breast cancer through therapy-driven selection of somatic variants. Breast Cancer Res Treat 2020; 183:607-616. [PMID: 32734521 PMCID: PMC7497675 DOI: 10.1007/s10549-020-05836-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
Purpose More than a third of primary breast cancer patients are treated with cytotoxic chemotherapy, typically without guidance from predictive markers. Increased use of neoadjuvant chemotherapy provides opportunities for identification of molecules associated with treatment response, by comparing matched tumour samples before and after therapy. Our hypothesis was that somatic variants of increased prevalence after therapy promote resistance, while variants with reduced prevalence cause sensitivity. Methods We performed systematic analyses of matched pairs of cancer exomes from primary oestrogen receptor-positive/HER2-negative breast cancers (n = 6) treated with neoadjuvant epirubicin/cyclophosphamide. We identified candidate genes as mediators of chemotherapy response by consistent subclonal changes in somatic variant prevalence through therapy, predicted variant impact on gene function, and enrichment of specific functional pathways. Influence of candidate genes on breast cancer outcome was tested using publicly available breast cancer expression data (n = 1903). Results We identified 14 genes as the strongest candidate mediators of chemoresponse: TCHH, MUC17, ARAP2, FLG2, ABL1, CENPF, COL6A3, DMBT1, ITGA7, PLXNA1, S100PBP, SYNE1, ZFHX4, and CACNA1C. Genes contained somatic variants showing prevalence changes in up to 4 patients, with up to 3 being predicted as damaging. Genes coding for extra-cellular matrix components or related signalling pathways were significantly over-represented among variants showing prevalence changes. Expression of 5 genes (TCHH, ABL1, CENPF, S100PBP, and ZFHX4) was significantly associated with patient survival. Conclusions Genomic analysis of paired pre- and post-therapy samples resulting from neoadjuvant therapy provides a powerful method for identification of mediators of response. Genes we identified should be assessed as predictive markers or targets in chemo-sensitization. Electronic supplementary material The online version of this article (10.1007/s10549-020-05836-7) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Fisher MF, Rao SS. Three‐dimensional culture models to study drug resistance in breast cancer. Biotechnol Bioeng 2020; 117:2262-2278. [DOI: 10.1002/bit.27356] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Madeline F. Fisher
- Department of Chemical and Biological Engineering The University of Alabama Tuscaloosa Alabama
| | - Shreyas S. Rao
- Department of Chemical and Biological Engineering The University of Alabama Tuscaloosa Alabama
| |
Collapse
|
27
|
Rybinska I, Sandri M, Bianchi F, Orlandi R, De Cecco L, Gasparini P, Campiglio M, Paolini B, Sfondrini L, Tagliabue E, Triulzi T. Extracellular Matrix Features Discriminate Aggressive HER2-Positive Breast Cancer Patients Who Benefit from Trastuzumab Treatment. Cells 2020; 9:cells9020434. [PMID: 32069815 PMCID: PMC7072535 DOI: 10.3390/cells9020434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
We previously identified an extracellular matrix (ECM) gene expression pattern in breast cancer (BC), called ECM3, characterized by a high expression of genes encoding structural ECM proteins. Since ECM is reportedly implicated in response to therapy of BCs, the aim of this work is to investigate the prognostic and predictive value of ECM3 molecular classification in HER2-positive BCs. ECM3 resulted in a robust cluster that identified a subset of 25-37% of HER2-positive tumors with molecular aggressive features. ECM3 was significantly associated with worse prognosis in two datasets of HER2-positive BCs untreated with adjuvant therapy. Analyses carried out on two of our cohorts of patients treated or not with adjuvant trastuzumab showed association of ECM3 with worse prognosis only in patients not treated with trastuzumab. Moreover, investigating a dataset that includes gene profile data of tumors treated with neoadjuvant trastuzumab plus chemotherapy or chemotherapy alone, ECM3 was associated with increased pathological complete response if treated with trastuzumab. In the in vivo experiments, increased diffusion and trastuzumab activity were found in tumors derived from injection of HER2-positive cells with Matrigel that creates an ECM-rich tumor environment. Taken together, these results indicate that HER2-positive BCs classified as ECM3 have an aggressive phenotype but they are sensitive to trastuzumab treatment.
Collapse
Affiliation(s)
- Ilona Rybinska
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (I.R.); (F.B.); (R.O.); (M.C.); (T.T.)
| | - Marco Sandri
- Data Methods and Systems Statistical Laboratory, University of Brescia, 25121 Brescia, Italy;
| | - Francesca Bianchi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (I.R.); (F.B.); (R.O.); (M.C.); (T.T.)
| | - Rosaria Orlandi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (I.R.); (F.B.); (R.O.); (M.C.); (T.T.)
| | - Loris De Cecco
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Patrizia Gasparini
- Genomic Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Manuela Campiglio
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (I.R.); (F.B.); (R.O.); (M.C.); (T.T.)
| | - Biagio Paolini
- Anatomic Pathology A Unit, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (I.R.); (F.B.); (R.O.); (M.C.); (T.T.)
- Correspondence:
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (I.R.); (F.B.); (R.O.); (M.C.); (T.T.)
| |
Collapse
|
28
|
Sonnenblick A, Salmon-Divon M, Salgado R, Dvash E, Pondé N, Zahavi T, Salmon A, Loibl S, Denkert C, Joensuu H, Ameye L, Van den Eynden G, Kellokumpu-Lehtinen PL, Azaria A, Loi S, Michiels S, Richard F, Sotiriou C. Reactive stroma and trastuzumab resistance in HER2-positive early breast cancer. Int J Cancer 2020; 147:266-276. [PMID: 31904863 DOI: 10.1002/ijc.32859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
We investigated the value of reactive stroma as a predictor for trastuzumab resistance in patients with early HER2-positive breast cancer receiving adjuvant therapy. The pathological reactive stroma and the mRNA gene signatures that reflect reactive stroma in 209 HER2-positive breast cancer samples from the FinHer adjuvant trial were evaluated. Levels of stromal gene signatures were determined as a continuous parameter, and pathological reactive stromal findings were defined as stromal predominant breast cancer (SPBC; ≥50% stromal) and correlated with distant disease-free survival. Gene signatures associated with reactive stroma in HER2-positive early breast cancer (N = 209) were significantly associated with trastuzumab resistance in estrogen receptor (ER)-negative tumors (hazard ratio [HR] = 1.27 p interaction = 0.014 [DCN], HR = 1.58, p interaction = 0.027 [PLAU], HR = 1.71, p interaction = 0.019 [HER2STROMA, novel HER2 stromal signature]), but not in ER-positive tumors (HR = 0.73 p interaction = 0.47 [DCN], HR = 0.71, p interaction = 0.73 [PLAU], HR = 0.84; p interaction = 0.36 [HER2STROMA]). Pathological evaluation of HER2-positive/ER-negative tumors suggested an association between SPBC and trastuzumab resistance. Reactive stroma did not correlate with tumor-infiltrating lymphocytes (TILs), and the expected benefit from trastuzumab in patients with high levels of TILs was pronounced only in tumors with low stromal reactivity (SPBC <50%). In conclusion, reactive stroma in HER2-positive/ER-negative early breast cancer tumors may predict resistance to adjuvant trastuzumab therapy.
Collapse
Affiliation(s)
- Amir Sonnenblick
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA, Antwerp, Belgium.,Division of Research, Peter Mac Callum Cancer Center, Melbourne, Australia
| | - Efrat Dvash
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Pondé
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Medical Oncology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Tamar Zahavi
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Asher Salmon
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Sibylle Loibl
- German Breast Group, Neu-Isenburg and Goethe University Frankfurt and Centre for Haematology and Oncology, Bethanien, Frankfurt, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and UKGM Marburg, Marburg, Germany
| | - Heikki Joensuu
- Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Lieveke Ameye
- Data Management Unit, Institut Jules Bordet, Université Libre de Bruxelles, Belgium
| | - Gert Van den Eynden
- Molecular Immunology Lab, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Amos Azaria
- Department of Computer Science, Ariel University, Ariel, Israel
| | - Sherene Loi
- Peter MacCallum Cancer Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Stefan Michiels
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, CESP U108, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - François Richard
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
29
|
Galectin-3 Regulates the Expression of Tumor Glycosaminoglycans and Increases the Metastatic Potential of Breast Cancer. JOURNAL OF ONCOLOGY 2019; 2019:9827147. [PMID: 31949431 PMCID: PMC6942910 DOI: 10.1155/2019/9827147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/15/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022]
Abstract
Galectin-3 (Gal-3) is a multifunctional β-galactoside-binding lectin that once synthesized is expressed in the nucleus, cytoplasm, cell surface, and extracellular environment. Gal-3 plays an important role in breast cancer tumors due to its ability to promote interactions between cell-cell and cell-extracellular matrix (ECM) elements, increasing tumor survival and metastatic dissemination. Still, the mechanism by which Gal-3 interferes with tumor cell migration and metastasis formation is complex and not fully understood. Here, we showed that Gal-3 knockdown increased the migration ability of 4T1 murine breast cancer cells in vitro. Using the 4T1 orthotopic breast cancer spontaneous metastasis mouse model, we demonstrated that 4T1-derived tumors were significantly larger in the presence of Gal-3 (scramble) in comparison with Gal-3 knockdown 4T1-derived tumors. Nevertheless, Gal-3 knockdown 4T1 cells were outnumbered in the bone marrow in comparison with scramble 4T1 cells. Finally, we reported here a decrease in the content of cell-surface syndecan-1 and an increase in the levels of chondroitin sulfate proteoglycans such as versican in Gal-3 knockdown 4T1 cells both in vitro and in vivo. Overall, our findings establish that Gal-3 downregulation during breast cancer progression regulates cell-associated and tumor microenvironment glycosaminoglycans (GAGs)/proteoglycans (PG), thus enhancing the metastatic potential of tumor cells.
Collapse
|
30
|
Stromal Cell Signature Associated with Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer. Cells 2019; 8:cells8121566. [PMID: 31817155 PMCID: PMC6953077 DOI: 10.3390/cells8121566] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 01/26/2023] Open
Abstract
Breast cancer stromal compartment, may influence responsiveness to chemotherapy. Our aim was to detect a stromal cell signature (using a direct approach of microdissected stromal cells) associated with response to neoadjuvant chemotherapy (neoCT) in locally advanced breast cancer (LABC). The tumor samples were collected from 44 patients with LABC (29 estrogen receptor (ER) positive and 15 ER negative) before the start of any treatment. Neoadjuvant chemotherapy consisted of doxorubicin and cyclophosphamide, followed by paclitaxel. Response was defined as downstaging to maximum ypT1a-b/ypN0. The stromal cells, mainly composed of fibroblast and immune cells, were microdissected from fresh frozen tumor samples and gene expression profile was determined using Agilent SurePrint G3 Human Gene Expression microarrays. Expression levels were compared using MeV (MultiExperiment Viewer) software, applying SAM (significance analysis of microarrays). To classify samples according to tumor response, the order of median based on confidence statements (MedOr) was used, and to identify gene sets correlated with the phenotype downstaging, gene set enrichment analysis (GSEA). Nine patients presented disease downstaging. Eleven sequences (FDR 17) were differentially expressed, all of which (except H2AFJ) more expressed in responsive tumors, including PTCHD1 and genes involved in abnormal cytotoxic T cell physiology, TOX, LY75, and SH2D1A. The following four pairs of markers could correctly classify all tumor samples according to response: PTCHD1/PDXDC2P, LOC100506731/NEURL4, SH2D1A/ENST00000478672, and TOX/H2AFJ. Gene sets correlated with tumor downstaging (FDR < 0.01) were mainly involved in immune response or lymphocyte activation, including CD47, LCK, NCK1, CD24, CD3E, ZAP70, FOXP3, and CD74, among others. In locally advanced breast cancer, stromal cells may present specific features of immune response that may be associated with chemotherapy response.
Collapse
|
31
|
Dittmer A, Lange T, Leyh B, Dittmer J. Protein‑ and growth‑modulatory effects of carcinoma‑associated fibroblasts on breast cancer cells: Role of interleukin‑6. Int J Oncol 2019; 56:258-272. [PMID: 31789400 PMCID: PMC6910226 DOI: 10.3892/ijo.2019.4918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) secrete factors that increase the expression and/or activities of proteins in breast cancer cells and induce resistance to anti-estrogens, such as fulvestrant. A major factor is interleukin-6 (IL-6). This study demonstrated that, across estrogen receptor (ER) α-positive and -negative cell lines, recombinant human IL-6 (rhIL-6) mimicked most of the CAF-conditioned medium (CM)-induced changes in protein expression patterns; however, in most cases, it failed to recapitulate CAF-CM-triggered alterations in ERK1/2 and AKT activities. The ability of rhIL-6 to induce fulvestrant resistance was dependent upon the culture conditions. In 3D, but not in 2D cultures, rhIL-6 increased the survival of fulvestrant-treated cells, although not to the same extent as observed with CAF-CM. In 2D cultures, rhIL-6 acted in a pro-apoptotic manner and decreased the expression of ATP-binding cassette transporter G2 (ABCG2). The inhibition of the PI3K/AKT pathway had similar effects on apoptosis and ABCG2 expression, linking the failure of rhIL-6 to induce fulvestrant resistance to its inability to activate the PI3K/AKT pathway. In 3D cultures, both CAF-CM and rhIL-6 acted in an anti-apoptotic manner. These activities are likely independent on the PI3K/AKT pathway and ABCG2. Experiments on ERα-negative breast cancer cells revealed a growth-inhibitory effects of both CAF-CM and rhIL-6, which coincided with a reduction in the c-Myc level. These data suggest that IL-6 plays a role in several effects of CAF-CM, including alterations in protein expression patterns, fulvestrant resistance in 3D cultures and growth inhibition. By contrast, IL-6 is unlikely to be responsible for the CAF-CM-induced activation of the PI3K/AKT pathway and fulvestrant resistance in 2D cultures.
Collapse
Affiliation(s)
- Angela Dittmer
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| | - Theresia Lange
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| | - Benjamin Leyh
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| | - Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| |
Collapse
|
32
|
Fernández-Nogueira P, Mancino M, Fuster G, López-Plana A, Jauregui P, Almendro V, Enreig E, Menéndez S, Rojo F, Noguera-Castells A, Bill A, Gaither LA, Serrano L, Recalde-Percaz L, Moragas N, Alonso R, Ametller E, Rovira A, Lluch A, Albanell J, Gascon P, Bragado P. Tumor-Associated Fibroblasts Promote HER2-Targeted Therapy Resistance through FGFR2 Activation. Clin Cancer Res 2019; 26:1432-1448. [DOI: 10.1158/1078-0432.ccr-19-0353] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/15/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
|
33
|
Zhu Y, Yu F, Tan Y, Yuan H, Hu F. Strategies of targeting pathological stroma for enhanced antitumor therapies. Pharmacol Res 2019; 148:104401. [DOI: 10.1016/j.phrs.2019.104401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
|
34
|
Mohan V, Das A, Sagi I. Emerging roles of ECM remodeling processes in cancer. Semin Cancer Biol 2019; 62:192-200. [PMID: 31518697 DOI: 10.1016/j.semcancer.2019.09.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/01/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Extracellular matrix (ECM) plays a central and dynamic role in the creation of tumor microenvironment. Herein we discuss the emerging biophysical and biochemical aspects of ECM buildup and proteolysis in cancer niche formation. Dysregulated ECM remodeling by cancer cells facilitate irreversible proteolysis and crosslinking, which in turn influence cell signaling, micro environmental cues, angiogenesis and tissue biomechanics. Further, we introduce the emerging roles of cancer microbiome in aberrant tumor ECM remodeling and membrane bound nano-sized vesicles called exosomes in creation of distant pre-metastatic niches. A detailed molecular and biophysical understanding of the ECM morphologies and its components such as key enzymes, structural and signaling molecules are critical in identifying the next generation of therapeutic and diagnostic targets in cancer.
Collapse
Affiliation(s)
- Vishnu Mohan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alakesh Das
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
35
|
Banys-Paluchowski M, Loibl S, Witzel I, Mundhenke C, Lederer B, Solbach C, Karn T, Marmé F, Nekljudova V, Schem C, Stickeler E, Willumsen N, Karsdal MA, Untch M, Müller V. Clinical Relevance of Collagen Protein Degradation Markers C3M and C4M in the Serum of Breast Cancer Patients Treated with Neoadjuvant Therapy in the GeparQuinto Trial. Cancers (Basel) 2019; 11:cancers11081186. [PMID: 31443252 PMCID: PMC6721504 DOI: 10.3390/cancers11081186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Remodeling of extracellular matrix through collagen degradation is a crucial step in the metastatic cascade. The aim of this study was to evaluate the potential clinical relevance of the serum collagen degradation markers (CDM) C3M and C4M during neoadjuvant chemotherapy for breast cancer. Methods: Patients from the GeparQuinto phase 3 trial with untreated HER2-positive operable or locally advanced breast cancer were enrolled between 7 November 2007, and 9 July 2010, and randomly assigned to receive neoadjuvant treatment with EC/docetaxel with either trastuzumab or lapatinib. Blood samples were collected at baseline, after four cycles of chemotherapy and at surgery. Cutoff values were determined using validated cutoff finder software (C3M: Low ≤9.00 ng/mL, high >9.00 ng/mL, C4M: Low ≤40.91 ng/mL, high >40.91 ng/mL). Results: 157 patients were included in this analysis. At baseline, 11.7% and 14.8% of patients had high C3M and C4M serum levels, respectively. No correlation was observed between CDM and classical clinical-pathological factors. Patients with high levels of CDM were significantly more likely to achieve a pathological complete response (pCR, defined as ypT0 ypN0) than patients with low levels (C3M: 66.7% vs. 25.7%, p = 0.002; C4M: 52.7% vs. 26.6%, p = 0.031). Median levels of both markers were lower at the time of surgery than at baseline. In the multivariate analysis including clinical-pathological factors and C3M levels at baseline and changes in C3M levels between baseline and after four cycles of therapy, only C3M levels at baseline (p = 0.035, OR 4.469, 95%-CI 1.115–17.919) independently predicted pCR. In a similar model including clinical-pathological factors and C4M, only C4M levels at baseline (p = 0.028, OR 6.203, 95%-CI 1.220–31.546) and tumor size (p = 0.035, OR 4.900, 95%-CI 1.122–21.393) were independent predictors of pCR. High C3M levels at baseline did not correlate with survival in the entire cohort but were associated with worse disease-free survival (DFS; p = 0.029, 5-year DFS 40.0% vs. 74.9%) and overall survival (OS; p = 0.020, 5-year OS 60.0% vs. 88.3%) in the subgroup of patients randomized to lapatinib. In the trastuzumab arm, C3M did not correlate with survival. In the entire patient cohort, high levels of C4M at baseline were significantly associated with shorter DFS (p = 0.001, 5-year DFS 53.1% vs. 81.6%) but not with OS. When treatment arms were considered separately, the association with DFS was still significant (p = 0.014, 5-year DFS 44.4% vs. 77.0% in the lapatinib arm; p = 0.023, 5-year DFS 62.5% vs. 86.2% in the trastuzumab arm). Conclusions: Collagen degradation markers are associated with response to neoadjuvant therapy and seem to play a role in breast cancer.
Collapse
Affiliation(s)
| | | | - Isabell Witzel
- Department of Gynecology, University of Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christoph Mundhenke
- Department of Gynecology and Obstetrics, University of Kiel, 24105 Kiel, Germany
| | | | - Christine Solbach
- Department of Gynecology and Obstetrics, University of Frankfurt, 60590 Frankfurt am Main, Germany
| | - Thomas Karn
- Department of Gynecology and Obstetrics, University of Frankfurt, 60590 Frankfurt am Main, Germany
| | - Frederik Marmé
- University Hospital Mannheim, Medical Faculty Mannheim of the Heidelberg University, 68167 Mannheim, Germany
| | | | | | - Elmar Stickeler
- Department of Gynecology and Obstetrics, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Morten A Karsdal
- Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark
| | - Michael Untch
- Department of Gynecology and Obstetrics, Helios Klinikum Berlin-Buch, 13125 Berlin, Germany
| | - Volkmar Müller
- Department of Gynecology, University of Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
36
|
Wang P, Liu J, Song Y, Liu Q, Wang C, Qian C, Zhang S, Zhu W, Yang X, Wan F, Liu Z, Luo D. Screening of immunosuppressive factors for biomarkers of breast cancer malignancy phenotypes and subtype-specific targeted therapy. PeerJ 2019; 7:e7197. [PMID: 31293831 PMCID: PMC6599676 DOI: 10.7717/peerj.7197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/27/2019] [Indexed: 11/20/2022] Open
Abstract
We aimed to screen and validate immunosuppressive factors in luminal- and basal-like breast cancer cell lines and tissue samples associated with malignant phenotypes. The mRNA microarray datasets, GSE40057 and GSE1561, were downloaded and remodeled, and differentially expressed genes were identified. Weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) and KEGG pathway enrichment analysis were performed to explore the immune-related events related to the basal-like breast cancer. The online resources, GOBO, Kaplan–Meier Plotter and UALCAN, were employed to screen for immunosuppressive factors associated with breast cancer malignant phenotypes. Immunohistochemistry was used to evaluate VEGFA and MIF levels in breast tumors and normal breast tissues; qPCRs and western blots were used to validate the expression of clinical immuno-oncology (IO) therapeutic targets CD274 (PD-L1) and IL8 in cell lines. The results showed that various immune-related events contribute to basal-like breast cancer. First, TGFβ1 and IL8 had higher average expression levels in more malignant cell lines; second, MIF and VEGFA had higher average expression levels in more malignant breast cancer tissues, and the high expression levels were associated with poor survival rate. Third, IO targets CD274 and IL8 which were confirmed to be more suitable for the treatment of basal-like breast cancer. In view of the above, during the formation and development of breast cancer, immune-related genes are always activated, and immunosuppressive factors, IL8, TGFβ1, MIF, and VEGFA are up-regulated. Such molecules could be used as biomarkers for breast cancer prognosis. However, because individual immune-related factors can play several biological roles, the mechanistic relationship between immunosuppressive factors and breast cancer malignant phenotypes and the feasibility of their application as drug targets require further investigation.
Collapse
Affiliation(s)
- Ping Wang
- Queen Mary School, Nanchang University, Nanchang, China
| | - Jiaxuan Liu
- Queen Mary School, Nanchang University, Nanchang, China
| | - Yunlei Song
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Qiang Liu
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Caiyun Qian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Weifeng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xiaohong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Fusheng Wan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Zhuoqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Plava J, Cihova M, Burikova M, Matuskova M, Kucerova L, Miklikova S. Recent advances in understanding tumor stroma-mediated chemoresistance in breast cancer. Mol Cancer 2019; 18:67. [PMID: 30927930 PMCID: PMC6441200 DOI: 10.1186/s12943-019-0960-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
Although solid tumors comprise malignant cells, they also contain many different non-malignant cell types in their micro-environment. The cellular components of the tumor stroma consist of immune and endothelial cells combined with a heterogeneous population of stromal cells which include cancer-associated fibroblasts. The bi-directional interactions between tumor and stromal cells therefore substantially affect tumor cell biology.Herein, we discuss current available information on these interactions in breast cancer chemo-resistance. It is acknowledged that stromal cells extrinsically alter tumor cell drug responses with profound consequences for therapy efficiency, and it is therefore essential to understand the molecular mechanisms which contribute to these substantial alterations because they provide potential targets for improved cancer therapy. Although breast cancer patient survival has improved over the last decades, chemo-resistance still remains a significant obstacle to successful treatment.Appreciating the important experimental evidence of mesenchymal stromal cells and cancer-associated fibroblast involvement in breast cancer clinical practice can therefore have important therapeutic implications.
Collapse
Affiliation(s)
- Jana Plava
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Marina Cihova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Burikova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Miroslava Matuskova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Lucia Kucerova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
38
|
Antoszczak M. A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent. Eur J Med Chem 2019; 164:366-377. [DOI: 10.1016/j.ejmech.2018.12.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/30/2023]
|
39
|
Cui Q, Wang B, Li K, Sun H, Hai T, Zhang Y, Kang H. Upregulating MMP-1 in carcinoma-associated fibroblasts reduces the efficacy of Taxotere on breast cancer synergized by Collagen IV. Oncol Lett 2018; 16:3537-3544. [PMID: 30127959 DOI: 10.3892/ol.2018.9092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy is an important comprehensive treatment for breast cancer, which targets micro-environment of tumors as well as their characterisitcs. A previous microarray analysis revealed that matrix metalloproteinase (MMP)-1 was highly upregulated in carcinoma-associated fibroblasts (CAFs) prior to and following treatment with Taxotere under co-culture conditions. However, whether the chemotherapeutic effects of Taxotere were influenced by the changes in MMP-1 remained unclear. The purpose of the present study was to investigate the impact and mechanism of CAFs in regulating the efficacy of Taxotere on breast cancer cells. CAFs isolated from primary invasive ductal human breast tumors following surgical resection, were used in co-culture with MDA-MB-231 cells to simulate the tumor micro-environment. Following the addition of Taxotere, changes in MMP-1 gene and protein expression were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Proliferation, invasion and apoptosis assays revealed that when MMP-1 was upregulated in CAFs, the therapeutic efficacy of Taxotere was reduced in breast cancer cells. Chemosensitivity was significantly increased when MMP-1 expression was inhibited by GM6001. In addition, Collagen IV was upregulated in CAFs following chemotherapy and protected breast cancer cells against chemotherapeutic side effects. Collagen IV expression significantly decreased, as well as MMP-1 expression when GM6001 was added. Proliferation and invasion assays demonstrated that the exogenous addition of Collagen IV weakend the chemotherapeutic effect of Taxotere on breast tumor cells. Overall, the results revealed that in CAFs, MMP-1 synergized with Collagen IV as a key gene in regulating the chemotherapeutic effect of Taxotere on breast tumor cells and served an important role in reducing the efficacy of Taxotere on breast cancer, potentially via the transforming growth factor-β signaling pathway. These fidings provide a theoretical basis for the mechanism of CAFs in reducing the chemotherapeutic effect of Taxotere on breast cancer cells and a novel approach for enhancing the chemosensitivity of tumors.
Collapse
Affiliation(s)
- Qingyu Cui
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Bixiao Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Kaifu Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Haichen Sun
- Surgery Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Tao Hai
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Yan Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Hua Kang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
40
|
Long-term exposure to carcinoma-associated fibroblasts makes breast cancer cells addictive to integrin β1. Oncotarget 2018; 9:22079-22094. [PMID: 29774124 PMCID: PMC5955132 DOI: 10.18632/oncotarget.25183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
We studied the long-term effect of stromal factors on the development of fulvestrant-resistance (FR) and fulvestrant-induced dormancy (D). Sublines established from stroma-treated FR-cells (C-FR cells) and D-cells (C-D cells) show permanently high expression of integrin β1 as well as Bcl-3 and P-STAT3 (C-FR) or IGF1R (C-D). Yet, cells fail to withstand fulvestrant better and do not migrate or grow faster than control cells. Instead, C-D cells rely on stromal factors to perform as well as control cells. In addition, C-FR cells adapted to integrin β1 for growth in 3D cultures. These data suggest that long-term exposure to stromal factors leads to addiction rather than better performance in cellular activities. We also found that morphologically distinct breast cancer cell line subpopulations share key responses to stromal factors suggesting that intratumoral heterogeneity may play a minor role in the interaction between breast cancer and stromal cells.
Collapse
|
41
|
Liu L, Yang L, Yan W, Zhai J, Pizzo DP, Chu P, Chin AR, Shen M, Dong C, Ruan X, Ren X, Somlo G, Wang SE. Chemotherapy Induces Breast Cancer Stemness in Association with Dysregulated Monocytosis. Clin Cancer Res 2018; 24:2370-2382. [PMID: 29500278 DOI: 10.1158/1078-0432.ccr-17-2545] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/20/2017] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
Purpose: Preoperative or neoadjuvant therapy (NT) is increasingly used in patients with locally advanced or inflammatory breast cancer to allow optimal surgery and aim for pathologic response. However, many breast cancers are resistant or relapse after treatment. Here, we investigated conjunctive chemotherapy-triggered events occurring systemically and locally, potentially promoting a cancer stem-like cell (CSC) phenotype and contributing to tumor relapse.Experimental Design: We started by comparing the effect of paired pre- and post-NT patient sera on the CSC properties of breast cancer cells. Using cell lines, patient-derived xenograft models, and primary tumors, we investigated the regulation of CSCs and tumor progression by chemotherapy-induced factors.Results: In human patients and mice, we detected a therapy-induced CSC-stimulatory activity in serum, which was attributed to therapy-associated monocytosis leading to systemic elevation of monocyte chemoattractant proteins (MCP). The post-NT hematopoietic regeneration in the bone marrow highlighted both altered monocyte-macrophage differentiation and biased commitment of stimulated hematopoietic stem cells toward monocytosis. Chemotherapeutic agents also induce monocyte expression of MCPs through a JNK-dependent mechanism. Genetic and pharmacologic inhibitions of the MCP-CCR2 pathway blocked chemotherapy's adverse effect on CSCs. Levels of nuclear Notch and ALDH1 were significantly elevated in primary breast cancers following NT, whereas higher levels of CCR2 in pre-NT tumors were associated with a poor response to NT.Conclusions: Our data establish a mechanism of chemotherapy-induced cancer stemness by linking the cellular events in the bone marrow and tumors, and suggest pharmacologic inhibition of CCR2 as a potential cotreatment during conventional chemotherapy in neoadjuvant and adjuvant settings. Clin Cancer Res; 24(10); 2370-82. ©2018 AACR.
Collapse
Affiliation(s)
- Liang Liu
- Department of Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lin Yang
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wei Yan
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Jing Zhai
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Donald P Pizzo
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Peiguo Chu
- Department of Pathology, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - Andrew R Chin
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Meng Shen
- Department of Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chuan Dong
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - George Somlo
- Department of Medical Oncology, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - Shizhen Emily Wang
- Department of Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- Department of Pathology, University of California, San Diego, La Jolla, California
| |
Collapse
|
42
|
Bae S, Brumbaugh J, Bonavida B. Exosomes derived from cancerous and non-cancerous cells regulate the anti-tumor response in the tumor microenvironment. Genes Cancer 2018; 9:87-100. [PMID: 30108680 PMCID: PMC6086005 DOI: 10.18632/genesandcancer.172] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/27/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is a unique platform of cancer biology that considers the local cellular environment in which a tumor exists. Increasing evidence points to the TME as crucial for either promoting immune tumor rejection or protecting the tumor. The TME includes surrounding blood vessels, the extracellular matrix (ECM), a variety of immune and regulatory cells, and signaling factors. Exosomes have emerged to be molecular contributors in cancer biology, and to modulate and affect the constituents of the TME. Exosomes are small (40-150 nm) membrane vesicles that are derived from an endocytic nature and are later excreted by cells. Depending on the cells from which they originate, exosomes can play a role in tumor suppression or tumor progression. Tumor-derived exosomes (TDEs) have their own unique phenotypic functions. Evidence points to TDEs as key players involved in tumor growth, tumorigenesis, angiogenesis, dysregulation of immune cells and immune escape, metastasis, and resistance to therapies, as well as in promoting anti-tumor response. General exosomes, TDEs, and their influence on the TME are an area of promising research that may provide potential biomarkers for therapy, potentiation of anti-tumor response, development of exosome-based vaccines, and exosome-derived nanocarriers for drugs.
Collapse
Affiliation(s)
- Susan Bae
- Department of Oral Biology, UCLA School of Dentistry, University of California, Los Angeles, CA, USA
| | - Jeffrey Brumbaugh
- Department of Oral Biology, UCLA School of Dentistry, University of California, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Lamprecht S, Sigal-Batikoff I, Shany S, Abu-Freha N, Ling E, Delinasios GJ, Moyal-Atias K, Delinasios JG, Fich A. Teaming Up for Trouble: Cancer Cells, Transforming Growth Factor-β1 Signaling and the Epigenetic Corruption of Stromal Naïve Fibroblasts. Cancers (Basel) 2018; 10:cancers10030061. [PMID: 29495500 PMCID: PMC5876636 DOI: 10.3390/cancers10030061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/28/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
It is well recognized that cancer cells subvert the phenotype of stromal naïve fibroblasts and instruct the neighboring cells to sustain their growth agenda. The mechanisms underpinning the switch of fibroblasts to cancer-associated fibroblasts (CAFs) are the focus of intense investigation. One of the most significant hallmarks of the biological identity of CAFs is that their tumor-promoting phenotype is stably maintained during in vitro and ex vivo propagation without the continual interaction with the adjacent cancer cells. In this review, we discuss robust evidence showing that the master cytokine Transforming Growth Factor-β1 (TGFβ-1) is a prime mover in reshaping, via epigenetic switches, the phenotype of stromal fibroblasts to a durable state. We also examine, in detail, the pervasive involvement of TGFβ-1 signaling from both cancer cells and CAFs in fostering cancer development, taking colorectal cancer (CRC) as a paradigm of human neoplasia. Finally, we review the stroma-centric anticancer therapeutic approach focused on CAFs—the most abundant cell population of the tumor microenvironment (TME)—as target cells.
Collapse
Affiliation(s)
- Sergio Lamprecht
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Ina Sigal-Batikoff
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Shraga Shany
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
| | - Naim Abu-Freha
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Eduard Ling
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Pediatrics Department B, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - George J Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Keren Moyal-Atias
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - John G Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Alexander Fich
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| |
Collapse
|
44
|
Mogler C, König C, Wieland M, Runge A, Besemfelder E, Komljenovic D, Longerich T, Schirmacher P, Augustin HG. Hepatic stellate cells limit hepatocellular carcinoma progression through the orphan receptor endosialin. EMBO Mol Med 2018; 9:741-749. [PMID: 28373218 PMCID: PMC5452049 DOI: 10.15252/emmm.201607222] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common and deadliest cancers worldwide. A major contributor to HCC progression is the cross talk between tumor cells and the surrounding stroma including activated hepatic stellate cells (HSC). Activation of HSC during liver damage leads to upregulation of the orphan receptor endosialin (CD248), which contributes to regulating the balance of liver regeneration and fibrosis. Based on the established role of endosialin in regulating HSC/hepatocyte cross talk, we hypothesized that HSC‐expressed endosialin might similarly affect cell proliferation during hepatocarcinogenesis. Indeed, the histological analysis of human HCC samples revealed an inverse correlation between tumor cell proliferation and stromal endosialin expression. Correspondingly, global genetic inactivation of endosialin resulted in accelerated tumor growth in an inducible mouse HCC model. A candidate‐based screen of tumor lysates and differential protein arrays of cultured HSC identified several established hepatotropic cytokines, including IGF2, RBP4, DKK1, and CCL5 as being negatively regulated by endosialin. Taken together, the experiments identify endosialin‐expressing HSC as a negative regulator of HCC progression.
Collapse
Affiliation(s)
- Carolin Mogler
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Institute of Pathology, Heidelberg University, Heidelberg, Germany.,Institute of Pathology, Technical University Munich, Munich, Germany
| | - Courtney König
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Matthias Wieland
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Anja Runge
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Eva Besemfelder
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Dorde Komljenovic
- Department of Medical Physics in Radiology, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | | | | | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany .,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
45
|
Hendrayani SF, Al-Harbi B, Al-Ansari MM, Silva G, Aboussekhra A. The inflammatory/cancer-related IL-6/STAT3/NF-κB positive feedback loop includes AUF1 and maintains the active state of breast myofibroblasts. Oncotarget 2018; 7:41974-41985. [PMID: 27248826 PMCID: PMC5173109 DOI: 10.18632/oncotarget.9633] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
The IL-6/STAT3/NF-κB positive feedback loop links inflammation to cancer and maintains cells at a transformed state. Similarly, cancer-associated myofibroblats remains active even in absence of cancer cells. However, the molecular basis of this sustained active state remains elusive. We have shown here that breast cancer cells and IL-6 persistently activate breast stromal fibroblasts through the stimulation of the positive IL-6/STAT3/NF-κB feedback loop. Transient neutralization of IL-6 in culture inhibited this signaling circuit and reverted myofibrobalsts to a normalized state, suggesting the implication of the IL-6 autocrine feedback loop as well. Importantly, the IL-6/STAT3/NF-κB pro-inflammatory circuit was also active in cancer-associated fibroblasts isolated from breast cancer patients. Transient inhibition of STAT3 by specific siRNA in active fibroblasts persistently reduced the level of the RNA binding protein AUF1, blocked the loop and normalized these cells. Moreover, we present clear evidence that AUF1 is also part of this positive feedback loop. Interestingly, treatment of breast myofibroblasts with caffeine, which has been previously shown to persistently inhibit active breast stromal fibroblasts, blocked the positive feedback loop through potent and sustained inhibition of STAT3, AKT, lin28B and AUF1. These results indicate that the IL-6/STAT3/NF-κB positive feedback loop includes AUF1 and is responsible for the sustained active status of cancer-associated fibroblasts. We have also shown that normalizing myofibroblasts, which could be of great therapeutic value, is possible through the inhibition of this procarcinogenic circuit.
Collapse
Affiliation(s)
- Siti-Fauziah Hendrayani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bothaina Al-Harbi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mysoon M Al-Ansari
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Microbiology, Faculty of Science and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Gabriela Silva
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Current address: Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Lovitt CJ, Shelper TB, Avery VM. Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer 2018; 18:41. [PMID: 29304770 PMCID: PMC5756400 DOI: 10.1186/s12885-017-3953-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 12/21/2017] [Indexed: 11/24/2022] Open
Abstract
Background Cancer cell resistance to therapeutics can result from acquired or de novo-mediated factors. Here, we have utilised advanced breast cancer cell culture models to elucidate de novo doxorubicin resistance mechanisms. Methods The response of breast cancer cell lines (MCF-7 and MDA-MB-231) to doxorubicin was examined in an in vitro three-dimensional (3D) cell culture model. Cells were cultured with Matrigel™ enabling cellular arrangements into a 3D architecture in conjunction with cell-to-extracellular matrix (ECM) contact. Results Breast cancer cells cultured in a 3D ECM-based model demonstrated altered sensitivity to doxorubicin, when compared to those grown in corresponding two-dimensional (2D) monolayer culture conditions. Investigations into the factors triggering the observed doxorubicin resistance revealed that cell-to-ECM interactions played a pivotal role. This finding correlated with the up-regulation of pro-survival proteins in 3D ECM-containing cell culture conditions following exposure to doxorubicin. Inhibition of integrin signalling in combination with doxorubicin significantly reduced breast cancer cell viability. Furthermore, breast cancer cells grown in a 3D ECM-based model demonstrated a significantly reduced proliferation rate in comparison to cells cultured in 2D conditions. Conclusion Collectively, these novel findings reveal resistance mechanisms which may contribute to reduced doxorubicin sensitivity.
Collapse
Affiliation(s)
- Carrie J Lovitt
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Building N27, Brisbane Innovation Park, Nathan, QLD, 4111, Australia
| | - Todd B Shelper
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Building N27, Brisbane Innovation Park, Nathan, QLD, 4111, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Building N27, Brisbane Innovation Park, Nathan, QLD, 4111, Australia.
| |
Collapse
|
47
|
Mitochondrial markers predict recurrence, metastasis and tamoxifen-resistance in breast cancer patients: Early detection of treatment failure with companion diagnostics. Oncotarget 2017; 8:68730-68745. [PMID: 28978152 PMCID: PMC5620292 DOI: 10.18632/oncotarget.19612] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/16/2017] [Indexed: 12/24/2022] Open
Abstract
Here, we used a data-mining and informatics approach to discover new biomarkers of resistance to hormonal therapy in breast cancer. More specifically, we investigated whether nuclear-encoded genes associated with mitochondrial biogenesis can be used to predict tumor recurrence, distant metastasis and treatment failure in high-risk breast cancer patients. Overall, this strategy allowed us to directly provide in silico validation of the prognostic value of these mitochondrial components in large and clinically relevant patient populations, with >15 years of follow-up data. For this purpose, we employed a group of 145 ER(+) luminal A breast cancer patients, with lymph-node (LN) metastasis at diagnosis, that were treated with tamoxifen, but not any chemotherapy agents. Using this approach, we identified >60 new individual mitochondrial biomarkers that predicted treatment failure and tumor recurrence, with hazard-ratios (HR) of up to 4.17 (p=2.2e-07). These include mitochondrial chaperones (HSPD1, HSPA9), membrane proteins (VDAC2, TOMM70A) and anti-oxidants (SOD2), as well as 18 different mitochondrial ribosomal proteins (MRPs) and >20 distinct components of the OXPHOS complexes. In addition, we combined 4 mitochondrial proteins (HSPD1, UQCRB, MRPL15, COX17), to generate a compact mitochondrial gene signature, associated with a HR of 5.34 (p=1e-09). This signature also successfully predicted distant metastasis and was effective in larger groups of ER(+) (N=2,447), basal (N=540) and HER2(+) (N=193) breast cancers. It was also effective in all breast cancers (N=3,180), if considered together as a single group. Based on this analysis, we conclude that mitochondrial biogenesis should be considered as a new therapeutic target for overcoming tumor recurrence, distant metastasis and treatment failure in patients with breast cancer. In summary, we identified individual mitochondrial biomarkers and 2 compact mitochondrial gene signatures that can be used to predict tamoxifen-resistance and tumor recurrence, at their initial diagnosis, in patients with advanced breast cancer. In the long-term, these mitochondrial biomarkers could provide a new companion diagnostics platform to help clinicians to accurately predict the response to hormonal therapy in ER(+) breast cancer patients, facilitating more personalized and effective treatment. Similarly, these mitochondrial markers could be used as companion diagnostics, to determine which breast cancer patients would benefit most from clinical treatments with mitochondrially-targeted anti-cancer therapeutics. Finally, we also showed that these mitochondrial markers are superior when directly compared with conventional biomarkers, such as Ki67 and PCNA.
Collapse
|
48
|
Hanker AB, Estrada MV, Bianchini G, Moore PD, Zhao J, Cheng F, Koch JP, Gianni L, Tyson DR, Sánchez V, Rexer BN, Sanders ME, Zhao Z, Stricker TP, Arteaga CL. Extracellular Matrix/Integrin Signaling Promotes Resistance to Combined Inhibition of HER2 and PI3K in HER2 + Breast Cancer. Cancer Res 2017; 77:3280-3292. [PMID: 28396358 PMCID: PMC5482178 DOI: 10.1158/0008-5472.can-16-2808] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/03/2017] [Accepted: 04/04/2017] [Indexed: 11/16/2022]
Abstract
PIK3CA mutations are associated with resistance to HER2-targeted therapies. We previously showed that HER2+/PIK3CAH1047R transgenic mammary tumors are resistant to the HER2 antibodies trastuzumab and pertuzumab but respond to PI3K inhibitor buparlisib (TPB). In this study, we identified mechanisms of resistance to combined inhibition of HER2 and PI3K. TPB-resistant tumors were generated by treating HER2+/PIK3CAH1047R tumor-bearing mice long term with the drug combination. RNA sequencing of TPB-resistant tumors revealed that extracellular matrix and cell adhesion genes, including collagen II (Col2a1), were markedly upregulated, accompanied by activation of integrin β1/Src. Cells derived from drug-resistant tumors were sensitive to TBP when grown in vitro, but exhibited resistance when plated on collagen or when reintroduced into mice. Drug resistance was partially reversed by the collagen synthesis inhibitor ethyl-3,4-dihydroxybenzoate. Inhibition of integrin β1/Src blocked collagen-induced resistance to TPB and inhibited growth of drug-resistant tumors. High collagen II expression was associated with significantly lower clinical response to neoadjuvant anti-HER2 therapy in HER2+ breast cancer patients. Overall, these data suggest that upregulation of collagen/integrin/Src signaling contributes to resistance to combinatorial HER2 and PI3K inhibition. Cancer Res; 77(12); 3280-92. ©2017 AACR.
Collapse
Affiliation(s)
- Ariella B Hanker
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mónica Valeria Estrada
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Preston D Moore
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Junfei Zhao
- Department of Biomedical Informatics, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James P Koch
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Luca Gianni
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Darren R Tyson
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Violeta Sánchez
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brent N Rexer
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melinda E Sanders
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thomas P Stricker
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carlos L Arteaga
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
49
|
Fiorillo M, Sotgia F, Sisci D, Cappello AR, Lisanti MP. Mitochondrial "power" drives tamoxifen resistance: NQO1 and GCLC are new therapeutic targets in breast cancer. Oncotarget 2017; 8:20309-20327. [PMID: 28411284 PMCID: PMC5386764 DOI: 10.18632/oncotarget.15852] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/01/2017] [Indexed: 12/20/2022] Open
Abstract
Here, we identified two new molecular targets, which are functionally sufficient to metabolically confer the tamoxifen-resistance phenotype in human breast cancer cells. Briefly, ~20 proteins were first selected as potential candidates, based on unbiased proteomics analysis, using tamoxifen-resistant cell lines. Then, the cDNAs of the most promising candidates were systematically transduced into MCF-7 cells. Remarkably, NQO1 and GCLC were both functionally sufficient to autonomously confer a tamoxifen-resistant metabolic phenotype, characterized by i) increased mitochondrial biogenesis, ii) increased ATP production and iii) reduced glutathione levels. Thus, we speculate that pharmacological inhibition of NQO1 and GCLC may be new therapeutic strategies for overcoming tamoxifen-resistance in breast cancer patients. In direct support of this notion, we demonstrate that treatment with a known NQO1 inhibitor (dicoumarol) is indeed sufficient to revert the tamoxifen-resistance phenotype. As such, these findings could have important translational significance for the prevention of tumor recurrence in ER(+) breast cancers, which is due to an endocrine resistance phenotype. Importantly, we also show here that NQO1 has significant prognostic value as a biomarker for the prediction of tumor recurrence. More specifically, higher levels of NQO1 mRNA strongly predict patient relapse in high-risk ER(+) breast cancer patients receiving endocrine therapy (mostly tamoxifen; H.R. > 2.15; p = 0.007).
Collapse
Affiliation(s)
- Marco Fiorillo
- The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, 87100, Italy.,The Paterson Institute, University of Manchester, Withington, M20 4BX, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester, M5 4WT, United Kingdom
| | - Diego Sisci
- The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, 87100, Italy
| | - Anna Rita Cappello
- The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, 87100, Italy
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester, M5 4WT, United Kingdom
| |
Collapse
|
50
|
Keser SH, Kandemir NO, Ece D, Gecmen GG, Gul AE, Barisik NO, Sensu S, Buyukuysal C, Barut F. Relationship of mast cell density with lymphangiogenesis and prognostic parameters in breast carcinoma. Kaohsiung J Med Sci 2017; 33:171-180. [PMID: 28359404 DOI: 10.1016/j.kjms.2017.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022] Open
Abstract
In many cancers, mast cell density (MCD) in the tumor microenvironment is associated with tumor progression and, to a greater extent, angiogenesis. Our study was designed to investigate the correlation between MCD, tumor lymphangiogenesis, and several well-established prognostic parameters in breast cancer. One hundred and four cases of invasive breast carcinoma diagnosed in our clinic between 2007 and 2011 were included. Mast cells and lymphatic vessels were stained with toluidine blue and D2-40, respectively, and their densities were calculated in various areas of tumors and lymph nodes. The variables of MCD and lymphatic vessel density (LVD) were compared using prognostic parameters as well as with each other. As tumor size and volume increased, MCD increased comparably in metastatic lymph nodes; intratumoral and peritumoral LVD also increased. Lymphovascular invasion, lymphatic invasion, perineural invasion, and estrogen receptor positivity were positively related to intratumoral MCD. The relationship between peritumoral MCD and nontumoral breast tissue MCD was statistically significant. Stage was correlated with MCD in metastatic lymph nodes. Metastatic lymph node MCD and intratumoral MCD were also significantly related. Stage, lymphatic invasion, perineural invasion, lymphovascular invasion, and metastatic lymph node MCD were all correlated with intratumoral and/or peritumoral LVD. As nuclear grade increased, intratumoral LVD became higher. In breast carcinoma, MCD, depending on its location, was related to several prognostic parameters. Notably, mast cells may have at least some effect on lymphangiogenesis, which appears to be a predictor of tumor progression.
Collapse
Affiliation(s)
- Sevinc H Keser
- Department of Pathology, Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey.
| | - Nilufer O Kandemir
- Department of Pathology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey.
| | - Dilek Ece
- Department of Pathology, Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
| | - Gonca G Gecmen
- Department of Pathology, Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
| | - Aylin E Gul
- Department of Pathology, Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
| | - Nagehan O Barisik
- Department of Pathology, Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
| | - Sibel Sensu
- Department of Pathology, Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
| | - Cagatay Buyukuysal
- Department of Biostatistics, Bülent Ecevit University, Zonguldak, Turkey
| | - Figen Barut
- Department of Pathology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|