1
|
Andrade-Feraud CM, Acanda de la Rocha AM, Berlow NE, Duque S, Velazco A, Castillo D, Holcomb B, Coats ER, Ghurani YR, Lucey CM, Pearson B, Guilarte TR, Azzam DJ. Chronic arsenic exposure of ovarian surface and fallopian tube cultures induces giant and/or multinucleated cells with phagocytosis-like properties and an inflammatory phenotype. Toxicol Appl Pharmacol 2025; 500:117394. [PMID: 40368219 DOI: 10.1016/j.taap.2025.117394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Chronic exposure to arsenic, a toxic metalloid frequently found in groundwater and food, represents a significant environmental health risk and has been implicated in the etiology of several cancers, including ovarian cancer. However, the precise pathways through which arsenic exerts its toxic impact on the ovary are not fully understood. This study investigates the impact of chronic arsenic exposure at environmentally relevant concentrations (75 ppb or μg/L) on primary human ovarian surface (OCE1) and fallopian tube (FNE1) cultures derived from the same donor. These heterogeneous cultures provide a unique, human-relevant platform to investigate how chronic arsenic exposure influences distinct cell types within a shared microenvironment. Prolonged arsenic exposure induced significant cytotoxicity and promoted the formation of giant and/or multinucleated cells in both cultures. These cells exhibited phagocytosis-like properties, actively engulfing apoptotic debris. Transcriptomic analyses and pathway enrichment revealed robust activation of pro-inflammatory signaling, notably the canonical NF-κB pathway. This was marked by nuclear translocation of the NF-κB p65 subunit and elevated expression and secretion of pro-inflammatory cytokines, including TNFα, IL-6, and IL-8, driving a sustained inflammatory response. Moreover, arsenic-exposed cells displayed persistent DNA damage, as indicated by increased γ-H2AX foci, accompanied by nuclear structural alterations and elevated expression of cancer stem cell markers, including OCT2, CD133, and ALDH1. These findings suggest that arsenic-induced inflammation and genomic instability converge to promote a tumor-supportive microenvironment, highlighting the potential role of chronic arsenic exposure in ovarian carcinogenesis, particularly in the context of inflammation-driven carcinogenesis.
Collapse
Affiliation(s)
- Cristina M Andrade-Feraud
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Arlet M Acanda de la Rocha
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Noah E Berlow
- First Ascent Biomedical, Inc., United States of America
| | - Santiago Duque
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Alexander Velazco
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Diego Castillo
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Baylee Holcomb
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Ebony R Coats
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Yasmin R Ghurani
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Catherine M Lucey
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, United States of America
| | - Brandon Pearson
- Environmental and Molecular Toxicology, Oregon State University, OR, United States of America
| | - Tomás R Guilarte
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Diana J Azzam
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America.
| |
Collapse
|
2
|
Bhartiya D, Sharma N, Tripathi A, Tripathi A. Do PGCCs in Solid Tumors Appear Due to Treatment-related Stress or Clonal Expansion of CSCs that Survive Oncotherapy? Stem Cell Rev Rep 2025:10.1007/s12015-025-10891-y. [PMID: 40338514 DOI: 10.1007/s12015-025-10891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
Dedifferentiation of epithelial cells during epithelial-mesenchymal transition (EMT) results in circulating tumor cells (CTCs) that are mobilized singly or in clusters in association with blood cells and results in metastasis. However, lineage tracing studies have failed to delineate any role of EMT during metastasis. Research is also focused on polyploid giant cancer cells (PGCCs) in solid tumors which appear in response to oncotherapy-related stress for their role in metastasis. But how to explain PGCCs role in metastatic tumors in treatment-naïve patients? Studies done using mouse models and clinical samples suggest that cancer initiates due to dysfunctions of tissue-resident, pluripotent very small embryonic-like stem cells (VSELs). VSELs are the most primitive and pluripotent stem cells that exist at top of cellular hierarchy in multiple tissues. They are normally quiescent and undergo asymmetrical cell divisions to give rise to two cells of different sizes and fates including smaller cells to self-renew and bigger tissue-specific progenitors. Progenitors undergo symmetrical cell divisions and clonal expansion (rapid proliferation, endoduplication with incomplete cytokinesis) to form giant cells that further breakdown and differentiate into tissue-specific cell types. Oncotherapy destroys actively dividing cells, but CSCs survive. We hypothesize that excessive self-renewal and clonal expansion of cancer stem cells (CSCs, dysfunctional VSELs) result in multinucleated giant cells (PGCCs) that accumulate as further differentiation into tissue-specific cell types is blocked in cancerous conditions. PGCCS are being reported by multiple groups whereas CSCs remain elusive due to small size and low abundance and actually contribute to both cancer initiation and metastasis.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, Mumbai, 400013, India.
| | - Nripen Sharma
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, Mumbai, 400013, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, Mumbai, 400013, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, Mumbai, 400013, India
- TZAR Labs, 23Ikigai Pte Ltd., 30 Cecil Street, #21-08 Prudential Tower, Singapore, 049712, Singapore
| |
Collapse
|
3
|
Meléndez-Flórez MP, Ortega-Recalde O, Rangel N, Rondón-Lagos M. Chromosomal Instability and Clonal Heterogeneity in Breast Cancer: From Mechanisms to Clinical Applications. Cancers (Basel) 2025; 17:1222. [PMID: 40227811 PMCID: PMC11988187 DOI: 10.3390/cancers17071222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Chromosomal instability (CIN) and clonal heterogeneity (CH) are fundamental hallmarks of breast cancer that drive tumor evolution, disease progression, and therapeutic resistance. Understanding the mechanisms underlying these phenomena is essential for improving cancer diagnosis, prognosis, and treatment strategies. METHODS In this review, we provide a comprehensive overview of the biological processes contributing to CIN and CH, highlighting their molecular determinants and clinical relevance. RESULTS We discuss the latest advances in detection methods, including single-cell sequencing and other high-resolution techniques, which have enhanced our ability to characterize intratumoral heterogeneity. Additionally, we explore how CIN and CH influence treatment responses, their potential as therapeutic targets, and their role in shaping the tumor immune microenvironment, which has implications for immunotherapy effectiveness. CONCLUSIONS By integrating recent findings, this review underscores the impact of CIN and CH on breast cancer progression and their translational implications for precision medicine.
Collapse
Affiliation(s)
- María Paula Meléndez-Flórez
- Departamento de Morfología, Facultad de Medicina e Instituto de Genética, Universidad Nacional de Colombia, Bogotá 110231, Colombia; (M.P.M.-F.); (O.O.-R.)
| | - Oscar Ortega-Recalde
- Departamento de Morfología, Facultad de Medicina e Instituto de Genética, Universidad Nacional de Colombia, Bogotá 110231, Colombia; (M.P.M.-F.); (O.O.-R.)
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá 110231, Colombia
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Milena Rondón-Lagos
- Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| |
Collapse
|
4
|
Mikiewicz M, Otrocka-Domagała I. Immunohistochemical analysis of smooth muscle actin and CD31 in feline post-injection site fibrosarcomas: association with tumour grade, vascular density, and multinucleated giant cells. BMC Vet Res 2025; 21:191. [PMID: 40119382 PMCID: PMC11927333 DOI: 10.1186/s12917-025-04637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Multinucleated giant cells are commonly observed in various malignancies; however their clinical and biological significance remains largely unexplored and it has been hypothesised that the cells may play a role in vascular mimicry, tumour progression and tumour survival. This study aimed to investigate the expression of smooth muscle actin and CD31 in feline post-injection site fibrosarcomas, focusing on relationships between multinucleated giant cells presence, tumour grade, and vascular density to elucidate their potential role in tumour progression. RESULTS A total of 61 feline post-injection site fibrosarcomas, histologically graded into grades I, II, and III, were examined immunohistochemically. Smooth muscle actin immunoreactivity was detected in 57/61 (93.4%) cases. Multinucleated giant cells expressing CD31 were identified in 39/61 (63.9%) cases, predominantly in high-grade tumours, with a correlation observed between multinucleated giant cell presence, tumour grade, and mitotic index. Vascular density differed across tumour grades. A negative correlation between vascular density, tumour grade and necrosis score was identified. Additionally, a negative correlation was observed between multinucleated giant cells presence and vascular density. CONCLUSIONS The findings suggest a complex tumour microenvironment in which multinucleated giant cells and vascular mimicry may facilitate tumour survival under hypoxic conditions, potentially contributing to an aggressive tumour phenotype.
Collapse
Affiliation(s)
- Mateusz Mikiewicz
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 St, Olsztyn, Poland.
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 St, Olsztyn, Poland
| |
Collapse
|
5
|
Ma Y, Shih CH, Cheng J, Chen HC, Wang LJ, Tan Y, Zhang Y, Brown DD, Oesterreich S, Lee AV, Chiu YC, Chen YC. High-Throughput Empirical and Virtual Screening To Discover Novel Inhibitors of Polyploid Giant Cancer Cells in Breast Cancer. Anal Chem 2025; 97:5498-5506. [PMID: 40040372 PMCID: PMC11923954 DOI: 10.1021/acs.analchem.4c05138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Therapy resistance in breast cancer is increasingly attributed to polyploid giant cancer cells (PGCCs), which arise through whole genome doubling and exhibit heightened resilience to standard treatments. Characterized by enlarged nuclei and increased DNA content, these cells tend to be dormant under therapeutic stress, driving disease relapse. Despite their critical role in resistance, strategies to effectively target PGCCs are limited, largely due to the lack of high-throughput methods for assessing their viability. Traditional assays lack the sensitivity needed to detect PGCC-specific elimination, prompting the development of novel approaches. To address this challenge, we developed a high-throughput single-cell morphological analysis workflow designed to differentiate compounds that selectively inhibit non-PGCCs, PGCCs, or both. Using this method, we screened a library of 2726 FDA Phase 1-approved drugs, identifying promising anti-PGCC candidates, including proteasome inhibitors, FOXM1, CHK, and macrocyclic lactones. Notably, RNA-Seq analysis of cells treated with the macrocyclic lactone Pyronaridine revealed AXL inhibition as a potential strategy for targeting PGCCs. Although our single-cell morphological analysis pipeline is powerful, empirical testing of all existing compounds is impractical and inefficient. To overcome this limitation, we trained a machine learning model to predict anti-PGCC efficacy in silico, integrating chemical fingerprints and compound descriptions from prior publications and databases. The model demonstrated a high correlation with experimental outcomes and predicted efficacious compounds in an expanded library of over 6,000 drugs. Among the top-ranked predictions, we experimentally validated five compounds as potent PGCC inhibitors using cell lines and patient-derived models. These findings underscore the synergistic potential of integrating high-throughput empirical screening with machine learning-based virtual screening to accelerate the discovery of novel therapies, particularly for targeting therapy-resistant PGCCs in breast cancer.
Collapse
Affiliation(s)
- Yushu Ma
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Computational and Systems Biology, University
of Pittsburgh, 3420 Forbes
Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Chien-Hung Shih
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
| | - Jinxiong Cheng
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15260, United States
| | - Hsiao-Chun Chen
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Computational and Systems Biology, University
of Pittsburgh, 3420 Forbes
Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Li-Ju Wang
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
| | - Yanhao Tan
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Division
of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15232, United States
| | - Yuan Zhang
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Immunology, University of Pittsburgh, 5051 Centre Ave, Pittsburgh, Pennsylvania 15213, United States
| | - Daniel D. Brown
- Institute
for Precision Medicine, University of Pittsburgh, 5051 Centre Ave, Pittsburgh, Pennsylvania 15213, United States
| | - Steffi Oesterreich
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Pharmacology and Chemical Biology, University
of Pittsburgh, 4200 Fifth
Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Adrian V. Lee
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Institute
for Precision Medicine, University of Pittsburgh, 5051 Centre Ave, Pittsburgh, Pennsylvania 15213, United States
- Department
of Pharmacology and Chemical Biology, University
of Pittsburgh, 4200 Fifth
Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yu-Chiao Chiu
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Computational and Systems Biology, University
of Pittsburgh, 3420 Forbes
Avenue, Pittsburgh, Pennsylvania 15260, United States
- Division
of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15232, United States
- CMU-Pitt
Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Yu-Chih Chen
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Computational and Systems Biology, University
of Pittsburgh, 3420 Forbes
Avenue, Pittsburgh, Pennsylvania 15260, United States
- Department
of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15260, United States
- CMU-Pitt
Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Mallin MM, Rolle LT, Schmidt MJ, Priyadarsini Nair S, Zurita AJ, Kuhn P, Hicks J, Pienta KJ, Amend SR. Cells in the Polyaneuploid Cancer Cell State Are Prometastatic. Mol Cancer Res 2025; 23:219-235. [PMID: 39656186 PMCID: PMC11873732 DOI: 10.1158/1541-7786.mcr-24-0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Our research aims to understand the adaptive-ergo potentially metastatic-responses of prostate cancer to changing microenvironments. Emerging evidence implicates a role of the polyaneuploid cancer cell (PACC) state in metastasis, positing the PACC state as capable of conferring metastatic competency. Mounting in vitro evidence supports increased metastatic potential of cells in the PACC state. Additionally, our recent retrospective study revealed that PACC presence in patient prostate tumors at the time of radical prostatectomy was predictive of future metastasis. To test for a causative relationship between PACC state biology and metastasis in prostate cancer, we leveraged a novel method designed for flow cytometric detection of circulating tumor cells (CTC) and disseminated tumor cells (DTC) from animal models. This approach provides both quantitative and qualitative information about the number and PACC status of recovered CTCs and DTCs. Specifically, we applied this approach to the analysis of subcutaneous, caudal artery, and intracardiac murine models. Collating data from all models, we found that 74% of recovered CTCs and DTCs were in the PACC state. Furthermore, in vivo colonization assays proved that PACC populations can regain proliferative capacity at metastatic sites. Additional in vitro analyses revealed a PACC-specific partial epithelial-to-mesenchymal transition phenotype and a prometastatic secretory profile, together providing preliminary evidence of prometastatic mechanisms specific to the PACC state. Implications: Considering that many anticancer agents induce the PACC state, our data position the increased metastatic competency of PACC state cells as an important unforeseen ramification of neoadjuvant regimens, which may help explain clinical correlations between chemotherapy and metastatic progression.
Collapse
Affiliation(s)
- Mikaela M. Mallin
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, Maryland
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Louis T.A. Rolle
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, Maryland
| | - Michael J. Schmidt
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Shilpa Priyadarsini Nair
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, Maryland
| | - Amado J. Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kenneth J. Pienta
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, Maryland
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sarah R. Amend
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, Maryland
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Meng F, Yan Y, Zhou L, Zhao S, Sun L, Yu H. Targeting autophagy promotes the antitumor effect of radiotherapy on cervical cancer cells. Cancer Biol Ther 2024; 25:2431136. [PMID: 39635971 PMCID: PMC11622585 DOI: 10.1080/15384047.2024.2431136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Radiotherapy is the mainstay of cancer treatment, and reducing radioresistance is still a poorly explored issue in radiotherapy. Our study was designed to explore the possible functions and mechanisms of autophagy in cervical cancer cells treated with radiotherapy. We discovered that autophagy was activated in C33a and HeLa cervical cancer cells in parallel with increased apoptosis and formation of polyploid giant carcinoma cells (PGCCs) after radiation. Inhibition of autophagy significantly enhances radiation-induced cytotoxicity and apoptosis in cervical cancer cells and reduces PGCCs formation. Immunoblot analysis, as part of the mechanistic experiments, showed that the phosphorylation levels of Akt, mTOR, and P70S6K were downregulated. Thus, our research demonstrated that inhibiting autophagy enhances the antitumor effects of radiation on cervical cancer cells.
Collapse
Affiliation(s)
- Fanjie Meng
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Ying Yan
- Country Department of Radiotherapy, General Hospital of Northern Theater Command, Shenyang, China
| | - Li Zhou
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Song Zhao
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Lingyan Sun
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Huiying Yu
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
8
|
Krotofil M, Tota M, Siednienko J, Donizy P. Emerging Paradigms in Cancer Metastasis: Ghost Mitochondria, Vasculogenic Mimicry, and Polyploid Giant Cancer Cells. Cancers (Basel) 2024; 16:3539. [PMID: 39456632 PMCID: PMC11506636 DOI: 10.3390/cancers16203539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The capacity of cancer cells to migrate from a primary tumor, disseminate throughout the body, and eventually establish secondary tumors is a fundamental aspect of metastasis. A detailed understanding of the cellular and molecular mechanisms underpinning this multifaceted process would facilitate the rational development of therapies aimed at treating metastatic disease. Although various hypotheses and models have been proposed, no single concept fully explains the mechanism of metastasis or integrates all observations and experimental findings. Recent advancements in metastasis research have refined existing theories and introduced new ones. This review evaluates several novel/emerging theories, focusing on ghost mitochondria (GM), vasculogenic mimicry (VM), and polyploid giant cancer cells (PGCCs).
Collapse
Affiliation(s)
- Mateusz Krotofil
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Maciej Tota
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Jakub Siednienko
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
- Department of Pathology and Clinical Cytology, Jan Mikulicz-Radecki University Hospital, 50-556 Wroclaw, Poland
| |
Collapse
|
9
|
Wilczyński B, Dąbrowska A, Kulbacka J, Baczyńska D. Chemoresistance and the tumor microenvironment: the critical role of cell-cell communication. Cell Commun Signal 2024; 22:486. [PMID: 39390572 PMCID: PMC11468187 DOI: 10.1186/s12964-024-01857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Resistance of cancer cells to anticancer drugs remains a major challenge in modern medicine. Understanding the mechanisms behind the development of chemoresistance is key to developing appropriate therapies to counteract it. Nowadays, with advances in technology, we are paying more and more attention to the role of the tumor microenvironment (TME) and intercellular interactions in this process. We also know that important elements of the TME are not only the tumor cells themselves but also other cell types, such as mesenchymal stem cells, cancer-associated fibroblasts, stromal cells, and macrophages. TME elements can communicate with each other indirectly (via cytokines, chemokines, growth factors, and extracellular vesicles [EVs]) and directly (via gap junctions, ligand-receptor pairs, cell adhesion, and tunnel nanotubes). This communication appears to be critical for the development of chemoresistance. EVs seem to be particularly interesting structures in this regard. Within these structures, lipids, proteins, and nucleic acids can be transported, acting as signaling molecules that interact with numerous biochemical pathways, thereby contributing to chemoresistance. Moreover, drug efflux pumps, which are responsible for removing drugs from cancer cells, can also be transported via EVs.
Collapse
Affiliation(s)
- Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, Wroclaw, 50-367, Poland
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, Wroclaw, 50-367, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wroclaw, 50-556, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, Vilnius, LT-08406, Lithuania.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wroclaw, 50-556, Poland
| |
Collapse
|
10
|
Ma Y, Shih CH, Cheng J, Chen HC, Wang LJ, Tan Y, Chiu YC, Chen YC. High-Throughput Empirical and Virtual Screening to Discover Novel Inhibitors of Polyploid Giant Cancer Cells in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614522. [PMID: 39386568 PMCID: PMC11463688 DOI: 10.1101/2024.09.23.614522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Therapy resistance in breast cancer is increasingly attributed to polyploid giant cancer cells (PGCCs), which arise through whole-genome doubling and exhibit heightened resilience to standard treatments. Characterized by enlarged nuclei and increased DNA content, these cells tend to be dormant under therapeutic stress, driving disease relapse. Despite their critical role in resistance, strategies to effectively target PGCCs are limited, largely due to the lack of high-throughput methods for assessing their viability. Traditional assays lack the sensitivity needed to detect PGCC-specific elimination, prompting the development of novel approaches. To address this challenge, we developed a high-throughput single-cell morphological analysis workflow designed to differentiate compounds that selectively inhibit non-PGCCs, PGCCs, or both. Using this method, we screened a library of 2,726 FDA Phase 1-approved drugs, identifying promising anti-PGCC candidates, including proteasome inhibitors, FOXM1, CHK, and macrocyclic lactones. Notably, RNA-Seq analysis of cells treated with the macrocyclic lactone Pyronaridine revealed AXL inhibition as a potential strategy for targeting PGCCs. Although our single-cell morphological analysis pipeline is powerful, empirically testing all existing compounds is impractical and inefficient. To overcome this limitation, we trained a machine learning model to predict anti-PGCC efficacy in silico, integrating chemical fingerprints and compound descriptions from prior publications and databases. The model demonstrated a high correlation with experimental outcomes and predicted efficacious compounds in an expanded library of over 6,000 drugs. Among the top-ranked predictions, we experimentally validated two compounds as potent PGCC inhibitors. These findings underscore the synergistic potential of integrating high-throughput empirical screening with machine learning-based virtual screening to accelerate the discovery of novel therapies, particularly for targeting therapy-resistant PGCCs in breast cancer.
Collapse
Affiliation(s)
- Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Chien-Hung Shih
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
| | - Hsiao-Chun Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Li-Ju Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
| | - Yanhao Tan
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Division of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Yu-Chiao Chiu
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Division of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
11
|
Mirzayans R, Murray D. Amitotic Cell Division, Malignancy, and Resistance to Anticancer Agents: A Tribute to Drs. Walen and Rajaraman. Cancers (Basel) 2024; 16:3106. [PMID: 39272964 PMCID: PMC11394378 DOI: 10.3390/cancers16173106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Cell division is crucial for the survival of living organisms. Human cells undergo three types of cell division: mitosis, meiosis, and amitosis. The former two types occur in somatic cells and germ cells, respectively. Amitosis involves nuclear budding and occurs in cells that exhibit abnormal nuclear morphology (e.g., polyploidy) with increased cell size. In the early 2000s, Kirsten Walen and Rengaswami Rajaraman and his associates independently reported that polyploid human cells are capable of producing progeny via amitotic cell division, and that a subset of emerging daughter cells proliferate rapidly, exhibit stem cell-like properties, and can contribute to tumorigenesis. Polyploid cells that arise in solid tumors/tumor-derived cell lines are referred to as polyploid giant cancer cells (PGCCs) and are known to contribute to therapy resistance and disease recurrence following anticancer treatment. This commentary provides an update on some of these intriguing discoveries as a tribute to Drs. Walen and Rajaraman.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
12
|
Go RE, Seong SM, Choi Y, Choi KC. A Fungicide, Fludioxonil, Formed the Polyploid Giant Cancer Cells and Induced Metastasis and Stemness in MDA-MB-231 Triple-Negative Breast Cancer Cells. Int J Mol Sci 2024; 25:9024. [PMID: 39201710 PMCID: PMC11354328 DOI: 10.3390/ijms25169024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Fludioxonil, an antifungal agent used as a pesticide, leaves a measurable residue in fruits and vegetables. It has been identified to cause endocrine disruption, interrupt normal development, and cause various diseases such as cancers. In this study, fludioxonil was examined for its effects on the development and metastasis of breast cancer cells. On fludioxonil exposure (10-5 M) for 72 h, mutant p53 (mutp53) MDA-MB-231 triple-negative breast cancer (TNBC) cells significantly inhibited cell viability and developed into polyploid giant cancer cells (PGCCs), with an increase in the number of nuclei and expansion in the cell body size. Fludioxonil exposure disrupted the normal cell cycle phase ratio, resulting in a new peak. In addition, PGCCs showed greater motility than the control and were resistant to anticancer drugs, i.e., doxorubicin, cisplatin, and 5-fluorouracil. Cyclin E1, nuclear factor kappa B (NF-κB), and p53 expressions were remarkably increased, and the expression of cell cycle-, epithelial-mesenchymal-transition (EMT)-, and cancer stemness-related proteins were increased in the PGCCs. The daughter cells obtained from PGCCs had the single nucleus but maintained their enlarged cell size and showed greater cell migration ability and resistance to the anticancer agents. Consequently, fludioxonil accumulated Cyclin E1 and promoted the inflammatory cytokine-enriched microenvironment through the up-regulation of TNF and NF-κB which led to the transformation to PGCCs via abnormal cell cycles such as mitotic delay and mitotic slippage in mutp53 TNBC MDA-MB-231 cells. PGCCs and their daughter cells exhibited significant migration ability, chemo-resistance, and cancer stemness. These results strongly suggest that fludioxonil, as an inducer of potential genotoxicity, may induce the formation of PGCCs, leading to the formation of metastatic and stem cell-like breast cancer cells.
Collapse
Affiliation(s)
| | | | | | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea; (R.-E.G.); (S.-M.S.); (Y.C.)
| |
Collapse
|
13
|
Herbein G, El Baba R. Polyploid Giant Cancer Cells: A Distinctive Feature in the Transformation of Epithelial Cells by High-Risk Oncogenic HCMV Strains. Viruses 2024; 16:1225. [PMID: 39205199 PMCID: PMC11360263 DOI: 10.3390/v16081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection is common in tumor tissues across different types of cancer. While HCMV has not been recognized as a cancer-causing virus, numerous studies hint at its potential role in cancer development where its presence in various cancers corresponds with the hallmarks of cancer. Herein, we discuss and demonstrate that high-risk HCMV-DB and BL strains have the potential to trigger transformation in epithelial cells, including human mammary epithelial cells (HMECs), ovarian epithelial cells (OECs), and prostate epithelial cells (PECs), through the generation of polyploid giant cancer cells (PGCCs). A discussion is provided on how HCMV infection creates a cellular environment that promotes oncogenesis, supporting the continuous growth of CMV-transformed cells. The aforementioned transformed cells, named CTH, CTO, and CTP cells, underwent giant cell cycling with PGCC generation parallel to dedifferentiation, displaying stem-like characteristics and an epithelial-mesenchymal transition (EMT) phenotype. Furthermore, we propose that giant cell cycling through PGCCs, increased EZH2 expression, EMT, and the acquisition of malignant traits represent a deleterious response to the cellular stress induced by high-risk oncogenic HCMV strains, the latter being the origin of the transformation process in epithelial cells upon HCMV infection and leading to adenocarcinoma of poor prognosis.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besancon, France;
- Department of Virology, CHU Besançon, 250000 Besancon, France
| | - Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besancon, France;
| |
Collapse
|
14
|
Han X, Qin H, Lu Y, Chen H, Yuan Z, Zhang Y, Yang X, Zheng L, Yan S. Post-translational modifications: The potential ways for killing cancer stem cells. Heliyon 2024; 10:e34015. [PMID: 39092260 PMCID: PMC11292267 DOI: 10.1016/j.heliyon.2024.e34015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
While strides in cancer treatment continue to advance, the enduring challenges posed by cancer metastasis and recurrence persist as formidable contributors to the elevated mortality rates observed in cancer patients. Among the multifaceted factors implicated in tumor recurrence and metastasis, cancer stem cells (CSCs) emerge as noteworthy entities due to their inherent resistance to conventional therapies and heightened invasive capacities. Characterized by their notable abilities for self-renewal, differentiation, and initiation of tumorigenesis, the eradication of CSCs emerges as a paramount objective. Recent investigations increasingly emphasize the pivotal role of post-translational protein modifications (PTMs) in governing the self-renewal and replication capabilities of CSCs. This review accentuates the critical significance of several prevalent PTMs and the intricate interplay of PTM crosstalk in regulating CSC behavior. Furthermore, it posits that the manipulation of PTMs may offer a novel avenue for targeting and eliminating CSC populations, presenting a compelling perspective on cancer therapeutics with substantial potential for future applications.
Collapse
Affiliation(s)
- Xuedan Han
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, No. 206, Sixian Street, Baiyun District, Guiyang City, 550014, Guizhou Province, China
| | - Yu Lu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Haitao Chen
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Zhengdong Yuan
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Yiwen Zhang
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Xuena Yang
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Simin Yan
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Mallin MM, Rolle LT, Schmidt MJ, Nair SP, Zurita AJ, Kuhn P, Hicks J, Pienta KJ, Amend SR. Cells in the Polyaneuploid Cancer Cell State are Pro-Metastatic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603285. [PMID: 39071340 PMCID: PMC11275908 DOI: 10.1101/2024.07.12.603285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
There remains a large need for a greater understanding of the metastatic process within the prostate cancer field. Our research aims to understand the adaptive - ergo potentially metastatic - responses of cancer to changing microenvironments. Emerging evidence has implicated a role of the Polyaneuploid Cancer Cell (PACC) state in metastasis, positing the PACC state as capable of conferring metastatic competency. Mounting in vitro evidence supports increased metastatic potential of cells in the PACC state. Additionally, our recent retrospective study of prostate cancer patients revealed that PACC presence in the prostate at the time of radical prostatectomy was predictive of future metastatic progression. To test for a causative relationship between PACC state biology and metastasis, we leveraged a novel method designed for flow-cytometric detection of circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) in subcutaneous, caudal artery, and intracardiac mouse models of metastasis. This approach provides both quantitative and qualitative information about the number and PACC-status of recovered CTCs and DTCs. Collating data from all models, we found that 74% of recovered CTCs and DTCs were in the PACC state. In vivo colonization assays proved PACC populations can regain proliferative capacity at metastatic sites following dormancy. Additional direct and indirect mechanistic in vitro analyses revealed a PACC-specific partial Epithelial-to-Mesenchymal-Transition phenotype and a pro-metastatic secretory profile, together providing preliminary evidence that PACCs are mechanistically linked to metastasis.
Collapse
Affiliation(s)
- Mikaela M. Mallin
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Louis T.A. Rolle
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Michael J. Schmidt
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shilpa Priyadarsini Nair
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Amado J. Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth J. Pienta
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sarah R. Amend
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Zhao S, Wang L, Ouyang M, Xing S, Liu S, Sun L, Yu H. Polyploid giant cancer cells induced by Docetaxel exhibit a senescence phenotype with the expression of stem cell markers in ovarian cancer cells. PLoS One 2024; 19:e0306969. [PMID: 38990953 PMCID: PMC11239069 DOI: 10.1371/journal.pone.0306969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Docetaxel (Doc) plays a crucial role in clinical antineoplastic practice. However, it is continuously documented that tumors frequently develop chemoresistance and relapse, which may be related to polyploid giant cancer cells (PGCCs). The aim of this study was investigate the formation mechanism and biological behavior of PGCCs induced by Doc. Ovarian cancer cells were treated with Doc, and then the effect of Doc on cellular viability was evaluated by MTT assay and microscopic imaging analysis. The biological properties of PGCCs were further evaluated by Hoechst 33342 staining, cell cycle and DNA content assay, DNA damage response (DDR) signaling detection, β-galactosidase staining, mitochondrial membrane potential detection, and reverse transcription-quantitative polymerase chain reaction. The results indicated that Doc reduced cellular viability; however, many cells were still alive, and were giant and polyploid. Doc increased the proportion of cells stayed in the G2/M phase and reduced the number of cells. In addition, the expression of γ-H2A.X was constantly increased after Doc treatment. PGCCs showed senescence-associated β-galactosidase activity and an increase in the monomeric form of JC-1. The mRNA level of octamer-binding transcription factor 4 (OCT4) and krüppel-like factor 4 (KLF4) was significantly increased in PGCCs. Taken together, our results suggest that Doc induces G2/M cell cycle arrest, inhibits the proliferation and activates persistent DDR signaling to promote the formation of PGCCs. Importantly, PGCCs exhibit a senescence phenotype and express stem cell markers.
Collapse
Affiliation(s)
- Song Zhao
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Lili Wang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Mingyue Ouyang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Sining Xing
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuo Liu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Lingyan Sun
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
17
|
Jiao Y, Yu Y, Zheng M, Yan M, Wang J, Zhang Y, Zhang S. Dormant cancer cells and polyploid giant cancer cells: The roots of cancer recurrence and metastasis. Clin Transl Med 2024; 14:e1567. [PMID: 38362620 PMCID: PMC10870057 DOI: 10.1002/ctm2.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.
Collapse
Affiliation(s)
- Yuqi Jiao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yongjun Yu
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Minying Zheng
- Department of PathologyTianjin Union Medical CenterNankai UniversityTianjinChina
| | - Man Yan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiangping Wang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|
18
|
Fisher TB, Saini G, Rekha TS, Krishnamurthy J, Bhattarai S, Callagy G, Webber M, Janssen EAM, Kong J, Aneja R. Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer. Breast Cancer Res 2024; 26:12. [PMID: 38238771 PMCID: PMC10797728 DOI: 10.1186/s13058-023-01752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30-40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60-70% show residual disease (RD). The role of the tumor microenvironment in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. METHODS H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) of the model development cohort and 79 patients (41 with pCR and 38 with RD) of the validation cohort were separated through a stratified eightfold cross-validation strategy for the first step and leave-one-out cross-validation strategy for the second step. A tile-level histology label prediction pipeline and four machine-learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. RESULTS The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy of the model development cohort. The model was validated with an independent cohort with tile histology validation accuracy of 83.59% and NAC prediction accuracy of 81.01%. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. CONCLUSION Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.
Collapse
Affiliation(s)
- Timothy B Fisher
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Geetanjali Saini
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - T S Rekha
- JSSAHER (JSS Academy of Higher Education and Research) Medical College, Mysuru, Karnataka, India
| | - Jayashree Krishnamurthy
- JSSAHER (JSS Academy of Higher Education and Research) Medical College, Mysuru, Karnataka, India
| | - Shristi Bhattarai
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Grace Callagy
- Discipline of Pathology, University of Galway, Galway, Ireland
| | - Mark Webber
- Discipline of Pathology, University of Galway, Galway, Ireland
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Jun Kong
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA.
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA.
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
19
|
Zhou M, Ma Y, Chiang CC, Rock EC, Butler SC, Anne R, Yatsenko S, Gong Y, Chen YC. Single-cell morphological and transcriptome analysis unveil inhibitors of polyploid giant breast cancer cells in vitro. Commun Biol 2023; 6:1301. [PMID: 38129519 PMCID: PMC10739852 DOI: 10.1038/s42003-023-05674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Considerable evidence suggests that breast cancer therapeutic resistance and relapse can be driven by polyploid giant cancer cells (PGCCs). The number of PGCCs increases with the stages of disease and therapeutic stress. Given the importance of PGCCs, it remains challenging to eradicate them. To discover effective anti-PGCC compounds, there is an unmet need to rapidly distinguish compounds that kill non-PGCCs, PGCCs, or both. Here, we establish a single-cell morphological analysis pipeline with a high throughput and great precision to characterize dynamics of individual cells. In this manner, we screen a library to identify promising compounds that inhibit all cancer cells or only PGCCs (e.g., regulators of HDAC, proteasome, and ferroptosis). Additionally, we perform scRNA-Seq to reveal altered cell cycle, metabolism, and ferroptosis sensitivity in breast PGCCs. The combination of single-cell morphological and molecular investigation reveals promising anti-PGCC strategies for breast cancer treatment and other malignancies.
Collapse
Affiliation(s)
- Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, USA
| | - Samuel Charles Butler
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Rajiv Anne
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, USA
| | - Svetlana Yatsenko
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Magee Womens Research Institute, Pittsburgh, PA, USA
| | - Yinan Gong
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, USA.
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
20
|
Tatar C, Avci CB, Acikgoz E, Oktem G. Doxorubicin-induced senescence promotes resistance to cell death by modulating genes associated with apoptotic and necrotic pathways in prostate cancer DU145 CD133 +/CD44 + cells. Biochem Biophys Res Commun 2023; 680:194-210. [PMID: 37748252 DOI: 10.1016/j.bbrc.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Cancer stem cells (CSCs) are the most important cause of cancer treatment failure. Traditional cancer treatments, such as chemotherapy and radiotherapy, damage healthy cells alongside malignant cells, leading to severe adverse effects. Therefore, inducing cellular senescence without triggering apoptosis, which further damages healthy cells, may be an alternative strategy. However, there is insufficient knowledge regarding senescence induction in CSCs that show resistance to treatment and stemness properties. The present study aims to elucidate the effects of senescence induction on proliferation, cell cycle, and apoptosis in prostate CSCs and non-CSCs. Prostate CSCs were isolated from DU145 cancer cells using the FACS method. Subsequently, senescence induction was performed in RWPE-1, DU145, prostate CSCs, and non-CSCs by using different concentrations of Doxorubicin (DOX). Cellular senescence was detected using the senescence markers SA-β-gal, Ki67, and senescence-associated heterochromatin foci (SAHF). The effects of senescence on cell cycle and apoptosis were evaluated using the Muse Cell Analyzer, and genes in signaling pathways associated with the apoptotic/necrotic pathway were analyzed by real-time PCR. Prostate CSCs were isolated with 95.6 ± 1.4% purity according to CD133+/CD44+ characteristics, and spheroid formation belonging to stem cells was observed. After DOX-induced senescence, we observed morphological changes, SA-β-gal positivity, SAHF, and the lack of Ki67 in senescent cells. Furthermore; we detected G2/M cell cycle arrest and downregulation of various apoptosis-related genes in senescent prostate CSCs. Our results showed that DOX is a potent inducer of senescence for prostate CSCs, inhibits proliferation by arresting the cell cycle, and senescent prostate CSCs develop resistance to apoptosis.
Collapse
Affiliation(s)
- Cansu Tatar
- Department of Stem Cell, Institute of Health Science, Ege University, 35100, Izmir, Turkey.
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, 65080, Turkey.
| | - Gulperi Oktem
- Department of Stem Cell, Institute of Health Science, Ege University, 35100, Izmir, Turkey; Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| |
Collapse
|
21
|
Fan L, Zheng M, Zhou X, Yu Y, Ning Y, Fu W, Xu J, Zhang S. Molecular mechanism of vimentin nuclear localization associated with the migration and invasion of daughter cells derived from polyploid giant cancer cells. J Transl Med 2023; 21:719. [PMID: 37833712 PMCID: PMC10576317 DOI: 10.1186/s12967-023-04585-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Polyploid giant cancer cells (PGCCs), a specific type of cancer stem cells (CSCs), can be induced by hypoxic microenvironments, chemical reagents, radiotherapy, and Chinese herbal medicine. Moreover, PGCCs can produce daughter cells that undergo epithelial-mesenchymal transition, which leads to cancer recurrence and disseminated metastasis. Vimentin, a mesenchymal cell marker, is highly expressed in PGCCs and their daughter cells (PDCs) and drives migratory persistence. This study explored the molecular mechanisms by which vimentin synergistically regulates PGCCs to generate daughter cells with enhanced invasive and metastatic properties. METHODS Arsenic trioxide (ATO) was used to induce the formation of PGCCs in Hct116 and LoVo cells. Immunocytochemical and immunohistochemical assays were performed to determine the subcellular localization of vimentin. Cell function assays were performed to compare the invasive metastatic abilities of the PDCs and control cells. The molecular mechanisms underlying vimentin expression and nuclear translocation were investigated by real-time polymerase chain reaction, western blotting, cell function assays, cell transfection, co-immunoprecipitation, and chromatin immunoprecipitation, followed by sequencing. Finally, animal xenograft experiments and clinical colorectal cancer samples were used to study vimentin expression in tumor tissues. RESULTS Daughter cells derived from PGCCs showed strong proliferative, migratory, and invasive abilities, in which vimentin was highly expressed and located in both the cytoplasm and nucleus. Vimentin undergoes small ubiquitin-like modification (SUMOylation) by interacting with SUMO1 and SUMO2/3, which are associated with nuclear translocation. P62 regulates nuclear translocation of vimentin by controlling SUMO1 and SUMO2/3 expression. In the nucleus, vimentin acts as a transcription factor that regulates CDC42, cathepsin B, and cathepsin D to promote PDC invasion and migration. Furthermore, animal experiments and human colorectal cancer specimens have confirmed the nuclear translocation of vimentin. CONCLUSION P62-dependent SUMOylation of vimentin plays an important role in PDC migration and invasion. Vimentin nuclear translocation and overexpressed P62 of cancer cells may be used to predict patient prognosis, and targeting vimentin nuclear translocation may be a promising therapeutic strategy for metastatic cancers.
Collapse
Affiliation(s)
- Linlin Fan
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300071, People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin, 301617, China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wenzheng Fu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Jing Xu
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
22
|
Xu H, Zeng S, Wang Y, Yang T, Wang M, Li X, He Y, Peng X, Li X, Qiao Q, Zhang J. Cytoplasmic SIRT1 promotes paclitaxel resistance in ovarian carcinoma through increased formation and survival of polyploid giant cancer cells. J Pathol 2023; 261:210-226. [PMID: 37565313 DOI: 10.1002/path.6167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023]
Abstract
Therapeutic resistance is a notable cause of death in patients with ovarian carcinoma. Polyploid giant cancer cells (PGCCs), commonly arising in tumor tissues following chemotherapy, have recently been considered to contribute to drug resistance. As a type III deacetylase, Sirtuin1 (SIRT1) plays essential roles in the cell cycle, cellular senescence, and drug resistance. Accumulating evidence has suggested that alteration in its subcellular localization via nucleocytoplasmic shuttling is a critical process influencing the functions of SIRT1. However, the roles of SIRT1 subcellular localization in PGCC formation and subsequent senescence escape remain unclear. In this study, we compared the differences in the polyploid cell population and senescence state of PGCCs following paclitaxel treatment between tumor cells overexpressing wild-type SIRT1 (WT SIRT1) and those expressing nuclear localization sequence (NLS)-mutated SIRT1 (SIRT1NLSmt ). We investigated the involvement of cytoplasmic SIRT1 in biological processes and signaling pathways, including the cell cycle and cellular senescence, in ovarian carcinoma cells' response to paclitaxel treatment. We found that the SIRT1NLSmt tumor cell population contained more polyploid cells and fewer senescent PGCCs than the SIRT1-overexpressing tumor cell population. Comparative proteomic analyses using co-immunoprecipitation (Co-IP) combined with liquid chromatography-mass spectrometry (LC-MS)/MS showed the differences in the differentially expressed proteins related to PGCC formation, cell growth, and death, including CDK1 and CDK2, between SIRT1NLSmt and SIRT1 cells or PGCCs. Our results suggested that ovarian carcinoma cells utilize polyploidy formation as a survival mechanism during exposure to paclitaxel-based treatment via the effect of cytoplasmic SIRT1 on PGCC formation and survival, thereby boosting paclitaxel resistance. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hong Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Shujun Zeng
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Tong Yang
- Department of Pathology, No. 971 Hospital of People's Liberation Army Navy, Qingdao, PR China
| | - Minmin Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Xuan Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Yejun He
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, PR China
| | - Xin Peng
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, PR China
| | - Xia Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, PR China
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Jing Zhang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| |
Collapse
|
23
|
Akuwudike P, López-Riego M, Dehours C, Lundholm L, Wojcik A. Impact of fractionated cisplatin and radiation treatment on cell growth and accumulation of DNA damage in two normal cell types differing in origin. Sci Rep 2023; 13:14891. [PMID: 37689722 PMCID: PMC10492820 DOI: 10.1038/s41598-023-39409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/25/2023] [Indexed: 09/11/2023] Open
Abstract
Evidence on the impact of chemotherapy on radiotherapy-induced second malignant neoplasms is controversial. We estimated how cisplatin modulates the in vitro response of two normal cell types to fractionated radiation. AHH-1 lymphoblasts and VH10 fibroblasts were irradiated at 1 Gy/fraction 5 and 3 times per week during 12 and 19 days, respectively, and simultaneously treated with 0.1, 0.2, 0.4, 0.8, 1.7 and 3.3 µM of cisplatin twice a week. Cell growth during treatment was monitored. Cell growth/cell death and endpoints related to accumulation of DNA damage and, thus, carcinogenesis, were studied up to 21 days post treatment in cells exposed to radiation and the lowest cisplatin doses. Radiation alone significantly reduced cell growth. The impact of cisplatin alone below 3.3 µM was minimal. Except the lowest dose of cisplatin in VH10 cells, cisplatin reduced the inhibitory effect of radiation on cell growth. Delayed cell death was highest in the combination groups while the accumulation of DNA damage did not reveal a clear pattern. In conclusion, fractionated, concomitant exposure to radiation and cisplatin reduces the inhibitory effect of radiation on cell proliferation of normal cells and does not potentiate delayed effects resulting from accumulation of DNA damage.
Collapse
Affiliation(s)
- Pamela Akuwudike
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
| | - Milagrosa López-Riego
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
| | - Cloé Dehours
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
- Polytech Angers l École d'Ingénieurs, Angers, France
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden.
- Institute of Biology, Jan Kochanowski University, Kielce, Poland.
| |
Collapse
|
24
|
Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, cytokines and cytomegalovirus in breast cancer progression. Cancer Cell Int 2023; 23:119. [PMID: 37340387 DOI: 10.1186/s12935-023-02971-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Breast cancer is the most common cancer among women. Accumulated evidence over the past decades indicates a very high prevalence of human cytomegalovirus (HCMV) in breast cancer. High-risk HCMV strains possess a direct oncogenic effect displayed by cellular stress, polyploid giant cancer cells (PGCCs) generation, stemness, and epithelial-to-mesenchymal transition (EMT) leading to cancer of aggressive phenotype. Breast cancer development and progression have been regulated by several cytokines where the latter can promote cancer cell survival, help in tumor immune evasion, and initiate the EMT process, thereby resulting in invasion, angiogenesis, and breast cancer metastasis. In the present study, we screened cytokines expression in cytomegalovirus-transformed HMECs (CTH cells) cultures infected with HCMV high-risk strains namely, HCMV-DB and BL, as well as breast cancer biopsies, and analyzed the association between cytokines production, PGCCs count, and HCMV presence in vitro and in vivo. METHODS In CTH cultures and breast cancer biopsies, HCMV load was quantified by real-time qPCR. PGCCs count in CTH cultures and breast cancer biopsies was identified based on cell morphology and hematoxylin and eosin staining, respectively. CTH supernatants were evaluated for the production of TGF-β, IL-6, IL1-β, and IL-10 by ELISA assays. The above-mentioned cytokines expression was assessed in breast cancer biopsies using reverse transcription-qPCR. The correlation analyses were performed using Pearson correlation test. RESULTS The revealed PGCCs/cytokine profile in our in vitro CTH model matched that of the breast cancer biopsies, in vivo. Pronounced cytokine expression and PGCCs count were detected in particularly CTH-DB cultures and basal-like breast cancer biopsies. CONCLUSIONS The analysis of cytokine profiles in PGCCs present mostly in basal-like breast cancer biopsies and derived from CTH cells chronically infected with the high-risk HCMV strains might have the potential to provide novel therapies such as cytokine-based immunotherapy which is a promising field in cancer treatments.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Ranim El Baba
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Georges Herbein
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France.
- Department of Virology, CHRU Besancon, Besancon, France.
| |
Collapse
|
25
|
Mallin MM, Kim N, Choudhury MI, Lee SJ, An SS, Sun SX, Konstantopoulos K, Pienta KJ, Amend SR. Cells in the polyaneuploid cancer cell (PACC) state have increased metastatic potential. Clin Exp Metastasis 2023:10.1007/s10585-023-10216-8. [PMID: 37326720 DOI: 10.1007/s10585-023-10216-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Although metastasis is the leading cause of cancer deaths, it is quite rare at the cellular level. Only a rare subset of cancer cells (~ 1 in 1.5 billion) can complete the entire metastatic cascade: invasion, intravasation, survival in the circulation, extravasation, and colonization (i.e. are metastasis competent). We propose that cells engaging a Polyaneuploid Cancer Cell (PACC) phenotype are metastasis competent. Cells in the PACC state are enlarged, endocycling (i.e. non-dividing) cells with increased genomic content that form in response to stress. Single-cell tracking using time lapse microscopy reveals that PACC state cells have increased motility. Additionally, cells in the PACC state exhibit increased capacity for environment-sensing and directional migration in chemotactic environments, predicting successful invasion. Magnetic Twisting Cytometry and Atomic Force Microscopy reveal that cells in the PACC state display hyper-elastic properties like increased peripheral deformability and maintained peri-nuclear cortical integrity that predict successful intravasation and extravasation. Furthermore, four orthogonal methods reveal that cells in the PACC state have increased expression of vimentin, a hyper-elastic biomolecule known to modulate biomechanical properties and induce mesenchymal-like motility. Taken together, these data indicate that cells in the PACC state have increased metastatic potential and are worthy of further in vivo analysis.
Collapse
Affiliation(s)
- Mikaela M Mallin
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA.
| | - Nicholas Kim
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | | | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Steven S An
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Kenneth J Pienta
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Sarah R Amend
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| |
Collapse
|
26
|
Kim CJ, Gonye AL, Truskowski K, Lee CF, Cho YK, Austin RH, Pienta KJ, Amend SR. Nuclear morphology predicts cell survival to cisplatin chemotherapy. Neoplasia 2023; 42:100906. [PMID: 37172462 DOI: 10.1016/j.neo.2023.100906] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The emergence of chemotherapy resistance drives cancer lethality in cancer patients, with treatment initially reducing overall tumor burden followed by resistant recurrent disease. While molecular mechanisms underlying resistance phenotypes have been explored, less is known about the cell biological characteristics of cancer cells that survive to eventually seed the recurrence. To identify the unique phenotypic characteristics associated with survival upon chemotherapy exposure, we characterized nuclear morphology and function as prostate cancer cells recovered following cisplatin treatment. Cells that survived in the days and weeks after treatment and resisted therapy-induced cell death showed increasing cell size and nuclear size, enabled by continuous endocycling resulting in repeated whole genome doubling. We further found that cells that survive after therapy release were predominantly mononucleated and likely employ more efficient DNA damage repair. Finally, we show that surviving cancer cells exhibit a distinct nucleolar phenotype and increased rRNA levels. These data support a paradigm where soon after therapy release, the treated population mostly contains cells with a high level of widespread and catastrophic DNA damage that leads to apoptosis, while the minority of cells that have successful DDR are more likely to access a pro-survival state. These findings are consistent with accession of the polyaneuploid cancer cell (PACC) state, a recently described mechanism of therapy resistance and tumor recurrence. Our findings demonstrate the fate of cancer cells following cisplatin treatment and define key cell phenotypic characteristics of the PACC state. This work is essential for understanding and, ultimately, targeting cancer resistance and recurrence.
Collapse
Affiliation(s)
- Chi-Ju Kim
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | - Anna Lk Gonye
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Kevin Truskowski
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Cheng-Fan Lee
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Building 103, Ulsan 44919, Republic of Korea; Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Robert H Austin
- Department of Physics, Princeton University, Jadwin Hall, Washington Rd., Princeton, NJ 08544, USA
| | - Kenneth J Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Sarah R Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| |
Collapse
|
27
|
Wen Z, Lin YH, Wang S, Fujiwara N, Rong R, Jin KW, Yang DM, Yao B, Yang S, Wang T, Xie Y, Hoshida Y, Zhu H, Xiao G. Deep-Learning-Based Hepatic Ploidy Quantification Using H&E Histopathology Images. Genes (Basel) 2023; 14:921. [PMID: 37107679 PMCID: PMC10137944 DOI: 10.3390/genes14040921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Polyploidy, the duplication of the entire genome within a single cell, is a significant characteristic of cells in many tissues, including the liver. The quantification of hepatic ploidy typically relies on flow cytometry and immunofluorescence (IF) imaging, which are not widely available in clinical settings due to high financial and time costs. To improve accessibility for clinical samples, we developed a computational algorithm to quantify hepatic ploidy using hematoxylin-eosin (H&E) histopathology images, which are commonly obtained during routine clinical practice. Our algorithm uses a deep learning model to first segment and classify different types of cell nuclei in H&E images. It then determines cellular ploidy based on the relative distance between identified hepatocyte nuclei and determines nuclear ploidy using a fitted Gaussian mixture model. The algorithm can establish the total number of hepatocytes and their detailed ploidy information in a region of interest (ROI) on H&E images. This is the first successful attempt to automate ploidy analysis on H&E images. Our algorithm is expected to serve as an important tool for studying the role of polyploidy in human liver disease.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Hsuan Lin
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Fujiwara
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruichen Rong
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin W. Jin
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Donghan M. Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Yao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shengjie Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Children’s Research Institute Mouse Genome Engineering Core, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
28
|
Trabzonlu L, Pienta KJ, Trock BJ, De Marzo AM, Amend SR. Presence of cells in the polyaneuploid cancer cell (PACC) state predicts the risk of recurrence in prostate cancer. Prostate 2023; 83:277-285. [PMID: 36372998 PMCID: PMC9839595 DOI: 10.1002/pros.24459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/25/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND The nonproliferating polyaneuploid cancer cell (PACC) state is associated with therapeutic resistance in cancer. A subset of cancer cells enters the PACC state by polyploidization and acts as cancer stem cells by undergoing depolyploidization and repopulating the tumor cell population after the therapeutic stress is relieved. Our aim was to systematically assess the presence and importance of this entity in men who underwent radical prostatectomy with curative intent to treat their presumed localized prostate cancer (PCa). MATERIALS AND METHODS Men with National Comprehensive Cancer Network intermediate- or high-risk PCa who underwent radical prostatectomy l from 2007 to 2015 and who did not receive neoadjuvant treatment were included. From the cohort of 2159 patients, the analysis focused on a subcohort of 209 patients and 38 cases. Prostate tissue microarrays (TMAs) were prepared from formalin-fixed, paraffin-embedded blocks of the radical prostatectomy specimens. A total of 2807 tissue samples of matched normal/benign and cancer were arrayed in nine TMA blocks. The presence of PACCs and the number of PACCs on each core were noted. RESULTS The total number of cells in the PACC state and the total number of cores with PACCs were significantly correlated with increasing Gleason score (p = 0.0004) and increasing Cancer of the Prostate Risk Assessment Postsurgical (CAPRA-S) (p = 0.004), but no other variables. In univariate proportional hazards models of metastasis-free survival, year of surgery, Gleason score (9-10 vs. 7-8), pathology stage, CAPRA-S, total PACCs, and cores positive for PACCs were all statistically significant. The multivariable models with PACCs that gave the best fit included CAPRA-S. Adding either total PACCs or cores positive for PACCs to CAPRA-S both significantly improved model fit compared to CAPRA-S alone. CONCLUSION Our findings show that the number of PACCs and the number of cores positive for PACCs are statistically significant prognostic factors for metastasis-free survival, after adjusting for CAPRA-S, in a case-cohort of intermediate- or high-risk men who underwent radical prostatectomy. In addition, despite the small number of men with complete data to evaluate time to metastatic castration-resistant PCa (mCRPC), the total number of PACCs was a statistically significant predictor of mCRPC in univariate analysis and suggested a prognostic effect even after adjusting for CAPRA-S.
Collapse
Affiliation(s)
- Levent Trabzonlu
- Department of Pathology and Laboratory MedicineLoyola University Medical CenterMaywoodIllinoisUSA
| | - Kenneth J. Pienta
- Cancer Ecology Center, The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Bruce J. Trock
- The Brady Urological InstituteJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Angelo M. De Marzo
- Departments of Pathology, Urology and Oncology, The Johns Hopkins University School of MedicineThe Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
29
|
Hsieh CY, Lin CC, Huang YW, Chen JH, Tsou YA, Chang LC, Fan CC, Lin CY, Chang WC. Macrophage secretory IL-1β promotes docetaxel resistance in head and neck squamous carcinoma via SOD2/CAT-ICAM1 signaling. JCI Insight 2022; 7:157285. [PMID: 36264639 PMCID: PMC9746909 DOI: 10.1172/jci.insight.157285] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
Docetaxel (DTX) combined with cisplatin and 5-fluorouracil has been used as induction chemotherapy for head and neck squamous cell carcinoma (HNSCC). However, the development of acquired resistance remains a major obstacle to treatment response. Tumor-associated macrophages are associated with chemotherapeutic resistance. In the present study, increased infiltration of macrophages into the tumor microenvironment (TME) was significantly associated with shorter overall survival and increased resistance to chemotherapeutic drugs, particularly DTX, in patients with HNSCC. Macrophage coculture induced expression of intercellular adhesion molecule 1 (ICAM1), which promotes stemness and the formation of polyploid giant cancer cells, thereby reducing the efficacy of DTX. Both genetic silencing and pharmacological inhibition of ICAM1 sensitized HNSCC to DTX. Macrophage secretion of IL-1β was found to induce tumor expression of ICAM1. IL-1β neutralization and IL-1 receptor blockade reversed DTX resistance induced by macrophage coculture. IL-1β activated superoxide dismutase 2 and inhibited catalase, thereby modulating intracellular levels of ROS and inducing ICAM1 expression. Arsenic trioxide (ATO) reduced macrophage infiltration into the TME and impaired IL-1β secretion by macrophages. The combinatorial use of ATO enhanced the in vivo efficacy of DTX in a mouse model, which may provide a revolutionary approach to overcoming acquired therapeutic resistance in HNSCC.
Collapse
Affiliation(s)
- Ching-Yun Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ching-Chan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Wen Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Jong-Hang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yung-An Tsou
- Department of Otolaryngology-Head and Neck Surgery and
| | - Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Chinese Medicinal Research and Development Center, China Medical University Hospital, and,Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chi-Chen Fan
- Department of Research and Development, Marker Exploration Corporation, Taipei, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chen-Yuan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
30
|
Bai S, Taylor S, Jamalruddin MA, McGonigal S, Grimley E, Yang D, Bernstein KA, Buckanovich RJ. Targeting Therapeutic Resistance and Multinucleate Giant Cells in CCNE1-Amplified HR-Proficient Ovarian Cancer. Mol Cancer Ther 2022; 21:1473-1484. [PMID: 35732503 PMCID: PMC9452459 DOI: 10.1158/1535-7163.mct-21-0873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/30/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
Approximately 20% of high-grade serous ovarian cancers (HGSOC) have CCNE1 amplification. CCNE1-amplified tumors are homologous recombination (HR) proficient and resistant to standard therapies. Therapy resistance is associated with increased numbers of polyploid giant cancer cells (PGCC). We sought to identify new therapeutic approaches for patients with CCNE1-amplified tumors. Using TCGA data, we find that the mTOR, HR, and DNA checkpoint pathways are enriched in CCNE1-amplified ovarian cancers. Furthermore, Interactome Mapping Analysis linked the mTOR activity with upregulation of HR and DNA checkpoint pathways. Indeed, we find that mTOR inhibitors (mTORi) downregulate HR/checkpoint genes in CCNE1-amplified tumors. As CCNE1-amplified tumors are dependent on the HR pathway for viability, mTORi proved selectively effective in CCNE1-amplified tumors. Similarly, via downregulation of HR genes, mTORi increased CCNE1-amplifed HGSOC response to PARPi. In contrast, overexpression of HR/checkpoint proteins (RAD51 or ATR), induced resistance to mTORi. In vivo, mTORi alone potently reduced CCNE1-amplified tumor growth and the combination of mTORi and PARPi increased response and tumor eradication. Tumors treated with mTORi demonstrated a significant reduction in ALDH+ PGCCs. Finally, as a proof of principle, we identified three patients with CCNE1 amplified tumors who were treated with an mTORi. All three obtained clinical benefits from the therapy. Our studies and clinical experience indicate mTORi are a potential therapeutic approach for patients with CCNE1-amplified tumors.
Collapse
Affiliation(s)
- Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Taylor
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohd Azrin Jamalruddin
- Dept of Microbiology and Molecular. Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Stacy McGonigal
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward Grimley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kara A. Bernstein
- Dept of Microbiology and Molecular. Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ronald J. Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Neural is Fundamental: Neural Stemness as the Ground State of Cell Tumorigenicity and Differentiation Potential. Stem Cell Rev Rep 2021; 18:37-55. [PMID: 34714532 DOI: 10.1007/s12015-021-10275-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
Tumorigenic cells are similar to neural stem cells or embryonic neural cells in regulatory networks, tumorigenicity and pluripotent differentiation potential. By integrating the evidence from developmental biology, tumor biology and evolution, I will make a detailed discussion on the observations and propose that neural stemness underlies two coupled cell properties, tumorigenicity and pluripotent differentiation potential. Neural stemness property of tumorigenic cells can hopefully integrate different observations/concepts underlying tumorigenesis. Neural stem cells and tumorigenic cells share regulatory networks; both exhibit neural stemness, tumorigenicity and pluripotent differentiation potential; both depend on expression or activation of ancestral genes; both rely primarily on aerobic glycolytic metabolism; both can differentiate into various cells/tissues that are derived from three germ layers, leading to tumor formation resembling severely disorganized or more degenerated process of embryonic tissue differentiation; both are enriched in long genes with more splice variants that provide more plastic scaffolds for cell differentiation, etc. Neural regulatory networks, which include higher levels of basic machineries of cell physiological functions and developmental programs, work concertedly to define a basic state with fast cell cycle and proliferation. This is predestined by the evolutionary advantage of neural state, the ground or initial state for multicellularity with adaptation to an ancient environment. Tumorigenesis might represent a process of restoration of neural ground state, thereby restoring a state with fast proliferation and pluripotent differentiation potential in somatic cells. Tumorigenesis and pluripotent differentiation potential might be better understood from understanding neural stemness, and cancer therapy should benefit more from targeting neural stemness.
Collapse
|
32
|
Liu J, Erenpreisa J, Sikora E. Polyploid giant cancer cells: An emerging new field of cancer biology. Semin Cancer Biol 2021; 81:1-4. [PMID: 34695579 DOI: 10.1016/j.semcancer.2021.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jinsong Liu
- Department of Anatomical Pathology and Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | - Ewa Sikora
- Laboratory of Moleuclar Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
33
|
Liu J, Niu N, Li X, Zhang X, Sood AK. The life cycle of polyploid giant cancer cells and dormancy in cancer: Opportunities for novel therapeutic interventions. Semin Cancer Biol 2021; 81:132-144. [PMID: 34670140 DOI: 10.1016/j.semcancer.2021.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Recent data suggest that most genotoxic agents in cancer therapy can lead to shock of genome and increase in cell size, which leads whole genome duplication or multiplication, formation of polyploid giant cancer cells, activation of an early embryonic program, and dedifferentiation of somatic cells. This process is achieved via the giant cell life cycle, a recently proposed mechanism for malignant transformation of somatic cells. Increase in both cell size and ploidy allows cells to completely or partially restructures the genome and develop into a blastocyst-like structure, similar to that observed in blastomere-stage embryogenesis. Although blastocyst-like structures with reprogrammed genome can generate resistant or metastatic daughter cells or benign cells of different lineages, they also acquired ability to undergo embryonic diapause, a reversible state of suspended embryonic development in which cells enter dormancy for survival in response to environmental stress. Therapeutic agents can activate this evolutionarily conserved developmental program, and when cells awaken from embryonic diapause, this leads to recurrence or metastasis. Understanding of the key mechanisms that regulate the different stages of the giant cell life cycle offers new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinsong Liu
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Na Niu
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoran Li
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xudong Zhang
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anil K Sood
- Departments of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|