1
|
Chen T, Xu Y, Yang F, Pan Y, Ji N, Li J, Zeng X, Chen Q, Jiang L, Shen YQ. Crosstalk of glutamine metabolism between cancer-associated fibroblasts and cancer cells. Cell Signal 2025; 133:111874. [PMID: 40381975 DOI: 10.1016/j.cellsig.2025.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Glutamine (Gln), a critical metabolic substrate, fuels the uncontrolled proliferation of cancer cells. Cancer-associated fibroblasts (CAFs), essential components of the tumor microenvironment, facilitate tumor progression by supplying Gln to cancer cells and driving drug resistance through metabolic reprogramming. This review highlights the key processes of Gln uptake, transport, and catabolism and explores the metabolic crosstalk between CAFs and cancer cells. It also examines the roles of major oncogenic regulators-c-Myc, mTORC, KRAS, p53, and HIF-in controlling Gln metabolism and shaping therapeutic resistance. Current pharmacological approaches targeting Gln metabolism, including enzyme inhibitors and transporter blockers, are discussed alongside emerging therapeutic strategies and ongoing clinical trials. Lastly, we underscore the importance of integrating advanced technologies like artificial intelligence and spatial omics to refine treatment targeting and develop more effective, personalized therapeutic interventions.
Collapse
Affiliation(s)
- Tingyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yiming Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxin Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Yao J, Song S, Liu T, Wang J, Li C, Liu J, Yuan Y, Zhao H. Isoguanosine-Induced ER Stress via AMPK Enhances Chemosensitivity in OSCC. J Dent Res 2025; 104:668-678. [PMID: 40071313 DOI: 10.1177/00220345241303168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy of the head and neck; however, the efficacy of existing treatment is limited and new effective strategies need to be explored. Our previous work demonstrates that isoguanosine (isoG) is a promising nucleoside molecule with superior self-assembly capability and significant anti-OSCC potential. However, the antitumor mechanism of isoG remains unclear. In this study, we reveal that the antiproliferative effect of isoG is mediated by its cellular metabolite, isoguanosine 5'-monophosphate (isoGMP), which induces excessive endoplasmic reticulum (ER) stress and cell death through adenosine monophosphate-activated protein kinase (AMPK) activation. IsoG activates AMPK and induces ER stress at low concentrations, with minimal impact on cell viability at these concentrations. To further explore the therapeutic potential of isoG, we investigated its role in modulating chemosensitivity. Our findings show that AMPK activation enhances the sensitivity of OSCC cells to 5-fluorouracil (5-FU), and the combination of isoG and 5-FU exhibits a synergistic anticancer effect. Building on the self-assembly characteristics of isoG, we developed an innovative treatment platform by introducing dynamic borate ester bonds to form an isoguanosine-phenylenediboronic acid-isoguanosine (isoGPBisoG) structure. When combined with 5-FU, this platform achieved remarkable therapeutic efficacy in 2 OSCC cell-derived xenograft models, with tumor inhibition rates of 71.0% and 56.6%, respectively, compared with control. These findings establish isoG as a potent enhancer of chemotherapeutic efficacy in OSCC via AMPK activation. More importantly, the isoGPBisoG and 5-FU combination represents a significant paradigm of a synergistic therapy platform. This novel approach offers a promising direction for the development of more effective OSCC treatments.
Collapse
Affiliation(s)
- J Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - T Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - C Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - J Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - H Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Shimura T, Nara H, Yamazaki M, Sasatani M, Ushiyama A. Suppression of cancer stem-like cell radioresistance by inhibiting AMPK signaling. JOURNAL OF RADIATION RESEARCH 2025; 66:227-233. [PMID: 40223639 PMCID: PMC12100479 DOI: 10.1093/jrr/rraf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025]
Abstract
Cancer stem cell (CSC) radioresistance is a major cause of radiotherapy (RT) failure and tumor recurrence. The molecular target for eradicating CSCs has not been identified despite research efforts to overcome tumor radioresistance. The adenosine monophosphate-activated protein kinase (AMPK) is responsible for transmitting nuclear DNA damage signals to the mitochondria, which in turn generate adenosine triphosphate to execute a DNA damage response. Disruption of this mitochondria-mediated genomic defense mechanism may be an effective strategy to enhance the cytotoxic efficacy of RT. Here, we investigated the potential efficacy of the pan-AMPK inhibitor dorsomorphin (Dor) in preventing CSC radioresistance. Radioresistant cancer stem-like cells were derived from the human liver cancer cell line HepG2 (HepG2 82FR-31NR). The radiosensitizing effect of Dor was then examined in HepG2 82FR-31NR cell cultures by clonogenic assays. Low-dose Dor markedly suppressed the recovery of HepG2 cancer stem-like cells after radiation but had little effect on normal fibroblast proliferation and survival, whether applied alone or in combination with radiation. In conclusion, this study strongly suggests that Dor treatment can radiosensitize cancer stem-like cells at doses that have no significant cytotoxic effects on normal human fibroblasts.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako 351-0197, Japan
| | - Honoka Nara
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Japan
| | - Mayu Yamazaki
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Hiroshima 734-8553 , Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako 351-0197, Japan
| |
Collapse
|
4
|
Wang Y, Cao X, Ren J, Chen R, Zhang X, Liu C, Jia Y, Lin T. Association of metformin with risk of digestive tract cancers from a drug target mendelian randomization and cell experiments. Discov Oncol 2025; 16:869. [PMID: 40408000 PMCID: PMC12102028 DOI: 10.1007/s12672-025-02729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 05/16/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND Digestive tract cancers account for a significant proportion of the global cancer burden, and their prevention and treatment pose a worldwide challenge. Metformin, as a first-line treatment for diabetes, offers advantages such as high safety and affordability. Previous research has suggested that the use of metformin may reduce the risk of cancers, but there is still a lack of strong evidence regarding its causal relationship with digestive tract cancers. METHODS We employed Mendelian randomization (MR) analysis to investigate the causal relationships between metformin use and various digestive tract cancers. We selected single nucleotide polymorphisms (SNPs) related to the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), which is associated with the action of metformin, as instrumental variables. The inverse variance-weighted method (IVW) was the most important method. Cochran's Q was used to detect heterogeneity, and the MR-PRESSO test and MR-Egger regression were used to detect horizontal pleiotropy. Subsequently, we verified the toxicity and proliferation inhibition of metformin on Huh 7 and PLC in hepatocellular carcinoma cells. RESULTS IVW results showed that metformin use reduced the risk of liver and bile duct cancers (OR = 0.994, 95% CI 0.990-0.999; P = 0.008), but there were no causal relationships with other digestive tract cancers. Our cell experiments have confirmed this point. CONCLUSION Metformin may be used for the prevention or treatment of liver and bile duct cancers.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an , 710061, Shaanxi, China
| | - Xirong Cao
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an , 710061, Shaanxi, China
| | - Jie Ren
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an , 710061, Shaanxi, China
| | - Rui Chen
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an , 710061, Shaanxi, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an , 710061, Shaanxi, China
| | - Chang Liu
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an , 710061, Shaanxi, China
| | - Yifan Jia
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an , 710061, Shaanxi, China.
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Ting Lin
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an , 710061, Shaanxi, China.
- Department of Surgical Critical Care, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
5
|
Shen Z, Zhang F, Yang J, Zhang K, Liang F, Mu H, Shi L, Jiang J, Yang Y, Lin Z, Gao J, Gao N. Novel Mitochondria-Targeted NIR Cyanine Cy750M-C1 Nanoparticles for Chemotherapy against Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2025. [PMID: 40356493 DOI: 10.1021/acsbiomaterials.5c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Mitochondrial metabolism plays an important role in promoting cancer development, making mitochondria a novel promising target for cancer therapy. Current mitochondria-targeted fluorescent agents can specifically accumulate in the mitochondria of cancer cells and can be applied for cancer imaging and therapy. However, their clinical application is still limited due to the poor solubility and lower tumor-specific distribution. In the present study, we synthesized a novel NIR small-molecule dye, Cy750M-C1, and evaluated its optical properties, mitochondrial distribution, and anticancer activity. We also synthesized nanoparticles loading Cy750M-C1 (Cy750M-C1-FA-NPs) and demonstrated that Cy750M-C1-FA-NPs are specifically targeted to the tumor and dramatically inhibited tumor growth in vivo. The mechanistic study revealed that Cy750M-C1 specifically targeted mitochondria of TNBC cells, subsequently promoting ROS production through inhibition of mitochondrial complexes (complexes I, III, and IV) and OXPHOS and depletion of ATP, leading, in turn, to AMPK activation and Drp1 dephosphorylation mediating the mitochondrial translocation of Drp1 and BAX and ultimately inducing mitochondrial fission, caspase activation, as well as apoptosis. Overall, our data implicate that Cy750M-C1 could be developed as a novel anticancer agent with mitochondria-targeting ability and NIR fluorescence imaging and that Cy750M-C1-FA-NPs could also be considered as promising drug delivery carriers for antitumor agents.
Collapse
Affiliation(s)
- Zhilin Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Fenglin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiawang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Kaihang Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Feng Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Han Mu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Li Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jijun Jiang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuanzhi Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixuan Lin
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ning Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education, Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
6
|
Fard SS, Kundu N, Torres AS, Faltas CL, Di Martino JS, Holz MK. Inhibition of NAMPT as a therapeutic strategy to suppress tumor growth in lymphangioleiomyomatosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119986. [PMID: 40348345 DOI: 10.1016/j.bbamcr.2025.119986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/22/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, progressive lung disease driven by mutations in the TSC1 or TSC2 genes, leading to constitutive mTORC1 activation and uncontrolled cell proliferation. Current therapies, like rapamycin effectively stabilize disease progression but mainly exert cytostatic effects and promote autophagy, a survival mechanism in LAM cells. These limitations highlight the need for the development of innovative therapies to achieve more effective and lasting results. To explore alternative therapeutic targets, we investigated the role of nicotinamide phosphoribosyltransferase (NAMPT), a key regulator of NAD+ biosynthesis, in LAM and TSC2-deficient cells using a potent inhibitor, FK866. Our study demonstrates that FK866 depletes NAD+ levels in these cells, exerting a dual effect by activating AMPK and subsequently inhibiting mTORC1 signaling while suppressing autophagy. Unlike rapamycin, FK866 does not induce compensatory Akt activation, significantly inhibits LAM cell proliferation and induces apoptosis. Additionally, using an in vivo chicken egg chorioallantoic membrane (CAM) model, we showed that FK866 treatment significantly reduces LAM tumor growth compared to controls suggesting that NAMPT inhibition disrupts metabolic and survival pathways critical for TSC2-deficient cell viability and tumor progression. Our results establish NAMPT as a promising therapeutic target for LAM, offering a two-prong strategy to suppress tumor growth and enhance apoptosis, providing an alternative to current mTOR-based therapies.
Collapse
Affiliation(s)
- Shahrzad S Fard
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America
| | - Nandini Kundu
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America
| | - Alek S Torres
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America
| | - Christina L Faltas
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America
| | - Julie S Di Martino
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America
| | - Marina K Holz
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America; Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America.
| |
Collapse
|
7
|
Zhang Y, Chen H, Chen Q, Zaitoun M, Cheng Y, Ge J, Feng Q. Acrolein-Triggered Ferroptosis and Protection by Intermittent Fasting via the AMPK/NRF2-CLOCK/BMAL1 Pathway. TOXICS 2025; 13:369. [PMID: 40423448 DOI: 10.3390/toxics13050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025]
Abstract
Environmental pollution significantly exacerbates various diseases, particularly those affecting the cardiovascular and respiratory systems. Our previous studies have shown that acrolein, an environmental pollutant, promotes atherosclerosis by downregulating the circadian clock genes (CLOCK/BMAL1) and disrupting circadian rhythm. We have also found that intermittent fasting (IF), closely linked to the circadian clock, may mitigate atherosclerosis induced by acrolein. Ferroptosis, a newly identified form of regulated cell death, is associated with the acceleration of atherosclerotic development, but its relationship with the circadian clock is not well understood. In this study, we explored the potential of IF to alleviate ferroptosis by modulating the circadian clock. Our in vivo experiments revealed that IF reversed ferroptosis and upregulated CLOCK/BMAL1 in APOE-/- mice. In human umbilical vein endothelial cells (HUVECs), we discovered that acrolein-induced ferroptosis leads to cell death, while short-term starvation (STS, IF cell model) reversed this effect. Acrolein also suppressed the expression of AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (NRF2), and CLOCK/BMAL1, which were restored by subsequent STS treatments. Additionally, the overexpression of CLOCK/BMAL1 mitigated ferroptosis, consistent with findings from CLOCK gene knockout experiments. Notably, CLOCK/BMAL1 and AMPK/NRF2 were found to be mutually regulated. Concurrently, the AMPK and NRF2 signaling pathways may be interdependent and act in concert. In conclusion, our findings suggest that IF modulates the CLOCK/BMAL1-AMPK/NRF2 pathway to alleviate acrolein-induced ferroptosis, offering a potential strategy to address health issues related to environmental pollution.
Collapse
Affiliation(s)
- Yuandie Zhang
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Hong Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Qianfeng Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Margaret Zaitoun
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Ying Cheng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Jierong Ge
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
8
|
Tao J, Hao TC, Zhang XY, Lu P, Yang Y. Coptisine inhibits lipid accumulation in high glucose- and palmitic acid-induced HK-2 cells by regulating the AMPK/ACC/CPT-1 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5465-5474. [PMID: 39560754 DOI: 10.1007/s00210-024-03617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
AMPK (Adenosine 5'-Monophosphate activated Protein Kinase) functions as a fundamental regulator of glycolipid metabolism by regulating the rate-limiting enzyme activity of ACC (Acetyl-CoA Carboxylase, essential for fatty acid biosynthesis) and CPT-1 (Carnitine palmitoyltransferase-1, essential for mitochondrial fatty acid oxidation, FAO) in cells, which is crucial for maintaining energy homeostasis in the human body. Coptisine (COP) is a natural berberine and isoquinoline alkaloid in Coptis chinensis that has been used as a traditional Chinese herb to treat diabetes for thousands of years, but its mechanism of action is still unclear. In this study, we investigated the anti-lipid accumulation effect and mechanism of COP in high glucose and palmitic acid-induced HK-2 cells. Compared with the control HK-2 cells, the model HK-2 cells exhibited markedly greater lipid deposition, after treatment with high glucose (HG, 30 mM) and palmitic acid (PA, 250 µM) for 24 h. However, COP significantly decreased the TC and TG levels in a dose dependent manner (2.5, 5, and 10 µM). Moreover, COP dramatically enhanced the effect of the positive control (AICAR, Acadesine, an AMPK activator) in alleviating lipid deposition, which was reversed by the negative control (Compound C, an AMPK inhibitor). Furthermore, COP also increased p-AMPK, p-ACC and CPT-1 protein expression. Our results indicate that COP can effectively protects HK-2 cells against HG- and PA-induced lipid accumulation by affecting the AMPK/ACC/CPT-1 signaling pathway, inhibiting de novo lipogenesis and enhancing the FAO processes, which offers novel insights for the application of COP in the clinic.
Collapse
Affiliation(s)
- Jie Tao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China
| | - Tian-Chu Hao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China
| | - Xiao-Yu Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China
| | - Pei Lu
- Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou, 511400, P.R. China.
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China.
| |
Collapse
|
9
|
Shao B, Bu H, Li G, Kang D, Ju Q. Autophagy-dependent apoptosis induction by oridonin are mediated by ROS-dependent AMPK-mTOR-ULK1 pathway in colon cancer. Am J Cancer Res 2025; 15:1902-1918. [PMID: 40371146 PMCID: PMC12070090 DOI: 10.62347/cgio2604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025] Open
Abstract
Oridonin, a bioactive diterpenoid isolated from Rabdosia species, exhibits broad-spectrum anticancer activity across various tumor types. However, its impact on colon cancer and the underlying molecular mechanisms remains poorly understood. Our study revealed that oridonin significantly suppressed the proliferation of HCT8 and HCT116 colon cancer cells by inducing G2/M phase cell cycle arrest. Moreover, oridonin triggered apoptotic cell death, as indicated by elevated levels of cleaved caspase-3 and PARP. Simultaneously, it activated autophagy, as evidenced by increased expression of Beclin 1 and LC3-II, along with decreased LC3-I and p62 levels. In addition, inhibiting autophagy with 3-methyladenine (3-MA) reduced cell apoptosis, whereas blocking apoptosis using Z-Val-Ala-Asp(OMe)-FMK (Z-VAD-FMK) enhanced autophagy. Furthermore, oridonin also induced the accumulation of reactive oxygen species (ROS), which contributed to apoptosis; this effect was largely reversed by the ROS scavenger N-acetyl-L-cysteine (NAC). Mechanistically, oridonin increased phosphorylation of AMP-activated protein kinase (AMPK) and suppressed phosphorylation of mammalian target of rapamycin (mTOR) and Unc-51-like kinase 1 (ULK1). Silencing AMPK with siRNA blocked oridonin's effects on the AMPK/mTOR pathway, as well as its regulation of autophagy and apoptosis. Moreover, co-treatment with NAC almost completely blocked activation of the AMPK-mTOR-ULK1 signaling pathway. In vivo, oridonin significantly suppressed tumor growth in a xenograft model, accompanied by elevated expression of LC3-II and cleaved caspase-3. Collectively, these findings demonstrated that oridonin could exert potent anti-tumor effects in colon cancer by inducing cell cycle arrest and promoting autophagy-dependent apoptosis via ROS-mediated activation of the AMPK-mTOR-ULK1 signaling pathway.
Collapse
Affiliation(s)
- Bin Shao
- Department of Colorectal Surgery, Beilun District People's Hospital (Beilun Branch of The First Affiliated Hospital of Zhejiang University School of Medicine) Ningbo 315800, Zhejiang, The People's Republic of China
| | - Heqi Bu
- Department of Colorectal Surgery, Beilun District People's Hospital (Beilun Branch of The First Affiliated Hospital of Zhejiang University School of Medicine) Ningbo 315800, Zhejiang, The People's Republic of China
| | - Ganglei Li
- Department of Colorectal Surgery, Beilun District People's Hospital (Beilun Branch of The First Affiliated Hospital of Zhejiang University School of Medicine) Ningbo 315800, Zhejiang, The People's Republic of China
| | - Dapeng Kang
- Department of Colorectal Surgery, Beilun District People's Hospital (Beilun Branch of The First Affiliated Hospital of Zhejiang University School of Medicine) Ningbo 315800, Zhejiang, The People's Republic of China
| | - Qi Ju
- Department of Colorectal Surgery, Beilun District People's Hospital (Beilun Branch of The First Affiliated Hospital of Zhejiang University School of Medicine) Ningbo 315800, Zhejiang, The People's Republic of China
| |
Collapse
|
10
|
Yibcharoenporn C, Muanprasat C, Moonwiriyakit A, Satitsri S, Pathomthongtaweechai N. AMPK in Intestinal Health and Disease: A Multifaceted Therapeutic Target for Metabolic and Inflammatory Disorders. Drug Des Devel Ther 2025; 19:3029-3058. [PMID: 40291159 PMCID: PMC12024487 DOI: 10.2147/dddt.s507489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
The intestines play essential roles in nutrient absorption and immune function and help maintain a protective barrier. Disruptions to its function can result in various diseases, including metabolic disorders, inflammation, and cancer. As a key regulator of cellular energy levels, 5'-adenosine monophosphate-activated protein kinase (AMPK) is essential for intestinal health. Beyond its established metabolic role, emerging evidence suggests that AMPK exerts profound effects on intestinal cell physiology, influencing cell proliferation and differentiation, inflammation, autophagy, barrier integrity, and smooth muscle contractility. Here, we explore the structure and regulation of AMPK, as well as its diverse roles in intestinal diseases and potential as a therapeutic target. Our findings reveal that AMPK is a multifaceted regulator of intestinal health, modulating various cellular processes and intestinal diseases. It plays a dual role in cancer, acting as both a tumor suppressor and promoter, and it regulates inflammatory pathways, autophagy, tight junction formation, and smooth muscle contractility. Both natural and synthetic AMPK activators offer promise as therapeutic agents. This review of AMPK's mechanisms and activators offers valuable insights for developing novel therapies for intestinal disorders. Further research is needed to fully define AMPK's roles and therapeutic potential.
Collapse
Affiliation(s)
- Chamnan Yibcharoenporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Saravut Satitsri
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| |
Collapse
|
11
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
12
|
Chang J, Xiao G. Cyanidin-3-O-glucoside inhibits the malignant progression of colorectal cancer by regulating Kruppel-like factor 4-mediated ERK/p38 signaling pathway. Toxicol Appl Pharmacol 2025; 497:117268. [PMID: 39971139 DOI: 10.1016/j.taap.2025.117268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Cyanidin-3-O-glucoside (Cy3g) is a natural anthocyanin, showing favorable anti-cancer efficacy in colorectal cancer (CRC). However, its specific mechanism in CRC remains largely unexplored. OBJECTIVE This study aimed to investigate the underlying mechanisms of Cy3g on CRC. METHODS Cell viability of human CRC cell lines (SW620, HT29, LS174T, and HCT116) and normal colon fibroblast cell line (CCD-18Co) treated with Cy3g was detected by CCK-8. Effects of Cy3g on malignant characteristics of SW620 cells were determined by CCK-8, EdU, colony formation, wound healing, Transwell, and flow cytometry assays. To further elucidate Cy3g's mechanism in CRC, KLF4 expression was detected by RT-qPCR, and expression of the extracellular signal-related kinase (ERK) and p38 was examined by western blotting. The effects and mechanisms of Cy3g on CRC progression were further validated in a xenograft mouse model. RESULTS Cy3g significantly inhibited the cell viability of human CRC cell lines but rarely affected the cell viability of normal colon fibroblast. Cy3g dose-dependently inhibited proliferation, migration, and invasion and promoted apoptosis of SW620 cells. Moreover, Cy3g upregulated KLF4 expression and inactivated the ERK/p38 pathway in a concentration-dependent manner. KLF4 knockdown reversed the inhibitory effects of Cy3g on the malignant characteristics of SW620 and expression of ERK and p38. Animal experiments further validated that Cy3g inhibited tumor growth without altering body weight, activated KLF4, and suppressed the ERK/p38 pathway in CRC model mice. CONCLUSION Cy3g inhibits CRC progression by suppressing the KLF4-mediated ERK/p38 pathway, offering new insights into CRC prevention and treatment.
Collapse
Affiliation(s)
- Jian Chang
- Department of oncology, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Geqiong Xiao
- Department of oncology, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
13
|
Zhang H, Dong X, Liu Y, Duan P, Liu C, Liu K, Yu Y, Liang X, Dai H, Yu A. An injectable and adaptable system for the sustained release of hydrogen sulfide for targeted diabetic wound therapy by improving the microenvironment of inflammation regulation and angiogenesis. Acta Biomater 2025; 196:364-379. [PMID: 39993519 DOI: 10.1016/j.actbio.2025.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/02/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The combined effects of persistent chronic inflammation, oxidative stress, microcirculation disorders, and dysregulated cellular energy metabolism often hinder the repair of diabetic skin wounds. Traditional treatment methods are typically insufficient in simultaneously addressing these complex factors, resulting in delayed wound healing and a high propensity for recurrence and chronic ulceration. This study developed an innovative strategy based on reactive oxygen species (ROS)-responsive nanoparticles loaded with an ultraviolet (UV)-light-responsive hydrogen sulfide (H2S) donor. This approach leverages the endogenous ROS present in diabetic wounds and external UV light as dual triggers to facilitate the controlled and stepwise release of H2S. The material design explicitly targets the critical challenges in diabetic wound repair, including the inhibition of chronic inflammation, oxidative stress reduction, microcirculation improvement, and support of cellular energy metabolism, thereby significantly accelerating wound healing. This adaptive release of signaling molecules effectively modulates the wound regeneration microenvironment, enhancing the repair process and offering a promising solution for diabetic skin wound management. STATEMENT OF SIGNIFICANCE: This study developed an innovative strategy based on reactive oxygen species (ROS)-responsive nanoparticles loaded with an ultraviolet (UV)-light-responsive hydrogen sulfide (H2S) donor. This approach leverages the endogenous ROS present in diabetic wounds and external UV light as dual triggers to facilitate the controlled and stepwise release of H2S. The material design explicitly targets the critical challenges in diabetic wound repair, including the inhibition of chronic inflammation, oxidative stress reduction, microcirculation improvement, and support of cellular energy metabolism, thereby significantly accelerating wound healing. This adaptive release of signaling molecules effectively modulates the wound regeneration microenvironment, enhancing the repair process and offering a promising solution for diabetic skin wound management.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Yuhang Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Changjiang Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Yifeng Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xinyue Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China; National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
14
|
Wang B, Wang Z, Zhou Z, Liu G, Jiang Z, Zheng M, Geng W. Inhibition of 6-phosphogluconate dehydrogenase suppresses esophageal squamous cell carcinoma growth and enhances the anti-tumor effects of metformin via the AMPK/mTOR pathway. Mol Cancer 2025; 24:97. [PMID: 40140842 PMCID: PMC11938747 DOI: 10.1186/s12943-025-02302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolic reprogramming plays a pivotal role in the development and progression of tumors. Tumor cells rely on glycolysis as their primary energy production pathway and effectively utilize biomolecules generated by the pentose phosphate pathway (PPP) for efficient biosynthesis. However, the role of 6-phosphogluconate dehydrogenase (6PGD), a crucial enzyme in the PPP, remains unexplored in esophageal squamous cell carcinoma (ESCC). In this study, we observed a significant upregulation of 6PGD expression in ESCC tissues, which correlated with an unfavorable prognosis among patients. The experiments demonstrated that knockdown of 6PGD induces oxidative stress and suppresses ESCC cell proliferation. Mechanistically, this is achieved through AMPK activation and subsequent inhibition of downstream mTOR phosphorylation. Moreover, physcion has been found to inhibit 6PGD activity and exert its anti-ESCC effect via the AMPK/mTOR pathway. Subsequently, we conducted both in vitro and in vivo experiments to validate the anticancer efficacy of combining metformin, an AMPK activator, with physcion. The results demonstrated a significantly enhanced inhibition of ESCC growth. This study elucidates the impact of 6PGD on ESCC cell proliferation along with its underlying molecular mechanisms, highlighting its potential as a therapeutic target for ESCC. Furthermore, we investigated a novel approach for improved anti-tumor therapy involving physcion and metformin. These findings will contribute new insights to clinical treatment strategies for ESCC while providing a theoretical foundation for developing molecular targeted therapies.
Collapse
Affiliation(s)
- Bei Wang
- Yancheng Key Laboratory of Molecular Epigenetics, The First people's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, 66 South People's Road, Yancheng, 224000, Jiangsu, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Zixuan Wang
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
- Department of Radiotherapy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baizi Pavilion, Nanjing, 210009, Jiangsu, China
| | - Zini Zhou
- Department of Radiotherapy, The First people's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, 66 South People's Road, Yancheng, 224000, Jiangsu, China
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Gui Liu
- Department of Radiotherapy, The First people's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, 66 South People's Road, Yancheng, 224000, Jiangsu, China
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Zhenyuan Jiang
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
- Department of Radiotherapy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baizi Pavilion, Nanjing, 210009, Jiangsu, China
| | - Mingyue Zheng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Wei Geng
- Yancheng Key Laboratory of Molecular Epigenetics, The First people's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, 66 South People's Road, Yancheng, 224000, Jiangsu, China.
- Department of Radiotherapy, The First people's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, 66 South People's Road, Yancheng, 224000, Jiangsu, China.
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
15
|
Li S, Kong L, Liang J, Ma T. [Research progress on glycolipid metabolism of Sertoli cell in the development of spermatogenic cell]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025; 54:257-265. [PMID: 40065698 PMCID: PMC12062943 DOI: 10.3724/zdxbyxb-2024-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 05/01/2025]
Abstract
Sertoli cells play an important role in the process of spermatogenesis, and the abnormalities in spermatogenesis are closely related to disruptions in glycolipid metabolism. The metabolic environment of Sertoli cells is hypoxic, with glycolysis and fatty acid β-oxidation being the primary metabolic pathways. In Sertoli cells, glycolysis produces lactate to provide energy for spermatogenic cells, while fatty acid β-oxidation generates ATP. Currently, the relationship between glycolipid metabolism in Sertoli cells and spermatogenic cell development, as well as the interplay between glucose and lipid metabolism remain unclear. Various hormones, including sex hormones, can affect glucose metabolism in Sertoli cells by endocrine regulation. The activation or inhibition of signaling pathways such as AMPK, mTOR, and Akt can alter the expression levels of glycolysis-related transporter genes and the synthesis of fatty acids, thereby affecting glycolipid metabolism in Sertoli cells. Some transcription factors such as PPARγ can regulate downstream fatty acid metabolism-related genes by directly binding to their response elements and promoting the oxidation of fatty acids in Sertoli cells. In this article we elaborate on the key factors influencing glycolipid metabolism in Sertoli cells and their interconnections, as well as their potential clinical implications, offering new insights for precisely targeted treatments of male infertility.
Collapse
Affiliation(s)
- Shuhao Li
- Institute of Translational Medicine, Yangzhou University Medical College, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China.
| | - Liang Kong
- Institute of Translational Medicine, Yangzhou University Medical College, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Jingyan Liang
- Institute of Translational Medicine, Yangzhou University Medical College, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China.
| | - Tan Ma
- Institute of Translational Medicine, Yangzhou University Medical College, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China.
| |
Collapse
|
16
|
Liu Y, Kong X, Sun Q, Cui T, Xu S, Ding C. Identification and validation of the common pathogenesis and hub biomarkers in Papillary thyroid carcinoma complicated by rheumatoid arthritis. PLoS One 2025; 20:e0317369. [PMID: 40063597 PMCID: PMC11892850 DOI: 10.1371/journal.pone.0317369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/19/2024] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Papillary thyroid carcinoma coexisting with rheumatoid arthritis is frequently observed in clinical patients, yet its pathogenesis has not been fully elucidated. This investigation sought to further explore the molecular underpinnings of these two diseases. METHODS Gene expression profiles for thyroid papillary carcinoma and rheumatoid arthritis patients were obtained from the Comprehensive Gene Expression Database (GEO). Following the discovery of shared differentially expressed genes (DEGs) between these two conditions, three separate analyses were conducted. These included functional annotation, the establishment of a protein‒protein interaction (PPI) network and module, and the identification of hub genes via coexpression analysis. The final step involved the validation of target genes via clinical specimens. RESULTS This study analyzed datasets from four GEO databases and identified 64 common DEGs. Functional enrichment analysis revealed that these genes are predominantly associated with pathways related to immunity and signal transduction. Protein‒protein interaction (PPI) network analysis revealed complex interactions among these differentially expressed genes and highlighted several genes that may play pivotal roles in shared pathological mechanisms, namely, CCR5, CD4, IL6, CXCL13, FOXM1, CXCL9, and CXCL10. CONCLUSION Our study highlights the shared pathogenesis between papillary thyroid cancer and rheumatoid arthritis. Shared pathways and crucial genes could offer novel perspectives for subsequent investigations into the mechanisms of these diseases.
Collapse
MESH Headings
- Humans
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/complications
- Thyroid Cancer, Papillary/pathology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/complications
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Protein Interaction Maps/genetics
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/complications
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Databases, Genetic
- Transcriptome
Collapse
Affiliation(s)
- Yingming Liu
- General Surgery Ward four, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangjun Kong
- General Surgery Ward four, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qianshu Sun
- General Surgery Ward four, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianxing Cui
- General Surgery Ward four, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shengnan Xu
- General Surgery Ward four, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Ding
- General Surgery Ward four, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Jin B, Miao Z, Pan J, Zhang Z, Yang Y, Zhou Y, Jin Y, Niu Z, Xu Q. The emerging role of glycolysis and immune evasion in ovarian cancer. Cancer Cell Int 2025; 25:78. [PMID: 40045411 PMCID: PMC11881340 DOI: 10.1186/s12935-025-03698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
Ovarian cancer (OC) is one of the three most common malignant tumors of the female reproductive system, with the highest mortality rate among gynecologic malignancies. Like other tumors, OC cells undergo metabolic reprogramming phenomenon and convert glucose metabolism into "aerobic glycolysis" and generate a high concentration of lactate, i.e., the "Warburg effect", which provides a large amount of energy and corresponding intermediary metabolites for their survival, reproduction and metastasis. Numerous studies have shown that targeted inhibition of aerobic glycolysis and lactate metabolism is a promising strategy to enhance the sensitivity of cancer cells to immunotherapy. Therefore, this review summarizes the metabolic features of glycolysis in OC cells and highlights how abnormal lactate concentration affects the differentiation, metabolism, and function of infiltrating immune cells, which contributes to immunosuppression, and how targeted inhibition of this phenomenon may be a potential strategy to enhance the therapeutic efficacy of OC.
Collapse
Affiliation(s)
- Bowen Jin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zehua Miao
- Dalian Medical University, Dalian, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Zhang
- Department of Oncology, Hangzhou Cancer Hospital, Zhejiang, Hangzhou, 310002, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yidong Zhou
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanxiang Jin
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Niu
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China.
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China.
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Mohanty SS, Warrier S, Rangarajan A. Rethinking AMPK: A Reversible Switch Fortifying Cancer Cell Stress-Resilience. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2025; 98:33-52. [PMID: 40165808 PMCID: PMC11952127 DOI: 10.59249/jkbb6336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Stress adaptation is an evolutionarily conserved mechanism that promotes survival in the face of adverse conditions. AMP-activated protein kinase (AMPK) is a highly conserved energy-sensing kinase found in nearly all eukaryotic cells. It maintains energy homeostasis by promoting catabolism and inhibiting anabolism. In the context of cancer, the role of AMPK is controversial. It was initially touted as a tumor suppressor due to its association with Liver Kinase B1 (LKB1) (an upstream regulator and a known tumor suppressor) and ensuing growth-suppressive actions. However, emerging studies across a variety of cancer types unambiguously reveal AMPK's pro-survival and, thus, tumor-promoting activity, especially under cancer-associated stresses such as hypoxia, nutrient deprivation, oxidative stress, matrix detachment, and chemotherapy. In cancer cells, AMPK is activated in response to stress-induced increases in the levels of adenosine monophosphate (AMP), Ca2+, or reactive oxygen species (ROS). Upon activation, AMPK engages in metabolic rewiring and crosstalk with signaling molecules to mobilize resources toward survival while compromising proliferation. Here, we posit that AMPK is a non-genetic "reversible switch," allowing cancer cells' phenotype to switch to dormant, stem-like, and drug-resistant states, thereby enabling tumor cell survival, pathological progression, and therapy resistance. This review underscores the critical role of AMPK in driving cancer cell stress resilience and survival, advocating for the strategic use of AMPK inhibitors to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Shraddha S. Mohanty
- Department of Developmental Biology and Genetics, Indian Institute of Science,
Bengaluru, India
| | - Shweta Warrier
- Department of Developmental Biology and Genetics, Indian Institute of Science,
Bengaluru, India
| | - Annapoorni Rangarajan
- Department of Developmental Biology and Genetics, Indian Institute of Science,
Bengaluru, India
| |
Collapse
|
19
|
Zhang Y, Tang J, Jiang C, Yi H, Guang S, Yin G, Wang M. Metabolic reprogramming in cancer and senescence. MedComm (Beijing) 2025; 6:e70055. [PMID: 40046406 PMCID: PMC11879902 DOI: 10.1002/mco2.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 04/01/2025] Open
Abstract
The rising trend in global cancer incidence has caused widespread concern, one of the main reasons being the aging of the global population. Statistical data show that cancer incidence and mortality rates show a clear upward trend with age. Although there is a commonality between dysregulated nutrient sensing, which is one of the main features of aging, and metabolic reprogramming of tumor cells, the specific regulatory relationship is not clear. This manuscript intends to comprehensively analyze the relationship between senescence and tumor metabolic reprogramming; as well as reveal the impact of key factors leading to cellular senescence on tumorigenesis. In addition, this review summarizes the current intervention strategies targeting nutrient sensing pathways, as well as the clinical cases of treating tumors targeting the characteristics of senescence with the existing nanodelivery research strategies. Finally, it also suggests sensible dietary habits for those who wish to combat aging. In conclusion, this review attempts to sort out the link between aging and metabolism and provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Yuzhu Zhang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Jiaxi Tang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Can Jiang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Hanxi Yi
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Shu Guang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Gang Yin
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Maonan Wang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| |
Collapse
|
20
|
Reinsalu L, Miller S, Auditano GL, Puurand M, Moreno‐Sanchez R, Saavedra E, Valvere V, Käämbre T. Energy Metabolism Profiling of Human Colorectal Tumours. J Cell Mol Med 2025; 29:e70462. [PMID: 40045444 PMCID: PMC11882391 DOI: 10.1111/jcmm.70462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/26/2025] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Colorectal cancer (CRC) is a significant global health burden, and its early detection is crucial. Novel diagnostic and prognostic methods are required for improving patient treatment, survival and quality of life. One promising approach is the analysis and understanding of the metabolic reprogramming undergone by cancer cells. Here, by analysing the changes in transcript and protein contents, activities, pathway flux and energy metabolite ratios in post-operative CRC tumours, in comparison to adjacent healthy tissue, the energy metabolism was characterised at the molecular and functional levels. Greater expression of glucose transporter 1 and lactate dehydrogenase A (LDH), together with increased protein content and activity of LDH in tumours, suggested a higher glycolytic capability. Hexokinase transcripts, protein and activity were similar, whereas monocarboxylate transport transcripts and protein contents were lower in tumours. The creatine kinase transcripts and the adenylate kinase protein contents were lower in tumours, suggesting a functional decrease in the CRC energy transfer pathway. Notwithstanding this, oxidative phosphorylation was fully functional and exhibited higher catalytic efficiency (Vmax/KmADP) in tumours, whereas the cellular energy charge was slightly lower in tumours. Remarkably, higher OxPhos catalytic efficiency correlated with advancing CRC clinical stage. The data revealed that CRC tumours exhibit a hybrid energy metabolism phenotype where both glycolysis and oxidative phosphorylation are highly active.
Collapse
Affiliation(s)
- Leenu Reinsalu
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - Sten Miller
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - Giuseppe Leonardo Auditano
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - Marju Puurand
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Rafael Moreno‐Sanchez
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
- Laboratorio de Control Metabólico, Carrera de BiologíaFacultad de Estudios Superiores‐ Iztacala, UNAMTlanepantlaEstado de MéxicoMexico
| | - Emma Saavedra
- Departamento de BioquímicaInstituto Nacional de Cardiología Ignacio ChávezMéxico CityMexico
| | - Vahur Valvere
- Oncology and Hematology Clinic, North Estonia Medical CentreTallinnEstonia
| | - Tuuli Käämbre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| |
Collapse
|
21
|
Avolio E, Bassani B, Campanile M, Mohammed KA, Muti P, Bruno A, Spinetti G, Madeddu P. Shared molecular, cellular, and environmental hallmarks in cardiovascular disease and cancer: Any place for drug repurposing? Pharmacol Rev 2025; 77:100033. [PMID: 40148035 DOI: 10.1016/j.pharmr.2024.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer and cardiovascular disease (CVD) are the 2 biggest killers worldwide. Specific treatments have been developed for the 2 diseases. However, mutual therapeutic targets should be considered because of the overlap of cellular and molecular mechanisms. Cancer research has grown at a fast pace, leading to an increasing number of new mechanistic treatments. Some of these drugs could prove useful for treating CVD, which realizes the concept of cancer drug repurposing. This review provides a comprehensive outline of the shared hallmarks of cancer and CVD, primarily ischemic heart disease and heart failure. We focus on chronic inflammation, altered immune response, stromal and vascular cell activation, and underlying signaling pathways causing pathological tissue remodeling. There is an obvious scope for targeting those shared mechanisms, thereby achieving reciprocal preventive and therapeutic benefits. Major attention is devoted to illustrating the logic, advantages, challenges, and viable examples of drug repurposing and discussing the potential influence of sex, gender, age, and ethnicity in realizing this approach. Artificial intelligence will help to refine the personalized application of drug repurposing for patients with CVD. SIGNIFICANCE STATEMENT: Cancer and cardiovascular disease (CVD), the 2 biggest killers worldwide, share several underlying cellular and molecular mechanisms. So far, specific therapies have been developed to tackle the 2 diseases. However, the development of new cardiovascular drugs has been slow compared with cancer drugs. Understanding the intersection between pathological mechanisms of the 2 diseases provides the basis for repurposing cancer therapeutics for CVD treatment. This approach could allow the rapid development of new drugs for patients with CVDs.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Marzia Campanile
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Khaled Ak Mohammed
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom; Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paola Muti
- IRCCS MultiMedica, Milan, Italy; Department of Biomedical, Surgical and Dental Health Sciences, University of Milan, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy; Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Paolo Madeddu
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| |
Collapse
|
22
|
Yao Y, Luo Y, Liang X, Zhong L, Wang Y, Hong Z, Song C, Xu Z, Wang J, Zhang M. The role of oxidative stress-mediated fibro-adipogenic progenitor senescence in skeletal muscle regeneration and repair. Stem Cell Res Ther 2025; 16:104. [PMID: 40025535 PMCID: PMC11872320 DOI: 10.1186/s13287-025-04242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Stem cells play a pivotal role in tissue regeneration and repair. Skeletal muscle comprises two main stem cells: muscle stem cells (MuSCs) and fibro-adipogenic progenitors (FAPs). FAPs are essential for maintaining the regenerative milieu of muscle tissue and modulating the activation of muscle satellite cells. However, during acute skeletal muscle injury, the alterations and mechanisms of action of FAPs remain unclear. METHODS we employed the GEO database for bioinformatics analysis of skeletal muscle injury. A skeletal muscle injury model was established through cardiotoxin (CTX, 10µM, 50µL) injection into the tibialis anterior (TA) of C57BL/6 mice. Three days post-injury, we extracted the TA, isolated FAPs (CD31-CD45-PDGFRα+Sca-1+), and assessed the senescence phenotype through SA-β-Gal staining and Western blot. Additionally, we established a co-culture system to evaluate the capacity of FAPs to facilitate MuSCs differentiation. Finally, we alleviated the senescent of FAPs through in vitro (100 µM melatonin, 5 days) and in vivo (20 mg/kg/day melatonin, 15 days) administration experiments, confirming melatonin's pivotal role in the regeneration and repair processes of skeletal muscle. RESULTS In single-cell RNA sequencing analysis, we discovered the upregulation of senescence-related pathways in FAPs following injury. Immunofluorescence staining revealed the co-localization of FAPs and senescent markers in injured muscles. We established the CTX injury model and observed a reduction in the number of FAPs post-injury, accompanied by the manifestation of a senescent phenotype. Melatonin treatment was found to attenuate the injury-induced senescence of FAPs. Further co-culture experiments revealed that melatonin facilitated the restoration of FAPs' capacity to promote myoblast differentiation. Through GO and KEGG analysis, we found that the administration of melatonin led to the upregulation of AMPK pathway in FAPs, a pathway associated with antioxidant stress response. Finally, drug administration experiments corroborated that melatonin enhances skeletal muscle regeneration and repair by alleviating FAP senescence in vivo. CONCLUSION In this study, we first found FAPs underwent senescence and redox homeostasis imbalance after injury. Next, we utilized melatonin to enhance FAPs regenerative and repair capabilities by activating AMPK signaling pathway. Taken together, this work provides a novel theoretical foundation for treating skeletal muscle injury.
Collapse
Affiliation(s)
- Yuqing Yao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yusheng Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaomei Liang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Li Zhong
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yannan Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, China
| | - Zhengchao Hong
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Chao Song
- School of Electronics and Communication Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, China
| | - Zeyu Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, China
| | - Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Miao Zhang
- Department of Physical Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
23
|
Basheer HA, Salman NM, Abdullah RM, Elsalem L, Afarinkia K. Metformin and glioma: Targeting metabolic dysregulation for enhanced therapeutic outcomes. Transl Oncol 2025; 53:102323. [PMID: 39970627 DOI: 10.1016/j.tranon.2025.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Glioma, a highly aggressive form of brain cancer, continues to pose significant therapeutic challenges in the field of medicine. Its invasive nature and resistance to traditional treatments make it particularly difficult to combat. This review examines the potential of metformin, a commonly prescribed antidiabetic medication, as a promising new treatment option for glioma. The potential of metformin to target crucial metabolic pathways in cancer cells presents an encouraging approach to improve therapeutic outcomes. The review explores the complexities of metabolic reprogramming in glioma and metformin's role in inhibiting these metabolic pathways. Preclinical studies demonstrate metformin's efficacy in reducing tumor growth and enhancing the sensitivity of glioma cells to chemotherapy and radiotherapy. Furthermore, clinical studies highlight metformin's potential in improving progression-free survival and overall survival rates in glioma patients. The review also addresses the synergistic effects of combining metformin with other therapeutic agents, such as temozolomide and radiotherapy, to overcome drug resistance and improve treatment efficacy. Despite the promising findings, the review acknowledges the need for further clinical trials to establish optimal dosing regimens, understand the molecular mechanisms underlying metformin's antitumor effects, and identify patient populations that would benefit the most from metformin-based therapies. Additionally, the potential side effects and the long-term impact of metformin on Glioma patients require careful evaluation. In conclusion, this review underscores the potential of metformin as a repurposed drug in glioma treatment, emphasizing its multifaceted role in targeting metabolic dysregulation. Metformin holds promise as part of a combination therapy approach to improve the therapeutic landscape of glioma and offers hope for better patient outcomes.
Collapse
Affiliation(s)
- Haneen A Basheer
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan.
| | - Nadeem M Salman
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Rami M Abdullah
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Lina Elsalem
- Jordan University of Science and Technology, Faculty of Medicine, Department of Pharmacology, Irbid, Jordan
| | - Kamyar Afarinkia
- School of Medicine and Biosciences, University of West London, London W5 5RF, UK
| |
Collapse
|
24
|
Zhan T, Liu JX, Huang M, Chen MT, Tian XR, Yang XL, Tan J, Zou YL, Han Z, Chen W, Tian X, Huang XD. ILF3 inhibits p-AMPK expression to drive non-alcoholic fatty liver disease progression. World J Hepatol 2025; 17:101691. [PMID: 40027551 PMCID: PMC11866148 DOI: 10.4254/wjh.v17.i2.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/03/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a disease of increasing global prevalence and an important risk factor for the development of insulin resistance, type 2 diabetes, non-alcoholic steatohepatitis and hepatocellular carcinoma, but the pathogenesis is not clear. The aim of this study was to explore the role of ILF3 in NAFLD. AIM To investigate the molecular processes through which ILF3 facilitates the advancement of NAFLD by inhibiting the expression of p-AMPK. This exploration seeks to provide new insights into the etiology of NAFLD and evaluate the potential of ILF3 as a diagnostic marker and potential treatment focus for future interventions. METHODS In vitro and in vivo experiments were conducted using HepG2 cells and NAFLD animal models. The effects of ILF3 knockdown on lipid synthesis and triglyceride (TG) secretion were examined by analyzing the expression levels of p-AMPK. Additionally, the roles of ILF3 and the AMPK signaling pathway were verified using techniques such as Western blotting, quantitative reverse transcription PCR, Oil Red O staining, and immunohistochemistry. RESULTS Investigations revealed an increase in ILF3 Levels within both HepG2 cells and animal models of NAFLD, concurrently with a decrease in p-AMPK expression. Knocking down ILF3 activated the AMPK pathway, reducing lipid production and TG secretion in hepatocytes, thereby mitigating the advancement of NAFLD. CONCLUSION ILF3 promotes the evolution of NAFLD by inhibiting the expression of p-AMPK. The knockdown of ILF3 activates the AMPK signaling pathway, alleviating the severity of NAFLD. These findings underscore the function of ILF3 in the pathogenesis of NAFLD and demonstrate its viability as a treatment focus and diagnostic indicator.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Jia-Xi Liu
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Min Huang
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Ming-Tao Chen
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Xiao-Rong Tian
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Xiu-Lin Yang
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Jie Tan
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Yan-Li Zou
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Zheng Han
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Wei Chen
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China
| | - Xiao-Dong Huang
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430000, Hubei Province, China.
| |
Collapse
|
25
|
Li C, Yuan Y, Jia Y, Zhou Q, Wang Q, Jiang X. Cellular senescence: from homeostasis to pathological implications and therapeutic strategies. Front Immunol 2025; 16:1534263. [PMID: 39963130 PMCID: PMC11830604 DOI: 10.3389/fimmu.2025.1534263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Cellular aging is a multifactorial and intricately regulated physiological process with profound implications. The interaction between cellular senescence and cancer is complex and multifaceted, senescence can both promote and inhibit tumor progression through various mechanisms. M6A methylation modification regulates the aging process of cells and tissues by modulating senescence-related genes. In this review, we comprehensively discuss the characteristics of cellular senescence, the signaling pathways regulating senescence, the biomarkers of senescence, and the mechanisms of anti-senescence drugs. Notably, this review also delves into the complex interactions between senescence and cancer, emphasizing the dual role of the senescent microenvironment in tumor initiation, progression, and treatment. Finally, we thoroughly explore the function and mechanism of m6A methylation modification in cellular senescence, revealing its critical role in regulating gene expression and maintaining cellular homeostasis. In conclusion, this review provides a comprehensive perspective on the molecular mechanisms and biological significance of cellular senescence and offers new insights for the development of anti-senescence strategies.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Yixiao Yuan
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - YingDong Jia
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Zhou
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Xiulin Jiang
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Zhong ZT, Wang XY, Pan Y, Zhou K, Chen JH, Gao YQ, Dai B, Zhou ZL, Wang RQ. AMPK: An energy sensor for non-small cell lung cancer progression and treatment. Pharmacol Res 2025; 212:107592. [PMID: 39805353 DOI: 10.1016/j.phrs.2025.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Lung cancer (LC) is the leading cause of cancer-related morbidity and mortality in China, with non-small cell lung cancer (NSCLC) accounting for 85 % of the overall lung cancer cases. AMP-activated protein kinase (AMPK) is a key regulator of energy balance and homeostasis, and its dysregulation is a common feature in various malignancies, particularly in NSCLC with mutations in Liver kinase B1 (LKB1). Studies have shown that the AMPK signalling pathway has a dual role in NSCLC progression, both inhibiting and promoting the progression of malignant tumours. Therefore, drugs targeting the AMPK signalling pathway may hold significant promise for therapeutic application in NSCLC. This review aims to examine the manifestations and mechanisms by which AMPK and its associated signalling molecules influence NSCLC progression and treatment. Firstly, we discuss the critical importance of AMPK within the mutational context of NSCLC. Secondly, we summarise the drugs and related substances that modulate the AMPK signalling pathway in NSCLC and evaluate the evidence from preclinical studies on combination AMPK-targeted therapies to address the issue of drug resistance in NSCLC under current clinical treatments. In summary, this paper highlights the critical importance of developing AMPK-targeted drugs to enhance therapeutic efficacy in NSCLC, as well as the potential for applying these drugs in clinical therapy to overcome drug resistance.
Collapse
Affiliation(s)
- Zhi-Ting Zhong
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Xu-Yan Wang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Ying Pan
- Department of Oncology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Ke Zhou
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Jing-Hui Chen
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Yu-Qi Gao
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Bo Dai
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan City, Guangdong Province 528200, China.
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China.
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China.
| |
Collapse
|
27
|
Xu L, Shen Y, Zhang C, Shi T, Sheng X. Exploring the Link Between Noncoding RNAs and Glycolysis in Colorectal Cancer. J Cell Mol Med 2025; 29:e70443. [PMID: 39993964 PMCID: PMC11850098 DOI: 10.1111/jcmm.70443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Glycolysis is implicated in the onset and progression of colorectal cancer (CRC) through its influence on the proliferation, invasiveness, chemoresistance and immune system evasion of neoplasm cells. Increasing evidence has shown that the abnormal expression of noncoding RNAs (ncRNAs), especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), in CRC is closely related to glycolysis. In this review, we present a synthesis of the latest research insights into the modulatory roles and distinct pathways of ncRNAs in the glycolytic process in CRC. This knowledge may pave the way for identifying novel therapeutic targets, as well as novel prognostic and diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Liang Xu
- Neonatal Department, Suzhou Ninth People's HospitalSuzhou Ninth Hospital Affiliated to Soochow UniversitySuzhouJiangsuChina
| | - Yu Shen
- Department of General Surgery, Suzhou Ninth People's HospitalSuzhou Ninth Hospital Affiliated to Soochow UniversitySuzhouJiangsuChina
| | - Chuanqiang Zhang
- Department of General SurgeryThe Affiliated Jiangsu Shengze Hospital of Nanjing Medical UniversitySuzhouChina
- Shengze Clinical Medical CollegeKangda College of Nanjing Medical UniversityNanjingChina
| | - Tongguo Shi
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xuejuan Sheng
- Health Management Center, Suzhou Ninth People's HospitalSuzhou Ninth Hospital Affiliated to Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
28
|
Liu X, Tuerxun H, Zhao Y, Li Y, Wen S, Li X, Zhao Y. Crosstalk between ferroptosis and autophagy: broaden horizons of cancer therapy. J Transl Med 2025; 23:18. [PMID: 39762980 PMCID: PMC11702107 DOI: 10.1186/s12967-024-06059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Ferroptosis and autophagy are two main forms of regulated cell death (RCD). Ferroptosis is a newly identified RCD driven by iron accumulation and lipid peroxidation. Autophagy is a self-degradation system through membrane rearrangement. Autophagy regulates the metabolic balance between synthesis, degradation and reutilization of cellular substances to maintain intracellular homeostasis. Numerous studies have demonstrated that both ferroptosis and autophagy play important roles in cancer pathogenesis and cancer therapy. We also found that there are intricate connections between ferroptosis and autophagy. In this article, we tried to clarify how different kinds of autophagy participate in the process of ferroptosis and sort out the common regulatory pathways between ferroptosis and autophagy in cancer. By exploring the complex crosstalk between ferroptosis and autophagy, we hope to broaden horizons of cancer therapy.
Collapse
Affiliation(s)
- Xingyu Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Halahati Tuerxun
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yixin Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yawen Li
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shuhui Wen
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xi Li
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
29
|
Ren T, Wang J, Ma Y, Huang Y, Yoon S, Mu L, Li R, Wang X, Zhang L, Li P, Ji L. Preparation of pH-Responsive Tanshinone IIA-Loaded Calcium Alginate Nanoparticles and Their Anticancer Mechanisms. Pharmaceutics 2025; 17:66. [PMID: 39861714 PMCID: PMC11768977 DOI: 10.3390/pharmaceutics17010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of Salvia miltiorrhiza Bunge (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. Methods: To overcome this limitation, we developed a calcium alginate hydrogel (CA) as a hydrophilic carrier for Tan IIA, which significantly improved its solubility. We also prepared nanoparticles with pH-responsive properties to explore their potential for controlled drug delivery. The physicochemical properties of Tan IIA/CA nanoparticles were evaluated, including their size, stability, and release profile. We also utilized RNA sequencing to further investigate the underlying anticancer mechanisms of Tan IIA/CA nanoparticles. Results: The Tan IIA/CA nanoparticles demonstrated enhanced solubility and exhibited potent anticancer activity in vitro. Additionally, the nanoparticles showed promising pH-responsive behavior, which is beneficial for controlled release applications. Further investigation into the molecular mechanisms revealed that the anticancer effects of Tan IIA/CA were mediated through apoptosis, ferroptosis, and autophagy pathways. Conclusions: This study confirms the anticancer potential and mechanisms of Tan IIA, while also presenting an innovative approach to enhance the solubility of this poorly soluble compound. The use of CA-based nanoparticles could be a valuable strategy for improving the therapeutic efficacy of Tan IIA in cancer treatment.
Collapse
Affiliation(s)
- Tianying Ren
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China;
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jing Wang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People’s Hospital, Liaocheng 252000, China;
| | - Yingxin Ma
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Yichen Huang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Somy Yoon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Lijun Mu
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Ru Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Lina Zhang
- College of Medicine, Liaocheng Vocational and Technical College, Liaocheng 252000, China;
| | - Pan Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Lusha Ji
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China;
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| |
Collapse
|
30
|
Zhang R, Dai F, Deng S, Zeng Y, Wang J, Liu G. Reprogramming of Glucose Metabolism for Revisiting Hepatocellular Carcinoma Resistance to Transcatheter Hepatic Arterial Chemoembolization. Chembiochem 2025; 26:e202400719. [PMID: 39501124 DOI: 10.1002/cbic.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/04/2024] [Indexed: 11/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is recognized globally as one of the most lethal tumors, presenting a significant menace to patients' lives owing to its exceptional aggressiveness and tendency to recur. Transcatheter hepatic arterial chemoembolization (TACE) therapy, as a first-line treatment option for patients with advanced HCC, has been proven effective. However, it is disheartening that nearly 40 % of patients exhibit resistance to this therapy. Consequently, this review delves into the metabolic aspects of glucose metabolism to explore the underlying mechanisms behind TACE treatment resistance and to propose potentially fruitful therapeutic strategies. The ultimate objective is to present novel insights for the development of personalized treatment methods targeting HCC.
Collapse
Affiliation(s)
- Ruijie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Fan Dai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Songhan Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jinyang Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
31
|
Jiang M, Li Z, Qin X, Chen L, Zhu G. Regulatory Role of Flavonoid Baicalin from Scutellaria baicalensis on AMPK: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:771-801. [PMID: 40374371 DOI: 10.1142/s0192415x25500296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitous sensor of cellular energy and nutrient status in eukaryotic cells. It serves an essential function in the modulation of energy balance and metabolism homeostasis through its regulation of carbohydrate metabolism, lipid metabolism and protein metabolism. The dysregulation of AMPK is closely related to a series of systemic diseases, affecting multiple organs and tissues. Baicalin is a natural compound derived from the dry raw root of Scutellaria baicalensis, and it has been found to exhibit several potential pharmacological actions. These include hepatoprotective effects, anti-inflammation effects and anti-tumor effects. These biological activities are related to the regulatory effect of baicalin on the host metabolism, which is closely associated with AMPK modulation. In this review, we provide an overview of the regulatory effect of baicalin on AMPK and its upstream and downstream signaling pathways. The pharmacological properties and underlying mechanism of baicalin for regulating AMPK were summarized with regards to four aspects: regulatory effect of baicalin on AMPK in lipid metabolism and glucose metabolism, regulatory effect of baicalin on AMPK in its pharmacological effect of anti-tumor and anti-inflammation. As a natural compound, baicalin has the potential for the management of certain AMPK-related diseases.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhuoneng Li
- Centers for Disease Control and Prevention of Wuhan, Wuhan, China
| | - Xu Qin
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
32
|
Shahrokhi Nejad S, Razi S, Rezaei N. The role of AMPK in pancreatic cancer: from carcinogenesis to treatment. Clin Transl Oncol 2025; 27:70-82. [PMID: 38926257 DOI: 10.1007/s12094-024-03572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Pancreatic cancer has doubled over the previous two decades. Routine therapies are becoming incredibly resistant and failing to compensate for the burden caused by this aggressive neoplasm. As genetic susceptibility has always been a highlighted concern for this disease, identifying the molecular pathways involved in the survival and function of pancreatic cancer cells provides insight into its variant etiologies, one of which is the role of AMPK. This regulating factor of cell metabolism is crucial in the homeostasis and growth of the cell. Herein, we review the possible role of AMPK in pancreatic cancer while considering its leading effects on glycolysis and autophagy. Then, we assess the probable therapeutic agents that have resulted from the suggested pathways. Studying the underlying genetic changes in pancreatic cancer provides a chance to detect and treat patients suffering from advanced stages of the disease, and those who have given up their hope on conventional therapies can gain an opportunity to combat this cancer.
Collapse
Affiliation(s)
- Shahrzad Shahrokhi Nejad
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
33
|
Wang YR, Zhang XX, Chen XX, Yin XH, Yang M, Jiang K, Liu SC. Enhancement of Bone Repair in Diabetic Rats with Metformin-Modified Silicified Collagen Scaffolds. Adv Healthc Mater 2025; 14:e2401430. [PMID: 39177124 DOI: 10.1002/adhm.202401430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/14/2024] [Indexed: 08/24/2024]
Abstract
Regenerating bone defects in diabetic rats presents a significant challenge due to the detrimental effects of reactive oxygen species and impaired autophagy on bone healing. To address these issues, a metformin-modified biomimetic silicified collagen scaffold is developed utilizing the principles of biomimetic silicification. In vitro and in vivo experiments demonstrated that the scaffold enhanced bone tissue regeneration within the diabetic microenvironment through the release of dual bio-factors. Further analysis reveals a potential therapeutic mechanism whereby these dual bio-factors synergistically promoted osteogenesis in areas of diabetic bone defects by improving mitochondrial autophagy and maintaining redox balance. The present study provides critical insights into the advancement of tissue engineering strategies aimed at bone regeneration in diabetic patients. The study also sheds light on the underlying biological mechanisms.
Collapse
Affiliation(s)
- Yi-Rong Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xiao-Xia Zhang
- Xi'an International University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xu-Xu Chen
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Xin-Hua Yin
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Ming Yang
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Kuo Jiang
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Shi-Chang Liu
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| |
Collapse
|
34
|
Liu P, Zhang Z, Chen Q. [Roles of ferroptosis in the development of diabetic nephropathy]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:708-714. [PMID: 39757741 PMCID: PMC11736350 DOI: 10.3724/zdxbyxb-2024-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/28/2024] [Indexed: 01/07/2025]
Abstract
Diabetic nephropathy is a common microvascular complication of diabetes mellitus and one of the main causes of death in patients with diabetes mellitus. Ferroptosis is a newly discovered iron-dependent regulated cell death, which may contribute to the pathogenesis and development of diabetic nephropathy. Adenosine monophosphate-activated protein kinase (AMPK)-mediated ferroptosis-related signaling pathways can slow down the progression of diabetic nephropathy, but excessive activation of AMPK signaling pathway may induce cells to undergo autophagic death. Activation of the signaling pathway mediated by nuclear factor-erythroid 2-related factor (Nrf) 2 and heme oxygenase (HO)-1 can inhibit ferroptosis of cells and alleviate diabetic nephropathy. However, the regulatory effect of HO-1 on ferroptosis is bidirectional, and activation of HIF-1α/HO-1 pathway may lead to intracellular iron overload and ultimately promote ferroptosis. Transforming growth factor (TGF)-β1 mediated signaling pathways can accelerate lipid peroxidation by down-regulating the levels of SLC7A11/GSH/GPX4. The ferroptosis-related signaling pathways mediated by exosome lncRNAs/circRNAs/miRNAs are also involved in the pathogenesis and development of diabetic nephropathy. In addition, signaling pathways mediated by stimulator of interferon gene (STING) and the novel ferroptosis promoter acyl-CoA synthetase long-chain family (ACSL) 1 can induce ferroptosis to promote the progression of diabetic nephropathy. In this review, we focus on the roles of ferroptosis in diabetic nephropathy through the signaling pathways mediated by AMPK, Nrf2/HO-1, TGF-β and exosomes, to elaborate the pathogenesis and development of diabetic nephropathy, and the potential therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Pan Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Zhengdong Zhang
- Department of Orthopedics, School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
35
|
Zhou Y, Lei T, Tang Z, Guo P, Huang D, Luo Z, Luo L. Increased phosphorylation of AMPKα1 S485 in colorectal cancer and identification of PKCα as a responsible kinase. Cancer Lett 2024; 611:217418. [PMID: 39725146 DOI: 10.1016/j.canlet.2024.217418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
The present study attempts to examine the biological effect of phosphorylation of AMPKα1 S485 and identify the responsible kinase in colon cancer cells. Thus, our results showed that S485 phosphorylation was increased in colorectal cancer specimens as compared with adjacent normal tissues, which was inversely correlated to phosphorylation of T172. Our study further revealed that phosphorylation of S485 on AMPKα1 plays a promoting role in cell proliferation, colony formation, migration and growth of Xenograft tumor. Furthermore, we identified PKCα as a kinase specific for phosphorylation of S485. First, under the basal condition, S485 phosphorylation was blunted by Gö6983, a pan PKC inhibitor, but not by Akt inhibitor, MK2206, although the latter countered off the insulin-stimulated phosphorylation. Second, the phosphorylation was enhanced by PMA and attenuated by sgRNA for PKCα, but not by PKCγ and PKCδ, neither by siRNA for Akt1. Third, the phosphorylation was suppressed by shRNA for PLCγ1. Fourth, the phosphorylation was enhanced by ectopically expressing a constitutively active mutant of PKCα, but not PKCγ. Finally, the increase of S485 phosphorylation by high glucose or palmitic acid was almost completely abolished by Gö6983. Altogether, our data reinforced the tumor suppressive function of AMPK and demonstrated that PKCα is a major kinase responsible for phosphorylation of S485, which contributes to one of the mechanisms underlying the regulation of AMPK in cancer cells in response to nutritional conditions.
Collapse
Affiliation(s)
- Yan Zhou
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tingting Lei
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhimin Tang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Pei Guo
- Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Deqiang Huang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhijun Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, 1299 Qianhu Avenue, Nanchang, Jiangxi, China.
| | - Linyu Luo
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
36
|
Lin Q, Wang Z, Wang J, Xu M, Zhang X, Sun P, Yuan Y. Innovative strategies to optimise colorectal cancer immunotherapy through molecular mechanism insights. Front Immunol 2024; 15:1509658. [PMID: 39717768 PMCID: PMC11663906 DOI: 10.3389/fimmu.2024.1509658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024] Open
Abstract
Background Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally. The heterogeneity of the tumor microenvironment significantly influences patient prognosis, while the diversity of tumor cells shapes its unique characteristics. A comprehensive analysis of the molecular profile of tumor cells is crucial for identifying novel molecular targets for drug sensitivity analysis and for uncovering the pathophysiological mechanisms underlying CRC. Methods We utilized single-cell RNA sequencing technology to analyze 13 tissue samples from 4 CRC patients, identifying key cell types within the tumor microenvironment. Intercellular communication was assessed using CellChat, and a risk score model was developed based on eight prognostic genes to enhance patient stratification for immunotherapeutic approaches. Additionally, in vitro experiments were performed on DLX2, a gene strongly associated with poor prognosis, to validate its potential role as a therapeutic target in CRC progression. Results Eight major cell types were identified across the tissue samples. Within the tumor cell population, seven distinct subtypes were recognized, with the C0 FXYD5+ tumor cells subtype being significantly linked to cancer progression and poor prognosis. CellChat analysis indicated extensive communication among tumor cells, fibroblasts, and immune cells, underscoring the complexity of the tumor microenvironment. The risk score model demonstrated high accuracy in predicting 1-, 3-, and 5-year survival rates in CRC patients. Enrichment analysis revealed that the C0 FXYD5+ tumor cell subtype exhibited increased energy metabolism, protein synthesis, and oxidative phosphorylation, contributing to its aggressive behavior. In vitro experiments confirmed DLX2 as a critical gene associated with poor prognosis, suggesting its viability as a target for improving drug sensitivity. Conclusion In summary, this study advances our understanding of CRC progression by identifying critical tumor subtypes, molecular pathways, and prognostic markers that can inform innovative strategies for predicting and enhancing drug sensitivity. These findings hold promise for optimizing immunotherapeutic approaches and developing new targeted therapies, ultimately aiming to improve patient outcomes in CRC.
Collapse
Affiliation(s)
- Quanjun Lin
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiqiang Wang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jue Wang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Xu
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihang Yuan
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Qi Y, Zhu H, Chen Y, Zhang Y, Jin S, Xu X, Ma X, Chen L, Zhao M, Zhu H, Yan P. 4-Hydroxydictyolactone alleviates cerebral ischemia injury by regulating neuroinflammation and autophagy via AMPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156157. [PMID: 39427520 DOI: 10.1016/j.phymed.2024.156157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Cerebral ischemia (CI), a cerebrovascular disorder, is a major contributor to disability and mortality. Marine-derived compounds are an important source of new neuroprotective drug candidates. Xenicane-type diterpenes from brown algae of the genus Dictyota have exhibited potential neuroprotective effects against CI injury, attributed to their antioxidant properties. However, whether there are other underlying neuroprotective mechanisms of xenicane diterpenes against CI is still ambiguous. PURPOSE This study aims to elucidate the neuroprotective efficacy and mechanism of 4-hydroxydictyolactone (HDTL) in the treatment of CI. METHODS The LPS-induced BV2 cell model was used for anti-neuroinflammatory activity assay. Tandem Mass Tag (TMT)-based quantitative proteomics was employed to identify underlying mechanisms. The OGD/R-induced SH-SY5Y cell model and a MCAO mice model were used to assess the neuroprotective effect of HDTL against CI in vitro and in vivo. RESULTS HDTL reduced inflammation in LPS-stimulated BV2 cells by inhibiting the IKK/IκB/NF-κB pathway and by enhancing AMPK phosphorylation. Additionally, in SH-SY5Y cells treated with OGD/R, HDTL facilitated autophagy and reduced apoptosis. The neuroprotective properties of HDTL were abrogated in AMPK- silenced SH-SY5Y cells. In MCAO mice, HDTL ameliorated CI injury as evidenced by decreases in neurological deficit scores and cerebral infarction. HDTL also promoted autophagy and reduced apoptosis in vivo through both the AMPK/mTOR and IKK/IκB/NF-κB pathways. CONCLUSION HDTL exhibits neuroprotective effects through regulating the AMPK/mTOR and IKK/IκB/NF-κB pathways. These findings suggest that HDTL is a promising therapeutic candidate for CI treatment.
Collapse
Affiliation(s)
- Yu Qi
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Haoyun Zhu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yinqi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yuanlong Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Shengjie Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xiao Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xiaohong Ma
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Leiqing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Haoru Zhu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| | - Pengcheng Yan
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| |
Collapse
|
38
|
Wang Z, Zhang Z, Azami NLB, Hui D, Wang Z, Xie D, Ye G, Liu N, Sun M. An Integrated Approach Using Network Pharmacology and Experimental Validation to Reveal the Therapeutic Mechanism of Weifuchun in Treating Gastric Cancer. J Med Food 2024; 27:1168-1182. [PMID: 39142714 DOI: 10.1089/jmf.2024.k.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy affecting the gastrointestinal tract. Weifuchun (WFC), a Chinese herbal prescription comprising red ginseng, Isodon amethystoides, and Fructus aurantii, is widely used in China for various chronic stomach disorders. However, its therapeutic role and mechanisms in treating GC remain unexplored. In a randomized, controlled, single-blind trial involving postoperative stages II and III GC patients, we compared adjuvant chemotherapy plus WFC (chemo plus WFC group) to adjuvant chemotherapy alone (chemo group) over 6 months. We assessed recurrence and metastasis rates and used systematic pharmacology to predict WFC's active components, screen target genes, and construct network interaction maps, were validated through in vitro experiments. The combined therapy significantly reduced 2-year recurrence and metastasis rates. We identified 67 active ingredients, 211 drug target proteins, 1539 disease targets, 105 shared targets, and 188 signaling pathways associated with WFC. WFC impacted cell apoptosis, proliferation, and the inflammatory response, with top tumor-related signaling pathways involving 5'-adenosine monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinase, nuclear factor kappa-B (NFKB), and apoptosis. In vitro, WFC inhibited proliferation and migration while inducing apoptosis in GC cells, reduced VEGFA, TNFa, and IL6 expressions. Immunocytochemistry showed increased p-AMPK staining, and molecular analysis revealed decreased NFKB and phosphorylation of extracellular-regulated protein kinase 1/2 (ERK1/2) levels, increased p-AMPK and BAX protein levels in WFC-treated cells, effects reversed by Compound C. WFC's antitumor effects involve AMPK-dependent ERK1/2 and NFKB pathways, regulating proliferation, migration, and apoptosis in GC cells.
Collapse
Affiliation(s)
- Ziyuan Wang
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhipeng Zhang
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Institute of Oncology, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Nisma Lena Bahaji Azami
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dengcheng Hui
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Wang
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Xie
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guan Ye
- Central Research Institute of Shanghai Pharmaceutical Group Co, Ltd, Shanghai, China
| | - Ningning Liu
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Huang J, Tang Y, Li Y, Wei W, Kang F, Tan S, Lin L, Lu X, Wei H, Wang N. BBOX1 mediates metabolic reprogramming driven by hypoxia and participates in the malignant progress of high-grade serous ovarian cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119830. [PMID: 39181218 DOI: 10.1016/j.bbamcr.2024.119830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most aggressive type of ovarian cancer that causes great threats to women's health. Therefore, we performed RNA-sequencing technology in clinical samples to explore the molecular mechanisms underlying the progression of HGSOC. We then noticed BBOX1, a kind of 2-oxoglutarate-dependent enzyme that is highly expressed in HGSOC tumor tissues. Functional studies showed that BBOX1 promotes cell survival and growth of HGSOC cells in vitro and in vivo. Overexpression of the wild-type BBOX1 promoted cell proliferation, but the Asn191 and Asn292 mutation (key amino acid for the enzymatic activity of BBOX1) counteracted this effect (P < 0.05), which indicated that the promotion effect of BBOX1 on HGSOC cell proliferation was related to its catalytic activity. Downregulation of BBOX1 reduced the activity of the mTORC1 pathway, and decreased protein expression of IP3R3 and phosphorylation level of S6KThr389. Metabolomics analysis revealed that BBOX1 is implicated in the glucose metabolism, amino acid metabolism, and nucleotide metabolism of HGSOC cells. In addition, inhibition of BBOX1 suppressed HGSOC cell glycolysis and decreased glucose consumption, lactate production, and the expression of key factors in glycolysis. Finally, we found hypoxia induced the expression of BBOX1 in HGSOC cells and confirmed that BBOX1 could be transcriptionally activated by hypoxia-inducible factor-1α, which could directly bind to the BBOX1 promoter. In summary, BBOX1 mediated the metabolic reprogramming driven by hypoxia, and affected cell metabolism through the mTORC1 pathway, thus acting as an oncogene during HGSOC development.
Collapse
Affiliation(s)
- Jiazhen Huang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Ying Tang
- Department of Pathology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yibing Li
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Wei Wei
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Fuli Kang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Shuang Tan
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Lin Lin
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Xiaohang Lu
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Heng Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Ning Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
40
|
Orobator ON, Mertens RT, Obisesan OA, Awuah SG. Energy and endoplasmic reticulum stress induction by gold(III) dithiocarbamate and 2-deoxyglucose synergistically trigger cell death in breast cancer. J Biol Chem 2024; 300:107949. [PMID: 39481597 PMCID: PMC11647619 DOI: 10.1016/j.jbc.2024.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
The elusiveness of triple-negative breast cancer from targeted therapy has redirected focus toward exploiting the metabolic shortcomings of these highly metastatic subtypes of breast cancer. Cueing from the metabolic heterogeneity of TNBC and the exposition of the dual dependence of some TNBCs on OXPHOS and glycolysis for ATP, we herein report the efficacy of cotreatment of TNBCs with an OXPHOS inhibitor, 2a and 2DG, a potent glycolysis inhibitor. 2a-2DG cotreatment inhibited TNBC cell proliferation with IC50 of ∼5 to 36 times lower than that of 2a alone and over 5000 times lower than IC50 of 2DG alone. 2a-2DG cotreatment suppressed mitochondrial ATP production and significantly induced AMPK activation. Mechanistic studies revealed the distinct yet synergistic contributions of 2a and 2DG to the antiproliferative effect of the cotreatment. While 2a induced apoptotic cell death, 2DG sensitized TNBCs to the antiproliferative effects of 2a via endoplasmic reticulum stress induction. Strikingly, the combination of 2a-2DG ablated SUM159 tumors in an orthotopic xenograft mouse model. This study highlights the synergistic effect of a gold-based complex with 2DG and the potential benefit of multimetabolic pathways targeting as an effective therapeutic strategy against TNBCs.
Collapse
Affiliation(s)
- Owamagbe N Orobator
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States
| | - R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States
| | | | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States; Center for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA; Center for Bioelectronics and Nanomedicine, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
41
|
Wu P, Xia S, Yu H, Zhao X, Zhang G, Wang K. RNA-seq reveals changes in the transcriptome of the breast muscle of adult female chickens in response to heat stress. BMC Genomics 2024; 25:1158. [PMID: 39614141 DOI: 10.1186/s12864-024-11024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Heat stress has caused significant impacts on the poultry industry globally. Tianjin-monkey Chicken (TM) is a local naked neck chicken genetic resource in China, characterized by its heat stress resistance due to a low feather coverage. RESULTS We conducted heat stress stimulation tests on TM and a normal feathered chicken (Jingfen No. 6 Layer, JF), and the breast muscle tissues were collected for transcriptome sequencing. A total of 157 differentially expressed genes (DEGs) and 1435 DEGs were respectively obtained from the comparisons of JFN-vs-JFT and TMN-vs-TMT. GO enrichment analysis found that biological process (BP) terms including phospholipid homeostasis, regulation of aggrephagy, positive regulation of aggrephagy, and negative regulation of lipase activity may be closely related to heat stress resistance in JF chickens. While catabolism-related BP terms were mainly enriched for DEGs of TM, such as catabolic process, protein catabolic process and cellular catabolic process. KEGG pathway analysis showed that the MAPK signaling pathway was enriched both in TM and JF with high connectivity. In addition, some pathways with higher connectivity (Metabolic pathways, FoxO signaling pathway, TGF-beta signaling pathway and AMPK signaling pathway) may be closely associated with resistance to heat stress in JF. In Tianjin-monkey Chicken, we also identified several pathways potentially involved in heat stress regulation, including Ubiquitin mediated proteolysis, Autophagy-animal and Regulation of actin cytoskeleton. Protein-Protein Interaction Networks (PPI) for the 24 co-differentially expressed genes revealed four key genes (Klf9, Asb2, Tmem164 and Arrdc2) associated with heat stress both in JF and TM. CONCLUSIONS Our findings will enrich the research on heat stress resistance in chicken skeletal muscle, while also providing a theoretical basis for the genetic improvement of heat stress resistance in chickens.
Collapse
Affiliation(s)
- Pengfei Wu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Shuli Xia
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Haitao Yu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Xianghua Zhao
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
42
|
Zhu C, Feng X, Tong L, Mu P, Wang F, Quan W, Dong Y, Zhu X. Prediction of acute myeloid leukemia prognosis based on autophagy features and characterization of its immune microenvironment. Front Immunol 2024; 15:1489171. [PMID: 39650664 PMCID: PMC11621098 DOI: 10.3389/fimmu.2024.1489171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Background Autophagy promotes the survival of acute myeloid leukemia (AML) cells by removing damaged organelles and proteins and protecting them from stress-induced apoptosis. Although many studies have identified candidate autophagy genes associated with AML prognosis, there are still great challenges in predicting the survival prognosis of AML patients. Therefore, it is necessary to identify more novel autophagy gene markers to improve the prognosis of AML by utilizing information at the molecular level. Methods In this study, the Random Forest, SVM and XGBoost algorithms were utilized to identify autophagy genes linked to prognosis, respectively. Subsequently, six autophagy genes (TSC2, CALCOCO2, BAG3, UBQLN4, ULK1 and DAPK1) that were significantly associated with patients' overall survival (OS) were identified using Lasso-Cox regression analysis. A prediction model incorporating these autophagy genes was then developed. In addition, the immunological microenvironment analysis of autophagy genes was performed in this study. Results The experimental results showed that the predictive model had good predictive ability. After adjusting for clinicopathologic parameters, this feature proved an independent prognostic predictor and was validated in an external AML sample set. Analysis of differentially expressed genes in patients in the high-risk and low-risk groups showed that these genes were enriched in immune-related pathways such as humoral immune response, T cell differentiation in thymus and lymphocyte differentiation. Then immune infiltration analysis of autophagy genes in patients showed that the cellular abundance of T cells CD4+ memory activated, NK cells activated and T cells CD4+ in the high-risk group was significantly lower than that in the low-risk group. Conclusion This study systematically analyzed autophagy-related genes (ARGs) and developed prognostic predictors related to OS for patients with AML, thus more accurately assessing the prognosis of AML patients. This not only helps to improve the prognostic assessment and therapeutic outcome of patients, but may also provide new help for future research and clinical applications.
Collapse
Affiliation(s)
- Chaoqun Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, Shandong, China
| | - Xiangyan Feng
- Department of Hematology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Lanxin Tong
- Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, Guangdong, China
| | - Peizheng Mu
- School of Computer and Control Engineering, Yantai University, Yantai, Shandong, China
| | - Fei Wang
- School of Computer and Control Engineering, Yantai University, Yantai, Shandong, China
| | - Wei Quan
- School of Computer and Control Engineering, Yantai University, Yantai, Shandong, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, Shandong, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, Shandong, China
| |
Collapse
|
43
|
Li Y, Liu L, Li B. Role of ENO1 and its targeted therapy in tumors. J Transl Med 2024; 22:1025. [PMID: 39543641 PMCID: PMC11566422 DOI: 10.1186/s12967-024-05847-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
ENO1, also called 2-phospho-D-glycerate hydrolase in cellular glycolysis, is an enzyme that converts 2-phosphoglycerate to phosphoenolpyruvate and plays an important role in the Warburg effect. In various tumors, ENO1 overexpression correlates with poor prognosis. ENO1 is a multifunctional oncoprotein that, when located on the cell surface, acts as a "moonlighting protein" to promote tumor invasion and metastasis. When located intracellularly, ENO1 facilitates glycolysis to dysregulate cellular energy and sustain tumor proliferation. Additionally, it promotes tumor progression by activating oncogenic signaling pathways. ENO1 is a tumor biomarker and represents a promising target for tumor therapy. This review summarizes recent advances from 2020 to 2024 in understanding the relationship between ENO1 and tumors and explores the latest targeted therapeutic strategies involving ENO1.
Collapse
Affiliation(s)
- Yafei Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lu Liu
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
44
|
Safaie N, Idari G, Ghasemi D, Hajiabbasi M, Alivirdiloo V, Masoumi S, Zavvar M, Majidi Z, Faridvand Y. AMPK activation; a potential strategy to mitigate TKI-induced cardiovascular toxicity. Arch Physiol Biochem 2024:1-13. [PMID: 39526616 DOI: 10.1080/13813455.2024.2426494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The introduction of Tyrosine Kinase Inhibitors (TKIs) has revolutionised cancer treatment, yet concerns regarding cardiovascular toxicity have surfaced. This piece delves into the interplay between AMP-activated protein kinase (AMPK) signalling and TKI-induced cardiovascular toxicity. The study unravels the intricate relationship between AMPK activation and TKI-induced cardiovascular toxicity, aiming to ascertain whether AMPK can play a strategic role in mitigating adverse effects. Beyond unravelling mechanistic insights, the research sets the stage for future therapeutic approaches, envisioning AMPK activation as a pivotal connection for balancing effective cancer treatment with cardiovascular well-being. As research advances, the potential of AMPK activation not only addresses challenges in TKI-induced cardiovascular toxicity but also shapes the future landscape of personalised anticancer therapies. The article explores the mechanisms of TKI-induced toxicity, AMPK's impact on cardiovascular health, and the potential therapeutic implications of AMPK activation in alleviating TKI-associated toxicities.
Collapse
Affiliation(s)
- Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Idari
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Diba Ghasemi
- Stem Cell research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Alivirdiloo
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramasr, Iran
| | - Shahab Masoumi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Vanderbilt University of Medical center, Nashville, TN, USA
| | - Mahdi Zavvar
- Department of Medical Laboratory Science, School of Allied Medicine Sciences (SAMS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ziba Majidi
- Department of Medical Laboratory Science, School of Allied Medicine Sciences (SAMS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Tang X, Zhu M, Zhu Z, Tang W, Zhang H, Chen Y, Liu F, Zhang Y. Ginsenoside Re inhibits non-small cell lung cancer progression by suppressing macrophage M2 polarization induced by AMPKα1/STING positive feedback loop. Phytother Res 2024; 38:5088-5106. [PMID: 39119862 DOI: 10.1002/ptr.8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Tumor-associated macrophages (TAMs) in non-small cell lung cancer (NSCLC) promote tumor cell metastasis by interacting with cancer cells. Ginsenoside Re is capable of modulating the host immune system and exerts anticancer effects through multiple pathways. Both AMPK and STING are involved in the regulation of MΦ polarization, thereby affecting tumor progression. However, whether there is a regulatory relationship between them and its effect on MΦ polarization and tumor progression is unclear. The aim of this study was to provide mechanistic evidence that ginsenoside Re modulates MΦ phenotype through inhibition of the AMPKα1/STING positive feedback loop and thus exerts an antimetastatic effect in NSCLC immunotherapy. Cell culture models and conditioned media (CM) systems were constructed, and the treated MΦ were analyzed by database analysis, RT-PCR, Western blotting, flow cytometry, and immunofluorescence to determine the regulatory relationship between AMPK and STING and the effects of ginsenoside Re on MΦ polarization and tumor cells migration. The effects of ginsenoside Re (10, 20 mg/kg/day) on TAMs phenotype as well as tumor progression in mice were assessed by HE staining, immunohistochemical staining, and Western blotting. In this study, AMPKα1/STING positive feedback loop in NSCLC TAMs induced M2 type polarization, which in turn promoted NSCLC cell migration. In addition, ginsenoside Re was discovered to inhibit M2-like MΦ polarization, thereby inhibiting NSCLC cell migration. Mechanistically, Re was able to inhibit the formation of the AMPKα1/STING positive feedback loop, thereby inhibiting its induction of M2-like MΦ and consequently inhibiting the epithelial-mesenchymal transition (EMT) process of NSCLC cells. Furthermore, in mouse models, Re was found to suppress LLC tumor growth and colonization by inhibiting M2-type polarization of TAMs. Our finding indicates that ginsenoside Re can effectively modulate MΦ polarization and thus play an important role in antimetastatic immunotherapy of NSCLC.
Collapse
Affiliation(s)
- Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Hongmei Zhang
- Department of Endocrinology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yanbin Chen
- Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an, China
| | - Feng Liu
- Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
46
|
Mancini A, Orlandella FM, Vitucci D, Luciano N, Alfieri A, Orrù S, Salvatore G, Buono P. Exercise's impact on lung cancer molecular mechanisms: a current overview. Front Oncol 2024; 14:1479454. [PMID: 39555455 PMCID: PMC11563951 DOI: 10.3389/fonc.2024.1479454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Lung cancer is the major cause of cancer-related deaths worldwide with an estimated 1.8 million deaths and 2.4 million new cases in 2022. Poor cardiorespiratory fitness, dyspnea and fatigue are the common features in lung cancer patients, partially limiting the exercise prescription. Exercise improves cardiorespiratory and muscular fitness and reduces the risk of some types of cancer, including lung cancer. Recently, the American Society of Clinical Oncology has encouraged preoperative exercise for lung cancer patients. Nonetheless, only limited data, mostly obtained from mouse models of lung cancer, are available on the molecular effects of exercise in lung cancer. Thus, the present minireview aims to shed light on the molecular mechanisms induced by different type of exercise in lung cancer. In particular, the role of the exercise in tumor microenvironment remodeling, angiogenesis, gene expression, apoptosis and intermediate metabolism will be examined.
Collapse
Affiliation(s)
- Annamaria Mancini
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Francesca Maria Orlandella
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Daniela Vitucci
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Neila Luciano
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Andreina Alfieri
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Stefania Orrù
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Giuliana Salvatore
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Pasqualina Buono
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| |
Collapse
|
47
|
Zhu J, Wu Y, Zhang L, Bai B, Han W, Wang H, Mei Q. Epithelial Piezo1 deletion ameliorates intestinal barrier damage by regulating ferroptosis in ulcerative colitis. Free Radic Biol Med 2024; 224:272-286. [PMID: 39216559 DOI: 10.1016/j.freeradbiomed.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Ferroptosis, a recently discovered form of regulated cell death, has been implicated in the development of ulcerative colitis (UC). While Piezo1's role in inducing ferroptosis in chondrocytes and pulmonary endothelial cells is documented, its regulatory function in ferroptosis and intestinal epithelial cells in UC remains unclear. To address this, colonic tissue samples from patients with UC were examined, and specific intestinal epithelial Piezo1-deficient (Piezo1ΔIEC) mice were created to investigate Piezo1's role in UC pathogenesis. Elevated epithelial Piezo1 levels were observed in patients with UC, correlating with increased ferroptosis and tight junction (TJ) disruption. In dextran sulfate sodium (DSS)-induced colitis, Piezo1ΔIEC mice exhibited significantly reduced intestinal inflammation and improved gut barrier function compared to wild-type (WT) mice. Moreover, Piezo1 deficiency in colitis mice and lipopolysaccharide (LPS)-stimulated Caco-2 cells led to higher TJ protein levels, reduced lipid peroxidation, enhanced mitochondrial function, and altered expression of ferroptosis-associated proteins. Additionally, erastin, a ferroptosis activator, reversed the protective effect of Piezo1 silencing against LPS-induced ferroptosis in Caco-2 cells. Mechanistically, Piezo1 was found to regulate ferroptosis via the AMPK/mTOR signaling pathway. These findings highlight a novel role for Piezo1 deletion in mitigating ferroptosis in intestinal epithelial cells, suggesting Piezo1 as a potential therapeutic target for UC treatment.
Collapse
Affiliation(s)
- Jiejie Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Yumei Wu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Luyao Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Bingqing Bai
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Wei Han
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China.
| |
Collapse
|
48
|
Chae Y, Roh J, Im M, Jang W, Kim B, Kang J, Youn B, Kim W. Gene Expression Profiling Regulated by lncRNA H19 Using Bioinformatic Analyses in Glioma Cell Lines. Cancer Genomics Proteomics 2024; 21:608-621. [PMID: 39467632 PMCID: PMC11534032 DOI: 10.21873/cgp.20477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND/AIM Glioma, the most common type of primary brain tumor, is characterized by high malignancy, recurrence, and mortality. Long non-coding RNA (lncRNA) H19 is a potential biomarker for glioma diagnosis and treatment due to its overexpression in human glioma tissues and its involvement in cell division and metastasis regulation. This study aimed to identify potential therapeutic targets involved in glioma development by analyzing gene expression profiles regulated by H19. MATERIALS AND METHODS To elucidate the role of H19 in A172 and U87MG glioma cell lines, cell counting, colony formation, and wound healing assays were conducted. RNA-seq data analysis and bioinformatics analyses were performed to reveal the molecular interactions of H19. RESULTS Cell-based experiments showed that elevated H19 levels were related to cancer cell survival, proliferation, and migration. Bioinformatics analyses identified 2,084 differentially expressed genes (DEGs) influenced by H19 which are involved in cancer progression. Specifically, ANXA5, CLEC18B, RAB42, CXCL8, OASL, USP18, and CDCP1 were positively correlated with H19 expression, while CSDC2 and FOXO4 were negatively correlated. These DEGs were predicted to function as oncogenes or tumor suppressors in gliomas, in association with H19. CONCLUSION These findings highlight H19 and its associated genes as potential diagnostic and therapeutic targets for gliomas, emphasizing their clinical significance in patient survival.
Collapse
Affiliation(s)
- Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Mijung Im
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Wonyi Jang
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Boseong Kim
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Jihoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, U.S.A
| | - Buhyun Youn
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
- Department of Biology Education, Korea National University of Education, Cheongju-si, Republic of Korea
| |
Collapse
|
49
|
Penugurti V, Manne RK, Bai L, Kant R, Lin HK. AMPK: The energy sensor at the crossroads of aging and cancer. Semin Cancer Biol 2024; 106-107:15-27. [PMID: 39197808 PMCID: PMC11625618 DOI: 10.1016/j.semcancer.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
AMP-activated protein kinase (AMPK) is a protein kinase that plays versatile roles in response to a variety of physiological stresses, including glucose deprivation, hypoxia, and ischemia. As a kinase with pleiotropic functions, it plays a complex role in tumor progression, exhibiting both tumor-promoting and tumor-suppressing activities. On one hand, AMPK enhances cancer cell proliferation and survival, promotes cancer metastasis, and impairs anti-tumor immunity. On the other hand, AMPK inhibits cancer cell growth and survival and stimulates immune responses in a context-dependent manner. Apart from these functions, AMPK plays a key role in orchestrating aging and aging-related disorders, including cardiovascular diseases (CVD), Osteoarthritis (OA), and Diabetes. In this review article, we summarized the functions of AMPK pathway based on its oncogenic and tumor-suppressive roles and highlighted the importance of AMPK pathway in regulating cellular aging. We also spotlighted the significant role of various signaling pathways, activators, and inhibitors of AMPK in serving as therapeutic strategies for anti-cancer and anti-aging therapy.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Rajesh Kumar Manne
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Ling Bai
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Rajni Kant
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Hui-Kuan Lin
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States.
| |
Collapse
|
50
|
Zhou X, Liu Q, Li Z, Liu X, Zhao Q, Wang Y, Wu F, Zhao G, Sun R, Guo X. The activation of adenosine monophosphate-activated protein kinase inhibits the migration of tongue squamous cell carcinoma cells by targeting Claudin-1 via epithelial-mesenchymal transition. Animal Model Exp Med 2024; 7:606-616. [PMID: 39017036 PMCID: PMC11528389 DOI: 10.1002/ame2.12444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND The role of Claudin-1 in tongue squamous cell carcinoma (TSCC) metastasis needs further clarification, particularly its impact on cell migration. Herein, our study aims to investigate the role of Claudin-1 in TSCC cell migration and its underlying mechanisms. METHODS 36 TSCC tissue samples underwent immunohistochemical staining for Claudin-1. Western blotting and immunofluorescence analyses were conducted to evaluate Claudin-1 expression and distribution in TSCC cells. Claudin-1 knockdown cell lines were established using short hairpin RNA transfection. Migration effects were assessed through wound healing assays. Furthermore, the expression of EMT-associated molecules was measured via western blotting. RESULTS Claudin-1 expression decreased as TSCC malignancy increased. Adenosine monophosphate-activated protein kinase (AMPK) activation led to increased Claudin-1 expression and membrane translocation, inhibiting TSCC cell migration and epithelial-mesenchymal transition (EMT). Conversely, Claudin-1 knockdown reversed these inhibitory effects on migration and EMT caused by AMPK activation. CONCLUSIONS Our results indicated that AMPK activation suppresses TSCC cell migration by targeting Claudin-1 and EMT pathways.
Collapse
Affiliation(s)
- Xin‐Yue Zhou
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
- Hubei Shizhen LaboratoryWuhanHubeiChina
| | - Qiu‐Ming Liu
- Sino‐German Biomedical CenterHubei University of TechnologyWuhanChina
- Center of Applied BiotechnologyWuhan Institute of BioengineeringWuhanChina
| | - Zhuang Li
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
| | - Xia‐Yang Liu
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
| | - Qi‐Wei Zhao
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
| | - Yu Wang
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
| | - Feng‐Hua Wu
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
- Hubei Shizhen LaboratoryWuhanHubeiChina
| | - Gang Zhao
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
| | - Rui Sun
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Department of Oral and Maxillofacial SurgeryShanxi Provincial People's HospitalTaiyuanChina
| | - Xiao‐Hong Guo
- Department of Basic MedicineHubei University of Chinese MedicineWuhanChina
- Hubei Shizhen LaboratoryWuhanHubeiChina
| |
Collapse
|