1
|
Hou M, Zhu J, Leng C, Huang X, Yang M, Yin Y, Xing Y, Chen J. Composition and Biodiversity of Culturable Endophytic Fungi in the Roots of Alpine Medicinal Plants in Xinjiang, China. J Fungi (Basel) 2025; 11:113. [PMID: 39997407 PMCID: PMC11856231 DOI: 10.3390/jof11020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
(1) Background: Endophytic fungi play an important role in plant growth and stress resistance. The presence of a special fungal taxon such as the dark septate endophytic (DSE) fungi in alpine environments is particularly important for plant resistance to environmental stresses. However, the composition of root endophytic fungi in different environments and between different host plants has not been well studied. (2) Results: A total of 408 culturable endophytic fungi were isolated from the roots of Saussurea involucrata and Rhodiola crenulata which were collected in 5 plots from the Tianshan and Karakoram Mountains of the Xinjiang region, belonging to 91 species, 54 genera, 31 families, and 3 phyla based on the morphological characteristics and molecular sequence. Among them, DSE fungi were the dominant group, accounting for 52.94%, and Leptodontidium orchidicola was the dominant species. In addition, we also compared the composition and diversity of root endophytic fungi from different plants and different sites, with emphasis on special fungal taxa such as DSE. (3) Conclusions: The composition and diversity of cultural endophytic fungi are significantly different in the two alpine medicinal plant species and across various locations. Some fungi showed the preferences of the host or environment. The endophytic fungal resources, especially DSE, were very rich in the two alpine medicinal plants, indicating that these fungi may play a crucial role in the ecological adaptation of host plants in harsh environments.
Collapse
Affiliation(s)
- Mengyan Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Jun Zhu
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China;
| | - Chunyan Leng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Xinjie Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Mingshu Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Yifei Yin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Yongmei Xing
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Juan Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
2
|
Wimalasena MK, Wijayawardene NN, Bamunuarachchige TC, Zhang GQ, Udeni Jayalal RG, Bhat DJ, Dawoud TM, de Zoysa HKS, Dai DQ. Ectophoma salviniae sp. nov., Neottiosporina mihintaleensis sp. nov. and four other endophytes associated with aquatic plants from Sri Lanka and their extracellular enzymatic potential. Front Cell Infect Microbiol 2025; 14:1475114. [PMID: 39844839 PMCID: PMC11750795 DOI: 10.3389/fcimb.2024.1475114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 01/24/2025] Open
Abstract
Endophytic fungi associated with selected aquatic plants, Eichhornia crassipes, Nymphaea nouchali, Salvinia minima and S. molesta were evaluated. Ectophoma salviniae sp. nov. and Neottiosporina mihintaleensis sp. nov. are introduced as novel taxa from Salvinia spp. from Sri Lanka. Chaetomella raphigera is reported as a new geographical record, Colletotrichum siamense and C. truncatum are reported as novel host records in aquatic plants, while Phyllosticta capitalensis has been identified on the same host (Nymphaea nouchali) in the North-Central Province of Sri Lanka. Identification of the fungi was based on morphological characteristics and multi-locus phylogenetic analyses using ITS, LSU, SSU, ACT, CHS-1, GAPDH, tub2, rpb2, and tef1-α molecular markers. The identified fungi were analysed for extracellular enzymatic properties. According to the qualitative analysis, Ectophoma salviniae sp. nov. exhibited the highest amylase production, Chaetomella raphigera exhibited the highest cellulase enzyme production, and Neottiosporina mihintaleensis sp. nov. exhibited the highest laccase production. The results demonstrate the aquatic fungal diversity in this region and their extracellular enzymatic potentials, providing valuable insights for future biotechnological approaches.
Collapse
Affiliation(s)
- Madhara K. Wimalasena
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
- Faculty of Graduate Studies, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
- Tropical Microbiology Research Foundation, Colombo, Sri Lanka
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Gui-Qing Zhang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
| | - R. G. Udeni Jayalal
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Darbhe J. Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Vishnugupta Vishwavidyapeetam, Gokarna, India
| | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Heethaka K. S. de Zoysa
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
| |
Collapse
|
3
|
Pereira DS, Phillips AJL. Exploring the Diversity and Ecological Dynamics of Palm Leaf Spotting Fungi-A Case Study on Ornamental Palms in Portugal. J Fungi (Basel) 2025; 11:43. [PMID: 39852462 PMCID: PMC11766901 DOI: 10.3390/jof11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
Palm trees (Arecaceae) are among the most popular ornamental plants worldwide. Despite extensive research on the fungi associated with Arecaceae, the diversity and ecological dynamics of fungi affecting ornamental palms remain poorly studied, although they have significant impact on palm health and economic value. Furthermore, while research on palm fungal diversity has traditionally focused on tropical assemblages, ornamental palms in temperate climates offer a unique opportunity to explore the diversity of palm fungi in non-native habitats. The present study conducted a preliminary assessment of the diversity and ecology of potential phytopathogenic fungi associated with foliar lesions on various ornamental palm host species in Portugal, combining morphological examination, PCR-based genomic fingerprinting, and biodiversity data analysis. The examination of 134 foliar lesions sampled from 100 palm trees resulted in a collection of 2064 palm leaf spotting fungi (PLSF), representing a diverse fungal assemblage of 320 molecular operational taxonomic units (MOTUs) across 97 genera. The overall fungal community composition revealed a distinct assemblage dominated by Neosetophoma, Alternaria, Phoma, and Cladosporium, with a profusion of infrequent and rare taxa consistent with a logseries distribution. Significantly positive co-occurrence (CO) patterns among prevalent and uncommon taxa suggest potential synergistic interactions enhancing fungal colonisation, persistence, and pathogenicity. The taxonomic structures of the PLSF contrasted markedly from tropical palm fungi, especially in the prevalence of pleosporalean coelomycetes of the Didymellaceae and Phaeosphaeriaceae, including recently introduced or not previously documented genera on Arecaceae. This novel assemblage suggests that climatic constraints shape the structure of palm fungal communities, resulting in distinctive temperate and tropical assemblages. In addition, the fungal assemblages varied significantly across palm host species, with temperate-native palms hosting more diverse, coelomycete-enriched communities. The present findings highlight foliar lesions as hyperdiverse microhabitats harbouring fungal communities with intricate interactions and a complex interplay of climatic, host, and ecological factors. With climate change altering environmental conditions, the identification of fungi thriving in or inhabiting these microhabitats becomes crucial for predicting shifts in pathogen dynamics and mitigating future fungal disease outbreaks. Understanding these complex ecological dynamics is essential for identifying potential phytopathogenic threats and developing effective management strategies for the health and sustainability of ornamental plants.
Collapse
Affiliation(s)
- Diana S. Pereira
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alan J. L. Phillips
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
4
|
Ghobadi A, Jamali S. Identification of Fungal Species Associated with Gall Oak ( Quercus infectoria) Decline in Iran. PLANT DISEASE 2025; 109:96-106. [PMID: 39320377 DOI: 10.1094/pdis-05-24-0974-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The gall oak (Quercus infectoria Oliv.) tree is one of the most important and valuable forestry species in the Northern Zagros forests in the west of Iran. Gall oak decline is considered to be one of the most important diseases currently affecting the Zagros oak forests in Iran. The main objective of the present study, conducted in the years 2021 to 2023, was to investigate the possible role of fungi as causative agents of gall oak dieback in the Zagros forests of Iran. Wood samples were taken from gall oak trees showing canker, dieback, and internal wood discoloration symptoms. Fungal isolates recovered from gall oak trees were identified based on cultural and morphological characteristics, as well as phylogenetic analyses using DNA sequencing of the internal transcribed spacer region of rDNA and partial beta-tubulin. Achaetomium aegilopis, Alternaria tenuissima, Apiospora intestini, Botrytis cinerea, Coniochaeta sp., Coniothyrium palmarum, Coniothyrium sp., Cytospora rhodophila, Dialonectria episphaeria, Diatrype sp., Diatrypella macrospora, Endoconidioma populi, Fonsecazyma sp., Fusarium ipomoeae, Jattaea discreta, Kalmusia variispora, Microsphaeropsis olivacea, Neoscytalidium dimidiatum, Paecilomyces lecythidis, Paramicrosphaeropsis eriobotryae, Paramicrosphaeropsis ellipsoidea, and Seimatosporium pezizoides were identified from diseased trees. Pathogenicity tests were performed by artificial inoculation of excised branches of healthy gall oak trees under controlled conditions and evaluated after 35 days by measuring the discolored lesion length at the inoculation site. N. dimidiatum was the most virulent species and caused the longest wood necrosis within 35 days of inoculation. In the greenhouse test, only some species induced typical symptoms of canker. All isolated fungi are reported for the first time on gall oak trees in the world.
Collapse
Affiliation(s)
- Armin Ghobadi
- Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran
| | - Samad Jamali
- Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran
| |
Collapse
|
5
|
Lee GB, Cho WD, Kim WG. A Novel Subspecies of Didymella acutilobae Causing Leaf Spot in East Asian Hogweed. MYCOBIOLOGY 2024; 52:446-453. [PMID: 39845182 PMCID: PMC11748987 DOI: 10.1080/12298093.2024.2424016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 01/24/2025]
Abstract
During disease surveys in 2021 and 2022, outbreaks of leaf spot were observed in East Asian hogweed (Heracleum moellendorffii) plants in fields located in Pyeongchang and Yeongwol, Gangwon Province, Korea. The disease incidence in the fields ranged from 2% to 50%. Based on the morphological and cultural characteristics, four single-conidium fungal isolates from the leaf spot symptoms were identified as Phoma sp. The phylogenetic analyses based on the combined sequences from the four genes (LSU, ITS, TUB2, and RPB2) indicated that the isolates clustered very closely with Didymella acutilobae. However, the morphological and cultural characteristics of the isolates exhibited somewhat distinct differences from those of D. acutilobae, suggesting that the isolates correspond to a novel subspecies. Pathogenicity tests revealed that the isolates caused leaf spot in East Asian hogweed plants. This is the first report of D. acutilobae subsp. heraclei subsp. nov. causing leaf spot in East Asian hogweed.
Collapse
Affiliation(s)
- Gyo-Bin Lee
- Global Agro-Consulting Corporation, Suwon, Republic of Korea
| | - Weon-Dae Cho
- Global Agro-Consulting Corporation, Suwon, Republic of Korea
| | - Wan-Gyu Kim
- Global Agro-Consulting Corporation, Suwon, Republic of Korea
| |
Collapse
|
6
|
Quinteros-Urquieta C, Francois JP, Aguilar-Muñoz P, Molina V. Soil Microbial Communities Changes Along Depth and Contrasting Facing Slopes at the Parque Nacional La Campana, Chile. Microorganisms 2024; 12:2487. [PMID: 39770691 PMCID: PMC11728372 DOI: 10.3390/microorganisms12122487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
The Parque Nacional La Campana (PNLC) was recently recognized for its high soil surface microbial richness. Here, we explored the microbial community structure in soil profiles from contrasting facing slopes where sclerophyllous forest (SF) and xerophytic shrubland (XS) develop. Soil physicochemical conditions (dry density, pH, and organic matter C and N isotopic soil signatures) were determined at three depths (5, 10, and 15 cm depths). Amplicon sequencing (16S rRNA and ITS1-5F) and specific quantification (qPCR bacteria, archaea and ammonia-oxidizing archaea, fungi) were used to profile the microbial community. Our results indicate that opposite slopes, with different vegetation types and soil conditions studied potentially explained the spatial variability of the microbial community composition, especially between sites than through soil depth. Discriminative taxa were observed to vary between sites, such as, C. nitrososphaera (ammonia-oxidizing archaea) and Sphingomonas, and bacteria associated with Actinobacteria and Bacteroidetes were predominant in SF and XS, respectively. Fungi affiliated with Humicola and Preussia were more abundant in SF, while Cladosporium and Alternaria were in XS. Higher ASV richness was observed in SF compared to XS, for both prokaryotes and fungi. Furthermore, SF showed a higher number of shared ASVs, while XS showed a decrease in unique ASVs in deeper soil layers. In XS, the genus DA101 (Verrucomicrobia) increases with soil depth, reaching higher levels in SF, while Kaistobacter shows the opposite trend. PNLC soils were a reservoir of redundant microbial functions related to biogeochemical cycles, including symbiotic and phytopathogenic fungi. In conclusion, as with the predominant vegetation, the structure and potential function of microbial life in soil profiles were associated with the contrasting the effect of facing slopes as toposequence effects.
Collapse
Affiliation(s)
- Carolina Quinteros-Urquieta
- Programa de Doctorado Interdisciplinario en Ciencias Ambientales, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile;
| | - Jean Pierre Francois
- Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (J.P.F.); (P.A.-M.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
| | - Polette Aguilar-Muñoz
- Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (J.P.F.); (P.A.-M.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción 3349001, Chile
| | - Verónica Molina
- Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (J.P.F.); (P.A.-M.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción 3349001, Chile
| |
Collapse
|
7
|
Absalan S, Armand A, Jayawardena RS, McKenzie EHC, Hyde KD, Lumyong S. Diversity of Pleosporalean Fungi Isolated from Rice ( Oryza sativa L.) in Northern Thailand and Descriptions of Five New Species. J Fungi (Basel) 2024; 10:763. [PMID: 39590682 PMCID: PMC11595767 DOI: 10.3390/jof10110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Pleosporales represents the largest order within the class Dothideomycetes (Fungi), comprising phytopathogenic, saprobic, and endophytic taxa with a widespread presence in terrestrial and aquatic environments. Rice (Oryza sativa) is a primary economic crop in numerous tropical countries, particularly in Thailand. Studying fungal species associated with rice holds the potential to enhance our understanding of fungal diversity, lifestyles, and biology of rice, offering valuable insights for future research aimed at disease management and yield improvement. Thirty-nine pleosporalean isolates were obtained from various parts of rice plants collected across diverse regions in Chiang Rai Province, Thailand. Species identification involved a combination of morphology and molecular phylogeny, utilizing multi-locus sequence analyses of the ITS, LSU, SSU, gapdh, rpb2, tef1, and tub2 genes. The isolates were identified in 18 taxa distributed across five families and ten genera, including five new species (Bipolaris chiangraiensis, Ophiosphaerella oryzae, Paraphaeosphaeria oryzae, Pyrenochaetopsis oryzicola, and Setophoma oryzicola). Additionally, six new host records and two new geographical records are documented. Photoplates, detailed morphological descriptions, and phylogenetic trees are provided to elucidate the placement of both known and novel taxa.
Collapse
Affiliation(s)
- Sahar Absalan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
| | - Alireza Armand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Eric H. C. McKenzie
- Landcare Research-Manaaki Whenua, Private Bag 92170, Auckland 1072, New Zealand;
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Gomdola D, McKenzie EHC, Bundhun D, Jayawardena RS. Morpho-molecular characterization of phoma-like fungi from Morus alba in northern Thailand; a novel species (Boeremia albae) and a new host record (B. maritima). Fungal Biol 2024; 128:2139-2147. [PMID: 39384283 DOI: 10.1016/j.funbio.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 10/11/2024]
Abstract
Boeremia was established to accommodate phoma-resembling fungi. Its species occur in terrestrial ecosystems as endophytes, saprobes and pathogens, except one species reported from a marine ecosystem. Boeremia species are characterized by hyaline, thin-walled, and aseptate (occasionally 1(-2)-septate) conidia that are variable in shape, and hyaline, straight or slightly curved, thick-walled, and 1-septate ascospores that are usually constricted at the septum. In the past, host associations were used to delimit Boeremia species. However, since Boeremia taxa have overlapping morphological characters and are cryptic, it renders taxonomic identification arduous. Therefore, the use of other approaches including multi-gene phylogenetic analyses are imperative. Recommended DNA markers for species delineation are the internal transcribed spacer (ITS, nuclear rDNA consisting of ITS1-5.8S-ITS2) and large subunit (28S, D1-D2 domains of nuclear 28S rDNA) loci, and the genes for actin (ACT1), beta-tubulin (TBB1), RNA polymerase 2 (RPB2) and translation elongation factor 1α (TEF1). Here, we applied morphological and molecular phylogenetic analyses to establish a new taxon (B. albae), and a new host and geographical record for B. maritima associated with leaf spots of Morus alba (Moraceae) in northern Thailand. By providing sequence data for three additional gene regions, our phylogenetic analyses impart a stable phylogenetic placement of the ex-type strain of B. maritima, as illustrated. This is the first study that reports Boeremia species from M. alba, and B. maritima from a terrestrial habitat.
Collapse
Affiliation(s)
- Deecksha Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| | - Eric H C McKenzie
- Manaaki Whenua-Landcare Research, Private Mail Bag, 92170, Auckland, New Zealand.
| | - Digvijayini Bundhun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| | - Ruvishika S Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
9
|
Lukina E, Gomzhina M, Dalinova A, Dubovik V, Gordina E, Bozhkova S, Smirnov S, Berestetskiy A. Reappraisal of Didymella macrostoma causing white tip disease of Canada thistle as a new species, Didymella baileyae, sp. nov., and bioactivity of its major metabolites. Mycologia 2024; 116:877-902. [PMID: 39178348 DOI: 10.1080/00275514.2024.2367470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/10/2024] [Indexed: 08/25/2024]
Abstract
Bioherbicides are expected to be a supplement to integrated pest management, assisting in the control of problematic weed species. For instance, bioherbicides (Phoma and BioPhoma) were recently registered in Canada and the USA for the control of some perennial dicotyledonous weeds in lawns. These products are based on strains of the fungus Didymella macrostoma (syn. Phoma macrostoma) that causes white tip disease (WTD) in Canada thistle (Cirsium arvense). In this study, WTD was reported for the first time in the Russian Federation. Analysis of the internal transcribed spacer (ITS) region of nuc rDNA and secondary metabolite profiling confirmed the identity of Russian WTD isolates to Canadian biocontrol strains identified as D. macrostoma. Multilocus phylogenetic analysis based on sequencing of the ITS region, partial large subunit nuc rDNA region (28S), RNA polymerase II second largest subunit gene (rpb2), and partial β-tubulin gene (tub2) has differentiated the WTD isolates from C. arvense and D. macrostoma isolates from other plant hosts. Based on phylogenetic, morphological, and chemotaxonomic features, these WTD isolates were described as a new species named Didymella baileyae, sp. nov. This study also demonstrated the low pathogenicity of the ex-type D. baileyae isolate VIZR 1.53 to C. arvense seedlings and its asymptomatic development in the leaves of aboveground shoots. The organic extracts from mycelium and culture filtrate of D. baileyae, as well as macrocidin A and macrocidin Z, displayed phytotoxicity both to C. arvense leaves and seedlings. Macrocidin A was only detected in the naturally infected leaf tissues of C. arvense showing WTD symptoms. Macrocidins A and Z demonstrated low antimicrobial and cytotoxic activities, exhibiting no entomotoxic properties. The data obtained within this study on the pathogenicity and metabolites of D. baileyae may be important for the rational evaluation of its prospects as a biocontrol agent.
Collapse
Affiliation(s)
- Elizaveta Lukina
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, Saint Petersburg 196608, Russia
| | - Maria Gomzhina
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, Pushkin, Saint Petersburg 196608, Russia
| | - Anna Dalinova
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, Saint Petersburg 196608, Russia
| | - Vsevolod Dubovik
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, Saint Petersburg 196608, Russia
| | - Ekaterina Gordina
- Department of Wound Infection Prevention and Treatment, Vreden National Medical Research Center of Traumatology and Orthopedics, Saint Petersburg 195427, Russia
| | - Svetlana Bozhkova
- Department of Wound Infection Prevention and Treatment, Vreden National Medical Research Center of Traumatology and Orthopedics, Saint Petersburg 195427, Russia
| | - Sergey Smirnov
- Magnetic Resonance Research Centre, St. Petersburg State University, Saint Petersburg 198504, Russia
| | - Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, Saint Petersburg 196608, Russia
| |
Collapse
|
10
|
Zhang Y, Tu Y, Chen Y, Fang J, Chen F, Liu L, Zhang X, Wang Y, Lv W. Quantification of the fungal pathogen Didymella segeticola in Camellia sinensis using a DNA-based qRT-PCR assay. PLANT METHODS 2024; 20:157. [PMID: 39380031 PMCID: PMC11462658 DOI: 10.1186/s13007-024-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
The fungal pathogen Didymella segeticola causes leaf spot and leaf blight on tea plant (Camellia sinensis), leading to production losses and affecting tea quality and flavor. Accurate detection and quantification of D. segeticola growth in tea plant leaves are crucial for diagnosing disease severity or evaluating host resistance. In this study, we monitored disease progression and D. segeticola development in tea plant leaves inoculated with a GFP-expressing strain. By contrast, a DNA-based qRT-PCR analysis was employed for a more convenient and maneuverable detection of D. segeticola growth in tea leaves. This method was based on the comparison of D. segeticola-specific DNA encoding a Cys2His2-zinc-finger protein (NCBI accession number: OR987684) in relation to tea plant Cs18S rDNA1. Unlike ITS and TUB2 sequences, this specific DNA was only amplified in D. segeticola isolates, not in other tea plant pathogens. This assay is also applicable for detecting D. segeticola during interactions with various tea cultivars. Among the five cultivars tested, 'Zhongcha102' (ZC102) and 'Fuding-dabaicha' (FDDB) were more susceptible to D. segeticola compared with 'Longjing43' (LJ43), 'Zhongcha108' (ZC108), and 'Zhongcha302' (ZC302). Different D. segeticola isolates also exhibited varying levels of aggressiveness towards LJ43. In conclusion, the DNA-based qRT-PCR analysis is highly sensitive, convenient, and effective method for quantifying D. segeticola growth in tea plant. This technique can be used to diagnose the severity of tea leaf spot and blight or to evaluate tea plant resistance to this pathogen.
Collapse
Affiliation(s)
- You Zhang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yiyi Tu
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yijia Chen
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Jialu Fang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Fan'anni Chen
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Lian Liu
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaoman Zhang
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| | - Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
11
|
Karimi M, Mehrabi-Koushki M, Farokhinejad R, Beigi S. Additional new species of Xenodidymella from pasture-medicinal plants in Iran. Antonie Van Leeuwenhoek 2024; 117:110. [PMID: 39088091 DOI: 10.1007/s10482-024-02007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Xenodidymella species have a wide range of hosts and can be found as pathogens and saprobes. In this study, two new species of Xenodidymella were found from leaf diseases of three pasture-medicinal plants in Ilam Province, in the west of Iran, and proposed here as X. ilamica and X. scandicis spp. nov. These species were identified based on morphological features and phylogenetic analyses of the internal transcribed spacer regions 1 & 2 and 5.8S nrDNA (ITS), partial beta-tubulin gene (tub2), and partial RNA polymerase II second largest subunit (rpb2) gene. The four Xenodidymella strains isolated in this study were delimited into two sister clades, with the two isolates of X. ilamica from the leaf spot of Colchicum speciosum and Ficaria kochii and two isolates of X. scandicis from leaf blight of Scandix pecten-veneris. Morphologically, X. scandicis produces larger, ostiolate or poroid pycnidia in vitro, while pycnidia in the cultures of X. ilamica are non-ostiolate and smaller. Some pycnidia in old cultures of X. scandicis produce a neck, but a distinct neck in X. ilamica has not been observed. Moreover, three plants under study are new hosts for the genus Xenodidymella.
Collapse
Affiliation(s)
- Maryam Karimi
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
| | - Mehdi Mehrabi-Koushki
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran.
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Reza Farokhinejad
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
| | - Siamak Beigi
- Agricultural Jihad of Ilam, Ilam, Ilam Province, Iran
| |
Collapse
|
12
|
Tu Y, Wang Y, Jiang H, Ren H, Wang X, Lv W. A Loop-Mediated Isothermal Amplification Assay for the Rapid Detection of Didymella segeticola Causing Tea Leaf Spot. J Fungi (Basel) 2024; 10:467. [PMID: 39057352 PMCID: PMC11278140 DOI: 10.3390/jof10070467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Tea leaf spot caused by Didymella segeticola is an important disease that threatens the healthy growth of tea plants (Camellia sinensis) and results in reductions in the productivity and quality of tea leaves. Early diagnosis of the disease is particularly important for managing the infection. Loop-mediated isothermal amplification (LAMP) assay is an efficient diagnostic technique with the advantages of simplicity, specificity, and sensitivity. In this study, we developed a rapid, visual, and high-sensitivity LAMP assay for D. segeticola detection based on sequence-characterized amplified regions. Two pairs of amplification primers (external primers F3 and B3 and internal primers FIP and BIP) were designed based on a specific sequence in D. segeticola (NCBI accession number: OR987684). Compared to common pathogens of other genera in tea plants and other species in the Didymella genus (Didymella coffeae-arabicae, Didymella pomorum, and Didymella sinensis), the LAMP method is specific for detecting the species D. segeticola. The assay was able to detect D. segeticola at a minimal concentration of 1 fg/μL genomic DNA at an optimal reaction temperature of 65 °C for 60 min. When healthy leaves were inoculated with D. segeticola in the laboratory, the LAMP method successfully detected D. segeticola in diseased tea leaves at 72 h post inoculation. The LAMP assays were negative when the DNA samples were extracted from healthy leaves. Leaf tissues with necrotic lesions from 18 germplasms of tea plants tested positive for the pathogen by the LAMP assay. In summary, this study established a specific, sensitive, and simple LAMP method to detect D. segeticola, which provides reliable technical support for estimating disease prevalence and facilitates sustainable management of tea leaf spot.
Collapse
Affiliation(s)
- Yiyi Tu
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China; (Y.T.); (Y.W.); (H.J.); (H.R.)
| | - Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China; (Y.T.); (Y.W.); (H.J.); (H.R.)
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Hong Jiang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China; (Y.T.); (Y.W.); (H.J.); (H.R.)
| | - Hengze Ren
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China; (Y.T.); (Y.W.); (H.J.); (H.R.)
| | - Xinchao Wang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China; (Y.T.); (Y.W.); (H.J.); (H.R.)
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China; (Y.T.); (Y.W.); (H.J.); (H.R.)
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
13
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
14
|
Fu S, Sun JE, Tarafder E, Wijayawardene NN, Hu Y, Wang Y, Li Y. Pezizomycotina species associated with rotten plant materials in Guizhou Province, China. MycoKeys 2024; 106:265-285. [PMID: 38974463 PMCID: PMC11224676 DOI: 10.3897/mycokeys.106.125920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Nine Pezizomycotina strains were isolated from rotten dead branches and leaves collected from Guizhou Province. To obtain their accurate taxonomic placement, we provided the morphological characteristics of conidiophore cells and conidia. Phylogenetic relationships, based on ITS, rpb2, SSU, LSU and tub2 gene sequences, confirmed our strains represented three novel species, Peglioniafalcata, Neoascochytapseudofusiformis and Neomicrosphaeropsiscylindrica. Peglioniafalcata produced falcate conidia and Neoa.pseudofusiformis generated fusiform conidia, while Neom.cylindrica possessed cylindrical conidia. The phylogenetic results also supported them as novel taxa. All the new species in the present study were found as saprophytic on forest litter with high rainfall, which suggest they may have a certain effect on nutrient decomposition and redistribution in forest ecosystems. Thus, it opened a way for further research on related ecological roles and their application production.
Collapse
Affiliation(s)
- Shamin Fu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang Guizhou 550025, China
| | - Jing-E Sun
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang Guizhou 550025, China
| | - Entaj Tarafder
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Nalin N. Wijayawardene
- Guizhou Zhunongjia Agricultural Science and Technology Service Co., Ltd, Guiyang, Guizhou 550025, China
| | - Yan Hu
- Institute of Plant Health and Medicine, College of Agriculture, Guizhou University, Guiyang Guizhou 550025, China
| | - Yong Wang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Wang Y, Tu Y, Chen X, Jiang H, Ren H, Lu Q, Wei C, Lv W. Didymellaceae species associated with tea plant ( Camelliasinensis) in China. MycoKeys 2024; 105:217-251. [PMID: 38846425 PMCID: PMC11153891 DOI: 10.3897/mycokeys.105.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Tea plant is one of the most important commercial crops worldwide. The Didymellaceae fungi can cause leaf blight disease of tea plant. In this study, 240 isolates were isolated from tea plant leaves of 10 provinces in China. Combined with multi-locus (ITS, LSU, RPB2 and TUB2) phylogenetic analysis and morphological characteristics, these isolates were identified as 25 species of six genera in Didymellaceae, including 19 known species Didymellacoffeae-arabicae, D.pomorum, D.segeticola, D.sinensis, Epicoccumcatenisporum, E.dendrobii, E.draconis, E.italicum, E.latusicollum, E.mackenziei, E.oryzae, E.poaceicola, E.rosae, E.sorghinum, E.tobaicum, Neoascochytamortariensis, Paraboeremialitseae, Remotididymellaanemophila and Stagonosporopsiscaricae, of which 15 species were new record species and six novel species, named D.yunnanensis, E.anhuiense, E.jingdongense, E.puerense, N.yunnanensis and N.zhejiangensis. Amongst all isolates, D.segeticola was the most dominant species. Pathogenicity tests on tea plant leaves showed that E.anhuiense had the strongest virulence, while E.puerense had the weakest virulence. Besides, D.pomorum, D.yunnanensis, E.dendrobii, E.italicum, E.jingdongense, E.mackenziei, E.oryzae, E.rosae, E.tobaicum, N.mortariensis, N.yunnanensis, N.zhejiangensis and R.anemophila were non-pathogenic to the tea plant.
Collapse
Affiliation(s)
- Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Yiyi Tu
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Xueling Chen
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Hong Jiang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Hengze Ren
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Qinhua Lu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, ChinaInstitute of Sericulture and Tea, Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, ChinaAnhui Agricultural UniversityHefeiChina
| | - Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| |
Collapse
|
16
|
Xu Z, Xu L, Liu J, Chen D, Cui H, Xue L, Li C. High Diversity of Epicoccum Species Associated with Leaf Spot on Italian Ryegrass in Southwestern China: Six New Records and Three New Species. PLANT DISEASE 2024; 108:1308-1319. [PMID: 37953231 DOI: 10.1094/pdis-06-23-1044-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Italian ryegrass is widely cultivated for the production of forage, hay, and silage because of its high nutritional value and good palatability. Leaf spots caused by fungi pose a serious threat to forage crops. In order to expand the knowledge of fungi causing leaf spots in ryegrass (Lolium multiflorum) in Sichuan, Yunnan, Chongqing, and Guizhou of southwestern China, a comprehensive survey was undertaken from 2015 to 2022. The survey discovered that Epicoccum leaf spot (ELS) was a common and widespread disease, more serious at the late stage of growth (after late May). Symptomatic leaf samples collected from the four different provinces were analyzed, and a total of 202 Epicoccum isolates were obtained. Based on both multilocus phylogeny (ITS, LSU, TUB2, and RPB2) and morphology, 10 Epicoccum species were finally identified, including three novel species (E. endololii sp. nov., E. lolii sp. nov., and E. loliicola sp. nov.), six new host records (E. draconis, E. endophyticum, E. oryzae, E. plurivorum, E. thailandicum, and E. tobaicum), and an unknown species (Epicoccum sp.1). Pathogenicity tests showed that E. endophyticum, E. endololii, and Epicoccum sp.1 were nonpathogenic to Italian ryegrass, which were confirmed as endophytes in this study; the other six species could infect Italian ryegrass and cause leaf lesions to different degrees, of which E. draconis was more aggressive (P ≤ 0.05). Coupled with the isolation rates and geographical distributions of these species, it was found that E. plurivorum was the predominant pathogen in Yunnan while E. oryzae and E. tobaicum were the predominant pathogens in the other three provinces. This work provides an initial understanding of the taxonomy, virulence, and distribution of Epicoccum species associated with ELS in southwestern China and lays a solid foundation for the diagnosis in the field and scientific control of ELS on Italian ryegrass.
Collapse
Affiliation(s)
- Zhiting Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Lingling Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Grassland Research Center of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Jiaqi Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Dongying Chen
- Chongqing Animal Husbandry Technology Extension Station, Chongqing 401121, China
| | - Huawei Cui
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Longhai Xue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Grassland Research Center of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
17
|
Zhao L, Sun W, Zhang L, Yin Y, Xie Y, Zhang Y. Heart Rot Disease of Walnut Caused by Nothophoma juglandis sp. nov. and Its Endophytic Biocontrol Agent. PLANT DISEASE 2024; 108:746-756. [PMID: 37787687 DOI: 10.1094/pdis-11-22-2660-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
English walnut (Juglans regia L.) is an economically important hardwood tree species cultivated worldwide. Walnut heart rot disease leading to heartwood decay of trees has been frequently observed in a number of plantations in China. To identify the causal agent, 29 diseased stem samples were collected from walnut plantations in Beijing, and 54 fungal isolates were obtained. Koch's postulates were developed, and the results showed that Nothophoma juglandis, a species new to science, was the causal agent of walnut heart rot disease. Granulobasidium vellereum, a notable biocontrol agent, was coisolated with N. juglandis. An antagonistic assay on dual culture and walnut stems (both in the field and detached branches) proved that G. vellereum acted as a potential biocontrol agent against N. juglandis, as it could significantly inhibit the expansion of N. juglandis. The optimal temperature for mycelial growth and pathogenicity of N. juglandis was 26.6 and 27.0°C, respectively, which frequently occur in the summer of the walnut-growing regions in China.
Collapse
Affiliation(s)
- Lili Zhao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Wei Sun
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Lin Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yueqi Yin
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yuqing Xie
- School of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Ying Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Dubovik V, Dalinova A, Berestetskiy A. Natural ten-membered lactones: sources, structural diversity, biological activity, and intriguing future. Nat Prod Rep 2024; 41:85-112. [PMID: 37885339 DOI: 10.1039/d3np00013c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Covering: 2012 to 2022Ten-membered lactones (TMLs) are an interesting and diverse group of natural polyketides that are abundant in fungi and, to a lesser extent, in bacteria, marine organisms, and insects. TMLs are known for their ability to exhibit a wide spectrum of biological activity, including phytotoxic, cytotoxic, antifungal, antibacterial, and others. However, the random discovery of these compounds by scientific groups with various interests worldwide has resulted in patchy information about their distribution among different organisms and their biological activity. Therefore, despite more than 60 years of research history, there is still no common understanding of the natural sources of TMLs, their structural type classification, and most characteristic biological activities. The controversial nomenclature, incorrect or erroneous structure elucidation, poor identification of producing organisms, and scattered information on the biological activity of compounds - all these factors have led to the problems with dereplication and the directed search for TMLs. This review consists of two parts: the first part (Section 2) covers 104 natural TMLs, published between 2012 and 2022 (after the publishing of the previous review), and the second part (Section 3) summarizes information about 214 TMLs described during 1964-2022 and as a result highlights the main problems and trends in the study of these intriguing natural products.
Collapse
Affiliation(s)
- Vsevolod Dubovik
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| | - Anna Dalinova
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| | - Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| |
Collapse
|
19
|
Luo X, Hu Y, Xia J, Zhang K, Ma L, Xu Z, Ma J. Morphological and Phylogenetic Analyses Reveal Three New Species of Didymella ( Didymellaceae, Pleosporales) from Jiangxi, China. J Fungi (Basel) 2024; 10:75. [PMID: 38248984 PMCID: PMC10821193 DOI: 10.3390/jof10010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Didymella contains numerous plant pathogenic and saprobic species associated with a wide range of hosts. Over the course of our mycological surveys of plant pathogens from terrestrial plants in Jiangxi Province, China, eight strains isolated from diseased leaves of four host genera represented three new species of Didymella, D. bischofiae sp. nov., D. clerodendri sp. nov., and D. pittospori sp. nov. Phylogenetic analyses of combined ITS, LSU, RPB2, and TUB2 sequence data, using maximum-likelihood (ML) and Bayesian inference (BI), revealed their taxonomic placement within Didymella. Both morphological examinations and molecular phylogenetic analyses supported D. bischofiae, D. clerodendri, and D. pittospori as three new taxa within Didymella. Illustrations and descriptions of these three taxa were provided, along with comparisons with closely related taxa in the genus.
Collapse
Affiliation(s)
- Xingxing Luo
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (Y.H.); (Z.X.)
| | - Yafen Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (Y.H.); (Z.X.)
| | - Jiwen Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Kai Zhang
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Liguo Ma
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Zhaohuan Xu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (Y.H.); (Z.X.)
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (Y.H.); (Z.X.)
| |
Collapse
|
20
|
Lee GB, Kim KD, Cho WD, Kim WG. Didymella gigantis sp. nov. Causing Leaf Spot in Korean Angelica. MYCOBIOLOGY 2023; 51:393-400. [PMID: 38179122 PMCID: PMC10763909 DOI: 10.1080/12298093.2023.2289259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
During a disease survey in October 2019, leaf spot symptoms with a yellow halo were observed on Korean angelica (Anglica gigas) plants grown in fields in Pyeongchang, Gangwon Province, Korea. Incidence of diseased leaves of the plants in the investigated fields ranged from 10% to 60%. Morphological and cultural characteristics of two single-spore isolates from the leaf lesions indicated that they belonged to the genus Didymella. Molecular phylogenetic analyses using combined sequences of LSU, ITS, TUB2, and RPB2 regions showed distinct clustering of the isolates from other Didymella species. In addition, the morphological and cultural characteristics of the isolates were somewhat different from those of closely related Didymella spp. Therefore, the novelty of the isolates was proved based on the investigations. Pathogenicity of the novel Didymella species isolates was confirmed on leaves of Korean angelica plants via artificial inoculation. This study reveals that Didymella gigantis sp. nov. causes leaf spot in Korean angelica.
Collapse
Affiliation(s)
- Gyo-Bin Lee
- Global Agro-Consulting Corporation, Suwon, Korea
- Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ki Deok Kim
- Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Weon-Dae Cho
- Global Agro-Consulting Corporation, Suwon, Korea
| | - Wan-Gyu Kim
- Global Agro-Consulting Corporation, Suwon, Korea
| |
Collapse
|
21
|
Borman AM, Johnson EM. Changes in fungal taxonomy: mycological rationale and clinical implications. Clin Microbiol Rev 2023; 36:e0009922. [PMID: 37930182 PMCID: PMC10732072 DOI: 10.1128/cmr.00099-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 11/07/2023] Open
Abstract
Numerous fungal species of medical importance have been recently subjected to and will likely continue to undergo nomenclatural changes as a result of the application of molecular approaches to fungal classification together with abandonment of dual nomenclature. Here, we summarize those changes affecting key groups of fungi of medical importance, explaining the mycological (taxonomic) rationale that underpinned the changes and the clinical relevance/importance (where such exists) of the key nomenclatural revisions. Potential mechanisms to mitigate unnecessary taxonomic instability are suggested, together with approaches to raise awareness of important changes to minimize potential clinical confusion.
Collapse
Affiliation(s)
- Andrew M. Borman
- UK HSA National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| | - Elizabeth M. Johnson
- UK HSA National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| |
Collapse
|
22
|
Kolařík M, Vrublevskaya M, Kajzrová S, Kulišová M, Kolouchová IJ. Taxonomic analysis reveals host preference of rare fungi in endophytes of Vitis vinifera from the Czech Republic. Folia Microbiol (Praha) 2023; 68:961-975. [PMID: 37289415 DOI: 10.1007/s12223-023-01066-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023]
Abstract
This paper represents the results of screening a diversity of fungal endophytes associated with Vitis vinifera leaves and canes in the Czech Republic. The characterization of strains is based on morphological and phylogenetic analyses of ITS, EF1α and TUB2 sequence data. Our strain selection covers 16 species and seven orders belonging to Ascomycota and Basidiomycota. Together with ubiquitous fungi, we report on several poorly known plant-associated fungi, Angustimassarina quercicola (= A. coryli, a synonym proposed in this study) and Pleurophoma pleurospora. Other species, such as Didymella negriana, D. variabilis, Neosetophoma sp. (species identical or sister to N. rosae), Phragmocamarosporium qujingensis and Sporocadus rosigena, have so far been little known and rarely found, but are frequent on V. vinifera in different parts of the world and obviously belong to a microbiota with a strong preference for this plant. Detailed taxonomical identification allowed us to identify species with apparent stable associations with V. vinifera, for which further interactions with V. vinifera can be expected. Our study is the first to focus on V. vinifera endophytes in Central Europe and expands the knowledge about their taxonomy, ecology and geography.
Collapse
Affiliation(s)
- Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic.
| | - Maria Vrublevskaya
- Department of Biotechnology, University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Soňa Kajzrová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Irena Jarošová Kolouchová
- Department of Biotechnology, University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| |
Collapse
|
23
|
Keinath AP, Rennberger G, Wechter P. Widespread Resistance to Tebuconazole and Cross-Resistance to Other DMI Fungicides in Stagonosporopsis citrulli Isolated from Watermelon in South Carolina. PLANT DISEASE 2023; 107:3896-3905. [PMID: 37311227 DOI: 10.1094/pdis-03-23-0478-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tebuconazole, a demethylation-inhibitor (DMI) fungicide, is widely used on watermelon and muskmelon because it is inexpensive and has been effective against Stagonosporopsis citrulli, the primary causal agent of gummy stem blight in the southeastern United States. Most isolates (94% of 251) collected from watermelon in South Carolina in 2019 and 2021 were moderately resistant to tebuconazole at 3.0 mg/liter in vitro. Ninety isolates were identified as S. citrulli, and no isolates of S. caricae were found in this study. On watermelon and muskmelon seedlings treated with the field rate of tebuconazole, sensitive, moderately resistant, and highly resistant isolates were controlled 99, 74, and 45%, respectively. In vitro, tebuconazole-sensitive isolates were moderately resistant to tetraconazole and flutriafol but sensitive to difenoconazole and prothioconazole, while highly resistant isolates were highly resistant to tetraconazole and flutriafol and moderately resistant to difenoconazole and prothioconazole. On watermelon seedlings treated with field rates of five DMI fungicides in the greenhouse, severity of gummy stem blight did not differ significantly from the nontreated control when seedlings were inoculated with a highly resistant isolate, while severity was lower with all DMIs on seedlings inoculated with a sensitive isolate, although severity was greater with tetraconazole than with the other four DMIs. In the field, tetraconazole rotated with mancozeb did not reduce severity of gummy stem blight caused by a tebuconazole-sensitive isolate when compared to the nontreated control, while the other four DMIs did. With a highly resistant isolate, all DMIs rotated with mancozeb reduced severity of gummy stem blight compared to the nontreated control, but severity with tetraconazole and tebuconazole was greater than with mancozeb alone, and severity with flutriafol, difenoconazole, prothioconazole, and difenoconazole plus cyprodinil did not differ from mancozeb applied alone. Results from in vitro, greenhouse, and field experiments with the five DMI fungicides were highly correlated with each other. Thus, determining relative colony diameters with a discriminatory dose of 3 mg/liter of tebuconazole is an effective way to identify isolates of S. citrulli highly resistant to tebuconazole.
Collapse
Affiliation(s)
- Anthony P Keinath
- Coastal Research and Education Center, Department of Plant and Environmental Sciences, Clemson University, Charleston, SC 29414
| | - Gabriel Rennberger
- U.S. Vegetable Laboratory, USDA Agricultural Research Service, Charleston, SC 29414
| | - Patrick Wechter
- Coastal Research and Education Center, Department of Plant and Environmental Sciences, Clemson University, Charleston, SC 29414
| |
Collapse
|
24
|
Paap T, Marincowitz S, Pham N, Roets F, Roets F, Basson R, Wingfield B, Oberlander K, Wingfield M. A novel species of Microsphaeropsis causing cankers on Rafnia amplexicaulis in South Africa. Fungal Syst Evol 2023; 12:73-80. [PMID: 38533480 PMCID: PMC10964399 DOI: 10.3114/fuse.2023.12.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 03/28/2024] Open
Abstract
Cankers leading to branch, stem and plant death were observed on the South African endemic Rafnia amplexicaulis (Fabaceae) in the Cederberg Wilderness Area, South Africa, during September 2021. Conidiomatal pycnidia were found developing on the cankers, and isolations consistently yielded a Microsphaeropsis species. Phylogenetic analysis based on partial nucleotide sequences of the internal transcribed spacers (ITS), the nuclear large subunit (LSU) and RNA polymerase II second largest subunit (RPB2) regions showed that the fungus represented an undescribed species. Based on the multigene phylogeny and morphological characteristics, we describe the species here as M. rafniae sp. nov. Pathogenicity tests and the fulfilment of Koch's postulates confirmed that M. rafniae sp. nov. is the cause of the cankers of R. amplexicaulis. Presently, this disease is known from a single location in South Africa, and further surveys are required to determine its distribution and relative importance. Citation: Paap T, Marincowitz S, Pham NQ, Roets F, Basson RJ, Wingfield BD, Oberlander K, Wingfield MJ (2023). A novel species of Microsphaeropsis causing cankers on Rafnia amplexicaulis in South Africa. Fungal Systematics and Evolution 12: 73-80. doi: 10.3114/fuse.2023.12.05.
Collapse
Affiliation(s)
- T. Paap
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - N.Q. Pham
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - F. Roets
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - F. Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - R.J. Basson
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - K. Oberlander
- H.G.W.J. Schweickerdt Herbarium, Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
25
|
Lee GB, Kim KD, Cho WD, Kim WG. Didymella acutilobae sp. nov. Causing Leaf Spot and Stem Rot in Angelica acutiloba. MYCOBIOLOGY 2023; 51:313-319. [PMID: 37929002 PMCID: PMC10621254 DOI: 10.1080/12298093.2023.2254052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 11/07/2023]
Abstract
During disease surveys of Angelica acutiloba plants in Korea, leaf spot symptoms were observed in a field in Andong in July 2019, and stem rot symptoms in vinyl greenhouses in Yangpyeong in April 2020. Incidence of leaf spot and stem rot of the plants ranged from 10 to 20% and 5 to 30%, respectively. Morphological and cultural characteristics of fungal isolates from the leaf spot and stem rot symptoms fitted into those of the genus Phoma. Molecular phylogenetic analyses of two single-spore isolates from the symptoms using concatenated sequences of LSU, ITS, TUB2, and RPB2 genes authenticated an independent cluster from other Didymella (anamorph: Phoma) species. Moreover, the isolates showed different morphological and cultural characteristics in comparison to closely related Didymella species. These discoveries confirmed the novelty of the isolates. Pathogenicity of the novel Didymella species isolates was substantiated on leaves and stems of A. acutiloba through artificial inoculation. Thus, this study reveals that Didymella acutilobae sp. nov. causes leaf spot and stem rot in Angelica acutiloba.
Collapse
Affiliation(s)
- Gyo-Bin Lee
- Global Agro-Consulting Corporation, Suwon, Korea
| | - Ki Deok Kim
- Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Weon-Dae Cho
- Global Agro-Consulting Corporation, Suwon, Korea
| | - Wan-Gyu Kim
- Global Agro-Consulting Corporation, Suwon, Korea
| |
Collapse
|
26
|
Cheng CY, Zhang MY, Niu YC, Zhang M, Geng YH, Deng H. Comparison of Fungal Genera Isolated from Cucumber Plants and Rhizosphere Soil by Using Various Cultural Media. J Fungi (Basel) 2023; 9:934. [PMID: 37755042 PMCID: PMC10532442 DOI: 10.3390/jof9090934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Plant endophytic fungi and rhizosphere soil fungi are often reported as biocontrol agents against plant pathogens or with plant growth promotion potential. Four treatments were performed in field and greenhouse experiments where cucumber plants were inoculated with Trichoderma harzianum and Fusarium oxysporum in 2022. The roots, stems and leaves of cucumber plants and their rhizosphere soil were collected twice individually from the field and greenhouse for isolation of cucumber endophytic and rhizosphere soil fungi. All fungal strains were identified through sequence similarity of the ITS1-5.8s-ITS2 rDNA region. The potato dextrose agar (PDA) media yielded the highest number of genera isolated from cucumber plants, rhizosphere soil and both compared to other media. There were no significant differences among the four media for the isolation of all cucumber endophytic fungi. However, in the roots, the number of endophytic fungi isolated by MRBA was significantly higher than that isolated on malt extract agar (MEA), while in the stems, the number of fungi isolated with PDA was significantly higher than that isolated with Martin's rose bengal agar medium (MRBA). PDA had significantly higher isolation efficiency for the rhizosphere soil fungi than MRBA. The 28 fungal genera had high isolation efficiency, and the endophytic Trichoderma strains were significantly more isolated by MEA than those of MRBA. It is suggested that PDA can be used as a basic medium, and different cultural media can be considered for specific fungal genera.
Collapse
Affiliation(s)
- Chong-Yang Cheng
- Plant Protection College, Henan Agricultural University, No. 95 Wen-Hua Road, Zhengzhou 450002, China; (C.-Y.C.); (M.Z.)
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (M.-Y.Z.); (Y.-C.N.)
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Ming-Yuan Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (M.-Y.Z.); (Y.-C.N.)
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Yong-Chun Niu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (M.-Y.Z.); (Y.-C.N.)
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Meng Zhang
- Plant Protection College, Henan Agricultural University, No. 95 Wen-Hua Road, Zhengzhou 450002, China; (C.-Y.C.); (M.Z.)
| | - Yue-Hua Geng
- Plant Protection College, Henan Agricultural University, No. 95 Wen-Hua Road, Zhengzhou 450002, China; (C.-Y.C.); (M.Z.)
| | - Hui Deng
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (M.-Y.Z.); (Y.-C.N.)
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
27
|
Chen T, Wang S, Jiang X, Huang Y, Mo M, Yu Z. New Species of Didymellaceae within Aquatic Plants from Southwestern China. J Fungi (Basel) 2023; 9:761. [PMID: 37504749 PMCID: PMC10381294 DOI: 10.3390/jof9070761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Members of Didymellaceae have a wide geographical distribution throughout different ecosystems, and most species are associated with fruit, leaf, stem and root diseases of land plants. However, species that occur in aquatic plants are not clearly known. During a survey of the diversity of endophytes in aquatic plants in Yunnan, Sichuan, and Guizhou provinces, we obtained 51 isolates belonging to Didymellaceae based on internal transcribed spacer region (ITS) sequences. Further, the phylogenetic positions of these isolates were determined by combined sequences composed of ITS, partial large subunit nrRNA gene (28S nrDNA; LSU), RNA polymerase II second largest subunit (rpb2) and partial beta-tubulin gene (tub2). Combining morphological characteristics and multi-locus phylogenetic analyses, two new varieties belong to Boeremia and 12 new species distributed into seven genera were recognized from 51 isolates, i.e., Cumuliphoma, Didymella, Dimorphoma, Ectophoma, Leptosphaerulina, Remotididymella, and Stagonosporopsis. Among these species, only one species of Stagonosporopsis and two species of Leptosphaerulina show teleomorphic stages on OA, but have no anamorphic state. Each new species is described in detail, and the differences between new species and their phylogenetically related species are discussed here. The high frequency of new species indicates that aquatic plants may be a special ecological niche which highly promotes species differentiation. At the same time, the frequent occurrence of new species may indicate the need for extensive investigation of fungal resources in those aquatic environments where fungal diversity may be underestimated.
Collapse
Affiliation(s)
- Tong Chen
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Siyuan Wang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xinwei Jiang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ying Huang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Minghe Mo
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
| |
Collapse
|
28
|
Rai M, Zimowska B, Gade A, Ingle P. Phoma spp. an untapped treasure of cytotoxic compounds: current status and perspectives. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12635-9. [PMID: 37401998 DOI: 10.1007/s00253-023-12635-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
The genus Phoma has been explored for a wide range of secondary metabolites signifying a huge range of bioactivities. Phoma sensu lato is a major group that secretes several secondary metabolites. The genus Phoma mainly includes Phoma macrostoma, P. multirostrata, P. exigua, P. herbarum, P. betae, P. bellidis, P. medicaginis, P. tropica, and many more species from the genus that are continuously being identified for their potential secondary metabolites. The metabolite spectrum includes bioactive compounds like phomenon, phomin, phomodione, cytochalasins, cercosporamide, phomazines, and phomapyrone reported from various Phoma spp. These secondary metabolites show a broad range of activities including antimicrobial, antiviral, antinematode, and anticancer. The present review is aimed to emphasize the importance of Phoma sensu lato fungi, as a natural source of biologically active secondary metabolites, and their cytotoxic activities. So far, cytotoxic activities of Phoma spp. have not been reviewed; hence, this review will be novel and useful for the readers to develop Phoma-derived anticancer agents. KEY POINTS: • Different Phoma spp. contain a wide variety of bioactive metabolites. • These Phoma spp. also secrete cytotoxic and antitumor compounds. • The secondary metabolites can be used for the development of anticancer agents.
Collapse
Affiliation(s)
- Mahendra Rai
- Biotechnology Department, Sant Gadge Baba Amravati University, Amravati, 444 602, Maharashtra, India.
- Department of Microbiology, Nicolaus Copernicus University, 87-100, Torun, Poland.
| | - Beata Zimowska
- Department of Plant Protection, University of Life Sciences in Lublin, Poland7 K. St. Leszczyńskiego Street, 20-069, Lublin, Poland
| | - Aniket Gade
- Biotechnology Department, Sant Gadge Baba Amravati University, Amravati, 444 602, Maharashtra, India
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Matunga, 400019, Mumbai, India
| | - Pramod Ingle
- Biotechnology Department, Sant Gadge Baba Amravati University, Amravati, 444 602, Maharashtra, India
| |
Collapse
|
29
|
Samad A, Degenhardt D, Séguin A, Morency MJ, Gagné P, Martineau C. Microbial community structural and functional differentiation in capped thickened oil sands tailings planted with native boreal species. Front Microbiol 2023; 14:1168653. [PMID: 37465026 PMCID: PMC10350512 DOI: 10.3389/fmicb.2023.1168653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
The oil sands mining operations in Alberta have produced billions of m3 of tailings which must be reclaimed and integrated into various mine closure landforms, including terrestrial landforms. Microorganisms play a central role in nutrient cycling during the reclamation of disturbed landscapes, contributing to successful vegetation restoration and long-term sustainability. However, microbial community succession and response in reconstructed and revegetated tailings remain largely unexplored. This study aimed to monitor the structural and functional responses of microbial communities in tailings subjected to different capping and vegetation strategies over two growing seasons (GS). To achieve this, a column-based greenhouse experiment was conducted to investigate microbial communities in tailings that were capped with a layer (10 or 30 cm) of peat-mineral mix (PMM) and planted with either upland or wetland communities. DNA metabarcoding analysis of the bacterial 16S rRNA gene and fungal ITS2 region as well as shotgun metagenomics were used to asses the impact of treatments on microbial taxonomy and functions, respectively. Results showed that tailings microbial diversity and community composition changed considerably after two GS compared to baseline samples, while communities in the PMM capping layer were much more stable. Likewise, several microbial functions were significantly enriched in tailings after two GS. Interestingly, the impact of capping on bacterial communities in tailings varied depending on the plant community, leading to a higher number of differentially abundant taxa and to a decrease in Shannon diversity and evenness in the upland treatment but not in the wetland treatment. Moreover, while capping in the presence of wetland vegetation increased the energy-related metabolic functions (carbon, nitrogen, and sulfur), these functions were depleted by capping in the upland treatment. Fungi represented a small proportion of the microbial community in tailings, but the relative abundance of several taxa changed over time, while the capping treatments favored the growth of some beneficial taxa, notably the root endophyte Serendipita, in both upland and wetland columns. The results suggest that selecting the right combination of capping material and vegetation type may contribute to improve below-ground microbial processes and sustain plant growth in harsh environments such as oil sands tailings.
Collapse
Affiliation(s)
- Abdul Samad
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Dani Degenhardt
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, Canada
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Marie-Josée Morency
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Patrick Gagné
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Christine Martineau
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| |
Collapse
|
30
|
Abstract
The current article summarizes recent changes in nomenclature for fungi of medical importance published in the years 2020 to 2021, including new species and revised names for existing ones. Many of the revised names have been widely adopted without further discussion. However, those that concern common pathogens of humans may take longer to achieve general usage, with new and current names reported together to engender increasing familiarity with the correct taxonomic classification.
Collapse
Affiliation(s)
- Andrew M. Borman
- UK National Mycology Reference Laboratory, United Kingdom Health Security Agency South-West, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| | - Elizabeth M. Johnson
- UK National Mycology Reference Laboratory, United Kingdom Health Security Agency South-West, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| |
Collapse
|
31
|
Hou L, Giraldo A, Groenewald J, Rämä T, Summerbell R, Huang G, Cai L, Crous P. Redisposition of acremonium-like fungi in Hypocreales. Stud Mycol 2023; 105:23-203. [PMID: 38895703 PMCID: PMC11182610 DOI: 10.3114/sim.2023.105.02] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/16/2023] [Indexed: 06/21/2024] Open
Abstract
Acremonium is acknowledged as a highly ubiquitous genus including saprobic, parasitic, or endophytic fungi that inhabit a variety of environments. Species of this genus are extensively exploited in industrial, commercial, pharmaceutical, and biocontrol applications, and proved to be a rich source of novel and bioactive secondary metabolites. Acremonium has been recognised as a taxonomically difficult group of ascomycetes, due to the reduced and high plasticity of morphological characters, wide ecological distribution and substrate range. Recent advances in molecular phylogenies, revealed that Acremonium is highly polyphyletic and members of Acremonium s. lat. belong to at least three distinct orders of Sordariomycetes, of which numerous orders, families and genera with acremonium-like morphs remain undefined. To infer the phylogenetic relationships and establish a natural classification for acremonium-like taxa, systematic analyses were conducted based on a large number of cultures with a global distribution and varied substrates. A total of 633 cultures with acremonium-like morphology, including 261 ex-type cultures from 89 countries and a variety of substrates including soil, plants, fungi, humans, insects, air, and water were examined. An overview phylogenetic tree based on three loci (ITS, LSU, rpb2) was generated to delimit the orders and families. Separate trees based on a combined analysis of four loci (ITS, LSU, rpb2, tef-1α) were used to delimit species at generic and family levels. Combined with the morphological features, host associations and ecological analyses, acremonium-like species evaluated in the present study are currently assigned to 63 genera, and 14 families in Cephalothecales, Glomerellales and Hypocreales, mainly in the families Bionectriaceae, Plectosphaerellaceae and Sarocladiaceae and five new hypocrealean families, namely Chrysonectriaceae, Neoacremoniaceae, Nothoacremoniaceae, Pseudoniessliaceae and Valsonectriaceae. Among them, 17 new genera and 63 new combinations are proposed, with descriptions of 65 new species. Furthermore, one epitype and one neotype are designated to stabilise the taxonomy and use of older names. Results of this study demonstrated that most species of Acremonium s. lat. grouped in genera of Bionectriaceae, including the type A. alternatum. A phylogenetic backbone tree is provided for Bionectriaceae, in which 183 species are recognised and 39 well-supported genera are resolved, including 10 new genera. Additionally, rpb2 and tef-1α are proposed as potential DNA barcodes for the identification of taxa in Bionectriaceae. Taxonomic novelties: New families: Chrysonectriaceae L.W. Hou, L. Cai & Crous, Neoacremoniaceae L.W. Hou, L. Cai & Crous, Nothoacremoniaceae L.W. Hou, L. Cai & Crous, Pseudoniessliaceae L.W. Hou, L. Cai & Crous, Valsonectriaceae L.W. Hou, L. Cai & Crous. New genera: Bionectriaceae: Alloacremonium L.W. Hou, L. Cai & Crous, Gossypinidium L.W. Hou, L. Cai & Crous, Monohydropisphaera L.W. Hou, L. Cai & Crous, Musananaesporium L.W. Hou, L. Cai & Crous, Paragliomastix L.W. Hou, L. Cai & Crous, Proliferophialis L.W. Hou, L. Cai & Crous, Proxiovicillium L.W. Hou, L. Cai & Crous, Ramosiphorum L.W. Hou, L. Cai & Crous, Verruciconidia L.W. Hou, L. Cai & Crous, Waltergamsia L.W. Hou, L. Cai & Crous; Clavicipitaceae: Subuliphorum L.W. Hou, L. Cai & Crous; Neoacremoniaceae: Neoacremonium L.W. Hou, L. Cai & Crous; Nothoacremoniaceae: Nothoacremonium L.W. Hou, L. Cai & Crous; Plectosphaerellaceae: Allomusicillium L.W. Hou, L. Cai & Crous, Parafuscohypha L.W. Hou, L. Cai & Crous; Pseudoniessliaceae: Pseudoniesslia L.W. Hou, L. Cai & Crous; Sarocladiaceae: Polyphialocladium L.W. Hou, L. Cai & Crous. New species: Bionectriaceae: Alloacremonium ferrugineum L.W. Hou, L. Cai & Crous, Al. humicola L.W. Hou, L. Cai & Crous, Acremonium aerium L.W. Hou, L. Cai & Crous, A. brunneisporum L.W. Hou, L. Cai & Crous, A. chlamydosporium L.W. Hou, L. Cai & Crous, A. ellipsoideum L.W. Hou, Rämä, L. Cai & Crous, A. gamsianum L.W. Hou, L. Cai & Crous, A. longiphialidicum L.W. Hou, L. Cai & Crous, A. multiramosum L.W. Hou, Rämä, L. Cai & Crous, A. mycoparasiticum L.W. Hou, L. Cai & Crous, A. stroudii K. Fletcher, F.C. Küpper & P. van West, A. subulatum L.W. Hou, L. Cai & Crous, A. synnematoferum L.W. Hou, Rämä, L. Cai & Crous, Bulbithecium ammophilae L.W. Hou, L. Cai & Crous, B. ellipsoideum L.W. Hou, L. Cai & Crous, B. truncatum L.W. Hou, L. Cai & Crous, Emericellopsis brunneiguttula L.W. Hou, L. Cai & Crous, Gliomastix musae L.W. Hou, L. Cai & Crous, Gossypinidium sporodochiale L.W. Hou, L. Cai & Crous, Hapsidospora stercoraria L.W. Hou, L. Cai & Crous, H. variabilis L.W. Hou, L. Cai & Crous, Mycocitrus odorus L.W. Hou, L. Cai & Crous, Nectriopsis ellipsoidea L.W. Hou, L. Cai & Crous, Paracylindrocarpon aurantiacum L.W. Hou, L. Cai & Crous, Pn. foliicola Lechat & J. Fourn., Paragliomastix rosea L.W. Hou, L. Cai & Crous, Proliferophialis apiculata L.W. Hou, L. Cai & Crous, Protocreopsis finnmarkica L.W. Hou, L. Cai, Rämä & Crous, Proxiovicillium lepidopterorum L.W. Hou, L. Cai & Crous, Ramosiphorum echinoporiae L.W. Hou, L. Cai & Crous, R. polyporicola L.W. Hou, L. Cai & Crous, R. thailandicum L.W. Hou, L. Cai & Crous, Verruciconidia erythroxyli L.W. Hou, L. Cai & Crous, Ve. infuscata L.W. Hou, L. Cai & Crous, Ve. quercina L.W. Hou, L. Cai & Crous, Ve. siccicapita L.W. Hou, L. Cai & Crous, Ve. unguis L.W. Hou, L. Cai & Crous, Waltergamsia alkalina L.W. Hou, L. Cai & Crous, W. catenata L.W. Hou, L. Cai & Crous, W. moroccensis L.W. Hou, L. Cai & Crous, W. obpyriformis L.W. Hou, L. Cai & Crous; Chrysonectriaceae: Chrysonectria crystallifera L.W. Hou, L. Cai & Crous; Nectriaceae: Xenoacremonium allantoideum L.W. Hou, L. Cai & Crous; Neoacremoniaceae: Neoacremonium distortum L.W. Hou, L. Cai & Crous, N. flavum L.W. Hou, L. Cai & Crous; Nothoacremoniaceae: Nothoacremonium subcylindricum L.W. Hou, L. Cai & Crous, No. vesiculophorum L.W. Hou, L. Cai & Crous; Myrotheciomycetaceae: Trichothecium hongkongense L.W. Hou, L. Cai & Crous; Plectosphaerellaceae: Brunneomyces polyphialidus L.W. Hou, L. Cai & Crous, Parafuscohypha proliferata L.W. Hou, L. Cai & Crous; Sarocladiaceae: Chlamydocillium acaciae L.W. Hou, L. Cai & Crous, C. antarcticum L.W. Hou, L. Cai & Crous, C. guttulatum L.W. Hou, L. Cai & Crous, C. lolii L.W. Hou, L. Cai & Crous, C. soli L.W. Hou, L. Cai & Crous, C. terrestre L.W. Hou, L. Cai & Crous, Parasarocladium chondroidum L.W. Hou, L. Cai & Crous,Polyphialocladium fusisporum L.W. Hou, L. Cai & Crous, Sarocladium agarici L.W. Hou, L. Cai & Crous, S. citri L.W. Hou, L. Cai & Crous, S. ferrugineum L.W. Hou, L. Cai & Crous, S. fuscum L.W. Hou, L. Cai & Crous,S. theobromae L.W. Hou, L. Cai & Crous; Valsonectriaceae: Valsonectria crystalligena L.W. Hou, L. Cai & Crous, V. hilaris L.W. Hou, L. Cai & Crous. New combinations: Bionectriaceae: Acremonium purpurascens (Sukapure & Thirum.) L.W. Hou, L. Cai & Crous, Bulbithecium arxii (Malloch) L.W. Hou, L. Cai & Crous, Bu. borodinense (Tad. Ito et al.) L.W. Hou, L. Cai & Crous, Bu. pinkertoniae (W. Gams) L.W. Hou, L. Cai & Crous, Bu. spinosum (Negroni) L.W. Hou, L. Cai & Crous, Emericellopsis exuviara (Sigler et al.) L.W. Hou, L. Cai & Crous, E. fimetaria (Pers.) L.W. Hou, L. Cai & Crous, E. fuci (Summerb. et al.) L.W. Hou, L. Cai & Crous, E. moniliformis (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, E. salmonea (W. Gams & Lodha) L.W. Hou, L. Cai & Crous, E. tubakii (Gams) L.W. Hou, L. Cai & Crous, Fusariella arenula (Berk. & Broome) L.W. Hou, L. Cai & Crous, Hapsidospora chrysogena (Thirum. & Sukapure) L.W. Hou, L. Cai & Crous, H. flava (W. Gams) L.W. Hou, L. Cai & Crous, H. globosa (Malloch & Cain) L.W. Hou, L. Cai & Crous, H. inversa (Malloch & Cain) L.W. Hou, L. Cai & Crous, Hydropisphaera aurantiaca (C.A. Jørg.) L.W. Hou, L. Cai & Crous, Lasionectria atrorubra (Lechat & J. Fourn.) L.W. Hou, L. Cai & Crous, L. bisepta (W. Gams) L.W. Hou, L. Cai & Crous, L. castaneicola (Lechat & Gardiennet) L.W. Hou, L. Cai & Crous, L. cerealis (P. Karst.) L.W. Hou, L. Cai & Crous, L. olida (W. Gams) L.W. Hou, L. Cai & Crous, Lasionectriopsis dentifera (Samuels) L.W. Hou, L. Cai & Crous, Lasionectriella arenuloides (Samuels) L.W. Hou, L. Cai & Crous, La. marigotensis (Lechat & J. Fourn.) L.W. Hou, L. Cai & Crous, Monohydropisphaera fusigera (Berk. & Broome) L.W. Hou, L. Cai & Crous, Musananaesporium tectonae (R.F. Castañeda) L.W. Hou, L. Cai & Crous, Mycocitrus zonatus (Sawada) L.W. Hou, L. Cai & Crous, Nectriopsis microspora (Jaap) L.W. Hou, L. Cai & Crous, Ovicillium asperulatum (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, O. variecolor (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, Paracylindrocarpon multiloculatum (Samuels) L.W. Hou, L. Cai & Crous, Pn. multiseptatum (Samuels)L.W. Hou, L. Cai & Crous, Paragliomastix chiangraiensis (J.F. Li et al.) L.W. Hou, L. Cai & Crous, Px. luzulae (Fuckel) L.W. Hou, L. Cai & Crous, Px. znieffensis (Lechat & J. Fourn.) L.W. Hou, L. Cai & Crous, Protocreopsis rutila (W. Gams) L.W. Hou, L. Cai & Crous, Proxiovicillium blochii (Matr.)L.W. Hou, L. Cai & Crous, Stanjemonium dichromosporum (Gams & Sivasith.) L.W. Hou, L. Cai & Crous, Verruciconidia persicina (Nicot) L.W. Hou, L. Cai & Crous, Ve. verruculosa (W. Gams & Veenb.-Rijks) L.W. Hou, L. Cai & Crous, Waltergamsia citrina (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. dimorphospora (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. epimycota (Samuels) L.W. Hou, L. Cai & Crous, W. fusidioides (Nicot) L.W. Hou, L. Cai & Crous, W. hennebertii (W. Gams) L.W. Hou, L. Cai & Crous, W. parva (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. pilosa (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. zeylanica (Petch) L.W. Hou, L. Cai & Crous; Cephalothecaceae: Phialemonium thermophilum (W. Gams & J. Lacey) L.W. Hou, L. Cai & Crous; Clavicipitaceae: Subuliphorum camptosporum (W. Gams) L.W. Hou, L. Cai & Crous; Coniochaetaceae: Coniochaeta psammospora (W. Gams) L.W. Hou, L. Cai & Crous; Nothoacremoniaceae: Nothoacremonium exiguum (W. Gams) L.W. Hou, L. Cai & Crous; Neoacremoniaceae: Neoacremonium minutisporum (Sukapure & Thirum.) L.W. Hou, L. Cai & Crous; Ne. taiwanense (K.L. Pang et al.) L.W. Hou, L. Cai & Crous; Ne. vitellinum (W. Gams) L.W. Hou, L. Cai & Crous; Plectosphaerellaceae: Allomusicillium domschii (W. Gams) L.W. Hou, L. Cai & Crous, Brunneomyces pseudozeylanicus (W. Gams) L.W. Hou, L. Cai & Crous; Pseudoniessliaceae: Pseudoniesslia minutispora (W. Gams et al.) L.W. Hou, L. Cai & Crous; Sarocladiaceae: Chlamydocillium curvulum (W. Gams) L.W. Hou, L. Cai & Crous, Parasarocladium funiculosum (Sukapure & Thirum.) L.W. Hou, L. Cai & Crous; Valsonectriaceae: Valsonectria inflata (C.H. Dickinson) L.W. Hou, L. Cai & Crous, V. roseola (G. Sm.) L.W. Hou, L. Cai & Crous. Epitype (basionym): Sphaeria violacea J.C. Schmidt ex Fr. Neotype (basionym): Mastigocladium blochii Matr. Citation: Hou LW, Giraldo A, Groenewald JZ, Rämä T, Summerbell RC, Zang P, Cai L, Crous PW (2023). Redisposition of acremonium-like fungi in Hypocreales. Studies in Mycology 105: 23-203. doi: 10.3114/sim.2023.105.02.
Collapse
Affiliation(s)
- L.W. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese
Academy of Sciences, Beijing, 100101, China;
| | - A. Giraldo
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584
CT, The Netherlands;
- Netherlands Institute for Vectors, Invasive plants and Plant health
(NIVIP), NVWA, Wageningen Netherlands;
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584
CT, The Netherlands;
| | - T. Rämä
- The Norwegian College of Fishery Science, Department at Faculty of
Biosciences, Fisheries and Economics, UiT The Arctic University of Norway,
Tromsø, Norway;
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada;
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON,
Canada;
| | - G.Z. Huang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101,
China;
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese
Academy of Sciences, Beijing, 100101, China;
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584
CT, The Netherlands;
- Microbiology, Department of Biology, Utrecht University, Padualaan 8,
Utrecht, 3584 CH, The Netherlands;
- Department of Biochemistry, Genetics and Microbiology, Forestry and
Agricultural Biotechnology Institute (FABI), Faculty of Natural and
Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield,
Pretoria, 0028, South Africa;
- Wageningen University and Research Centre (WUR), Laboratory of
Phytopathology, Droevendaalsesteeg 1, Wageningen, 6708 PB, The
Netherlands
| |
Collapse
|
32
|
Crous PW, Costa MM, Kandemir H, Vermaas M, Vu D, Zhao L, Arumugam E, Flakus A, Jurjević Ž, Kaliyaperumal M, Mahadevakumar S, Murugadoss R, Shivas RG, Tan YP, Wingfield MJ, Abell SE, Marney TS, Danteswari C, Darmostuk V, Denchev CM, Denchev TT, Etayo J, Gené J, Gunaseelan S, Hubka V, Illescas T, Jansen GM, Kezo K, Kumar S, Larsson E, Mufeeda KT, Piątek M, Rodriguez-Flakus P, Sarma PVSRN, Stryjak-Bogacka M, Torres-Garcia D, Vauras J, Acal DA, Akulov A, Alhudaib K, Asif M, Balashov S, Baral HO, Baturo-Cieśniewska A, Begerow D, Beja-Pereira A, Bianchinotti MV, Bilański P, Chandranayaka S, Chellappan N, Cowan DA, Custódio FA, Czachura P, Delgado G, De Silva NI, Dijksterhuis J, Dueñas M, Eisvand P, Fachada V, Fournier J, Fritsche Y, Fuljer F, Ganga KGG, Guerra MP, Hansen K, Hywel-Jones N, Ismail AM, Jacobs CR, Jankowiak R, Karich A, Kemler M, Kisło K, Klofac W, Krisai-Greilhuber I, Latha KPD, Lebeuf R, Lopes ME, Lumyong S, Maciá-Vicente JG, Maggs-Kölling G, Magistà D, Manimohan P, Martín MP, Mazur E, Mehrabi-Koushki M, Miller AN, Mombert A, Ossowska EA, Patejuk K, Pereira OL, Piskorski S, Plaza M, Podile AR, Polhorský A, Pusz W, Raza M, Ruszkiewicz-Michalska M, Saba M, Sánchez RM, Singh R, et alCrous PW, Costa MM, Kandemir H, Vermaas M, Vu D, Zhao L, Arumugam E, Flakus A, Jurjević Ž, Kaliyaperumal M, Mahadevakumar S, Murugadoss R, Shivas RG, Tan YP, Wingfield MJ, Abell SE, Marney TS, Danteswari C, Darmostuk V, Denchev CM, Denchev TT, Etayo J, Gené J, Gunaseelan S, Hubka V, Illescas T, Jansen GM, Kezo K, Kumar S, Larsson E, Mufeeda KT, Piątek M, Rodriguez-Flakus P, Sarma PVSRN, Stryjak-Bogacka M, Torres-Garcia D, Vauras J, Acal DA, Akulov A, Alhudaib K, Asif M, Balashov S, Baral HO, Baturo-Cieśniewska A, Begerow D, Beja-Pereira A, Bianchinotti MV, Bilański P, Chandranayaka S, Chellappan N, Cowan DA, Custódio FA, Czachura P, Delgado G, De Silva NI, Dijksterhuis J, Dueñas M, Eisvand P, Fachada V, Fournier J, Fritsche Y, Fuljer F, Ganga KGG, Guerra MP, Hansen K, Hywel-Jones N, Ismail AM, Jacobs CR, Jankowiak R, Karich A, Kemler M, Kisło K, Klofac W, Krisai-Greilhuber I, Latha KPD, Lebeuf R, Lopes ME, Lumyong S, Maciá-Vicente JG, Maggs-Kölling G, Magistà D, Manimohan P, Martín MP, Mazur E, Mehrabi-Koushki M, Miller AN, Mombert A, Ossowska EA, Patejuk K, Pereira OL, Piskorski S, Plaza M, Podile AR, Polhorský A, Pusz W, Raza M, Ruszkiewicz-Michalska M, Saba M, Sánchez RM, Singh R, Śliwa L, Smith ME, Stefenon VM, Strasiftáková D, Suwannarach N, Szczepańska K, Telleria MT, Tennakoon DS, Thines M, Thorn RG, Urbaniak J, van der Vegte M, Vasan V, Vila-Viçosa C, Voglmayr H, Wrzosek M, Zappelini J, Groenewald JZ. Fungal Planet description sheets: 1550-1613. PERSOONIA 2023; 51:280-417. [PMID: 38665977 PMCID: PMC11041897 DOI: 10.3767/persoonia.2023.51.08] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 04/28/2024]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Argentina, Neocamarosporium halophilum in leaf spots of Atriplex undulata. Australia, Aschersonia merianiae on scale insect (Coccoidea), Curvularia huamulaniae isolated from air, Hevansia mainiae on dead spider, Ophiocordyceps poecilometigena on Poecilometis sp. Bolivia, Lecanora menthoides on sandstone, in open semi-desert montane areas, Sticta monlueckiorum corticolous in a forest, Trichonectria epimegalosporae on apothecia of corticolous Megalospora sulphurata var. sulphurata, Trichonectria puncteliae on the thallus of Punctelia borreri. Brazil, Catenomargarita pseudocercosporicola (incl. Catenomargarita gen. nov.) hyperparasitic on Pseudocercospora fijiensis on leaves of Musa acuminata, Tulasnella restingae on protocorms and roots of Epidendrum fulgens. Bulgaria, Anthracoidea umbrosae on Carex spp. Croatia, Hymenoscyphus radicis from surface-sterilised, asymptomatic roots of Microthlaspi erraticum, Orbilia multiserpentina on wood of decorticated branches of Quercus pubescens. France, Calosporella punctatispora on dead corticated twigs of Aceropalus. French West Indies (Martinique), Eutypella lechatii on dead corticated palm stem. Germany, Arrhenia alcalinophila on loamy soil. Iceland, Cistella blauvikensis on dead grass (Poaceae). India, Fulvifomes maritimus on living Peltophorum pterocarpum, Fulvifomes natarajanii on dead wood of Prosopis juliflora, Fulvifomes subazonatus on trunk of Azadirachta indica, Macrolepiota bharadwajii on moist soil near the forest, Narcissea delicata on decaying elephant dung, Paramyrothecium indicum on living leaves of Hibiscus hispidissimus, Trichoglossum syamviswanathii on moist soil near the base of a bamboo plantation. Iran, Vacuiphoma astragalicola from stem canker of Astragalus sarcocolla. Malaysia, Neoeriomycopsis fissistigmae (incl. Neoeriomycopsidaceae fam. nov.) on leaf spots on flower Fissistigma sp. Namibia, Exophiala lichenicola lichenicolous on Acarospora cf. luederitzensis. Netherlands, Entoloma occultatum on soil, Extremus caricis on dead leaves of Carex sp., Inocybe pseudomytiliodora on loamy soil. Norway, Inocybe guldeniae on calcareous soil, Inocybe rupestroides on gravelly soil. Pakistan, Hymenagaricus brunneodiscus on soil. Philippines, Ophiocordyceps philippinensis parasitic on Asilus sp. Poland, Hawksworthiomyces ciconiae isolated from Ciconia ciconia nest, Plectosphaerella vigrensis from leaf spots on Impatiens noli-tangere, Xenoramularia epitaxicola from sooty mould community on Taxus baccata. Portugal, Inocybe dagamae on clay soil. Saudi Arabia, Diaporthe jazanensis on branches of Coffea arabica. South Africa, Alternaria moraeae on dead leaves of Moraea sp., Bonitomyces buffels-kloofinus (incl. Bonitomyces gen. nov.) on dead twigs of unknown tree, Constrictochalara koukolii on living leaves of Itea rhamnoides colonised by a Meliola sp., Cylindromonium lichenophilum on Parmelina tiliacea, Gamszarella buffelskloofina (incl. Gamszarella gen. nov.) on dead insect, Isthmosporiella africana (incl. Isthmosporiella gen. nov.) on dead twigs of unknown tree, Nothoeucasphaeria buffelskloofina (incl. Nothoeucasphaeria gen. nov.), on dead twigs of unknown tree, Nothomicrothyrium beaucarneae (incl. Nothomicrothyrium gen. nov.) on dead leaves of Beaucarnea stricta, Paramycosphaerella proteae on living leaves of Protea caffra, Querciphoma foliicola on leaf litter, Rachicladosporium conostomii on dead twigs of Conostomium natalense var. glabrum, Rhamphoriopsis synnematosa on dead twig of unknown tree, Waltergamsia mpumalanga on dead leaves of unknown tree. Spain, Amanita fulvogrisea on limestone soil, in mixed forest, Amanita herculis in open Quercus forest, Vuilleminia beltraniae on Cistus symphytifolius. Sweden, Pachyella pulchella on decaying wood on sand-silt riverbank. Thailand, Deniquelata cassiae on dead stem of Cassia fistula, Stomiopeltis thailandica on dead twigs of Magnolia champaca. Ukraine, Circinaria podoliana on natural limestone outcrops, Neonematogonum carpinicola (incl. Neonematogonum gen. nov.) on dead branches of Carpinus betulus. USA, Exophiala wilsonii water from cooling tower, Hygrophorus aesculeticola on soil in mixed forest, and Neocelosporium aereum from air in a house attic. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Costa MM, Kandemir H, et al. 2023. Fungal Planet description sheets: 1550-1613. Persoonia 51: 280-417. doi: 10.3767/persoonia.2023.51.08.
Collapse
Affiliation(s)
- P W Crous
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - M M Costa
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - H Kandemir
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M Vermaas
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - D Vu
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L Zhao
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - E Arumugam
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - A Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - M Kaliyaperumal
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - S Mahadevakumar
- Forest Pathology Department, Division of Forest Protection, KSCSTE-Kerala Forest Research Institute, Peechi - 680653, Thrissur, Kerala, India
- Botanical Survey of India, Andaman and Nicobar Regional Center, Haddo - 744102, Port Blair, South Andaman, India
| | - R Murugadoss
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - R G Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Y P Tan
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - S E Abell
- Australian Tropical Herbarium, James Cook University, Smithfield 4878, Queensland, Australia
| | - T S Marney
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - C Danteswari
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - V Darmostuk
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - C M Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - T T Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - J Etayo
- Navarro Villoslada 16, 3° cha., E-31003 Pamplona, Navarra, Spain
| | - J Gené
- Universitat Rovira i Virgili, Facultat de Medicina i Ciéncies de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - S Gunaseelan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - V Hubka
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - T Illescas
- Buenos Aires 3 Bajo 1, 14006 Córdoba, Spain
| | - G M Jansen
- Ben Sikkenlaan 9, 6703JC Wageningen, The Netherlands
| | - K Kezo
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - S Kumar
- Botanical Survey of India, Andaman and Nicobar Regional Center, Haddo - 744102, Port Blair, South Andaman, India
| | - E Larsson
- Biological and Environmental Sciences, University of Gothenburg, and Gothenburg Global Biodiversity Centre, Box 463, SE40530 Göteborg, Sweden
| | - K T Mufeeda
- Botanical Survey of India, Andaman and Nicobar Regional Center, Haddo - 744102, Port Blair, South Andaman, India
| | - M Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - P Rodriguez-Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - P V S R N Sarma
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - M Stryjak-Bogacka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - D Torres-Garcia
- Universitat Rovira i Virgili, Facultat de Medicina i Ciéncies de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - J Vauras
- Biological Collections of Åbo Akademi University, Biodiversity Unit, Herbarium, FI-20014 University of Turku, Finland
| | - D A Acal
- Department of Invertebrate Zoology & Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - A Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022 Kharkiv, Ukraine
| | - K Alhudaib
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - M Asif
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - S Balashov
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - H-O Baral
- Blaihofstr. 42, Tübingen, D-72074, Germany
| | - A Baturo-Cieśniewska
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - D Begerow
- Universität Hamburg, Institute of Plant Science and Microbiology, Organismic Botany and Mycology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - A Beja-Pereira
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- DGAOT, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - M V Bianchinotti
- CERZOS-UNS-CONICET, Camino La Carrindanga Km 7, CP: 8000, Bahía Blanca, Argentina and Depto. de Biología, Bioquímica y Farmacia, UNS, San Juan 670, CP: 8000, Bahía Blanca, Argentina
| | - P Bilański
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - S Chandranayaka
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru - 570006, Karnataka, India
| | - N Chellappan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - F A Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - P Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - G Delgado
- Eurofins Built Environment, 6110 W. 34th St, Houston, TX 77092, USA
| | - N I De Silva
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - J Dijksterhuis
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M Dueñas
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - P Eisvand
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
| | - V Fachada
- Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, 40700, Jyväskylä, Finland
- MHNC-UP - Museu de História Natural e da Ciência da Universidade do Porto - Herbário PO, Universidade do Porto. Praça Gomes Teixeira, 4099-002, Porto, Portugal
| | | | - Y Fritsche
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - F Fuljer
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - K G G Ganga
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - M P Guerra
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - K Hansen
- Swedish Museum of Natural History, Department of Botany, P.O. Box 50007, SE-104 05 Stockholm, Sweden
| | - N Hywel-Jones
- Zhejiang BioAsia Institute of Life Sciences, Pinghu 31 4200, Zhejiang, People's Republic of China
| | - A M Ismail
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - C R Jacobs
- Nin.Da.Waab.Jig-Walpole Island Heritage Centre, Bkejwanong (Walpole Island First Nation), 2185 River Road North, Walpole Island, Ontario, N8A 4K9, Canada
| | - R Jankowiak
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - A Karich
- Unit of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - M Kemler
- Universität Hamburg, Institute of Plant Science and Microbiology, Organismic Botany and Mycology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - K Kisło
- University of Warsaw, Botanic Garden, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland
| | - W Klofac
- Mayerhöfen 28, 3074 Michelbach, Austria
| | - I Krisai-Greilhuber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - K P D Latha
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - R Lebeuf
- 775, rang du Rapide Nord, Saint-Casimir, Quebec, G0A 3L0, Canada
| | - M E Lopes
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - S Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - J G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Department of Microbial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - G Maggs-Kölling
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
- Unit for Environmental Sciences and Management, North-West University, P. Bag X1290, Potchefstroom, 2520, South Africa
| | - D Magistà
- Department of Soil, Plant and Food Sciences, University of Bari A. Moro, 70126, Bari, Italy
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126, Bari, Italy
| | - P Manimohan
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - M P Martín
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - E Mazur
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - M Mehrabi-Koushki
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - A N Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - A Mombert
- 3 rue de la craie, 25640 Corcelle-Mieslot, France
| | - E A Ossowska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, PL-80-308 Gdańsk, Poland
| | - K Patejuk
- Department of Plant Protection, Wtoctaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wtoctaw, Poland
| | - O L Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - S Piskorski
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - M Plaza
- La Angostura, 20, 11370 Los Barrios, Cádiz, Spain
| | - A R Podile
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - W Pusz
- Department of Plant Protection, Wtoctaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wtoctaw, Poland
| | - M Raza
- Key Laboratory of Integrated Pest Management in Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 83009, China
| | - M Ruszkiewicz-Michalska
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - M Saba
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - R M Sánchez
- CERZOS-UNS-CONICET, Camino La Carrindanga Km 7, CP: 8000, Bahía Blanca, Argentina and Depto. de Biología, Bioquímica y Farmacia, UNS, San Juan 670, CP: 8000, Bahía Blanca, Argentina
| | - R Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi - 221005, Uttar Pradesh, India
| | - L Śliwa
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - M E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, USA
| | - V M Stefenon
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - D Strasiftáková
- Slovak National Museum-Natural History Museum, Vajanského náb. 2, P.O. Box 13, 81006, Bratislava, Slovakia
| | - N Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - K Szczepańska
- Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, PL-50-363 Wroclaw, Poland
| | - M T Telleria
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - D S Tennakoon
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - M Thines
- Evolutionary Analyses and Biological Archives, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main
- Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution, and Diversity, Max-von-Laue-Str. 9, 60483 Frankfurt am Main, Germany
| | - R G Thorn
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - J Urbaniak
- Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, PL-50-363 Wroclaw, Poland
| | | | - V Vasan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - C Vila-Viçosa
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- MHNC-UP - Museu de História Natural e da Ciência da Universidade do Porto - Herbário PO, Universidade do Porto. Praça Gomes Teixeira, 4099-002, Porto, Portugal
| | - H Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - M Wrzosek
- University of Warsaw, Botanic Garden, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland
| | - J Zappelini
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - J Z Groenewald
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
33
|
Wang F, Liu C, Zeng Q, Zhou Y, Liu F, Xu X, Yang H, Liu Y, Yang C. Identification and pathogenicity analysis of leaf brown spot of Juglans regia in China. Sci Rep 2023; 13:6599. [PMID: 37087532 PMCID: PMC10122669 DOI: 10.1038/s41598-023-33853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 04/24/2023] Open
Abstract
English walnut (Juglans regia), has high economic and ecological value. As an important tree species for eliminating poverty, it is planted in many Provinces of China. In 2021, new pathogenic fungi were observed in English walnut in Guangyuan City, Sichuan Province, China. The initial symptom of leaf infection is that the leaves are covered with small black spots, which gradually expand into larger brown spots. Most of the spots appeared at the edges of the leaves, and yellow whorls were observed at the junction between the spots and the healthy leaves. The pathogenic fungi were isoalted form collecting disease samples and purified by single-spore culturing. In vitro and field experiments showed that the pathogen could cause brown spots on walnut leaves. The inoculation experiment showed that the symptoms in the field experiment were the same as those observed on the spot; however, slight differences were observed in the in vitro experiment. Ten isolates were obtained from walnut leaves with brown spot symptoms, and these were further characterized based on morphology and DNA sequencing. ITS (internal transcribed spacer), LSU (large sub-unit rDNA), rpb2 (second largest subunit of RNA polymerase) and tub2 (beta-tubulin) gene regions were used to construct phylogenetic trees and determine the evolutionary relationships among the collected strains. The isolate was identified as Nothophoma quercina by morphological and polygene analyses. As far as we are aware, the brown spots on walnut leaves caused by N. quercina is the first report of its kind.
Collapse
Affiliation(s)
- Feihu Wang
- Yangtze River Upper Reaches Forest Resources Conservation and Ecological Safety Key Laboratory of the National Forestry and Grassland Administration & Research Institute of Forestry in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chao Liu
- Yangtze River Upper Reaches Forest Resources Conservation and Ecological Safety Key Laboratory of the National Forestry and Grassland Administration & Research Institute of Forestry in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qian Zeng
- Yangtze River Upper Reaches Forest Resources Conservation and Ecological Safety Key Laboratory of the National Forestry and Grassland Administration & Research Institute of Forestry in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yijie Zhou
- Yangtze River Upper Reaches Forest Resources Conservation and Ecological Safety Key Laboratory of the National Forestry and Grassland Administration & Research Institute of Forestry in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Feng Liu
- Yangtze River Upper Reaches Forest Resources Conservation and Ecological Safety Key Laboratory of the National Forestry and Grassland Administration & Research Institute of Forestry in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiulan Xu
- Yangtze River Upper Reaches Forest Resources Conservation and Ecological Safety Key Laboratory of the National Forestry and Grassland Administration & Research Institute of Forestry in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Chengdu Academy of Agricultural and Forestry Sciences, Forestry Research Institute, Chengdu, 611130, Sichuan, China
| | - Hanbo Yang
- Yangtze River Upper Reaches Forest Resources Conservation and Ecological Safety Key Laboratory of the National Forestry and Grassland Administration & Research Institute of Forestry in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yinggao Liu
- Yangtze River Upper Reaches Forest Resources Conservation and Ecological Safety Key Laboratory of the National Forestry and Grassland Administration & Research Institute of Forestry in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chunlin Yang
- Yangtze River Upper Reaches Forest Resources Conservation and Ecological Safety Key Laboratory of the National Forestry and Grassland Administration & Research Institute of Forestry in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
34
|
Zhang J, Sha H, Chen W, Mao B. Characterization and Control of Dendrobium officinale Bud Blight Disease. Pathogens 2023; 12:pathogens12040621. [PMID: 37111507 PMCID: PMC10142839 DOI: 10.3390/pathogens12040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Dendrobium officinale is an important traditional Chinese medicine (TCM). A disease causing bud blight in D. officinale appeared in 2021 in Yueqing city, Zhejiang Province, China. In this paper, 127 isolates were obtained from 61 plants. The isolates were grouped into 13 groups based on collected areas and morphological observations. Four loci (ITS, LSU, tub2 and rpb2) of 13 representative isolates were sequenced and the isolates were identified by constructing phylogenetic trees with the multi-locus sequence analysis (MLSA) method. We found the disease to be associated with three strains: Ectophoma multirostrata, Alternaria arborescens and Stagonosporopsis pogostemonis, with isolates frequencies of 71.6%, 21.3% and 7.1%, respectively. All three strains are pathogenic to D. officinale. A. arborescens and S. pogostemonis isolated from D. officinale were reported for the first time. Iprodione (50%), 33.5% oxine-copper and Meitian (containing 75 g/L pydiflumetofen and 125 g/L difenoconazole) were chosen to control the dominant pathogen E. multirostrata, with an EC50 value of 2.10, 1.78 and 0.09 mg/L, respectively. All three fungicides exhibited an effective inhibition of activities to the growth of the dominant pathogen E. multirostrata on potato dextrose agar (PDA) plates, with Meitian showing the strongest inhibitory effect. We further found that Meitian can effectively control D. officinale bud blight disease in pot trial.
Collapse
Affiliation(s)
- Jinzhao Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Hangzhou 310058, China
| | - Haodong Sha
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Hangzhou 310058, China
| | - Weiliang Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Hangzhou 310058, China
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
35
|
Li S, Wang Z, Gao M, Li T, Cui X, Zu J, Sang S, Fan W, Zhang H. Intraspecific Comparative Analysis Reveals Genomic Variation of Didymella arachidicola and Pathogenicity Factors Potentially Related to Lesion Phenotype. BIOLOGY 2023; 12:biology12030476. [PMID: 36979167 PMCID: PMC10045276 DOI: 10.3390/biology12030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Didymella arachidicola is one of the most important fungal pathogens, causing foliar disease and leading to severe yield losses of peanuts (Arachis hypogaea L.) in China. Two main lesion phenotypes of peanut web blotch have been identified as reticulation type (R type) and blotch type (B type). As no satisfactory reference genome is available, the genomic variations and pathogenicity factors of D. arachidicola remain to be revealed. In the present study, we collected 41 D. arachidicola isolates from 26 geographic locations across China (33 for R type and 8 for B type). The chromosome-scale genome of the most virulent isolate (YY187) was assembled as a reference using PacBio and Hi-C technologies. In addition, we re-sequenced 40 isolates from different sampling sites. Genome-wide alignments showed high similarity among the genomic sequences from the 40 isolates, with an average mapping rate of 97.38%. An average of 3242 SNPs and 315 InDels were identified in the genomic variation analysis, which revealed an intraspecific polymorphism in D. arachidicola. The comparative analysis of the most and least virulent isolates generated an integrated gene set containing 512 differential genes. Moreover, 225 genes individually or simultaneously harbored hits in CAZy-base, PHI-base, DFVF, etc. Compared with the R type reference, the differential gene sets from all B type isolates identified 13 shared genes potentially related to lesion phenotype. Our results reveal the intraspecific genomic variation of D. arachidicola isolates and pathogenicity factors potentially related to different lesion phenotypes. This work sets a genomic foundation for understanding the mechanisms behind genomic diversity driving different pathogenic phenotypes of D. arachidicola.
Collapse
Affiliation(s)
- Shaojian Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Zhenyu Wang
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Meng Gao
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Tong Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xiaowei Cui
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Junhuai Zu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Suling Sang
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Wanwan Fan
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Haiyan Zhang
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| |
Collapse
|
36
|
Yang AL, Chen L, Cheng L, Li JP, Zeng ZY, Zhang HB. Two Novel Species of Mesophoma gen. nov. from China. Curr Microbiol 2023; 80:129. [PMID: 36884095 DOI: 10.1007/s00284-023-03238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
During an investigation of the fungal pathogens associated with the invasive weed Ageratina adenophora from China, some interesting isolates were obtained from healthy leaf, leaf spot, and roots of this weed. Among them, a novel genus Mesophoma, containing two novel species M. speciosa and M. ageratinae, was found. Phylogenetic analysis of the combined, the internal transcribed spacer (ITS), large nuclear subunit ribosomal DNA (LSU), the RNA polymerase II second largest subunit (rpb2), and the partial β-tubulin (tub2) sequences, showed that M. speciosa and M. ageratinae formed a distinct clade far from all genera previously described in the family Didymellaceae. Combined distinctive morphological characters, including smaller and aseptate conidia when comparing with nearby genera Stagonosporopsis, Boeremia, and Heterphoma, allowed us to describe them as novel species belonging to a novel genus Mesophoma. The full descriptions, illustrations, and a phylogenetic tree showing the position of both M. speciosa and M. ageratinae are provided in this paper. Moreover, the potential for two strains belonging to these two species to be developed into a biocontrol for the spread of the invasive weed Ag. adenophora is also discussed.
Collapse
Affiliation(s)
- Ai-Ling Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China.,School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Lin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Lu Cheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Jin-Peng Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Zhao-Ying Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China.,School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Han-Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China. .,School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China.
| |
Collapse
|
37
|
Hill R, Levicky Q, Pitsillides F, Junnonen A, Arrigoni E, Bonnin JM, Kermode A, Mian S, Leitch IJ, Buddie AG, Buggs RJA, Gaya E. Tapping Culture Collections for Fungal Endophytes: First Genome Assemblies for Three Genera and Five Species in the Ascomycota. Genome Biol Evol 2023; 15:evad038. [PMID: 36881851 PMCID: PMC10027605 DOI: 10.1093/gbe/evad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The Ascomycota form the largest phylum in the fungal kingdom and show a wide diversity of lifestyles, some involving associations with plants. Genomic data are available for many ascomycetes that are pathogenic to plants, but endophytes, which are asymptomatic inhabitants of plants, are relatively understudied. Here, using short- and long-read technologies, we have sequenced and assembled genomes for 15 endophytic ascomycete strains from CABI's culture collections. We used phylogenetic analysis to refine the classification of taxa, which revealed that 7 of our 15 genome assemblies are the first for the genus and/or species. We also demonstrated that cytometric genome size estimates can act as a valuable metric for assessing assembly "completeness", which can easily be overestimated when using BUSCOs alone and has broader implications for genome assembly initiatives. In producing these new genome resources, we emphasise the value of mining existing culture collections to produce data that can help to address major research questions relating to plant-fungal interactions.
Collapse
Affiliation(s)
- Rowena Hill
- Royal Botanic Gardens Kew, Richmond, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Quentin Levicky
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | | | | | | | - Sahr Mian
- Royal Botanic Gardens Kew, Richmond, UK
| | | | | | - Richard J A Buggs
- Royal Botanic Gardens Kew, Richmond, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | |
Collapse
|
38
|
Lee RC, Grime CR, O'Driscoll K, Khentry Y, Farfan-Caceres LM, Tahghighi H, Kamphuis LG. Field Pea ( Pisum sativum) Germplasm Screening for Seedling Ascochyta Blight Resistance and Genome-Wide Association Studies Reveal Loci Associated with Resistance to Peyronellaea pinodes and Ascochyta koolunga. PHYTOPATHOLOGY 2023; 113:265-276. [PMID: 35984372 DOI: 10.1094/phyto-02-22-0051-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ascochyta blight is a damaging disease that affects the stems, leaves, and pods of field pea (Pisum sativum) and impacts yield and grain quality. In Australia, field pea Ascochyta blight is primarily caused by the necrotrophic fungal species Peyronellaea pinodes and Ascochyta koolunga. In this study, we screened 1,276 Pisum spp. germplasm accessions in seedling disease assays with a mix of three isolates of P. pinodes and 641 accessions with three mixed isolates of A. koolunga (513 accessions were screened with both species). A selection of three P. sativum accessions with low disease scores for either pathogen, or in some cases both, were crossed with Australian field pea varieties PBA Gunyah and PBA Oura, and recombinant inbred line populations were made. Populations at the F3:4 and F4:5 generation were phenotyped for their disease response to P. pinodes and A. koolunga, and genotypes were determined using the diversity arrays technology genotyping method. Marker-trait associations were identified using a genome-wide association study approach. Trait-associated loci were mapped to the published P. sativum genome assembly, and candidate resistance gene analogues were identified in the corresponding genomic regions. One locus on chromosome 2 (LG1) was associated with resistance to P. pinodes, and the 8 Mb genomic region contains 156 genes, two of which are serine/threonine protein kinases, putatively contributing to the resistance trait. A second locus on chromosome 5 (LG3) was associated with resistance to A. koolunga, and the 35 Mb region contains 488 genes, of which five are potential candidate resistance genes, including protein kinases, a mitogen-activated protein kinase, and an ethylene-responsive protein kinase homolog.
Collapse
Affiliation(s)
- Robert C Lee
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| | - Christina R Grime
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| | - Kane O'Driscoll
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| | - Lina M Farfan-Caceres
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| | - Hediyeh Tahghighi
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102 Australia
| |
Collapse
|
39
|
Świątczak J, Kalwasińska A, Szabó A, Swiontek Brzezinska M. Pseudomonas sivasensis 2RO45 inoculation alters the taxonomic structure and functioning of the canola rhizosphere microbial community. Front Microbiol 2023; 14:1168907. [PMID: 37213523 PMCID: PMC10196004 DOI: 10.3389/fmicb.2023.1168907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Inoculation with plant growth-promoting rhizobacteria (PGPR) is an eco-friendly sustainable strategy for improving crop productivity in diverse environments under different conditions. Our earlier study demonstrated that Pseudomonas sivasensis 2RO45 significantly stimulated canola (Brassica napus L. var. napus) growth. The aim of the present study was to investigate the structural and functional dynamics in the canola rhizosphere microbiome after inoculation with PGPR P. sivasensis 2RO45. The results based on alpha diversity metrics showed that P. sivasensis 2RO45 did not significantly alter the diversity of the native soil microbiota. However, the introduced strain modified the taxonomic structure of microbial communities, increasing the abundance of plant beneficial microorganisms, e.g., bacteria affiliated with families Comamonadaceae, Vicinamibacteraceae, genus Streptomyces, and fungi assigned to Nectriaceae, Didymellaceae, Exophiala, Cyphellophora vermispora, and Mortierella minutissima. The analysis of community level physiological profiling (CLPP) revealed that microbial communities in the P. sivasensis 2RO45 treated canola rhizospheres were more metabolically active than those in the non-treated canola rhizosphere. Four carbon sources (phenols, polymers, carboxylic acids, and amino acids) were better metabolized by the microbial communities from the rhizosphere of plants inoculated with the P. sivasensis 2RO45 than non-inoculated canola rhizospheres. Based on the community-level physiological profiles, the functional diversity of the rhizosphere microbiome was altered by the P. sivasensis 2RO45 inoculation. Substrate utilization Shannon diversity (H) index and evenness (E) index were significantly increased in the treated canola plants. The study provides new insight into PGPR-canola interactions for sustainable agriculture development.
Collapse
Affiliation(s)
- Joanna Świątczak
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
- *Correspondence: Joanna Świątczak,
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Agnieszka Kalwasińska,
| | - Attila Szabó
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
40
|
Diversity of Filamentous Fungi Associated with Dairy Processing Environments and Spoiled Products in Brazil. Foods 2022; 12:foods12010153. [PMID: 36613369 PMCID: PMC9818152 DOI: 10.3390/foods12010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Few studies have investigated the diversity of spoilage fungi from the dairy production chain in Brazil, despite their importance as spoilage microorganisms. In the present study, 109 filamentous fungi were isolated from various spoiled dairy products and dairy production environments. The isolates were identified through sequencing of the internal transcribed spacer (ITS) region. In spoiled products, Penicillium and Cladosporium were the most frequent genera of filamentous fungi and were also present in the dairy environment, indicating that they may represent a primary source of contamination. For dairy production environments, the most frequent genera were Cladosporium, Penicillium, Aspergillus, and Nigrospora. Four species (Hypoxylon griseobrunneum, Rhinocladiella similis, Coniochaeta rosae, and Paecilomyces maximus) were identified for the first time in dairy products or in dairy production environment. Phytopathogenic genera were also detected, such as Montagnula, Clonostachys, and Riopa. One species isolated from the dairy production environment is classified as the pathogenic fungi, R. similis. Regarding the phylogeny, 14 different families were observed and most of the fungi belong to the Ascomycota phylum. The understanding of fungal biodiversity in dairy products and environment can support the development of conservation strategies to control food spoilage. This includes the suitable use of preservatives in dairy products, as well as the application of specific cleaning and sanitizing protocols designed for a specific group of target microorganisms.
Collapse
|
41
|
Artand S, Mehrabi-koushki M, Tabein S, Hyde KD, Jayawardena RS. Revision of the Microsphaeropsis Complex with Addition of Four New Paramicrosphaeropsis L.W.Hou, L.Cai & Crous Species from Zagrosian Forest Trees in Iran. CRYPTOGAMIE MYCOL 2022. [DOI: 10.5252/cryptogamie-mycologie2022v43a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Saeid Artand
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province (Iran)
| | - Mehdi Mehrabi-koushki
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province (Iran) and Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province (Iran)
| | - Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz,Ahvaz, Khuzestan Province (Iran)
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, 57100 (Thailand)
| | | |
Collapse
|
42
|
Lan Y, Duan T. Characterization of Boeremia exigua causing stem necrotic lesions on Luobuma in northwest China. Sci Rep 2022; 12:21609. [PMID: 36517497 PMCID: PMC9751102 DOI: 10.1038/s41598-022-25125-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Luobuma (Apocynum venetum, Poacynum pictum, and P. hendersonni) are perennial herbs widely used in the textile and medical industries and ecological restoration. In the summer of 2020, reddish-brown or off-white sunken shape necrotic lesions were observed on the stems and shoots of seven Luobuma ecotypes grown in the field in Yuzhong County, Gansu province of China, which is a limiting factor that affects the growth, function and application of Luobuma. To make clear whether the new symptoms were caused by a novel pathogen, a combined research in field and greenhouse was conducted. Based on the morphological and molecular analysis results, the pathogen causing the necrotic lesions was identified as Boeremia exigua var. rhapontica. The incidence and disease index of the seven ecotypes in the field ranged from 11.49 to 33.68% and 6.63 to 23.01, respectively, from 2020 to 2021. The results showed that the disease severity gradually increased with the growing season. According to the pathogenicity analysis of the eight ecotypes in the greenhouse, the ecotypes Pp-BMK and Pp-BMH were susceptible, while ecotype Pp-BMQ was resistant to Boeremia exigua var. rhapontica infection. Thus, the present study provides a theoretical basis for preventing and controlling the stem and leaf necrotic lesions disease on Luobuma by planting resistant varieties/ecotypes. To our knowledge, this is the first report of stem necrotic lesions and leaf spots on Luobuma caused by B. exigua var. rhapontica.
Collapse
Affiliation(s)
- Yanru Lan
- grid.32566.340000 0000 8571 0482State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, 730020 China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020 China ,grid.32566.340000 0000 8571 0482College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020 China
| | - Tingyu Duan
- grid.32566.340000 0000 8571 0482State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, 730020 China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020 China ,grid.32566.340000 0000 8571 0482College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020 China
| |
Collapse
|
43
|
Carvalho JLVR, Lima JMS, Barbier E, Bernard E, Bezerra JDP, Souza-Motta CM. Ticket to ride: fungi from bat ectoparasites in a tropical cave and the description of two new species. Braz J Microbiol 2022; 53:2077-2091. [PMID: 36264483 PMCID: PMC9679077 DOI: 10.1007/s42770-022-00841-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/02/2022] [Indexed: 01/13/2023] Open
Abstract
Bat flies are obligate ectoparasitic dipterans that are highly specialised to bats and have apomorphic characteristics, such as absent or reduced wings, and specialised legs and claws, which contribute to their survival. They are often associated with fungi and harbour a fungal diversity that is still poorly understood. Fungi were found in association with the bat flies in a cave of the Caatinga dry forest in Brazil. In total, 43% of the captured bat flies were associated with fungi. Seventy-six flies were collected. DNA sequence analyses of 39 isolates showed that the isolates belonged to 13 species within nine genera, with 38 isolates belonging to Ascomycota and one isolate to Basidiomycota, and Aspergillus was the most frequently isolated genus. Most of the genera found have also been isolated from bat bodies and other substrates/hosts in caves in different regions of the world. Based on morphological and multi-locus phylogenetic analyses, two new species of Ascomycota were described: Allophoma brasiliensis sp. nov. and Pyrenochaetopsis cecavii sp. nov.
Collapse
Affiliation(s)
- João L V R Carvalho
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Joenny M S Lima
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eder Barbier
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Enrico Bernard
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Jadson D P Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - Cristina M Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
44
|
Liu J, Long Z, Xue L, Li C. First Report of Didymella sinensis Causing Leaf Blight on Italian Ryegrass in China. PLANT DISEASE 2022; 107:1631. [PMID: 36302730 DOI: 10.1094/pdis-08-22-1831-pdn] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Italian ryegrass (Lolium multiflorum Lam.) is a high-yield, high-quality forage grass and is cultivated widely in southern China. In April 2021, small black spots were observed on leaves of Italian ryegrass in the field of about 300 ha located in DuShan county, Guizhou province, China (25.62056°N, 107.53139°E). Approximately 1 to 3% of plants were affected. For isolation, eleven tissue pieces (about 0.5 × 1 cm) from four symptomatic leaves were surface-disinfested in 75% ethanol solution for 40s, rinsed thrice in sterilized distilled water and air dried; then these tissues were plated on potato dextrose agar (PDA), and incubated at 25°C for 4 days in the dark. Nine fungal isolates with similar colony characteristics were obtained, and three representative isolates (LMDS1, LMDS2 and LMDS3) were selected for further study. Colonies on PDA were 47 to 57 mm diam after 5 days, margin regular, dark gray in the center surrounded by white to gray, with floccose aerial mycelia on the upper side, and dark brown to black on the reverse side. There was no fungal sporulation when these isolates were incubated under continuous ultraviolet light on PDA, oatmeal agar (OA), malt extract agar (MEA) and potato carrot agar (PCA). ITS-rDNA, LSU-rDNA, and two other protein-coding genes (RPB2 and TUB2) were amplified with primers described by Chen et al. (2017). Sequences were deposited in GenBank (ON692740 to ON692742 for ITS, ON692775 to ON692777 for LSU, ON704660 to ON704662 for RPB2, and ON704657 to ON704659 for TUB2). BLAST analysis of all these four segments showed >99.7% identity with those sequences of ex-type isolate CGMCC 3.18348 of D. sinensis (Chen et al. 2017; Hou et al. 2020). Maximum likelihood (RAxML) phylogenetic tree based on the combined ITS, LSU, RPB2 and TUB2 alignments also showed these three isolates and the other two reported D. sinensis isolates formed a subclade with 100% bootstrap support. Referring to our previous method (Xue et al. 2020), five 8-week-old healthy plants of Italian ryegrass were spray-inoculated separately with a mycelial suspension of about 1.5 × 104 CFU/ml. In addition, five plants considered as non-inoculated controls were sprayed with sterilized distilled water. All plants were individually covered with transparent polyethylene bags for 5 days to maintain high relative humidity and placed in a greenhouse at 23 to 26°C. The small black spots similar to those observed on infected plants in the field developed on leaves fifteen days after inoculation. The symptoms consisted of brown to dark brown spots when leaves were severely infected; however, symptoms were not observed on non-inoculated plants (controls). Pathogenicity tests were carried out three times. The same fungus was re-isolated from the lesions, and confirmed by morphological characterization and molecular technique as described above, thus fulfilling Koch's postulates. To the best of our knowledge, this is the first report of D. sinensis causing leaf blight on Italian ryegrass in China. The accurate identification of this pathogen would be useful for the prevention and control of leaf spot on Italian ryegrass in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Lanzhou University, 12426, State Key Laboratory of Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou, Gansu, China;
| | - Zhongfu Long
- Guizhou Academy of Agricultural Sciences, Guizhou Institute of Prataculture, Guiyang, Guizhou, China;
| | - Longhai Xue
- Lanzhou University, 12426, State Key Laboratory of Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou, China;
| | - Chunjie Li
- Lanzhou University, 12426, State Key Laboratory of Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou, Gansu, China
- Chinese Academy of Forestry, 74640, Grassland Research Center of National Forestry and Grassland Administration, Haidian District, Beijing, China;
| |
Collapse
|
45
|
Mota de Oliveira S, Duijm E, Stech M, Ruijgrok J, Polling M, Barbosa CGG, Cerqueira GR, Nascimento AHM, Godoi RHM, Taylor PE, Wolff S, Weber B, Kesselmeier J. Life is in the air: An expedition into the Amazonian atmosphere. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.789791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological particles suspended in the atmosphere have a crucial role in the dynamics of the biosphere underneath. Although much attention is paid for the chemical and physical properties of these particles, their biological taxonomic identity, which is relevant for ecological research, remains little studied. We took air samples at 300 meters above the forest in central Amazonia, in seven periods of 7 days, and used high-throughput DNA sequencing techniques to taxonomically identify airborne fungal and plant material. The use of a molecular identification technique improved taxonomic resolution when compared to morphological identification. This first appraisal of airborne diversity showed that fungal composition was strikingly different from what has been recorded in anthropogenic regions. For instance, basidiospores reached 30% of the OTUs instead of 3–5% as found in the literature; and the orders Capnodiales and Eurotiales—to which many allergenic fungi and crop pathogens belong—were much less frequently recorded than Pleosporales, Polyporales, and Agaricales. Plant OTUs corresponded mainly to Amazonian taxa frequently present in pollen records such as the genera Helicostilys and Cecropia and/or very abundant in the region such as Pourouma and Pouteria. The origin of extra-Amazonian plant material is unknown, but they belong to genera of predominantly wind-pollinated angiosperm families such as Poaceae and Betulaceae. Finally, the detection of two bryophyte genera feeds the debate about the role of long distance dispersal in the distribution of these plants.
Collapse
|
46
|
Amplicon Sequencing Reveals Novel Fungal Species Responsible for a Controversial Tea Disease. J Fungi (Basel) 2022; 8:jof8080782. [PMID: 35893150 PMCID: PMC9394346 DOI: 10.3390/jof8080782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022] Open
Abstract
Amplicon sequencing is a powerful tool for analyzing the fungal composition inside plants, whereas its application for the identification of etiology for plant diseases remains undetermined. Here, we utilize this strategy to clarify the etiology responsible for tea leaf brown-black spot disease (LBSD), a noticeable disease infecting tea plants etiology that remains controversial. Based on the ITS-based amplicon sequencing analysis, Didymella species were identified as separate from Pestalotiopsis spp. and Cercospora sp., which are concluded as the etiological agents. This was further confirmed by the fungal isolation and their specific pathogenicity on diverse tea varieties. Based on the morphologies and phylogenetic analysis constructed with multi-loci (ITS, LSU, tub2, and rpb2), two novel Didymella species—tentatively named D. theae and D. theifolia as reference to their host plants—were proposed and characterized. Here, we present an integrated approach of ITS-based amplicon sequencing in combination with fungal isolation and fulfillment of Koch’s postulates for etiological identification of tea plant disease, revealing new etiology for LBSD. This contributes useful information for further etiological identification of plant disease based on amplicon sequencing, as well as understanding, prevention, and management of this economically important disease.
Collapse
|
47
|
Chen Q, Bakhshi M, Balci Y, Broders K, Cheewangkoon R, Chen S, Fan X, Gramaje D, Halleen F, Jung MH, Jiang N, Jung T, Májek T, Marincowitz S, Milenković I, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies C, Suhaizan L, Suzuki H, Tian C, Tomšovský M, Úrbez-Torres J, Wang W, Wingfield B, Wingfield M, Yang Q, Yang X, Zare R, Zhao P, Groenewald J, Cai L, Crous P. Genera of phytopathogenic fungi: GOPHY 4. Stud Mycol 2022; 101:417-564. [PMID: 36059898 PMCID: PMC9365048 DOI: 10.3114/sim.2022.101.06] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenković, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenković, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenković T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomšovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.
Collapse
Affiliation(s)
- Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - M. Bakhshi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
| | - R. Cheewangkoon
- Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - S.F. Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV). Consejo Superior de Investigaciones Científicas - Universidad de La Rioja - Gobierno de La Rioja. Ctra. LO-20 Salida 13, 26007 Logroño. Spain
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenboscvh, 7599, South Africa
| | - M. Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - T. Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - T. Májek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - I. Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - I. Nurul Faziha
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Pan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - C.F.J. Spies
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - L. Suhaizan
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - H. Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Tomšovský
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - J.R. Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - W. Wang
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Q. Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - X. Yang
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, Maryland, 21702 USA
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, P.O. Box 117, Oak Ridge, Tennessee, 37831 USA
| | - R. Zare
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
48
|
Metabarcoding of fungal assemblages in Vaccinium myrtillus endosphere suggests colonization of above-ground organs by some ericoid mycorrhizal and DSE fungi. Sci Rep 2022; 12:11013. [PMID: 35773465 PMCID: PMC9246922 DOI: 10.1038/s41598-022-15154-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Plants harbor in their external surfaces and internal tissues a highly diverse and finely structured microbial assembly, the microbiota. Each plant compartment usually represents a unique ecological niche hosting a distinct microbial community and niche differentiation, which may mirror distinct functions of a specialized microbiota, has been mainly investigated for bacteria. Far less is known for the fungal components of the plant-associated microbiota. Here, we applied a metabarcoding approach to describe the fungal assemblages in different organs of Vaccinium myrtillus plants (Ericaceae) collected in a subalpine meadow in North-West Italy, and identified specific taxa enriched in internal tissues of roots, stems, leaves and flowers. We also traced the distribution of some important fungi commonly associated with plants of the family Ericaceae, namely the ericoid mycorrhizal (ErM) fungi and the dark septate endophytes (DSE), both playing important roles in plant growth and health. Operational taxonomic units attributed to established ErM fungal species in the genus Hyaloscypha and to DSE species in the Phialocephala-Acephala applanata complex (PAC) were found in all the plant organs. Mycorrhizal fungi are thought to be strictly associated with the plant roots, and this first observation of ErM fungi in the above-ground organs of the host plant may be explained by the evolutionary closeness of ErM fungi in the genus Hyaloscypha with non mycorrhizal fungal endophytes. This is also witnessed by the closer similarities of the ErM fungal genomes with the genomes of plant endophytes than with those of other mycorrhizal fungi, such as arbuscular or ectomycorrhizal fungi.
Collapse
|
49
|
Kashyap AS, Manzar N, Ahamad F, Tilgam J, Sharma PK, Saxena AK. First Report of Root Rot Disease in Green Gram ( Vigna radiata) Caused by Ectophoma multirostrata in India. PLANT DISEASE 2022; 106:PDIS11212400PDN. [PMID: 35124987 DOI: 10.1094/pdis-11-21-2400-pdn] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Abhijeet Shankar Kashyap
- Plant Pathology lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan-275103, India
| | - Nazia Manzar
- Plant Pathology lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan-275103, India
| | - Faheem Ahamad
- Plant Pathology lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan-275103, India
| | - Jyotsana Tilgam
- Plant Pathology lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan-275103, India
| | - Pawan Kumar Sharma
- Plant Pathology lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan-275103, India
| | - Anil Kumar Saxena
- Plant Pathology lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan-275103, India
| |
Collapse
|
50
|
Chen L, Yang AL, Li YX, Zhang HB. Virulence and Host Range of Fungi Associated With the Invasive Plant Ageratina adenophora. Front Microbiol 2022; 13:857796. [PMID: 35558123 PMCID: PMC9087049 DOI: 10.3389/fmicb.2022.857796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
To determine whether disease-mediated invasion of exotic plants can occur and whether this increases the risk of disease transmission in local ecosystems, it is necessary to characterize the species composition and host range of pathogens accumulated in invasive plants. In this study, we found that Didymellaceae, a family containing economically important plant fungal pathogens, is commonly associated with the invasive plant Ageratina adenophora. Accordingly, we characterized its phylogenetic position through multi-locus phylogenetic analysis, as well as its environmental distribution, virulence, and host range. The results indicated that 213 fungal collections were from 11 genera in Didymellaceae, ten of which are known, and one is potentially new. Didymella, Epicoccum, Remotididymella, and Mesophoma were the dominant genera, accounting for 93% of total isolates. The virulence and host ranges of these fungi were related to their phylogenetic relationship. Boeremia exigua, Epicoccum latusicollum, and E. sorghinum were found to be strongly virulent toward all tested native plants as well as toward A. adenophora; M. speciosa and M. ageratinae were weakly virulent toward native plants but strongly virulent toward A. adenophora, thus displaying a narrow host range. Co-evolution analysis showed no strong phylogenetical signal between Didymellaceae and host plants. Isolates S188 and Y122 (belonging to M. speciosa and M. ageratinae, respectively) showed strong virulence toward A. adenophora relative to native plants, highlighting their potential as biocontrol agents for A. adenophora invasion. This study provides new insights into the understanding of the long-term ecological consequences of disease transmission driven by plant invasion.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ai-Ling Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yu-Xuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Han-Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|