1
|
Elbaset MA, Mohamed BMSA, Moustafa PE, Esatbeyoglu T, Afifi SM, Hessin AF, Abdelrahman SS, Fayed HM. Renoprotective Effect of Pitavastatin against TAA-Induced Renal Injury: Involvement of the miR-93/PTEN/AKT/mTOR Pathway. Adv Pharmacol Pharm Sci 2024; 2024:6681873. [PMID: 38293706 PMCID: PMC10827367 DOI: 10.1155/2024/6681873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/17/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
This research investigated if pitavastatin (Pita) might protect rats' kidneys against thioacetamide (TAA). By altering the PTEN/AKT/mTOR pathway, pitavastatin may boost kidney antioxidant capacity and minimize oxidative damage. Statins have several benefits, including antioxidant and anti-inflammatory characteristics. The principal hypothesis of this study was that Pita can regulate the miR-93/PTEN/AKT/mTOR pathways, which is thought to be responsible for its renoprotective effects. The experiment divided male rats into four groups. Group 1 included untreated rats as the control. Group 2 included rats which received TAA (100 mg/kg intraperitoneally thrice a week for two weeks) to destroy their kidneys. Groups 3 and 4 included rats which received Pita orally at 0.4 and 0.8 mg/kg for 14 days after TAA injections. Renal injury increased BUN, creatinine, and MDA levels and decreased glutathione (GSH) levels. Pitavastatin prevented these alterations. TAA decreased PTEN and increased miR-93, Akt, p-Akt, mTOR, and Stat3 in the kidneys. Pitavastatin also regulated the associated culprit pathway, miR-93/PTEN/Akt/mTOR. In addition, TAA induced adverse effects on the kidney tissue, which were significantly ameliorated by pitavastatin treatment. The findings suggest that pitavastatin can attenuate renal injury, likely by regulating the miR-93/PTEN/Akt/mTOR pathway. This modulation of the pathway appears to contribute to the protective effects of pitavastatin against TAA-induced renal injury, adding to the growing evidence of the pleiotropic benefits of statins in renal health.
Collapse
Affiliation(s)
- Marawan A. Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Bassim M. S. A. Mohamed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Passant E. Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, Hannover 30167, Germany
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Alyaa F. Hessin
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Sahar S. Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hany M. Fayed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Zhang H, Xu J. Unveiling thioacetamide-induced toxicity: Multi-organ damage and omitted bone toxicity. Hum Exp Toxicol 2024; 43:9603271241241807. [PMID: 38531387 DOI: 10.1177/09603271241241807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Thioacetamide (TAA), a widely employed hepatotoxic substance, has gained significant traction in the induction of liver failure disease models. Upon administration of TAA to experimental animals, the production of potent oxidative derivatives ensues, culminating in the activation of oxidative stress and subsequent infliction of severe damage upon multiple organs via dissemination through the bloodstream. This review summarized the various organ damages and corresponding mechanistic explanations observed in previous studies using TAA in toxicological animal experiments. The principal pathological consequences arising from TAA exposure encompass oxidative stress, inflammation, lipid peroxidation, fibrosis, apoptosis induction, DNA damage, and osteoclast formation. Recent in vivo and in vitro studies on TAA bone toxicity have confirmed that long-term high-dose use of TAA not only induces liver damage in experimental animals but also accompanies bone damage, which was neglected for a long time. By using TAA to model diseases in experimental animals and controlling TAA dosage, duration of use, and animal exposure environment, we can induce various organ injury models. It should be noted that TAA-induced injuries have a time-dependent effect. Finally, in our daily lives, especially for researchers, we should take precautions to minimize TAA exposure and reduce the probability of related organ injuries.
Collapse
Affiliation(s)
- Haodong Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Jian Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| |
Collapse
|
3
|
Alotaibi KS, Almalki DA. Hepatoprotective Effect of Moringa Oil on Rats under Fungicide Toxicity. DOKL BIOCHEM BIOPHYS 2023; 513:S53-S59. [PMID: 38379081 DOI: 10.1134/s1607672923600367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 02/22/2024]
Abstract
The present study is designed to evaluate whether pretreatment with moringa would have a protective effect on thioacetamide (TAA)-induced liver fibrosis, assessing biochemical and histopathological changes in Wistar male rats. Exposure to TAA induced notable biochemical and histopathological alterations. Liver fibrosis induced by TAA, along with associated biochemical and histological damage, has not been previously investigated in male rats supplemented with moringa oil. The experiment involved forty male rats distributed across four groups, each comprising ten rats. Group 1 served as controls and received intraperitoneal injections of saline solution twice weekly for six weeks. Group 2 rats were injected with 300 mg/kg body weight of TAA (Sigma-Aldrich Corp.) twice weekly for the same duration. Group 3 rats were orally supplemented with moringa oil at 800 mg/kg body weight/day and received intraperitoneal injections of TAA at the same dosage as Group 2 for six weeks. Finally, Group 4 rats were injected with saline solution twice weekly and orally supplemented with moringa oil at 800 mg/kg body weight/day for the same period. At the end of the experiment, we determined body weight and performed liver function analysis. Additionally, we examined the liver histology of the different groups. Results showed that moringa oil treatment protected rat livers from TAA toxicity by improving liver function analysis and preventing liver fibrosis. Moringa oil can be considered a promising agent for protection against TAA toxicity.
Collapse
Affiliation(s)
- Khalid S Alotaibi
- General Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Daklallah A Almalki
- Department of Biology, Faculty of Sciences and Arts in Al-Mikhwah, Al-Baha University, Al-Mikhwah, Saudi Arabia.
| |
Collapse
|
4
|
Ibrahim MA, Khalifa AM, Abd El-Fadeal NM, Abdel-Karim RI, Elsharawy AF, Ellawindy A, Galal HM, Nadwa EH, Abdel-Shafee MA, Galhom RA. Alleviation of doxorubicin-induced cardiotoxicity in rat by mesenchymal stem cells and olive leaf extract via MAPK/ TNF-α pathway: Preclinical, experimental and bioinformatics enrichment study. Tissue Cell 2023; 85:102239. [PMID: 37865037 DOI: 10.1016/j.tice.2023.102239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Toxic cardiomyopathies were a potentially fatal adverse effect of anthracycline therapy. AIM This study was conducted to demonstrate the pathogenetic, morphologic, and toxicologic effects of doxorubicin on the heart and to investigate how the MAPK /TNF-α pathway can be modulated to improve doxorubicin-Induced cardiac lesions using bone marrow-derived mesenchymal stem cells (BM-MSCs) and olive leaf extract (OLE). METHODS During the study, 40 adult male rats were used. Ten were used to donate MSCs, and the other 30 were split into 5 equal groups: Group I was the negative control, Group II obtained oral OLE, Group III obtained an intraperitoneal cumulative dose of DOX (12 mg/kg) in 6 equal doses of 2 mg/kg every 48 h for 12 days, Group IV obtained intraperitoneal DOX and oral OLE at the same time, and Group V obtained intraperitoneal DOX and BM-MSCs through the tail vein at the same time for 12 days. Four weeks after their last dose of DOX, the rats were euthanized. By checking the bioinformatic databases, a molecularly targeted path was selected. Then the histological, immunohistochemistry, and gene expression of ERK, JNK, NF-κB, IL-6, and TNF-α were done. RESULTS Myocardial immunohistochemistry revealed severe fibrosis, cell degeneration, increased vimentin, and decreased CD-31 expression in the DOX-treated group, along with a marked shift in morphometric measurements, a disordered ultrastructure, and overexpression of inflammatory genes (ERK, NF-κB, IL-6, and TNF-α), oxidative stress markers, and cardiac biomarkers. Both groups IV and V displayed reduced cardiac fibrosis or inflammation, restoration of the microstructure and ultrastructure of the myocardium, downregulation of inflammatory genes, markers of oxidative stress, and cardiac biomarkers, a notable decline in vimentin, and an uptick in CD-31 expression. In contrast to group IV, group V showed a considerable beneficial effect. CONCLUSION Both OLE and BM-MSCs showed an ameliorating effect in rat models of DOX-induced cardiotoxicity, with BM-MSCs showing a greater influence than OLE.
Collapse
Affiliation(s)
- Mahrous A Ibrahim
- Department of Internal Medicine (Forensic Medicine and Clinical Toxicology division), College of Medicine, Jouf University, Aljouf 72341, Saudi Arabia.
| | - Athar M Khalifa
- Pathology Department, College of Medicine, Jouf University, Aljouf, Saudi Arabia
| | - Noha M Abd El-Fadeal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rehab I Abdel-Karim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ayman F Elsharawy
- Histology Department, Faculty of Medicine Al-Azhar University, Cairo, Egypt; Histology Department, College of Medicine, Shaqra University, Shaqra, Saudi Arabia
| | - Alia Ellawindy
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M Galal
- Department of Medical Physiology, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman H Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72345, Saudi Arabia; Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
| | - Mohamed A Abdel-Shafee
- Department of Cardiovascular Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rania A Galhom
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Human Anatomy and Embryology Department, Faculty of Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
| |
Collapse
|
5
|
Abasubong KP, Jiang GZ, Guo HX, Wang X, Huang YY, Dai YJ, Li XF, Dong YZ, Gabriel NN, Liu WB. Oral bovine serum albumin administration alleviates inflammatory signals and improves antioxidant capacity and immune response under thioacetamide stress in blunt snout bream fed a high-calorie diet. FISH & SHELLFISH IMMUNOLOGY 2023; 141:108996. [PMID: 37579810 DOI: 10.1016/j.fsi.2023.108996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
This investigation looks at the impact of oral bovine serum albumin (BSA) on antioxidants, immune responses, and inflammation signals in blunt snout bream fed a high-calorie diet. 480 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet, a high-fat diet (HFD), a high carbohydrate diet (HCD), and a high-energy diet (HED) in six replicates for 12 weeks. After the feeding trial, fish were orally administered with 10% BSA for 10 h, then blood and liver samples from five fish were randomly obtained after 10 h to determine plasma inflammatory markers and inorganic components. Also, the leftover fish were injected with thioacetamide, blood and liver samples were simultaneously obtained at 12, 48, and 96 h, respectively, to determine antioxidant, immune, and inflammatory signals, with survival rates recorded at the same time interval. After 10 h, plasma inflammatory markers such as tumour necrosis factors (TNF-α), interleukin 6 (IL6), nitric oxide (NO), Monocyte chemoattractant protein-1(MCP-1), and cortisol were significantly improved in fish fed HCD and HED as compared to the control. After thioacetamide stress, plasma lysozyme (LYM), complement 3, myeloperoxidase (MPO), and alkaline phosphatase activities, as well as immunoglobulin M, levels all increased significantly (P < 0.05) with increasing time with maximum value attained at 96 h, but shows no difference among dietary treatment. Similar results were observed in liver superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and malondialdehyde (MDA) content, but tended to reduce at 96 h. nf-kb, tnf-α, and mcp-1 tend to decrease with the minimum value attained at 48 h and gradually decrease with increasing time at 96 h. After 96 h of the thioacetamide (TAA) challenge, the survival rate of blunt snout bream fed with an HFD and HCD was significantly lower (P < 0.05) at 48, and 96 h before the administration of BSA. However, no differences were observed among dietary treatments after the BSA administration. Overall, this study indicated that oral dietary administration of BSA might greatly enhance the antioxidant capability and innate immunity and mitigates inflammation signals after TAA stress in blunt snout bream fed high energy diet.
Collapse
Affiliation(s)
- Kenneth Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China; National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China; National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China; National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China; National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Yang-Yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China; National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Yong-Jun Dai
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China; National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China; National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Yan-Zou Dong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China; National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Ndakalimwe Naftal Gabriel
- Department of Fisheries and Ocean Sciences, Sam Nujoma Campus, University of Namibia, Private Bag 462, Henties Bay, 9000, Namibia
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China; National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
6
|
Elbaset MA, Mohamed BMSA, Gad SA, Afifi SM, Esatbeyoglu T, Abdelrahman SS, Fayed HM. Erythropoietin mitigated thioacetamide-induced renal injury via JAK2/STAT5 and AMPK pathway. Sci Rep 2023; 13:14929. [PMID: 37697015 PMCID: PMC10495371 DOI: 10.1038/s41598-023-42210-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
The kidney flushes out toxic substances and metabolic waste products, and homeostasis is maintained owing to the kidney efforts. Unfortunately, kidney disease is one of the illnesses with a poor prognosis and a high death rate. The current investigation was set out to assess erythropoietin (EPO) potential therapeutic benefits against thioacetamide (TAA)-induced kidney injury in rats. EPO treatment improved kidney functions, ameliorated serum urea, creatinine, and malondialdehyde, increased renal levels of reduced glutathione, and slowed the rise of JAK2, STAT5, AMPK, and their phosphorylated forms induced by TAA. EPO treatment also greatly suppressed JAK2, Phosphatidylinositol 3-kinases, and The Protein Kinase R-like ER Kinase gene expressions and mitigated the histopathological alterations brought on by TAA toxicity. EPO antioxidant and anti-inflammatory properties protected TAA-damaged kidneys. EPO regulates AMPK, JAK2/STAT5, and pro-inflammatory mediator synthesis.
Collapse
Affiliation(s)
- Marawan A Elbaset
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt.
| | - Bassim M S A Mohamed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Shaimaa A Gad
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Sherif M Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167, Hannover, Germany.
| | - Sahar S Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hany M Fayed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| |
Collapse
|
7
|
Bohórquez-Moreno CD, Öksüz KE, Dinçer E, Hepokur C, Şen İ. Plant-inspired adhesive and injectable natural hydrogels: in vitro and in vivo studies. Biotechnol Lett 2023; 45:1209-1222. [PMID: 37308681 DOI: 10.1007/s10529-023-03400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023]
Abstract
The development of alternative therapeutic treatments based on the use of medicinal and aromatic plants, such as Juniper communis L., has aroused interest in the medical field to find new alternatives to conventional therapeutic treatments, which have shown problems related to bacterial resistance, high costs, or sustainability in their production. The present work describes the use of hydrogels based on sodium alginate and carboxymethyl cellulose, with combinations of juniperus leaves and berry extracts, in order to characterize their chemical characteristics, antibacterial activity, tissue adhesion test, cytotoxicity in the L929 cell line, and their effects on an in vivo model in mice to maximize the use of these materials in the healthcare field. Overall, an adequate antibacterial potential against S. aureus, E. coli and P. vulgaris was obtained with doses above 100 mg.mL-1 of hydrogels. Likewise, low cytotoxicity in hydrogels combined with extracts has been identified according to the IC50 value at 17.32 µg.mL-1, compared to the higher cytotoxic activity expressed by the use of control hydrogels with a value at 11.05 µg.mL-1. Moreover, in general, the observed adhesion was high to different tissues, showing its adequate capacity to be used in different tissue typologies. Furthermore, the invivo results have not shown erythema, edema, or other complications related to the use of the proposed hydrogels. These results suggest the feasibility of using these hydrogels in biomedical applications given the observed safety.
Collapse
Affiliation(s)
| | - Kerim Emre Öksüz
- Department of Metallurgical & Materials Engineering, Faculty of Engineering, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| | - Emine Dinçer
- Department of Nutrition & Dietetics, Faculty of Health Science, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Ceylan Hepokur
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - İlker Şen
- Department of Surgery, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| |
Collapse
|
8
|
Alqrad MAI, El-Agamy DS, Ibrahim SRM, Sirwi A, Abdallah HM, Abdel-Sattar E, El-Halawany AM, Elsaed WM, Mohamed GA. SIRT1/Nrf2/NF-κB Signaling Mediates Anti-Inflammatory and Anti-Apoptotic Activities of Oleanolic Acid in a Mouse Model of Acute Hepatorenal Damage. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1351. [PMID: 37512162 PMCID: PMC10383078 DOI: 10.3390/medicina59071351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Background and objectives: Oleanolic acid (OA) is a penta-cyclic triterpene with diverse bioactivities such as anticarcinogenic, antiviral, antimicrobial, hepatoprotective, anti-atherosclerotic, hypolipidemic, and gastroprotective. However, its effects on hepatorenal damage remain unclear. The protective activity of OA, separated from Viscum schimperi (Loranthaceae), against TAA (thioacetamide)-produced acute hepatic and renal damage was explored. Materials and Methods: Mice were treated with OA for 7 days before TAA (200 mg/kg, i.p.). Serum indices of hepatorenal injury, pathological lesions, molecular biological indexes, and inflammatory/apoptotic genes were estimated. Results: The tissues of both organs were greatly affected by the TAA injection. That was evident through increased serum markers of hepato-renal injury as well as remarkable histopathological lesions. TAA-induced injury was associated with oxidative and inflammatory responses in both organs as there was an elevation of oxidative stress parameters (4-HNE (4-hydroxy-nonenal), MDA (malondialdehyde), NOx (nitric oxide)), decline of antioxidants (reduced glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (TAC)), and an increase in the gene expression/level of inflammatory mediators (interleukins (1β&6)). The inflammatory response was linked to a significant activation of NF-κB (nuclear-factor kappa-B)/TNF-α (tumor-necrosis factor-alpha) signaling. The inflammatory response in both organs was accompanied by apoptotic changes, including a rise in the gene expression and level of apoptotic parameters (caspase-3 and Bax) along with a decline in Bcl-2 (anti-apoptotic parameter) gene expression and level. These pathogenic events were found to be closely related to the suppression of the antioxidant signaling pathway, Nrf2 (nuclear-factor erythroid 2-related factor-2)/SIRT1 (sirtuin-1)/HO-1 (heme-oxygenase 1). On the other hand, OA significantly ameliorated TAA-induced injury in both organs. On the other hand, OA counterpoised the inflammatory response as it ameliorated NF-κB/TNF-α signaling and cytokine release. OA enhanced Nrf2/SIRT1/HO-1 signaling and counteracted apoptotic damage. Conclusions: OA showed anti-inflammation and antiapoptotic capacities that effectively suppressed TAA-induced acute hepatorenal damage.
Collapse
Affiliation(s)
- Manea A. I. Alqrad
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Dina S. El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (E.A.-S.); (A.M.E.-H.)
| | - Ali M. El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (E.A.-S.); (A.M.E.-H.)
| | - Wael M. Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| |
Collapse
|
9
|
Zargari M, Mohammadian M, Malekshah AK, Mianabadi M, Mogaddam AE, Amiri FT. Tyrosol and Olive Oil Ameliorate Sodium Arsenate-Induced Nephrotoxicity by Modulating of Oxidative Stress and Histological Changes in Mice. Int J Prev Med 2023; 14:47. [PMID: 37351023 PMCID: PMC10284208 DOI: 10.4103/ijpvm.ijpvm_78_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/27/2022] [Indexed: 06/24/2023] Open
Abstract
Background Sodium arsenate (Na 3As0 4, Sodium As) is an important toxic substance that leads to nephrotoxicity. Due to having bioactive molecules, such as polyphenols and tyrosol, olive oil plays a significant role in scavenging free radicals. This study aimed to investigate the effects of olive oil and tyrosol on As-induced nephrotoxicity. Methods In our study, 42 adult male BALB/c mice were randomly divided into six groups: control (normal saline), olive oil (0.4 ml/d, gavage), tyrosol (5 mg/kg/d), Sodium As (15 mg/kg), olive oil + Sodium As, and tyrosol + Sodium As (olive oil and tyrosol received one hour before Sodium As). Drugs were administreted once daily for 30 consecutive days. On the 31st day of the study, oxidative stress parameters in kidney tissue, FRAP in plasma, renal function parameters in serum, and histopathological assays were performed. Results Sodium As-induced renal damage as characterized by a significant increase of creatinine and BUN (P < 0.001) and histopathological changes. Also, Sodium As markedly altered oxidative stress biomarkers such as a significant increase in MDA (P < 0.001) and significantly decreased in FRAP and GSH (P < 0.01). Olive oil and tyrosol administration significantly improved the renal antioxidant defense system and decreased MDA concentration, markedly preserving the tissue structure and functional markers of kidney. However, these effects were more effective for tyrosol than olive oil. Conclusions Our results suggest that olive oil and tyrosol can be used as a protective agent in preventing Sodium As-induced nephrotoxicity due to antioxidant property.
Collapse
Affiliation(s)
- Mehryar Zargari
- Department of Biochemistry, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mona Mohammadian
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Abbasali K. Malekshah
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Manijeh Mianabadi
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Amir E. Mogaddam
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh T. Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Moustafa AH, Pasha HF, Abas MA, Aboregela AM. The ameliorating role of sofosbuvir and daclatasvir on thioacetamide-induced kidney injury in adult albino rats. Anat Cell Biol 2023; 56:109-121. [PMID: 36543744 PMCID: PMC9989782 DOI: 10.5115/acb.22.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Thioacetamide (TAA) exposure and hepatitis C virus infection are usually associated with renal dysfunction. Sofosbuvir (SFV) and daclatasvir (DAC) drugs combination has great value in the treatment of hepatitis C. The study aimed to identify the nephrotoxic effects of TAA and to evaluate the ameliorative role of SFV and DAC in this condition. Forty-eight adult male albino rats were divided into eight groups and received saline (control), SFV, DAC, SFV+DAC, TAA, TAA+SFV, TAA+DAC and TAA+SFV+DAC for eight weeks. Kidney and blood samples were retrieved and processed for histological (Hematoxylin and Eosin and Masson's trichrome), immunohistochemical (α-smooth muscle actin), and biochemical analysis (urea, creatinine, total protein, albumin, malondialdehyde, reduced glutathione, superoxide dismutase, and tumor necrosis factor-α). Examination revealed marked destruction of renal tubules on exposure to TAA with either hypertrophy or atrophy of glomeruli, increase in collagen deposition, and wide expression of α-smooth muscle actin. Also, significant disturbance in kidney functions, oxidative stress markers, and tumor necrosis factor-α. Supplementation with either SFV or DAC produced mild improvement in the tissue and laboratory markers. Moreover, the combination of both drugs greatly refined the pathology induced by TAA at the cellular and laboratory levels. However, there are still significant differences when compared to the control. In conclusion, SFV and DAC combination partially but greatly ameliorated the renal damage induced by TAA which might be enhanced with further supplementations to give new hope for those with nephropathy associated with hepatitis.
Collapse
Affiliation(s)
- Ahmed H Moustafa
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Heba F Pasha
- Department of Medical Biochemistry and Genetics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manar A Abas
- Department of Biochemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Adel M Aboregela
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
11
|
Vázquez-Atanacio MJ, Bautista M, González-Cortazar M, Romero-Estrada A, De la O-Arciniega M, Castañeda-Ovando A, Sosa-Gutiérrez CG, Ojeda-Ramírez D. Nephroprotective Activity of Papaloquelite ( Porophyllum ruderale) in Thioacetamide-Induced Injury Model. PLANTS (BASEL, SWITZERLAND) 2022; 11:3460. [PMID: 36559573 PMCID: PMC9784717 DOI: 10.3390/plants11243460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Acute kidney injury and impaired kidney function is associated with reduced survival and increased morbidity. Porophyllum ruderale is an edible plant endemic to Mexico used in Mexican traditional medicine. The aim of this study was to evaluate the nephroprotective effect of a hydroalcoholic extract (MeOH:water 70:30, v/v) from the aerial parts of P. ruderale (HEPr). Firstly, in vitro the antioxidant and anti-inflammatory activity of HEPr was determined; after the in vivo nephroprotective activity of HEPr was evaluated using a thioacetamide-induced injury model in rats. HEPr showed a slight effect on LPS-NO production in macrophages (15% INO at 40 µg/mL) and high antioxidant activity in the ferric reducing antioxidant power (FRAP) test, followed by the activity on DPPH and ABTS radicals test (69.04, 63.06 and 32.96% of inhibition, respectively). In addition, values of kidney injury biomarkers in urine (urobilinogen, hemoglobin, bilirubin, ketones, glucose, protein, pH, nitrites, leukocytes, specific gravity, and the microalbumin/creatinine) and serum (creatinine, urea, and urea nitrogen) of rats treated with HEPr were maintained in normal ranges. Finally, 5-O-caffeoylquinic, 4-O-caffeoylquinic and ferulic acids; as well as 3-O-quercetin glucoside and 3-O-kaempferol glucoside were identified by HPLC as major components of HEPr. In conclusion, Porophyllum ruderale constitutes a source of compounds for the treatment of acute kidney injury.
Collapse
Affiliation(s)
- María José Vázquez-Atanacio
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex Hacienda la Concepción s/n, San Agustín Tlaxiaca 42160, Hidalgo, Mexico
| | - Mirandeli Bautista
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex Hacienda la Concepción s/n, San Agustín Tlaxiaca 42160, Hidalgo, Mexico
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1., Centro, Xochitepec 62790, Morelos, Mexico
| | - Antonio Romero-Estrada
- Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Km 15.5 Carretera Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - Minarda De la O-Arciniega
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex Hacienda la Concepción s/n, San Agustín Tlaxiaca 42160, Hidalgo, Mexico
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca-Tulancingo km 4.5 Carboneras, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Carolina G. Sosa-Gutiérrez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico
| | - Deyanira Ojeda-Ramírez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico
| |
Collapse
|
12
|
Elsisi AE, Elmarhoumy EH, Osman EY. Protective effect of cilostazol and verapamil against thioacetamide-induced hepatotoxicity in rats may involve Nrf2/GSK-3β/NF-κB signaling pathway. Toxicol Res (Camb) 2022; 11:718-729. [PMID: 36337252 PMCID: PMC9618097 DOI: 10.1093/toxres/tfac045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Verapamil (VER) and cilostazol (Cilo) are mostly used as cardiovascular drugs; they have beneficial effects on different organs toxicities. AIM we investigated whether the Nuclear factor erythroid 2-related factor 2 (Nrf2), Glycogen synthase kinase-3β (GSK-3β), and Nuclear factor-kappa B (NF-κB) pathway involved in the protective role of these drugs against Thioacetamide (TAA) induced hepatotoxicity. METHOD male rats were randomized divided into five groups, each group (n = 10): control, TAA, VER+TAA, Cilo+TAA, and VER+Cilo+TAA groups. Hepatotoxicity induced in rats by TAA injection once on the 7th day of the experiment. RESULTS TAA-induced hepatotoxicity indicated by a significant elevated in serum markers (Alanine aminotransferases (ALT), Aspartate aminotransferases (AST), and bilirubin), oxidative stress markers (Malondialdehyde (MDA), and Nitric oxide (NO)), and protein levels markers (NF-κB, and S100 calcium-binding protein A4 (S100A4)). Also, TAA decreased Nrf2, and increased GSK-3β genes expression. Histopathological alterations in the liver also appeared as a response to TAA injection. On the other hand VER and/or Cilo significantly prevented TAA-induced hepatotoxicity in rats through significantly decreased in ALT, AST, bilirubin, MDA, NO, NF-κB, and S100A4 protein levels. Also, they increased Nrf2 and decreased GSK-3β genes expression which caused improvement in the histopathological changes of the liver. CONCLUSION the addition of verapamil to cilostazol potentiated the hepatoprotective activity, and inhibited the progression of hepatotoxicity caused by TAA through the Nrf2/GSK-3β/NF-κBpathway and their activity on oxidative stress, inflammation, and NF-κB protein expression.
Collapse
Affiliation(s)
- Alaa E Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Esraa H Elmarhoumy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Enass Y Osman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
13
|
Ibrahim MA, Khalifa AM, Mohamed AA, Galhom RA, Korayem HE, Abd El-Fadeal NM, Abd-Eltawab Tammam A, Khalifa MM, Elserafy OS, Abdel-Karim RI. Bone-Marrow-Derived Mesenchymal Stem Cells, Their Conditioned Media, and Olive Leaf Extract Protect against Cisplatin-Induced Toxicity by Alleviating Oxidative Stress, Inflammation, and Apoptosis in Rats. TOXICS 2022; 10:toxics10090526. [PMID: 36136492 PMCID: PMC9504158 DOI: 10.3390/toxics10090526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Hepatic and renal damage is a cisplatin (Cis)-induced deleterious effect that is a major limiting factor in clinical chemotherapy. OBJECTIVES The current study was designed to investigate the influence of pretreatment with olive leaf extract (OLE), bone-marrow-derived mesenchymal stem cells (BM-MSC), and their conditioned media (CM-MSC) against genotoxicity, nephrotoxicity, hepatotoxicity, and immunotoxicity induced by cisplatin in rats. METHODS The rats were randomly divided into six groups (six rats each) as follows: Control; OLE group, treated with OLE; Cis group, treated with a single intraperitoneal dose of Cis (7 mg/kg bw); Cis + OLE group, treated with OLE and cisplatin; Cis + CM-MSC group, treated with BM-MSC conditioned media and Cis; and Cis + MSC group, treated with BM-MSC in addition to Cis. RESULTS Cis resulted in a significant deterioration in hepatic and renal functions and histological structures. Furthermore, it increased inflammatory markers (TNF-α, IL-6, and IL-1β) and malondialdehyde (MDA) levels and decreased glutathione (GSH) content, total antioxidant capacity (TAC), catalase (CAT), and superoxide dismutase (SOD) activity in hepatic and renal tissues. Furthermore, apoptosis was evident in rat tissues. A significant increase in serum 8-hydroxy-2-deoxyguanosine (8-OH-dG), nitric oxide (NO) and lactate dehydrogenase (LDH), and a decrease in lysozyme activity were detected in Cis-treated rats. OLE, CM-MSC, and BM-MSC have significantly ameliorated Cis-induced deterioration in hepatic and renal structure and function and improved oxidative stress and inflammatory markers, with preference to BM-MSC. Moreover, apoptosis was significantly inhibited, evident from the decreased expression of Bax and caspase-3 genes and upregulation of Bcl-2 proteins in protective groups as compared to Cis group. CONCLUSIONS These findings indicate that BM-MSC, CM-MSC, and OLE have beneficial effects in ameliorating cisplatin-induced oxidative stress, inflammation, and apoptosis in the hepatotoxicity, nephrotoxicity, immunotoxicity, and genotoxicity in a rat model.
Collapse
Affiliation(s)
- Mahrous A. Ibrahim
- Forensic Medicine and Clinical Toxicology, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt or
| | - Athar M. Khalifa
- Pathology Department, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
| | - Alaa A. Mohamed
- Medical Biochemistry Division, Pathology Department, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Rania A. Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Human Anatomy and Embryology Department, Faculty of Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Horeya E. Korayem
- Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
| | - Noha M. Abd El-Fadeal
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
| | - Ahmed Abd-Eltawab Tammam
- Physiology Department, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Mansour Khalifa
- Human Physiology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
- Human Physiology Department, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Osama S. Elserafy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
- Criminal Justice and Forensic Sciences Department, King Fahd Security College, Riyadh 11451, Saudi Arabia
| | - Rehab I. Abdel-Karim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt or
| |
Collapse
|
14
|
Jorgačević B, Stanković S, Filipović J, Samardžić J, Vučević D, Radosavljević T. Betaine Modulating MIF-Mediated Oxidative Stress, Inflammation and Fibrogenesis in Thioacetamide-Induced Nephrotoxicity. Curr Med Chem 2022; 29:5254-5267. [PMID: 35400322 DOI: 10.2174/0929867329666220408102856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with chemokine properties released by various immune and non-immune cells. It contributes to the pathogenesis of many inflammatory, autoimmune diseases and malignant tumors. OBJECTIVE Our study aimed to investigate the role of betaine in the modulation of MIF-mediated oxidative stress, inflammation, and fibrogenesis during toxic kidney damage induced by thioacetamide (TAA). METHODS The experiment is performed on wild-type and knockout MIF-/- C57BL/6 mice. They are randomly divided into groups: Control; Bet-group, received betaine (2% wt/v dissolved in drinking water); MIF-/- mice group; MIF-/- + Bet; TAA-group, treated with TAA (200 mg/kg b.w.), intraperitoneally, 3x/week/8 weeks); TAA+Bet; MIF-/-+TAA, and MIF-/- + TAA+Bet group. After eight weeks of treatment, animals are sacrificed and kidney samples are taken to determine oxidative stress parameters, proinflammatory cytokines, profibrogenic factors, and histopathology of renal tissue. RESULTS In MIF-/-mice, TAA decreases malondialdehyde (MDA) concentration, IL-6, tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta 1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB) and increases superoxide dismutases (SOD) and catalase (CAT) activities, as well as glutathione (GSH) content in kidneys, compared to TAA group. Betaine alleviates the mechanism of MIF-mediated effects in TAA-induced nephrotoxicity, reducing MDA, IL-6, TNF-α, TGF-β1, and PDGF-BB, and increasing SOD and CAT activity, as well as GSH levels. CONCLUSION MIF mediates TAA-induced nephrotoxicity by increasing oxidative stress, inflammation, and profibrogenic mediators. MIF-targeted therapy could potentially alleviate oxidative stress and inflammation in the kidney, as well as pathohistological changes in renal tissue, but the exact mechanism of its action is not completely clear. Betaine alleviates MIF nephrotoxic effects by increasing the antioxidative capacity of kidney cells, and decreasing lipid peroxidation and cytokine production in the renal tissue. It suggests that betaine can be used for the prevention of kidney damage.
Collapse
Affiliation(s)
- Bojan Jorgačević
- Faculty of Medicine, Institute of Pathophysiology \'\'Ljubodrag Buba Mihailović\'\', University of Belgrade, Belgrade 11000, Serbia
| | - Sanja Stanković
- Centre of Medical Biochemistry, Clinical Centre of Serbia, 11000 Belgrade, Belgrade, Serbia
| | - Jelena Filipović
- Faculty of Medicine, Institute of Pathology \'\'Đorđe Jovanović\'\', University of Belgrade, Belgrade 11000, Serbia
| | - Janko Samardžić
- Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Vučević
- Faculty of Medicine, Institute of Pathophysiology \'\'Ljubodrag Buba Mihailović\'\', University of Belgrade, Belgrade 11000, Serbia
| | - Tatjana Radosavljević
- Faculty of Medicine, Institute of Pathophysiology \'\'Ljubodrag Buba Mihailović\'\', University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
15
|
Metwaly HA, El‐Eraky AM, Ibrahim EE, Kandil KK, El‐Sayed MA, El‐Tabakh NM, Motawea AM, Ali HA, Jabban MZ, Mahmoud ME, Abdelfattah WH, Elmorsy MA, Ghanim AMH. Vanillin attenuates thioacetamide‐induced renal assault by direct and indirect mediation of the
TGFβ
,
ERK
and Smad signalling pathways in rats. Cell Biochem Funct 2022; 40:175-188. [DOI: 10.1002/cbf.3686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Heba A. Metwaly
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy Alexandria University Alexandria Egypt
- Department of Biochemistry, Faculty of Pharmacy Delta University Gamasa Egypt
| | | | | | | | | | | | | | - Helmi A. Ali
- Faculty of Pharmacy Delta University Gamasa Egypt
| | | | | | | | - Mohammad A. Elmorsy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Amal M. H. Ghanim
- Department of Biochemistry, Faculty of Pharmacy Fayoum University Fayoum Egypt
| |
Collapse
|
16
|
Liu Y, Guo J, Zhang J, Deng Y, Xiong G, Fu J, Wei L, Lu H. Chlorogenic acid alleviates thioacetamide-induced toxicity and promotes liver development in zebrafish (Danio rerio) through the Wnt signaling pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106039. [PMID: 34856462 DOI: 10.1016/j.aquatox.2021.106039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Chlorogenic acid (CGA) is a phenylpropanoid compound that is well known to improve the antioxidant capacity and other biological activities. However, the roles of CGA in the liver development of organisms are unclear. In the present study, we aimed to investigate the function of CGA in the hepatic development in thioacetamide (TAA)-induced zebrafish embryos. We found that CGA exerted certain beneficial effects on zebrafish larvae from TAA-exposed zebrafish embryos, such as increasing the liver size, body length, heart rate, acetylcholinesterase activity, and motor ability. In addition, CGA displayed an antioxidant effect on TAA-induced zebrafish embryos by enhancing the activities of superoxide dismutase (SOD), catalase (CAT), and glucose-6-phosphate dehydrogenase (G6PDH), and decreasing of the contents of malondialdehyde (MDA), reactive oxygen species (ROS), and nitric oxide (NO). The results of western blotting analysis showed that CGA inhibited cell apoptosis by increasing the levels of Bcl2 apoptosis regulator and decreasing the levels of Bcl2 associated X (Bax), apoptosis regulator and tumor protein P53. Moreover, CGA promoted cell proliferation in TAA-induced zebrafish larvae, as detected using proliferating cell nuclear antigen fluorescence immunostaining. In addition, CGA inhibited the expression of Wnt signaling pathway genes Dkk1 (encoding Dickkopf Wnt signaling pathway inhibitors), and promoted the expression of Lef1 (encoding lymphoid enhancer binding factor 1) and Wnt2bb (encoding wingless-type MMTV integration site family, member 2Bb). When the Wnt signal inhibitor IWR-1 was added, there was no significant change in liver development in the IWR-1 + TAA group compared with the IWR-1 + TAA + CGA group (p <0.05), which suggested that CGA regulates liver development via Wnt signaling pathway. Overall, our results suggested that CGA might alleviate TAA-induced toxicity in zebrafish and promote liver development through the Wnt signaling pathway, which provides a basis for the therapeutic effect of CGA on liver dysplasia.
Collapse
Affiliation(s)
- Yi Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Jing Guo
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - June Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Yunyun Deng
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs; College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Jianpin Fu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs; College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China.
| |
Collapse
|
17
|
Salem AA, Ismail AFM. Protective impact of Spirulina platensis against γ-irradiation and thioacetamide-induced nephrotoxicity in rats mediated by regulation of micro-RNA 1 and micro-RNA 146a. Toxicol Res (Camb) 2021; 10:453-466. [PMID: 34141159 DOI: 10.1093/toxres/tfab037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/02/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic kidney disease develops popular and medical health problems, especially in developing countries. The objective of this study is to investigate the protective mechanism of Spirulina platensis against γ-irradiation (R) and/or thioacetamide (TAA)-induced nephrotoxicity in rats. Rats intoxicated with R or TAA showed alterations in kidney function markers (urea, creatinine, albumin, and total protein contents), oxidative stress markers (malondialdehyde, reduced glutathione), antioxidant enzymes (superoxide dismutase, catalase), and several inflammatory markers (including, the high-sensitivity C-reactive protein, hypoxia-inducible factor-1 alpha, tumor necrosis factor-alpha, interferon-gamma, some interleukins, and nuclear factor-kappa B). Rats also acquired apoptosis, evinced by high caspase-3 efficacy. This nephrotoxicity mediated by upregulation of the messenger RNA (mRNA) gene expression of the autophagy markers: Beclin-1, microtubule-associated protein LC3, p62 binding protein, immunoglobulin G receptor Fcγ receptor (FcγR), micro-RNA-1 (miR-1), protein expression of phospho-adenosine monophosphate-activated protein kinase, and phospho-mammalian target of rapamycin, along with downregulation of miR-146a mRNA gene expression and alteration of calcium and iron levels. The combined treatment R/TAA enhanced the observed oxidative stress, inflammation, apoptosis, and autophagy that mediated by higher upregulation of miR-1 and downregulation of miR-146a mRNA gene expression. Spirulina platensis administration exhibited a nephroprotective impact on R, TAA, and R/TAA toxicities via regulating miR-1 and miR-146a mRNA gene expression that monitored adenosine monophosphate-activated protein kinase/mammalian target of rapamycin signaling.
Collapse
Affiliation(s)
- Asmaa A Salem
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza 12619, Egypt
| | - Amel F M Ismail
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, 11787 Cairo, Egypt
| |
Collapse
|
18
|
Tohamy AF, Hussein S, Moussa IM, Rizk H, Daghash S, Alsubki RA, Mubarak AS, Alshammari HO, Al-Maary KS, Hemeg HA. Lucrative antioxidant effect of metformin against cyclophosphamide induced nephrotoxicity. Saudi J Biol Sci 2021; 28:2755-2761. [PMID: 34025161 PMCID: PMC8117244 DOI: 10.1016/j.sjbs.2021.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Cyclophosphamide is anticancer drug with a well-Known nephrotoxicity. This work was applied to study the lucrative antioxidant influence of metformin as co-therapy on the nephrotoxicity induced by cyclophosphamide in the treatment of different cancer diseases. Four groups of male Sprague Dawley rats were used; Control group (C) received single I.P. injection of 0.2 ml saline, Metformin (MET) group received daily gavage of 200 mg/kg metformin for two weeks, Cyclophosphamide (CP) group received single I.P. injection of 200 mg/kg CP, Protector group (CP.MET) received daily gavage of 200 mg/kg metformin for two weeks and single I.P. injection of 200 mg/kg CP at day 7. By day 14 rats were euthanized. Samples were collected from kidney tissues and blood for kidney function evaluation, histopathological and assessment of oxidative stress markers. The results disclosed that CP yields many functional and structural damage to the kidney, worsened oxidative stress markers and kidney function indicators. The protector group displayed better kidney tissue morphology, acceptable kidney function indicators as well as satisfactory oxidative stress markers. In assumption, metformin could be combined with CP owing to its lucrative effect counter to CP persuaded nephrotoxicity.
Collapse
Affiliation(s)
- Adel F. Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Shaymaa Hussein
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Ihab M. Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Corresponding author at: Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Hamdy Rizk
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Samer Daghash
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Roua A. Alsubki
- Department of Clinical Laboratory Science, Chair of Medical and Molecular Genetics Research, College of Applied Medical Science, King Saud University, Saudi Arabia
| | - Ayman S. Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hanan O. Alshammari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Khalid S. Al-Maary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hassan A. Hemeg
- Department of Medical Technology/Microbiology, College of Applied Medical Science, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
19
|
Li C, Lee S, Lai W, Chang K, Huang X, Hung P, Lee C, Hsieh M, Tsai N. Cell cycle arrest and apoptosis induction by Juniperus communis extract in esophageal squamous cell carcinoma through activation of p53-induced apoptosis pathway. Food Sci Nutr 2021; 9:1088-1098. [PMID: 33598192 PMCID: PMC7866587 DOI: 10.1002/fsn3.2084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers. It has a high mortality rate and requires novel effective drugs and therapeutic approaches. Juniperus communis (JCo), used to flavor gin and food, has been documented to have anti-tumor activity. The aim of this study was to investigate the antitumor activity of JCo extract against ESCC and its possible mechanisms. JCo extract suppressed cell growth in ESCC and showed higher selection for ESCC cells than normal cells compared to the clinical drug 5-fluorouracil (5-FU). JCo extract induced cell cycle arrest at the G0/G1 phase by regulating the expression of p53/p21 and CDKs/cyclins, triggering cell apoptosis by activating both the extrinsic (Fas/FasL/Caspase 8) and intrinsic (Bcl-2/Bax/Caspase 9) apoptosis pathways. Moreover, a combination treatment of JCo and 5-FU synergistically inhibited proliferation of ESCC cells. These results suggest that JCo extract is a potential natural therapeutic agent for esophageal cancer, as it could induce cell cycle arrest and apoptosis in ESCC cells.
Collapse
Affiliation(s)
- Chia‐Yu Li
- Department of Life‐and‐Death StudiesNanhua UniversityChiayiTaiwan
| | - Shan‐Chih Lee
- Department of Medical Imaging and Radiological SciencesChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ImagingChung Shan Medical University HospitalTaichungTaiwan
| | - Wen‐Lin Lai
- Department of Medical Laboratory and BiotechnologyChung Shan Medical UniversityTaichungTaiwan
- Clinical LaboratoryChung Shan Medical University HospitalTaichungTaiwan
| | - Kai‐Fu Chang
- Department of Medical Laboratory and BiotechnologyChung Shan Medical UniversityTaichungTaiwan
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Xiao‐Fan Huang
- Department of Medical Laboratory and BiotechnologyChung Shan Medical UniversityTaichungTaiwan
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Peng‐Yun Hung
- Department of Medical Laboratory and BiotechnologyChung Shan Medical UniversityTaichungTaiwan
| | - Chi‐Pin Lee
- Division of CardiologyDepartment of Internal MedicineDistmanson Medical Foundation Chia‐Yi Christian HospitalChia‐YiTaiwan
| | - Ming‐Chang Hsieh
- Department of Medical Laboratory and BiotechnologyChung Shan Medical UniversityTaichungTaiwan
- Clinical LaboratoryChung Shan Medical University HospitalTaichungTaiwan
| | - Nu‐Man Tsai
- Department of Medical Laboratory and BiotechnologyChung Shan Medical UniversityTaichungTaiwan
- Clinical LaboratoryChung Shan Medical University HospitalTaichungTaiwan
| |
Collapse
|
20
|
Ojowu JO, Agi AP, Etim EE, Adikwu JO, Avan ED. Investigating the Protective Effect of Lawsonia inermis Extract on Liver and Kidney Function in Carbon Tetrachloride (CCl4) Induced Rats. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2020. [DOI: 10.32527/2020/101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- John O. Ojowu
- Department of Biochemistry, Federal University of Agriculture Makurdi, Nigeria
| | - Alfred P. Agi
- Department of Biochemistry, Federal University of Agriculture Makurdi, Nigeria
| | - Etim E. Etim
- Department of Biochemistry, Federal University of Agriculture Makurdi, Nigeria
| | - Joseph O. Adikwu
- Department of Biochemistry, Federal University of Agriculture Makurdi, Nigeria
| | | |
Collapse
|
21
|
Amarasiri SS, Attanayake AP, Arawwawala LDAM, Jayatilaka KAPW, Mudduwa LKB. Standardized aqueous stem bark extract of Gmelina arborea roxb. possesses nephroprotection against adriamycin-induced nephrotoxicity in Wistar rats. Drug Chem Toxicol 2020; 45:1214-1224. [PMID: 32865030 DOI: 10.1080/01480545.2020.1811721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nephrotoxicity is a major limitation of adriamycin (ADR) chemotherapy. We hypothesized that administration of standardized aqueous bark extract of Gmelina arborea Roxb. (GA) (Family; Verbenaceae), a traditional therapeutic agent, may reduce the nephrotoxicity caused by ADR in Wistar rats. The dose-dependent nephroprotective activity of the standardized GA extract was investigated in ADR-induced (20 mg/kg, ip) nephrotoxicity in male Wistar rats (n = 6/group). The lyophilized powder of the aqueous refluxed (4 h) GA extract was administered at 100, 300 and 500 mg/kg doses orally for three consecutive days. Fosinopril sodium (0.09 mg/kg) was used as the positive control. Assessment of biochemical parameters on serum, urine and histopathology on H and E stained kidney sections were done at the end of the intervention. The treatment with GA and fosinopril decreased the elevation of serum creatinine, blood urea nitrogen, cystatin C, β2-microglobulin and loss of total protein in urine in nephrotoxic rats in a dose-dependent manner (p < 0.05). In contrast, serum concentrations of albumin and total protein were increased significantly (p < 0.05). H and E stained kidney sections showed an attenuation of renal parenchymal injury following the treatment. The aqueous extract of GA demonstrated antioxidant potential in vitro. Present findings conclude that the standardized aqueous extract of GA stem bark exerted a dose-dependent protection against ADR-induced nephrotoxicity in vivo and may be a promising adjunct in ADR chemotherapy.
Collapse
Affiliation(s)
- Sachinthi S Amarasiri
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
| | - Anoja P Attanayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | | | | - Lakmini K B Mudduwa
- Department of Pathology, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| |
Collapse
|
22
|
Trea F, Tichati L, Ouali K. Protective effect of Thymus munbyanus aqueous extract against 2,4-dichlorophenoxyacetic acid-induced nephrotoxicity in Wistar rats. Drug Chem Toxicol 2020; 45:1109-1118. [DOI: 10.1080/01480545.2020.1809669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fouzia Trea
- Faculty of Sciences, Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Badji Mokhtar University, Annaba, Algeria
| | - Lazhari Tichati
- Faculty of Sciences, Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Badji Mokhtar University, Annaba, Algeria
| | - Kheireddine Ouali
- Faculty of Sciences, Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Badji Mokhtar University, Annaba, Algeria
| |
Collapse
|
23
|
Extract of Juniperus indica Bertol Synergizes with Cisplatin to Inhibit Oral Cancer Cell Growth via Repression of Cell Cycle Progression and Activation of the Caspase Cascade. Molecules 2020; 25:molecules25122746. [PMID: 32545807 PMCID: PMC7355628 DOI: 10.3390/molecules25122746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Oral cancer—a type of head and neck cancer—is estimated to be the fifth most common cancer in Taiwan. However, efficacious therapies for oral cancer are still lacking due to drug resistance and recurrence. Consequently, the identification of new anticancer agents for clinical treatment is needed. Juniperus indica Bertol is a plant of the Juniperus genus often used as a treatment in traditional medicine due to its anti-inflammatory, antibacterial and diuretic functions. The biofunctions of Juniperus indica Bertol including its anticancer potential, have not been fully explored. As a result, the aim of this research was to investigate the anticancer activity of Juniperus indica Bertol extract (JIB extract) and determine whether JIB extract has synergistic effects with cisplatin in oral cancer. These results are the first to demonstrate that JIB extract exhibits anticancer capacity and synergizes with cisplatin to treat oral cancer. Our findings indicate that JIB extract has a potential to develop anticancer agent and chemo therapeutic adjuvant for oral cancer.
Collapse
|
24
|
Alomar MY. Physiological and histopathological study on the influence of Ocimum basilicum leaves extract on thioacetamide-induced nephrotoxicity in male rats. Saudi J Biol Sci 2020; 27:1843-1849. [PMID: 32565705 PMCID: PMC7296500 DOI: 10.1016/j.sjbs.2020.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
Kidney disease is a worldwide public health problem that affects millions of people worldwide. Globally, many risk factors for kidney disease progression have been identified. The global prevalence of acute and chronic forms of kidney disease is rising continuously. Nephrotoxicity is defined as rapid dysfunction of kidney due to toxic influence of medications and chemicals. Nephroprotective agents are material that has potential to minimize the effects of nephrotoxic agents. Plants have been shown to be potential therapeutic agents to protect against nephrotoxicity. The purpose of the present study was to evaluate the nephroprotective effect of basil leaves extract against thioacetamide (TAA) in male rats. Experimental male rats were divided into four groups. Rats of the first group were served as controls. Rats of the second group were exposed to TAA. Rats of the third group were treated with basil leaves extract and TAA. Rats of the fourth group were treated with basil leaves extract. After the end of experimental duration (6 Weeks), rats of the second group showed significantly increases of serum creatinine, blood urea nitrogen and uric acid levels, while the levels of serum superoxide dismutase and glutathione were significantly decreased. Histopathologically, renal sections from rats treated with only TAA showed several alterations in the structure of most renal corpuscles including a degeneration of glomeruli and Bowman's capsules. Treatment with basil leaves extract improved the observed biochemical and histopathological changes induced by TAA intoxication. These new findings indicate that the extract of basil leaves represent protective roles on biochemical and histopathological changes induced by TAA toxicity due to its antioxidant activities.
Collapse
Affiliation(s)
- Mohammed Y Alomar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Hassan M, Ibrahim MA, Hafez HM, Mohamed MZ, Zenhom NM, Abd Elghany HM. Role of Nrf2/HO-1 and PI3K/Akt Genes in the Hepatoprotective Effect of Cilostazol. ACTA ACUST UNITED AC 2020; 14:61-67. [PMID: 30179140 DOI: 10.2174/1574884713666180903163558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cilostazol, a phosphodiesterase 3 inhibitor (PDE3I), is a platelet aggregation inhibitor and vasodilator that is useful for treating intermittent claudication. Experimental studies have shown that cilostazol has potent anti-inflammatory, anti-oxidant effects effects. OBJECTIVES Although the hepatoprotective effect cilostazol has been studied, the molecular mechanisms of such protection, including: the nuclear factor-erythroid 2-related factor 2 (Nrf2) / hemoxygenase (HO-1) and the phosphoinositide 3-kinase (PI3K) /serine/threonine kinase (Akt) pathways are not fully explored, which is the aim of this study. METHODS To achieve the aim of this study, 35 rats were grouped into: control groups, liver injury group (model- non treated: injected with thioacetamide (TAA), 150 mg/kg, i.p.), and two cilostazoltreated groups (treated with cilostazol 10 and 50 mg/kg, p.o.). The rats were treated for 8 days and injected with TAA on the 7th day of the experiment and sacrificed 48 hours after TAA injection. RESULTS The model group showed evidence of liver injury as indicated by the elevation of liver enzymes and confirmed by histopathological findings. TAA-induced liver injury was accompanied by down-regulation of the cytoprotective pathways: PI3K/Akt and Nrf2/HO-1 mRNAs. Cilostazol administration ameliorated TAA-induced liver injury, where it caused a significant improvement in the activity of liver enzymes as well as in the histopathological changes. Such an effect was associated with a significant increase in the expression of PI3K/Akt and Nrf2/HO-1 mRNAs as detected by Real-time reverse transcription polymerase chain reaction (RT-PCR). CONCLUSION Cilostazol protected rats against TAA hepatotoxicity through up-regulation of PI3K/Akt and Nrf2/HO-1 gene expression.
Collapse
Affiliation(s)
- Marwa Hassan
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Mohamad A Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Heba M Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Hend M Abd Elghany
- Department of Biochemistry, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| |
Collapse
|
26
|
Ogbe RJ, Agbese SP, Abu AH. Protective effect of aqueous extract of Lophira lanceolata leaf against cisplatin-induced hepatorenal injuries and dyslipidemia in Wistar rats. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-019-0149-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Hepatorenal injuries and dyslipidemia are common global health challenges but medicinal plant extracts may have potential to prevent them. Thus, this study evaluated the protective effect of aqueous extract of Lophira lanceolata leaf (LLE) against cisplatin-induced hepatorenal injuries and dyslipidemia in albino Wistar rats.
Methods
Thirty rats were randomly divided into 6 groups of 5 rats each. Group I rats received distilled water and served as control, group II rats were given 5 mg/kg cisplatin (CIS) intraperitoneally, groups III and IV rats were treated with 200 and 400 mg/kg LLE respectively for 26 days by oral gavages while groups V and VI rats were treated with 200 and 400 mg/kg LLE respectively, followed by CIS on the 21st day as in group II. About 24 h after treatment, blood was collected from the rats; then serum was separated and used for estimations of biochemical parameters. The kidney and liver of rats were removed, rinsed in normal saline, stored in 10% formalin and used for histological analyses.
Results
The biomarkers of hepatic (Aminotransferases, Alkaline phosphatase and Bilirubin) and renal (urea and creatinine) injuries, and dyslipidemia (Total cholesterol, triglycerides and LDL-cholesterol) significantly (p < 0.05) increased in the rats exclusively exposed to cisplatin when compared with normal control. However, treatment of cisplatin-exposed rats with 200 and 400 mg/kg LLE significantly (p < 0.05) reduced the levels of these biomarkers of hepatorenal injuries and dyslipidemia when compared with cisplatin control. Photomicrographs showed pathological signs in the liver and kidney of rats exclusively exposed to cisplatin, but there was moderate protection of these tissues in the rats treated with LLE and cisplatin.
Conclusion
The current findings have shown that Lophira lanceolata leaf extract may provide moderate protection against cisplatin-induced hepatorenal injuries and dyslipidemia in albino Wistar rats.
Collapse
|
27
|
Humadi AA, Al-Kaisei BI, Humadai TJ, Al-Ezzy AIA. Toxicopathological, Cytogenetic Effects of Acetothioamide on Female Albino Mice Reproductive System. Open Access Maced J Med Sci 2019; 7:3925-3929. [PMID: 32165930 PMCID: PMC7061396 DOI: 10.3889/oamjms.2019.858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 11/05/2022] Open
Abstract
AIM: To determine toxicopathological and cytogenetic effects of Acetothioamide (ATA) on the female reproductive system. METHODS: Twenty albino female mice were divided equally into two groups: the first group (control) fed with diet pellet. The second group (treated) were inoculated intraperitoneally with a single dose of ATA (100 mg/kg Bw) for 15 days. All mice were sacrificed at the end of the experiment and blood was collected for evaluation of (FSH and LH), serum peroxy nitrate radical concentration. Cytogenetic analysis (chromosomal aberration, micronuclei, mitotic index and blast index) and the histopathological examination on ovary and uterus were done. RESULTS: ATA causes significant reduction (p < 0.0001) for FSH, LH and serum peroxy nitrate radical concentration among treated females. Oophoritis, pyometria, thrombosis and endometrial hyperplasia with granulomatous reaction were reported among treated females mainly in uterus tissue and ovary. CONCLUSION: ATA causes significant reduction for FSH, LH and serum peroxy nitrate concentration among treated females. Oophoritis, pyometria, thrombosis and endometrial hyperplasia with granulomatous reaction were the main pathological changes in uterus tissue and ovary among treated females.
Collapse
Affiliation(s)
- Anas A Humadi
- Department of Pathology, College of Veterinary Medicine, University of Diyala, Diyala, Iraq
| | - Bushra I Al-Kaisei
- Department of Pathology and Poultry Disease, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Taghreed J Humadai
- Department of Pathology and Poultry Disease, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
28
|
Alkhedaide A, Abdo Nassan M, Ahmed Ismail T, Soliman MM, Hassan Mohamed E, Hassan Amer H, Aldhahrani A. Hypoglycemic and antioxidant effect of Juniperus procera extract on rats with streptozotocin-induced diabetes. ACTA ACUST UNITED AC 2019; 26:361-368. [PMID: 31735484 DOI: 10.1016/j.pathophys.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/19/2019] [Accepted: 11/10/2019] [Indexed: 01/09/2023]
Abstract
Juniperus procera, a coniferous tree in the cypress family, is one of the famous medicinal plants traditionally used in the southern area of the Arabian peninsula. This study examined the anti-hyperglycemic action of Juniperus procera extract (JPE) on diabetic rats. Sixty male rats were divided into 6 equal groups: control, control treated with JPE (200 mg/kg), diabetic, diabetic treated with insulin (1 U/kg), diabetic treated with JPE (200 mg/kg), and diabetic treated with both insulin and JPE. Blood and tissue samples were collected for serum chemistry, gene expression, and immunohistochemistry analyses, the results of which revealed hyperglycemia and inflammation following diabetes induction. Administration of JPE alone or with insulin reduced the hyperglycemia reported in diabetic rats by 25 %. The immunohistochemical examination of pancreatic tissues demonstrated a moderate restoration of insulin and NF-κB expression in pancreatic and hepatic tissues. Significant recovery was observed for glutathione-S-transferase (GST), superoxide dismutase (SOD), and glutathione peroxidase (GPx) mRNA expression in the livers of rats treated with JPE. Administration of JPE led to similar amelioration of the mRNA expression of pyruvate kinase (PK) and phosphoenol pyruvate carboxy kinase (PEPCK) in the livers of diabetic rats. In addition, diabetic rats treated with insulin, JPE, or a combination of these agents demonstrated an improvement in the mRNA expression of IRS-1 and IRS-2 in hepatic and pancreatic tissues, reaching levels approaching normal. Our findings led us to conclude that JPE has a powerful anti-inflammatory effect accompanied by a moderate hypoglycemic effect that occurs via different mechanisms.
Collapse
Affiliation(s)
- Adel Alkhedaide
- Laoratories Technology Department, Turabah University College, Turabah, Taif University, Saudi Arabia
| | - Mohamed Abdo Nassan
- Laoratories Technology Department, Turabah University College, Turabah, Taif University, Saudi Arabia; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Tamer Ahmed Ismail
- Laoratories Technology Department, Turabah University College, Turabah, Taif University, Saudi Arabia; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Mohamed Mohamed Soliman
- Laoratories Technology Department, Turabah University College, Turabah, Taif University, Saudi Arabia; Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Essam Hassan Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hamada Hassan Amer
- Chemistry Department, Faculty of Science, Turabah Branch, Taif University, Saudi Arabia; Faculty of Veterinary Medicine, Sadat City University, Sadat City, Menoufia, Egypt
| | - Adil Aldhahrani
- Laoratories Technology Department, Turabah University College, Turabah, Taif University, Saudi Arabia
| |
Collapse
|
29
|
Alomar MY, Al-Attar AM. Effect of Basil Leaves Extract on Liver Fibrosis Induced by Thioacetamide in Male Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.478.485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Ghosh D, Mondal S, Ramakrishna K. Acute and sub-acute (30-day) toxicity studies of Aegialitis rotundifolia Roxb., leaves extract in Wistar rats: safety assessment of a rare mangrove traditionally utilized as pain antidote. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0106-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
31
|
Ahmad Alma D, Abdullah A S. Hepatorenal Protective Effects of Some Plant Extracts on Experimental Diabetes in Male Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.238.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Alkhedaide AQ. Anti-inflammatory Effect of Juniperus Procera Extract in Rats Exposed to Streptozotocin Toxicity. Antiinflamm Antiallergy Agents Med Chem 2019; 18:71-79. [PMID: 30474537 PMCID: PMC6446517 DOI: 10.2174/1871523018666181126124336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/10/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chronic inflammation is a critical health issue and implicated in several chronic health problems such as tumors, auto-immune disorder, hypertension or diabetes. However, Juniperus procera is one of the famous ancient plants that has been traditionally used to treat several diseases such as hyperglycemia, hepatitis, jaundice, bronchitis, and pneumonia. OBJECTIVE Current study is an attempt to investigate the anti-inflammatory effect of Juniperus procera extract on rats exposed to cytotoxicity caused experimentally by streptozotocin injections. METHODS Five groups of adult Wistar rats (10 rats each) were examined as (Normal control, Normal rats treated with Juniperus procera extract, rats administrated with streptozotocin, rats administrated with streptozotocin and treated with insulin and, rats administrated with streptozotocin and Juniperus procera extract). At the end of the experiment, blood was collected from experimented rats. Animals then were killed and small parts of both pancreas and liver were collected for gene expression and histopathological examination. RESULTS Serum analysis showed a significant increase in glucose, IL-6, IL-2 and TNF-α levels in rats exposed to streptozotocin. That change was reduced in rats cotreated with insulin or Juniperus procera extract. Moreover, streptozotocin showed a significant upregulation of IL-6, TNF-α and A2M genes, while, either insulin or Juniperus procera treatment was restored to normal status. Streptozotocin induced inflammation within hepatic tissues which clearly reduced in hepatic tissues of both insulin and junipers cotreated groups. CONCLUSION Streptozotocin toxicity induces acute inflammation and increases serum glucose, IL-6, IL-2 and TNF-α levels. However, Juniperus procera extract was found to significantly prevent that reaction within four weeks experimented frame time.
Collapse
Affiliation(s)
- Adel Qlayel Alkhedaide
- Address correspondence to this author at the Medical Laboratory Department, University College - Turabah, Taif University, Taif, Saudi Arabia; Tel: 00966540490404;, E-mail:
| |
Collapse
|
33
|
Hafez HM, Ibrahim MA, Zedan MZ, Hassan M, Hassanein H. Nephroprotective effect of cilostazol and verapamil against thioacetamide-induced toxicity in rats may involve Nrf2/HO-1/NQO-1 signaling pathway. Toxicol Mech Methods 2018; 29:146-152. [DOI: 10.1080/15376516.2018.1528648] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Heba M. Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Mohamed A. Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Mervat Z. Zedan
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Marwa Hassan
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Hanaa Hassanein
- Department of Histology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
34
|
Achuba F. Role of bitter leaf ( Vernonia amygdalina) extract in prevention of renal toxicity induced by crude petroleum contaminated diets in rats. Int J Vet Sci Med 2018; 6:172-177. [PMID: 30564592 PMCID: PMC6286397 DOI: 10.1016/j.ijvsm.2018.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
The efficacy of Vernonia amygdalina against chemical toxicity has attracted attention. The aim of this study was to evaluate the protective potentials of Vernonia amygdalina methanol extract (BLME) against petroleum toxicity. Thirty six male albino rats (Rattus norvegicus) were redistributed randomly into six groups of six rats each and fed with growers feed for a period of 30 days according to the following description: Group A = Feed; Group B = Feed + 100 mg kg−1 body weight of BLME; Group C = Feed + 200 mg kg−1 body weight of BLME; Group D = Feed (100 g Feed + 4 mL crude petroleum); Group E = Feed (100 g Feed + 4 mL crude petroleum) + 100 mg kg−1 body weight of BLME; Group F = Feed (100 g Feed + 4 mL crude petroleum) + 200 mg kg−1 body weight of BLME. Animals were sacrificed at the end of the experimental period and the serum and kidney were harvested for biochemical and histological analysis following standard procedures. The data generated were subjected to analysis of variance (ANOVA). The study revealed that crude petroleum stimulated alterations in kidney dysfunction makers: urea, creatinine and serum electrolytes which were significantly (P < 0.05) ameliorated by BLME administration relative to control. Oxidative stress markers, lipid peroxidation and enzymatic and non-enzymatic antioxidant profiles (MDA levels, GSH, Vitamin C. FRAP, CAT, SOD, GPx, GSTs) as well as oxidase enzymes (AO, SO, MO and XO) induced changes by crude petroleum were positively modulated by BLME administration. The study concluded that crude petroleum contaminated diets are injurious to animal health and BLME is able to prevent the renal dysfunction induced by crude petroleum contaminated diets.
Collapse
|
35
|
Shaikh Omar AM. The potential protective influence of flaxseed oil against renal toxicity induced by thioacetamide in rats. Saudi J Biol Sci 2018; 25:1696-1702. [PMID: 30591787 PMCID: PMC6303138 DOI: 10.1016/j.sjbs.2016.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/10/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022] Open
Abstract
The present study was aimed to evaluate the influence of flaxseed oil on renal toxicity induced by thioacetamide in male rats. The animals were distributed into four groups. Rats of the first group were served as control. Rats of the second group were exposed to thioacetamide. Rats of the third group were treated with flaxseed oil and thioacetamide. Rats of the fourth group were treated with flaxseed oil. Significant increases of blood creatinine and uric acid were observed in TAA-treated rats after three weeks. In thioacetamide group, the levels of serum creatinine, blood urea nitrogen and uric acid were significantly elevated after six weeks. Histopathologically, the renal sections from thioacetamide-treated rats showed severe alterations in the structure of renal corpuscles including a degeneration of glomeruli and Bowman's capsules. Administration of flaxseed oil protects the observed biochemical and histopathological alterations induced by thioacetamide exposure. Hence, the results of this study suggest that flaxseed oil protects against thioacetamide-induced renal injury and the protective influence of flaxseed oil may be attributed to its antioxidant role.
Collapse
|
36
|
Bryophyllum pinnatum inhibits arginase II activity and prevents oxidative damage occasioned by carbon tetrachloride (CCl4) in rats. Biomed Pharmacother 2018; 101:8-13. [DOI: 10.1016/j.biopha.2018.01.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
|
37
|
Elgebaly HA, Mosa NM, Allach M, El-Massry KF, El-Ghorab AH, Al Hroob AM, Mahmoud AM. Olive oil and leaf extract prevent fluoxetine-induced hepatotoxicity by attenuating oxidative stress, inflammation and apoptosis. Biomed Pharmacother 2017; 98:446-453. [PMID: 29278855 DOI: 10.1016/j.biopha.2017.12.101] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 01/18/2023] Open
Abstract
Olive oil and leaf extract have several health benefits; however, their beneficial effect against fluoxetine-induced liver injury has not been investigated. The present study aimed to scrutinize the impact of fluoxetine on the liver of rats and to evaluate the protective effects of olive oil and leaf extract. Rats received fluoxetine orally at dose of 10 mg/kg body weight for 7 consecutive days. The fluoxetine-induced rats were concurrently treated with olive oil or leaf extract. At the end of the experiment, blood and liver samples were collected for analysis. Fluoxetine administration significantly increased circulating ALT, AST, ALP and the pro-inflammatory cytokines TNF-α and IL-1β levels in rats. Histological analysis showed several alterations, such as inflammatory cells infiltration, hepatocyte vacuolation and dilated sinusoids in the liver of fluoxetine-induced rats. Concurrent supplementation of olive oil and olive leaf extract significantly reduced circulating liver function marker enzymes and pro-inflammatory cytokines, and prevented fluoxetine-induced histological alterations. Both olive oil and leaf extract significantly decreased liver lipid peroxidation and nitric oxide, and ameliorated liver glutathione, superoxide dismutase, catalase and glutathione peroxidase. In addition, olive oil and leaf extract prevented fluoxetine-induced apoptosis in the liver of rats as evidenced by decreased expression of Bax and caspase-3, and up-regulated expression of Bcl-2. In conclusion, olive oil and leaf extract protect against fluoxetine-induced liver injury in rats through attenuation of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Hassan A Elgebaly
- Department of Biology, Faculty of Science, Aljouf University, Saudi Arabia
| | - Nermeen M Mosa
- Department of Biology, Faculty of Science, Aljouf University, Saudi Arabia
| | - Mariam Allach
- Department of Biology, Faculty of Science, Aljouf University, Saudi Arabia
| | - Khaled F El-Massry
- Department of Chemistry, Faculty of Science, Aljouf University, Saudi Arabia; Flavour and Aroma Department, National Research Centre, Egypt
| | - Ahmed H El-Ghorab
- Department of Chemistry, Faculty of Science, Aljouf University, Saudi Arabia; Flavour and Aroma Department, National Research Centre, Egypt
| | - Amir M Al Hroob
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein Faculty of Nursing and Health Sciences, Al-Hussein Bin Talal University, Jordan
| | - Ayman M Mahmoud
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt; Department of Endocrinology, Diabetes and Nutrition, Charité-University Medicine Berlin, Germany; Department of Endocrinology, Diabetes and Nutrition at the Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Germany.
| |
Collapse
|
38
|
Chemical characterization, antioxidant, genotoxic and in vitro cytotoxic activity assessment of Juniperus communis var. saxatilis. Food Chem Toxicol 2017; 112:118-125. [PMID: 29287791 DOI: 10.1016/j.fct.2017.12.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022]
Abstract
Chemical composition and antioxidative, genotoxic and cytotoxic potential of essential oil (EO) and post-distillation waste (PDW) of Serbian Juniperus communis L. var. saxatilis Pall. was studied in human lung carcinoma (A549) and normal lung fibroblast (MRC-5) cells. GC-MS analysis identified 93.95% of total EO content and determined α-pinen as a dominant component (23.61%). LC-MS/MS analysis of PDW pointed at rutin (12.2 mg g-1) and quinic acid (11.1 mg g-1) as the most abundant. Antioxidativity of PDW was strong in DPPH (IC50 was 5.27 μg mL-1), and moderate in TBA and FRAP assays. Both substances were more cytotoxic to A549 than to MRC-5 cells. Obtained IC50 values were 69.4 μg mL-1 and 120 μg mL-1 for EO, and 1.27 mg mL-1 and 2.86 mg mL-1 for PDW, respectively. PDW was genotoxic (0.3 mg mL-1 and 1 mg mL-1 in A549 and MRC-5 cells, respectively) and induced apoptosis and arrested cell cycle in G2/M phase in A549 cells (0.3 mg mL-1). In mixtures with doxorubicin cytotoxicity of EO and PDW increased, and combination index values (0.12-0.18) revealed clear synergistic effect, stronger in cancer cells. This indicates that J. communis var. saxatilis could decrease the chemotherapeutic doses of doxorubicin, potentially reducing its side effects.
Collapse
|
39
|
Al-Attar AM, Alsalmi FA. Influence of olive leaves extract on hepatorenal injury in streptozotocin diabetic rats. Saudi J Biol Sci 2017; 26:1865-1874. [PMID: 31762669 PMCID: PMC6864289 DOI: 10.1016/j.sjbs.2017.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Medicinal plants have always been an important source of new alternative effective compounds for human therapy. Currently, there are many of scientific evidences indicate that the medicinal plants contain a lot of hypoglycemic chemical compounds. The purpose of the present study was to determine the influence of olive leaves extract on hepatorenal injury in diabetic male rats. Experimental diabetes was induced by streptozotocin (STZ). The levels of serum glucose, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transferase, total bilirubin, creatinine, blood urea nitrogen, uric acid and malondialdehyde were significantly increased, while the levels of serum superoxide dismutase, glutathione and catalase were statistically decreased in untreated diabetic rats. Moreover, the histopathological examination showed several alterations in the structure of liver and kidney in untreated diabetic rats. Treatments with low dose and high dose of olive leaves extract in diabetic rats showed remarkable reducing and protecting influences of physiological and histopathological alterations. Moreover, the highly treatment efficiency was noted in diabetic rats treated with high dose followed by low dose of olive leaves extract. Additionally, the results of this study proved that the antioxidant activities of olive leaves extract played a vital role against the hepatorenal injury induced by diabetes. Finally, this study indicates to the importance of the use of olive leaves extract as promising alternative and complementary therapeutic agent against diabetes and its complications.
Collapse
Affiliation(s)
- Atef M Al-Attar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 139109, Jeddah 21323, Saudi Arabia
| | - Fawziah A Alsalmi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 139109, Jeddah 21323, Saudi Arabia
| |
Collapse
|
40
|
Azab AE, Albasha MO, Elsayed ASI. Prevention of Nephropathy by Some Natural Sources of Antioxidants. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ym.2017.14023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|