1
|
Antov GG, Gospodinova ZI, Novakovic M, Tesevic V, Krasteva NA, Pavlov DV, Valcheva-Kuzmanova SV. Molecular mechanisms of the anticancer action of fustin isolated from Cotinus coggygria Scop. in MDA-MB-231 triple-negative breast cancer cell line. Z NATURFORSCH C 2025; 80:233-250. [PMID: 39331583 DOI: 10.1515/znc-2024-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024]
Abstract
The aim of the present work was to investigate some of the molecular mechanisms and targets of the anticancer action of the bioflavonoid fustin isolated from the heartwood of Cotinus coggygria Scop. in the triple-negative breast cancer cell line MDA-MB-231. For this purpose, we applied fluorescence microscopy analysis to evaluate apoptosis, necrosis, and mitochondrial integrity, wound healing assay to study fustin antimigratory potential and quantitative reverse transcription-polymerase chain reaction to analyze the expression of genes associated with cell cycle control, programmed cell death, metastasis, and epigenetic alterations. A complex network-based bioinformatic analysis was also employed for protein-protein network construction, hub genes identification, and functional enrichment. The results revealed a significant induction of early and late apoptotic and necrotic events, a slight alteration of the mitochondria-related fluorescence, and marked antimotility effect after fustin treatment. Of 34 analyzed genes, seven fustin targets were identified, of which CDKN1A, ATM, and MYC were significantly enriched in pathways such as cell cycle, intrinsic apoptotic signaling pathway in response to DNA damage and generic transcription pathway. Our findings outline some molecular mechanisms of the anticancer action of fustin pointing it out as a potential oncotherapeutic agent and provide directions for future in vivo research.
Collapse
Affiliation(s)
- Georgi G Antov
- Laboratory of Genome Dynamics and Stability, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Zlatina I Gospodinova
- Laboratory of Genome Dynamics and Stability, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Miroslav Novakovic
- Department of Chemistry, University of Belgrade - Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Vele Tesevic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Natalia A Krasteva
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Danail V Pavlov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics with Laboratory of Nutrigenomics, Functional Foods and Nutraceuticals, Faculty of Pharmacy, Medical University "Prof. Dr. Paraskev Stoyanov", Varna, Bulgaria
| | - Stefka V Valcheva-Kuzmanova
- Department of Pharmacology and Clinical Pharmacology and Therapeutics, Faculty of Medicine, Medical University "Prof. Dr. Paraskev Stoyanov", Varna, Bulgaria
| |
Collapse
|
2
|
Salama WM, El-Naggar SA, Tabl GA, El-Desouki NI, El Shefiey LM. Leiurus quinquestratus venom promotes β islets regeneration and restores glucose level in streptozotocin induced type 2 diabetes mellitus in rats. Sci Rep 2025; 15:11841. [PMID: 40195395 PMCID: PMC11976942 DOI: 10.1038/s41598-025-94030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Diabetes mellitus type 2 (T2-DM) is one of the most prevalent chronic metabolic diseases, marked by insulin resistance and a relative lack of insulin production. T2-DM can be treated using various methods; however, these treatments are risky for several vital organs. Subsequently, novel T2-DM replacement therapies should be discovered. The goal of this study was to see how efficient Leiurus quinquestratus venom (LQV) was as a diabetic medicine for the treatment of T2-DM in rats. The median lethal dose (LD50) of LQV has been determined. Then, forty male Sprague Dawley rats were divided into four groups (n = 10) as follows, with group 1 (Gp1) separated as a negative control. Gp2, Gp3, and Gp4 were fed a high-fat diet (HFD) for 12 weeks before receiving an intraperitoneal (i.p) injection of streptozotocin (STZ) as 30 mg/kg b.wt. Gp3 received metformin (Met) as 150 mg/kg b.wt i.p. LQV as 1/40 LD50 was given i.p. to Gp4. Treatments with Met or LQV were once every day for eight weeks. Hematological, biochemical, histopathological, and immunohistochemical studies were determined, along with the percentages of changes in total body weight. Results: LD50 of LQV was 0.3 mg/kg b.wt. Met or LQV treatment reduced hyperglycemia and C-peptide levels and lessened the hepato-renal biomarkers disorders in T2-DM rats. Intriguingly, histological analysis revealed that LQV treatment outperformed Met in improving and restoring β-cells in pancreatic tissues of T2-DM mice. In conclusion, this study demonstrated a new and promising method for treating T2-DM with LQV. Further investigation is required to isolate the bioactive elements from LQV to treat T2-DM.
Collapse
Affiliation(s)
- Wesam M Salama
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Sabry A El-Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ghada A Tabl
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | | |
Collapse
|
3
|
Alharbi KS, Afzal M, Al-Abbasi FA, Moglad E, Al-Qahtani SD, Almalki NAR, Imam F, Sayyed N, Kazmi I. In vivo and in silico study of europinidin against streptozotocin-isoproterenol-induced myocardial damage via alteration of hs-CRP/CPK-MB/Caspase-3/Bcl-2 pathways. Sci Rep 2025; 15:3076. [PMID: 39856142 PMCID: PMC11761472 DOI: 10.1038/s41598-024-83900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Europinidin is a novel anthocyanidin found in the petals of Plumbago europea that exhibits several physiological effects. Research was conducted to assess europinidin's cardioprotective efficacy in a diabetic and myocardial infarction (MI) experimental model. Rat was injected through the intraperitoneal administration of 45 mg/kg of streptozotocin (STZ), while MI was induced by subcutaneously administering 85 mg/kg of isoproterenol (ISP) at 24 and 48 h prior to the sacrifice procedure. Europinidin 10 and 20 mg/day was administered orally for 4 weeks after validation of diabetes (glucose > 250 mg/dl) on the 7th day. Experimental rats were randomly allocated to control, STZ-ISP control, STZ-ISP + europinidin-10 mg, STZ-ISP + europinidin-20 mg and europinidin 20 mg perse group. Biochemicals parameters including anti-diabetic (Glucose, HbA1c, serum insulin), cardiac markers (hs-CRP, CPK-MB), dyslipidaemia (lipid analysis), anti-inflammatory (IL6, TNF-α and IL-β), oxidative stress (MDA) and antioxidant (SOD, CAT and GSH), kidney function (creatinine), liver function (AST) and pancreatic function (lipase) along with apoptosis markers (Bcl-2, caspase-3) were evaluated. In addition, histopathological indices of heart injury were investigated. In addition, molecular docking (AUTODOCK Tools 1.5.6.) and dynamics were performed. Europinidin (10 and 20 mg/day) reduced blood glucose, HbA1c, hs-CRP, and CPK-MB. It improved serum insulin, blood lipid profile and reduced inflammatory cytokines (IL-6, TNF-α, IL-β), oxidative stress and increased antioxidant enzymes (SOD, CAT and GSH). Europinidin also protected renal, hepatic functions and restored apoptosis markers (increased Bcl-2, decreased caspase-3 levels). Histopathological analysis demonstrated a reduced extent of myocardial necrosis and fibrosis. Europinidin binds in silico to proteins 1NME, 1I0E, 3I2Y and 4AQ3 with energies of -7.038, -6.682, -8.6 and - 8.761 kcal/mol, respectively. While molecular dynamics simulation studies supported the interactions of europinidin with important therapeutic target proteins. Europinidin demonstrates significant cardioprotective and anti-diabetic potential in a diabetic MI experimental model.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51452, Al Qassim, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Salwa D Al-Qahtani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Naif A R Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur, 247121, India.
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
4
|
Kazmi I, Al-Abbasi FA, AlGhamdi SA, Alghamdi AM, Zeyadi M, Sheikh RA, Gupta G, Sayyed N. Influence of rosiridin on streptozotocin-induced diabetes in rodents through endogenous antioxidants-inflammatory cytokines pathway and molecular docking study. J Biomol Struct Dyn 2025; 43:467-482. [PMID: 37982302 DOI: 10.1080/07391102.2023.2282738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
The research was undertaken to assess the antidiabetic activity of rosiridin in the streptozotocin (STZ)-induced diabetic model. Type 2 diabetes mellitus was elicited chemically in experimental animals using STZ (60 mg/kg, i.p.). Experimental rats were arbitrarily allocated to normal control, rosiridin perse, diabetic control, and STZ + rosiridin groups. After the confirmation of diabetes, rosiridin (10 mg/kg) was given orally to the experimental animals for 30 days. Various anti-diabetic (blood glucose, insulin), hypolipidemic, anti-inflammatory (Nuclear factor kappa B, tumour necrosis factor-α, interleukin beta (IL-1β), and IL-6), antioxidant (and malondialdehyde level, hepatic function and others markers (ALT, AST, adiponectin, and FNDC5) and histopathological indices of injury were evaluated. In addition, the rosinidin was docked into the active site of NF-Kβ (1SVC), FNDC5 (4LSD) and adiponectin (5LXG) proteins with AutoDock tools. MD simulations were carried out for the complexes of rosiridin with NF-Kβ, myokine and human adiponectin receptor 1. Rosiridin treatment restored the biochemical parameters and preserved the histopathological building of the pancreas as compared to the diabetic rats. Histopathological analysis of the pancreas confirmed that rosiridin antidiabetic efficacy in the STZ-induced diabetes mellitus model. The 5LXG_rosinidin showed favourable affinity with the best binding energies at -7.534 kcal/mol. MD simulations were carried out for the complexes of rosiridin with NF-Kβ, myokine and human adiponectin receptor 1, the complex of myokine and rosiridin exhibited the most stable complex. Rosiridin may exhibit considerable anti-diabetic activity in the STZ-induced diabetes mellitus model.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shareefa A AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amira M Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mustafa Zeyadi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ryan A Sheikh
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Center for Global Health research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur, India
| |
Collapse
|
5
|
Shakour N, Mahdinezhad MR, Hadjzadeh MAR, Sahebkar A, Hadizadeh F. Serum biochemical evaluation following administration of imidazolyl thiazolidinedione in streptozotocin-induced diabetic rats. J Mol Histol 2024; 55:1315-1325. [PMID: 39382759 DOI: 10.1007/s10735-024-10272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Diabetes mellitus represents a prominent global health concern, characterized by a rising prevalence rate. Type 2 Diabetes Mellitus (T2DM) is purported to be associated with an intricate interplay of genetic, environmental, and lifestyle factors. While some progress have been made in T2DM management, controlling associated complications remains a great challenge in medicine. OBJECTIVES This study investigated a synthesized Imidazolyl Thiazolidinedione antidiabetic agent (PA9), focusing on serum parameters. METHODS Streptozotocin-induced diabetic rats (n = 6) were subjected to orally treatment with PA9 (synthesized by Shakour et al. in an equal dose of a standard drug, 0.011 mmol/kg). The study conducted to measure some specific serum factors, including lipid profiles, liver and kidney enzymes, cardiac enzymes, and oxidative stress markers, both before and after treatment. RESULTS The study findings indicated that PA9 effectively ameliorates hyperlipidemia by significantly reducing total cholesterol and triglyceride levels in serum. Additionally, PA9 demonstrated hepatoprotective effects against TZD-induced injuries, as evidenced by decreased levels of alanine transaminase and, alkaline phosphatase. In addition, PA9 also exhibited a modulatory effect on a cardiac injury marker, creatine kinase MB. Moreover, PA9 demonstrated antioxidant properties by reducing oxidative stress markers and enhancing the activities of catalase, thiol, and superoxide dismutase. CONCLUSIONS The synthesized TZD compound (PA9) stands out as a highly promising agent for the management of diabetes. Its significant antihyperlipidemic effects, preventive influences on organ injuries, and demonstrated efficacy in reducing oxidative stress marker (SOD) make it therapeutic agent in diabetes management. This study lays the groundwork for innovative strategies in diabetes management.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Mahdinezhad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-Al-Reza Hadjzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Anwar S, Alrumaihi F, Sarwar T, Babiker AY, Khan AA, Prabhu SV, Rahmani AH. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024; 14:697. [PMID: 38927099 PMCID: PMC11201554 DOI: 10.3390/biom14060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, a potentially harmful byproduct of cellular metabolism. This reaction detoxifies H2O2 and prevents oxidative damage. Catalase has been extensively studied as a therapeutic antioxidant. Its applications range from direct supplementation in conditions characterized by oxidative stress to gene therapy approaches to enhance endogenous catalase activity. The enzyme's stability, bioavailability, and the specificity of its delivery to target tissues are significant hurdles. Furthermore, studies employing conventional catalase formulations often face issues related to enzyme purity, activity, and longevity in the biological milieu. Addressing these challenges necessitates rigorous scientific inquiry and well-designed clinical trials. Such trials must be underpinned by sound experimental designs, incorporating advanced catalase formulations or novel delivery systems that can overcome existing limitations. Enhancing catalase's stability, specificity, and longevity in vivo could unlock its full therapeutic potential. It is necessary to understand the role of catalase in disease-specific contexts, paving the way for precision antioxidant therapy that could significantly impact the treatment of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, Mohan Institute of Nursing and Paramedical Sciences, Mohan Group of Institutions, Bareilly 243302, India;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Sitrarasu Vijaya Prabhu
- Department of Biotechnology, Microbiology and Bioinformatics, National College (Autonomous), Tiruchirapalli 620001, India;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
7
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. The Mechanism of Pyroptosis and Its Application Prospect in Diabetic Wound Healing. J Inflamm Res 2024; 17:1481-1501. [PMID: 38463193 PMCID: PMC10924950 DOI: 10.2147/jir.s448693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Pyroptosis defines a form of pro-inflammatory-dependent programmed cell death triggered by gasdermin proteins, which creates cytoplasmic pores and promotes the activation and accumulation of immune cells by releasing several pro-inflammatory mediators and immunogenic substances upon cell rupture. Pyroptosis comprises canonical (mediated by Caspase-1) and non-canonical (mediated by Caspase-4/5/11) molecular signaling pathways. Numerous studies have explored the contributory roles of inflammasome and pyroptosis in the progression of multiple pathological conditions such as tumors, nerve injury, inflammatory diseases and metabolic disorders. Accumulating evidence indicates that the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome results in the activation of pyroptosis and inflammation. Current evidence suggests that pyroptosis-dependent cell death plays a progressive role in the development of diabetic complications including diabetic wound healing (DWH) and diabetic foot ulcers (DFUs). This review presents a brief overview of the molecular mechanisms underlying pyroptosis and addresses the current research on pyroptosis-dependent signaling pathways in the context of DWH. In this review, we also present some prospective therapeutic compounds/agents that can target pyroptotic signaling pathways, which may serve as new strategies for the effective treatment and management of diabetic wounds.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chuxiao Shao
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Peiwu Geng
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Shuanghu Wang
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Department of Wound Healing, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
8
|
Jayaraman S, Natararaj S, Veeraraghavan VP. Hesperidin Inhibits Oral Cancer Cell Growth via Apoptosis and Inflammatory Signaling-Mediated Mechanisms: Evidence From In Vitro and In Silico Analyses. Cureus 2024; 16:e53458. [PMID: 38435153 PMCID: PMC10909395 DOI: 10.7759/cureus.53458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Background Oral carcinoma presents a significant health challenge, prompting the need for innovative therapeutic approaches. Elevation of inflammatory mediators, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), has promoted cellular proliferation, inhibited apoptosis, and fostered oral cancer progression through complex signaling pathways. Hesperidin, a flavanone glycoside found in citrus fruits, is of keen interest in this study as it has been proven to have multiple health benefits through in vivo and in vitro studies. However, the mechanism behind the anticancer activity of hesperidin in oral carcinoma remains obscure. Aim The study aimed to explore the anticancer potential of hesperidin on human oral cancer cells (KB cells) by modulating pro-inflammatory and apoptotic signaling mechanisms. Methods Cancer cell growth inhibitory activity was assessed using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Gene expression analysis was performed using real-time RT-PCR analysis. In addition, in silico docking analysis was conducted to confirm the binding affinity of hesperidin with pro-inflammatory and apoptosis signaling molecules. The data were analyzed using one-way ANOVA and the "t" test. Results Utilizing the MTT assay, a dose-dependent cytotoxic effect of hesperidin was unveiled, with a remarkable IC50 value indicative of its potent inhibition of cell proliferation. Complementing these findings (p<0.05), qRT-PCR analysis demonstrated hesperidin's regulatory influence on key molecular targets within the KB cell line. Hesperidin treatment resulted in a noteworthy reduction in TNF-α, interleukin-1 beta (IL-1-β), IL-6, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and B-cell lymphoma 2 (Bcl-2) mRNA expression levels (p<0.05), highlighting its inhibitory role in cell proliferation, migration, and inflammation processes. Simultaneously, hesperidin promoted the expression of BAX mRNA (p<0.05), indicating an enhancement in cell death. Molecular docking simulations further revealed robust binding affinities between hesperidin and target proteins, suggesting its potential to disrupt cellular functions and inflammatory signaling pathways in oral cancer cells. Conclusion The cytotoxic effects on the KB cell line and its anti-inflammatory properties position hesperidin as a compelling candidate for further exploration in the quest for effective oral carcinoma treatments. These findings shed light on the intricate molecular mechanisms underlying hesperidin's promise as a therapeutic agent against oral carcinoma.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD) Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sathanraj Natararaj
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD) Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD) Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
9
|
Hu X, Wang M, Cai F, Liu L, Cheng Z, Zhao J, Zhang Q, Long C. A comprehensive review of medicinal Toxicodendron (Anacardiaceae): Botany, traditional uses, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116829. [PMID: 37429501 DOI: 10.1016/j.jep.2023.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Comprising of about 30 species, the genus Toxicodendron (Anacardiaceae) are mainly distributed in East Asia and North America. Among them, 13 species have been traditionally used as folk medicines in Asia and other parts of the world to treat blood diseases, abnormal bleeding, skin diseases, gastrointestinal diseases, liver diseases, bone injury, lung diseases, neurological diseases, cardiovascular diseases, tonic, cancer, eye diseases, menstrual irregularities, inflammation, rheumatism, diabetes mellitus, rattlesnake bite, internal parasites, contraceptive, vomiting and diarrhea. AIM OF THE STUDY To date, no comprehensive review on Toxicodendron has been published and the scientific basis of the traditional medicinal benefits of Toxicodendron have been less reported. Therefore, this review aims to provide a reference for further research and development on medicinal purpose of Toxicodendron by summarizing the works (from 1980 to 2023), and focusing on its botany, traditional uses, phytochemistry and pharmacology. MATERIALS AND METHODS The names of the species were from The Plant List Database (http://www.theplantlist.org), World Flora Online (http://www.worldfloraonline.org), Catalogue of Life Database (https://www.catalogueoflife.org/) and Plants for A Future Database (https://pfaf.org/user/Default.aspx). And the search terms "Toxicodendron" and "the names of 31 species and their synonyms" were used to search for information from electronic databases such as Web of Science, Scopus, Google Scholar, Science Direct, PubMed, Baidu Scholar, Springer, and Wiley Online Library. Moreover, PhD and MSc dissertations were also used to support this work. RESULTS These species on Toxicodendron are widely used in folkloric medicine and modern pharmacological activities. So far, approximately 238 compounds, mainly phenolic acids and their derivatives, urushiols, flavonoids and terpenoids, are extracted and isolated from Toxicodendron plants, commonly, T. trichocarpum, T. vernicifluum, T. succedaneum, and T. radicans. Among them, phenolic acids and flavonoids are the main compound classes that show pharmacological activities in Toxicodendron plants both in vitro and in vivo. Furthermore, the extracts and single compounds of these species show a wide range of activities, such as antioxidant, antibacterial, anti-inflammatory, anti-tumor, liver protection, fat reduction, nerve protection, and treatment of blood diseases. CONCLUSIONS Selected species of Toxicodendron have been used as herbal medicines in the Southeast Asian for a long time. Furthermore, some bioactive constituents have been identified from them, so plants in this genus may be potential new drugs. The existing research on Toxicodendron has been reviewed, and the phytochemistry and pharmacology provide theoretical basis for some of the traditional medicinal uses. Therefore, in this review, the traditional medicinal, phytochemical and modern pharmacology of Toxicodendron plants are summarized to help future researchers to find new drug leads or to get a better understanding of structure-activity relationships.
Collapse
Affiliation(s)
- Xian Hu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Ethnology and Sociology, Minzu University of China, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Miaomiao Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Fei Cai
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Liya Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Jiaqi Zhao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Ethnology and Sociology, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Qing Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China; Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Institute of National Security Studies, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
10
|
Karempudi VK, Gokul TA, Ramesh Kumar K, Veeramanikandan V, Ali D, Impellitteri F, Faggio C, Ullah H, Daglia M, Balaji P. Protective role of Pleurotus florida against streptozotocin-induced hyperglycemia in rats: A preclinical study. Biomed Pharmacother 2024; 170:116005. [PMID: 38086150 DOI: 10.1016/j.biopha.2023.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Pleurotus florida (Mont.) Singer is a mushroom species known to be an antioxidant, immunomodulatory, and diuretic agent, reducing blood pressure and cholesterol. The aim of this study was to evaluate the in vivo potency of P. florida's anti-diabetic properties in rats affected by hyperglycemia induced by Streptozotocin (STZ) at 55 mg/kg (i.p.), characterized by oxidative stress impairment, and changes in insulin levels and lipid profile. After inducing hyperglycemia in the rats, they were treated with P. florida acetone and methanol extracts, orally administered for 28 days at doses of 200 mg/kg and 400 mg/kg body weight. The hyperglycemic control (DC) group showed significant increases (P < 0.05) in mean blood sugar, total cholesterol, triglycerides, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, blood urea nitrogen, lipid hydroperoxides, and malondialdehyde, compared to the normal control (NC) group The high-density lipoprotein cholesterol, serum insulin, superoxide dismutase, catalase, glutathione disulfide, glutathione peroxidase, reduced glutathione, guaiacol peroxidase, and vitamin E and C levels showed a significant decrease (P < 0.05) in DC group, compared to the NC group. Blood glucose levels, lipid profiles, and insulin levels improved significantly after 28 days of treatment, in the group treated with glibenclamide (an oral hypoglycemic drug, used as positive control), and in the groups treated with P. florida extracts. In DC group, the treatment with P. florida was found to prevent diabetes, according to histopathological studies of the kidneys, pancreas, and liver of rats. In conclusion, this study has shown that the treatment with P. florida decreased oxidative stress and glucose levels in the blood, as well as restoring changes in lipid profiles.
Collapse
Affiliation(s)
| | - Tamilselvan Amutha Gokul
- PG and Research Centre in Zoology, Vivekananda College (Affiliated to Madurai Kamaraj University), Tiruvedakam (West), Madurai, TN, India
| | - Kamatchi Ramesh Kumar
- PG and Research Centre in Zoology, Vivekananda College (Affiliated to Madurai Kamaraj University), Tiruvedakam (West), Madurai, TN, India
| | | | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Paulraj Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, TN, India.
| |
Collapse
|
11
|
Omer AB, Altayb HN, Al-Abbasi FA, Gupta G, Ahmed MM, Alghamdi AM, Alzarea SI, Sayyed N, Nadeem MS, Kazmi I. Acemannan ameliorates STZ-activated diabetes by attenuating high glucose via inhibiting inflammatory cytokines and apoptosis pathway. Int J Biol Macromol 2023; 253:127127. [PMID: 37776926 DOI: 10.1016/j.ijbiomac.2023.127127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Acemannan, the main polysaccharide in Aloe vera, is a -(1, 4)-acetylated polymannose. According to numerous research findings, acemannan is a viable alternative for the treatment of pathological disorders. Streptozotocin (STZ, 60 mg/kg) administered intraperitoneally caused type 2 diabetes in rats. The current study sought to determine the anti-diabetic efficacy of acemannan (25 and 50 mg/kg) in STZ-injected rats. Different biochemical parameters including HbA1C, glucose and serum insulin, lipid profile, inflammatory markers, antioxidant, oxidative balance, liver function test, glycogen and creatinine, and caspase-3 were evaluated. In addition, a molecular docking study was performed to estimate acemannan's binding affinity to inflammatory markers. Acemannan may be a potent anti-diabetic agent for the treatment of diabetic patients, which will aid in future research into alternative diabetes medications.
Collapse
Affiliation(s)
- Asma B Omer
- Department of Basic Health Sciences, Foundation Year for the Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Hisham N Altayb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Jaipur, India.
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Amira M Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia.
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
12
|
Wang Y, Jing L, Lei X, Ma Z, Li B, Shi Y, Zhang W, Li Y, Zhou H, Hu K, Xue Y, Jin Y. Umbilical cord mesenchymal stem cell-derived apoptotic extracellular vesicles ameliorate cutaneous wound healing in type 2 diabetic mice via macrophage pyroptosis inhibition. Stem Cell Res Ther 2023; 14:257. [PMID: 37726853 PMCID: PMC10510296 DOI: 10.1186/s13287-023-03490-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Delayed healing of diabetic cutaneous wounds is one of the most common complications of type 2 diabetes mellitus (T2DM), which can bring great distress to patients. In diabetic patients, macrophages accumulate around skin wounds and produce NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasomes, which in turn undergo pyroptosis and produce inflammatory factors such as interleukin-1β that affect wound healing. Although our previous study revealed that apoptotic extracellular vesicles (ApoEVs) produced from mesenchymal stem cells (MSCs) improve cutaneous wound healing in normal C57BL/6 mice, whether ApoEVs can also improve diabetic wound healing remains unclear. METHODS Umbilical cord mesenchymal stem cells (UCMSCs) were cultured in vitro and apoptosis was induced. ApoEVs were extracted and identified and used in a T2DM mouse cutaneous wound model to evaluate the efficacy. The inhibitory effect of ApoEVs on macrophage pyroptosis was verified in vivo and in vitro, and the level of oxidative stress in macrophages was assessed to explore the mechanism by which ApoEVs play a role. RESULTS UCMSC-derived ApoEVs improved skin defect healing in T2DM mice. Moreover, UCMSC-derived ApoEVs inhibited macrophage pyroptosis in T2DM mice in vivo as well as in vitro under high-glucose culture conditions. In addition, we demonstrated that ApoEVs reduce oxidative stress levels, which is a possible mechanism by which they inhibit macrophage pyroptosis. CONCLUSIONS Our study confirmed that local application of UCMSC-derived ApoEVs improved cutaneous wound healing in T2DM mice. ApoEVs, as products of MSC apoptosis, can inhibit macrophage pyroptosis and regulate the death process by decreasing the level of oxidative stress.
Collapse
Affiliation(s)
- Yiming Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Lin Jing
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiao Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhen Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yuanyuan Shi
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- The College of Life Sciences and Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wuyang Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hongzhi Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kaijin Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yang Xue
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
13
|
Sun Y, Mehmood A, Giampieri F, Battino MA, Chen X. Insights into the cellular, molecular, and epigenetic targets of gamma-aminobutyric acid against diabetes: a comprehensive review on its mechanisms. Crit Rev Food Sci Nutr 2023; 64:12620-12637. [PMID: 37694998 DOI: 10.1080/10408398.2023.2255666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Diabetes is a metabolic disease due to impaired or defective insulin secretion and is considered one of the most serious chronic diseases worldwide. Gamma-aminobutyric acid (GABA) is a naturally occurring non-protein amino acid commonly present in a wide range of foods. A number of studies documented that GABA has good anti-diabetic potential. This review summarized the available dietary sources of GABA as well as animal and human studies on the anti-diabetic properties of GABA, while also discussing the underlying mechanisms. GABA may modulate diabetes through various pathways such as inhibiting the activities of α-amylase and α-glucosidase, promoting β-cell proliferation, stimulating insulin secretion from β-cells, inhibiting glucagon secretion from α-cells, improving insulin resistance and glucose tolerance, and increasing antioxidant and anti-inflammatory activities. However, further mechanistic studies on animals and human are needed to confirm the therapeutic effects of GABA against diabetes.
Collapse
Affiliation(s)
- Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Arshad Mehmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maurizio Antonio Battino
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
14
|
Alshehri S, AlGhamdi SA, Alghamdi AM, Imam SS, Mahdi WA, Almaniea MA, Hajjar BM, Al-Abbasi FA, Sayyed N, Kazmi I. Protective effect of fustin against adjuvant-induced arthritis through the restoration of proinflammatory response and oxidative stress. PeerJ 2023; 11:e15532. [PMID: 37520245 PMCID: PMC10386820 DOI: 10.7717/peerj.15532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/19/2023] [Indexed: 08/01/2023] Open
Abstract
Rheumatoid arthritis causes irreparable damage to joints. The present research sought to check fustin's anti-arthritic efficacy against the complete Freund's adjuvant-induced arthritis paradigm in animals by altering the inflammatory response. In the rats, complete Freund's adjuvant was used to trigger arthritis and they received fustin at 50 and 100 mg/kg for 21 days. At regular intervals, the hind paw volume and arthritic score were assessed. After the trial period, hematological, antioxidant, pro-inflammatory cytokines, and other biochemical parameters were estimated. Fustin-treated rats showed the down-regulation of hind paw volume, arthritic score, and altered hematological parameters (TLC, DLC (neutrophil, lymphocyte, monocyte, eosinophil, basophil)). Furthermore, fustin significantly mitigates proinflammatory cytokine (reduced interleukin, tumor necrosis factor-a (TNF-α), IL-6, IL-1β), oxidative stress (attenuated malondialdehyde (MDA), catalase (CAT), glutathione (GSH), superoxide dismutase (SOD)), attenuated production of prostaglandin E2 and myeloperoxidase (MPO) and improved nuclear factor erythroid 2-related factor (Nrf2) action. Fustin led to the benefit in arthritis-prone animals elicited by complete Freund's adjuvant via pro-inflammatory cytokine.
Collapse
Affiliation(s)
- Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Almaniea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Baraa Mohammed Hajjar
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadeem Sayyed
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Ertik O, Bayrak BB, Sener G, Yanardag R. Melatonin improves liver and pancreatic tissue injuries in diabetic rats: role on antioxidant enzymes. J Diabetes Metab Disord 2023; 22:591-602. [PMID: 37255817 PMCID: PMC10225460 DOI: 10.1007/s40200-022-01179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/25/2022] [Indexed: 06/01/2023]
Abstract
Purpose Melatonin (Mel) is an indolamine mainly synthesized by the pineal gland and many other organs. It plays an important role in scavenging free radicals and stimulating antioxidant enzymes. The goal of this study was to investigate the effect of Mel and/or insulin treatment on oxidative liver and pancreas injuries in diabetic rats. Methods Male Wistar albino rats were assigned into 5 groups. Group I: control animals. Group II: diabetes was induced via a single dose of STZ (60 mg/kg) administered intraperitoneally. Group III: diabetic rats treated with Mel (10 mg/kg/day). Group IV: diabetic rats given insulin (6U/kg) subcutaneously. Group V: diabetic rats that received insulin and Mel at the same dose and time. After 12 weeks of the experiment, the animals were decapitated, liver and pancreas tissues were collected. Results The results indicated that reduced glutathione levels in liver and pancreatic tissue decreased, while protein carbonyl, advanced oxidized protein products and lipid peroxidation levels were elevated in diabetic group. Antioxidant enzyme activities decreased in liver tissues but increased in pancreatic tissues of the diabetic group. Administration of Mel, insulin or Mel + insulin reversed these biochemical changes in the diabetic animals. Conclusion This work shows that in long-term oxidative stress conditions caused by STZ-induced diabetes, either Mel or Mel + insulin administration may improve the deteriorated oxidant/antioxidant system in both the liver and pancreas tissues. These results suggested that Mel alone or Mel + insulin treatments might have a significant role in protecting against liver and pancreatic damage in STZ diabetic rats via different antioxidant effects.
Collapse
Affiliation(s)
- Onur Ertik
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Avcilar Istanbul, Turkey
| | - Bertan Boran Bayrak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Avcilar Istanbul, Turkey
| | - Goksel Sener
- Department of Pharmacology, Faculty of Pharmacy, Fenerbahce University, 34758 Ataşehir Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Avcilar Istanbul, Turkey
| |
Collapse
|
16
|
Yaribeygi H, Hemmati MA, Nasimi F, Maleki M, Jamialahmadi T, Reiner I, Reiner Ž, Sahebkar A. Sodium Glucose Cotransporter-2 Inhibitor Empagliflozin Increases Antioxidative Capacity and Improves Renal Function in Diabetic Rats. J Clin Med 2023; 12:jcm12113815. [PMID: 37298010 DOI: 10.3390/jcm12113815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
INTRODUCTION There are several pathologic mechanisms involved in diabetic nephropathy, but the role of oxidative stress seems to be one of the most important. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a relatively new class of antidiabetic drugs that might also have some other effects in addition to lowering glucose. The aim of this study was to evaluate the possible effects of the SGLT2 inhibitor empagliflozin on oxidative stress and renal function in diabetes. METHODS Male Wistar rats were randomly divided into four groups: control, control-treated, diabetic, and diabetic-treated (n = 8 per group). Diabetes was induced by a single intraperitoneal dose of streptozotocin (50 mg/kg). The treated animals received empagliflozin for 5 weeks (20 mg/kg/day/po). All groups were sacrificed on the 36th day, and blood and tissue samples were collected. Serum levels of urea, uric acid, creatinine, and glucose levels were determined. The level of malondialdehyde (MDA) and glutathione (GLT), as well as the activity of catalase (CAT) and superoxide dismutase (SOD), was measured in all groups. Data were analyzed using one-way Anova and paired T-tests, and p ≤ 0.05 was considered significant. RESULTS Diabetes significantly increased urea (p < 0.001), uric acid (p < 0.001), and creatinine (p < 0.001) in the serum, while the activities of CAT (p < 0.001) and SOD (p < 0.001) were reduced. GLT was also reduced (p < 0.001), and MDA was increased (p < 0.001) in non-treated animals. Treatment with empagliflozin improved renal function, as shown by a reduction in the serum levels of urea (p = 0.03), uric acid (p = 0.03), and creatinine (p < 0.001). Empagliflozin also increased the antioxidant capacity by increasing CAT (p = 0.035) and SOD (p = 0.02) activities and GLT content (p = 0.01) and reduced oxidative damage by lowering MDA (p < 0.001). CONCLUSIONS It seems that uncontrolled diabetes induces renal insufficiency by decreasing antioxidant defense mechanisms and inducing oxidative stress. Empagliflozin might have additional benefits in addition to lowering glucose--reversing these processes, improving antioxidative capacity, and improving renal function.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Fatemeh Nasimi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ivan Reiner
- School of Nursing, Catholic University of Croatia, 10000 Zagreb, Croatia
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Kokabiyan Z, Yaghmaei P, Jameie SB, Hajebrahimi Z. Effect of eugenol on lipid profile, oxidative stress, sex hormone, liver injury, ovarian failure, and expression of COX-2 and PPAR-α genes in a rat model of diabetes. Mol Biol Rep 2023; 50:3669-3679. [PMID: 36829079 DOI: 10.1007/s11033-022-08108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/09/2022] [Indexed: 02/26/2023]
Abstract
BACKGROUND Diabetes is among the leading causes of reproductive system failure and infertility in both women and men. Inflammation and oxidative stress have a main role in the development of diabetes. Eugenol or clove oil is a phenolic monoterpenoid with antioxidant and anti-inflammatory properties. Here, the effects of eugenol on diabetes features and ovarian function were investigated. METHODS AND RESULTS Streptozotocin-induced diabetes rats were treated with 12 and 24 mg/kg of eugenol for 4 weeks. The biochemical and histological assay was done to evaluate the effects of eugenol on ovary and pancreas function, liver injury, oxidative status, sex hormones, lipid profile, and mRNA levels of cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptor alpha (PPAR-α) genes. Streptozotocin increased levels of serum glucose, total cholesterol, triglyceride, low-density lipoprotein, aspartate transaminase, alanine transaminase, alkaline phosphatase, malondialdehyde, pancreas necrosis and inflammation, COX-2 expression, ovarian cystic, and anovulation. It decreased the levels of insulin, high-density lipoprotein, Superoxide dismutase, estradiol, progesterone, testosterone, luteinizing hormone, follicle-stimulating hormone, and PPAR-α expression. Eugenol administration ameliorated diabetes features through the improvement of lipid profile, oxidative status, insulin and glucose levels, sex hormone levels, liver markers, COX-2 and PPAR-α expression, and pancreas histology. It had no effect on ovarian cystic and follicular development. CONCLUSIONS Therefore, eugenol may be useful for ameliorating some adverse features of diabetes and used as an adjunct treatment or protective agent accompany by other chemicals in diabetes patients.
Collapse
Affiliation(s)
- Zahra Kokabiyan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Seyed Behnamedin Jameie
- Department of Anatomy, Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Hajebrahimi
- A&S Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| |
Collapse
|
18
|
Wang Y, Yuan H, Wang Y. Treatment of Diabetes Nephropathy in Mice by Germinating Seeds of Euryale ferox through Improving Oxidative Stress. Foods 2023; 12:foods12040767. [PMID: 36832842 PMCID: PMC9957029 DOI: 10.3390/foods12040767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetes can cause severe kidney disease. Euryale ferox seeds (Gordon Euryale) have known antioxidant, hypoglycemic, and renal protection effects. Methanol extracts of Gordon Euryale were produced from ungerminated and germinated seeds. The effect of germination on polyphenol and flavonoid content was investigated by Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Three doses of ungerminated seed extract (EKE) and germinated seed extract (GEKE) were administered to diabetic mice by gavage to explore the treatment-dependent improvement of oxidative stress, metabolic disorder, and kidney disease. Seed germination led to a 1.7 times increase in total phenol content in the extract, and the flavonoid content was increased by 1.9 times. Germination greatly increased the contents of 29 polyphenols and 1 terpenoid. At the same dose, GEKE more strongly improved hyperglycemia, abnormal lipid metabolism, and renal tissue lesions (as confirmed by histology) in the diabetic mice than EKE did. In diabetic mice receiving treatment, kidney microalbunminuria (ALB), blood urea nitrogen (BUN), serum creatinine (Scr), malondialdehyde (MDA), and glutathione (GSH) were all decreased, while activity of catalase (CAT), superoxide dismutase (SOD), and serum total antioxidant capacity (T-AOC) were increased. Both EKE and GEKE can improve diabetes and kidney disease by improving hyperglycemia, oxidative stress, and kidney physiological indicators and regulating the Keap1/Nrf2/HO-1 and AMPK/mTOR pathways. However, in both pathways, GEKE is more effective. The purpose of this study was to explore the effects of GEKE and EKE treatment on antioxidant defense and metabolic capacity of diabetic animals. Germination provides a suitable strategy to improve the medicinal value of these natural plant-based products.
Collapse
|
19
|
Bin-Jumah MN, Gilani SJ, Alabbasi AF, Al-Abbasi FA, AlGhamdi SA, Alshehri OY, Alghamdi AM, Sayyed N, Kazmi I. Protective Effect of Fustin against Huntington's Disease in 3-Nitropropionic Treated Rats via Downregulation of Oxidative Stress and Alteration in Neurotransmitters and Brain-Derived Neurotrophic Factor Activity. Biomedicines 2022; 10:3021. [PMID: 36551777 PMCID: PMC9775313 DOI: 10.3390/biomedicines10123021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Researchers have revealed that Rhus verniciflua heartwood, which contains fustin as an important component, possesses antioxidant-mediated, anti-mutagenic, and anti-rheumatoid arthritis characteristics. Additionally, out of the numerous plant-derived secondary metabolites, there are various research papers concentrating on flavonoids for potential advantages in neurological illnesses. The current study aims to assess the neuroprotective potential of fustin in rodents over 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD)-like consequences. The efficacy of fustin 50 and 100 mg/kg was studied with multiple-dose administrations of 3-NPA, which experimentally induced HD-like symptoms in rats for 22 days. At the end of the study, several behavioral tests were performed including a beam walk, rotarod, and grip strength tests. Similarly, some biochemical parameters were assessed to support oxidative stress (reduced glutathione-GSH, superoxide dismutase-SOD, catalase-CAT, and malondialdehyde-MDA), alteration in neurotransmitters (gamma-aminobutyric acid-GABA-and glutamate), alteration in brain-derived neurotrophic factor activity, and nitrite levels. Additionally, pro-inflammatory parameters were carried out to evaluate the neuroinflammatory responses associated with streptozotocin such as TNF-α, IL-1β, and COX in the perfused brain. The fustin-treated group exhibited a significant restoration of memory function via modulation in behavioral activities. Moreover, 3-NPA altered biochemical, neurotransmitters, brain protein levels, and neuroinflammatory measures, which fustin efficiently restored. This is the first report demonstrating the efficacy of novel phytoconstituent fustin as a potential future candidate for the treatment of HD via offering neuroprotection by subsiding the oxidative and enzymatic activity in the 3-NPA experimental animal paradigm.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | | | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ohoud Y. Alshehri
- Department of Biochemistry, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, Uttar Pradesh, India
| | - Imran Kazmi
- Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
20
|
Afifi SM, Ammar NM, Kamel R, Esatbeyoglu T, Hassan HA. β-Sitosterol Glucoside-Loaded Nanosystem Ameliorates Insulin Resistance and Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel) 2022; 11:1023. [PMID: 35624887 PMCID: PMC9137832 DOI: 10.3390/antiox11051023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/16/2022] Open
Abstract
β-Sitosterol glucoside (SG), isolated from Senecio petasitis (Family Asteraceae), was loaded in self-nanoemulsifying drug delivery systems (SEDDS) in a trial to enhance its solubility and biological effect. Various co-surfactants were tested to prepare a successful SEDDS. The selected SG-loaded SEDDS had a droplet size of 134 ± 15.2 nm with a homogenous distribution (polydispersity index 0.296 ± 0.02). It also demonstrated a significant augmentation of SG in vitro release by 4-fold compared to the free drug suspension. The in vivo insulin sensitivity and antidiabetic effect of the prepared SG-loaded SEDDS were further assessed in streptozotocin-induced hyperglycemic rats. The hypoglycemic effect of SG-loaded nanosystem was evidenced by decreased serum glucose and insulin by 63.22% and 53.11%, respectively. Homeostasis model assessment-insulin resistance (HOMA-IR) index demonstrated a significant reduction by 5.4-fold in the diabetic group treated by SG-loaded nanosystem and exhibited reduced glucagon level by 40.85%. In addition, treatment with SG-loaded nanosystem significantly decreased serum MDA (malondialdehyde) and increased catalase levels by 38.31% and 64.45%, respectively. Histopathological investigations also supported the protective effect of SG-loaded nanosystem on the pancreas. The promising ability of SG-loaded nanosystem to ameliorate insulin resistance, protect against oxidative stress, and restore pancreatic β-cell secretory function warrants its inclusion in further studies during diabetes progression.
Collapse
Affiliation(s)
- Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Naglaa M. Ammar
- Therapeutic Chemistry Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt;
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Heba A. Hassan
- Therapeutic Chemistry Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| |
Collapse
|