1
|
Reagin KL, Lee R, Williams LA, Cocciolone L, Funk KE. Compromised CD8+ T cell immunity in the aged brain increases severity of neurotropic coronavirus infection and postinfectious cognitive impairment. Aging Cell 2025; 24:e14409. [PMID: 39550693 PMCID: PMC11896202 DOI: 10.1111/acel.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024] Open
Abstract
Advanced age increases the risk of severe disease from SARS-CoV-2 infection, as well as incidence of long COVID and SARS-CoV-2 reinfection. We hypothesized that perturbations in the aged antiviral CD8+ T cell response predisposes elderly individuals to severe coronavirus infection, re-infection, and postinfectious cognitive sequelae. Using MHV-A59 as a murine model of respiratory coronavirus, we found that aging increased CNS infection and lethality to MHV infection. This was coupled with increased CD8+ T cells within the aged CNS but reduced antigen specificity. Aged animals also displayed a decreased proportion of CD103+ resident memory cells (TRM), which correlated with increased severity of secondary viral challenge. Using a reciprocal adoptive transfer paradigm, data show that not only were fewer aged CD8+ T cells retained within the adult brain post-infection, but also that adult CD8+ cells expressed lower levels of TRM marker CD103 when in the aged microenvironment. Furthermore, aged animals demonstrated spatial learning impairment following MHV infection, which worsened in both aged and adult animals following secondary viral challenge. Spatial learning impairment was accompanied by increased TUNEL positivity in hippocampal neurons, suggestive of neuronal apoptosis. Additionally, primary cell coculture showed that activated CD8+ T cells induced TUNEL positivity in neurons, independent of antigen-specificity. Altogether, these results show that non-antigen specific CD8+ T cells are recruited to the aged brain and cause broad neuronal death without establishing a TRM phenotype that confers lasting protection against a secondary infection.
Collapse
Affiliation(s)
- Katie L. Reagin
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - Rae‐Ling Lee
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - Luke A. Williams
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - Loren Cocciolone
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - Kristen E. Funk
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| |
Collapse
|
2
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
3
|
Jin P, Duan X, Li L, Zhou P, Zou C, Xie K. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e542. [PMID: 38660685 PMCID: PMC11042538 DOI: 10.1002/mco2.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Xirui Duan
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Lei Li
- Department of Anorectal SurgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Zhou
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Cheng‐Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Ke Xie
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
4
|
Lee H, Park SH, Shin EC. IL-15 in T-Cell Responses and Immunopathogenesis. Immune Netw 2024; 24:e11. [PMID: 38455459 PMCID: PMC10917573 DOI: 10.4110/in.2024.24.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
IL-15 belongs to the common gamma chain cytokine family and has pleiotropic immunological functions. IL-15 is a homeostatic cytokine essential for the development and maintenance of NK cells and memory CD8+ T cells. In addition, IL-15 plays a critical role in the activation, effector functions, tissue residency, and senescence of CD8+ T cells. IL-15 also activates virtual memory T cells, mucosal-associated invariant T cells and γδ T cells. Recently, IL-15 has been highlighted as a major trigger of TCR-independent activation of T cells. This mechanism is involved in T cell-mediated immunopathogenesis in diverse diseases, including viral infections and chronic inflammatory diseases. Deeper understanding of IL-15-mediated T-cell responses and their underlying mechanisms could optimize therapeutic strategies to ameliorate host injury by T cell-mediated immunopathogenesis. This review highlights recent advancements in comprehending the role of IL-15 in relation to T cell responses and immunopathogenesis under various host conditions.
Collapse
Affiliation(s)
- Hoyoung Lee
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
5
|
Reagin KL, Lee RL, Cocciolone L, Funk KE. Antigen non-specific CD8 + T cells accelerate cognitive decline in aged mice following respiratory coronavirus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573675. [PMID: 38260669 PMCID: PMC10802364 DOI: 10.1101/2024.01.02.573675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Primarily a respiratory infection, numerous patients infected with SARS-CoV-2 present with neurologic symptoms, some continuing long after viral clearance as a persistent symptomatic phase termed "long COVID". Advanced age increases the risk of severe disease, as well as incidence of long COVID. We hypothesized that perturbations in the aged immune response predispose elderly individuals to severe coronavirus infection and post-infectious sequelae. Using a murine model of respiratory coronavirus, mouse hepatitis virus strain A59 (MHV-A59), we found that aging increased clinical illness and lethality to MHV infection, with aged animals harboring increased virus in the brain during acute infection. This was coupled with an unexpected increase in activated CD8+ T cells within the brains of aged animals but reduced antigen specificity of those CD8+ T cells. Aged animals demonstrated spatial learning impairment following MHV infection, which correlated with increased neuronal cell death and reduced neuronal regeneration in aged hippocampus. Using primary cell culture, we demonstrated that activated CD8+ T cells induce neuronal death, independent of antigen-specificity. Specifically, higher levels of CD8+ T cell-derived IFN-γ correlated with neuronal death. These results support the evidence that CD8+ T cells in the brain directly contribute to cognitive dysfunction following coronavirus infection in aged individuals.
Collapse
Affiliation(s)
- Katie L. Reagin
- Department of Biological Sciences, University of North Carolina at Charlotte
| | - Rae-Ling Lee
- Department of Biological Sciences, University of North Carolina at Charlotte
| | - Loren Cocciolone
- Department of Biological Sciences, University of North Carolina at Charlotte
| | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte
| |
Collapse
|
6
|
Asghari F, Karimi MH, Pourfathollah AA. mTORC1 inhibition may improve T lymphocytes affected by aging. Immunopharmacol Immunotoxicol 2023; 45:719-729. [PMID: 37581412 DOI: 10.1080/08923973.2023.2232101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/23/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Due to the increase of the elderly's population and related social and economic problems, it is very important to provide strategies on health. In this regard, induction of T lymphocytes responses, the most important cells of the immune system, may be a good approach. Among different agents considered as antiaging factors, mTORC1 pathway inhibitors are significant. So, the purpose of this study was to evaluate the effect of two mTORC1 inhibitors, Everolimus and Metformin, on age-related features of activated T cells. MATERIALS AND METHODS Optimum doses of drugs was determined with evaluating the effect of treatments on IL-2 gene expression. T cells isolated from old and young mice were treated with drugs and PHA. IL-2 production was evaluated by ELISA. Also, the expression of CD28, PD-1, and KLRG-1, proliferation, and intracellular oxidative stress were assessed by flow cytometry-based assays, phenotyping, CFSE, and DCF-DA assay respectively. RESULTS Both drugs increased IL-2 production in the T cells of old mice. Also, using drugs especially Metformin could improve age-related phenotypical markers and increase the proliferation of T cells of old mice significantly. In addition, Metformin and Everolimus reduced intracellular oxidative stress in aged cells. However, the effect of both drugs on the T cells of young mice wasn't significant or was in opposite to the results of old mice T cells. DISCUSSION In line with studies noting mTOR inhibitors as antiaging drugs, Metformin and Everolimus may improve T cells affected from aging in vitro, and a decrease in intracellular oxidative stress may be one of their mechanism of function.
Collapse
Affiliation(s)
- F Asghari
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M H Karimi
- Larestan University of Medical Sciences, Larestan, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A A Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Singh S, Boland BS, Jess T, Moore AA. Management of inflammatory bowel diseases in older adults. Lancet Gastroenterol Hepatol 2023; 8:368-382. [PMID: 36669515 DOI: 10.1016/s2468-1253(22)00358-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 01/19/2023]
Abstract
The burden of inflammatory bowel disease (IBD) in older adults (ie, aged over 60 years old) is increasing due to a combination of an ageing population with compounding prevalence of IBD and increasing incidence of elderly-onset (ie, onset over the age of 60 years) IBD. Despite the increasing prevalence of IBD, there is a paucity of evidence on which to base management of older adults with IBD, leading to substantial variability in care. This population is under-represented in clinical trials and has a high burden of chronic corticosteroid use, low uptake of steroid-sparing immunosuppressive agents, and high rates of unplanned health-care use and disability. Management of IBD in older adults requires carefully weighing an individual patient's risk of IBD-related complications, IBD-directed immunosuppressive therapy, and non-IBD comorbidities. A deeper understanding of biological and functional age, dynamic risk stratification strategies (including frailty-based risk assessment tools), comparative effectiveness and safety of current therapies and treatment strategies, and shared decision making to inform treatment goals and targets is needed to improve outcomes in older adults with IBD. In this Review, we discuss the epidemiology, natural history, pathophysiology, and medical and surgical management of older individuals living with IBD and identify key research gaps and approaches to address them.
Collapse
Affiliation(s)
- Siddharth Singh
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA; Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Brigid S Boland
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark; Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Alison A Moore
- Division of Geriatrics, Gerontology and Palliative Care, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Zöphel D, Kaschek L, Steiner R, Janku S, Chang HF, Lis A. Heterozygous OT-I mice reveal that antigen-specific CD8 + T cells shift from apoptotic to necrotic killers in the elderly. Aging Cell 2023:e13824. [PMID: 36947105 DOI: 10.1111/acel.13824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Numerous alterations in CD8+ T cells contribute to impaired immune responses in elderly individuals. However, the discrimination between cell-intrinsic dysfunctions and microenvironmental changes is challenging. TCR transgenic OT-I mice are utilized to investigate CD8+ T-cell immunity, but their immunodeficient phenotype hampers their use especially in aging. Here, we demonstrate that using a heterozygous OT-I model minimizes the current limitations and provides a valuable tool to assess antigen-specific T-cell responses even at old age. We analyzed phenotypic and functional characteristics of CD8+ T cells from OT-I+/+ and OT-I+/- mice to prove the applicability of the heterozygous system. Our data reveal that OVA-activated CD8+ T cells from adult OT-I+/- mice proliferate, differentiate, and exert cytolytic activity equally to their homozygous counterparts. Moreover, common age-related alterations in CD8+ T cells, including naive T-cell deterioration and decreased proliferative capacity, also occur in elderly OT-I+/- mice, indicating the wide range of applications for in vivo and in vitro aging studies. We used the OT-I+/- model to investigate cell-intrinsic alterations affecting the cytotoxic behavior of aged CD8+ T cells after antigen-specific in vitro activation. Time-resolved analysis of antigen-directed target cell lysis confirmed previous observations that the cytotoxic capacity of CD8+ T cells increases with age. Surprisingly, detailed single cell analysis revealed that transcriptional upregulation of perforin in aged CD8+ T cells shifts the mode of target cell death from granzyme-mediated apoptosis to rapid induction of necrosis. This unexpected capability might be beneficial or detrimental for the aging host and requires detailed evaluation.
Collapse
Affiliation(s)
- Dorina Zöphel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Lea Kaschek
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Romy Steiner
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Sandra Janku
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
9
|
Autophagy of naïve CD4 + T cells in aging - the role of body adiposity and physical fitness. Expert Rev Mol Med 2023; 25:e9. [PMID: 36655333 DOI: 10.1017/erm.2023.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Life expectancy has increased exponentially in the last century accompanied by disability, poor quality of life, and all-cause mortality in older age due to the high prevalence of obesity and physical inactivity in older people. Biologically, the aging process reduces the cell's metabolic and functional efficiency, and disrupts the cell's anabolic and catabolic homeostasis, predisposing older people to many dysfunctional conditions such as cardiovascular disease, neurodegenerative disorders, cancer, and diabetes. In the immune system, aging also alters cells' metabolic and functional efficiency, a process known as 'immunosenescence', where cells become more broadly inflammatory and their functionality is altered. Notably, autophagy, the conserved and important cellular process that maintains the cell's efficiency and functional homeostasis may protect the immune system from age-associated dysfunctional changes by regulating cell death in activated CD4+ T cells. This regulatory process increases the delivery of the dysfunctional cytoplasmic material to lysosomal degradation while increasing cytokine production, proliferation, and differentiation of CD4+ T cell-mediated immune responses. Poor proliferation and diminished responsiveness to cytokines appear to be ubiquitous features of aged T cells and may explain the delayed peak in T cell expansion and cytotoxic activity commonly observed in the 'immunosenescence' phenotype in the elderly. On the other hand, physical exercise stimulates the expression of crucial nutrient sensors and inhibits the mechanistic target of the rapamycin (mTOR) signaling cascade which increases autophagic activity in cells. Therefore, in this perspective review, we will first contextualize the overall view of the autophagy process and then, we will discuss how body adiposity and physical fitness may counteract autophagy in naïve CD4+ T cells in aging.
Collapse
|
10
|
Wang X, Guo S, Zhou H, Sun Y, Gan J, Zhang Y, Zheng W, Zhang C, Zhao X, Xiao J, Wang L, Gao Y, Ning S. Immune Pathways with Aging Characteristics Improve Immunotherapy Benefits and Drug Prediction in Human Cancer. Cancers (Basel) 2023; 15:cancers15020342. [PMID: 36672292 PMCID: PMC9856581 DOI: 10.3390/cancers15020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Background: Perturbation of immune-related pathways can make substantial contributions to cancer. However, whether and how the aging process affects immune-related pathways during tumorigenesis remains largely unexplored. (2) Methods: Here, we comprehensively investigated the immune-related genes and pathways among 25 cancer types using genomic and transcriptomic data. (3) Results: We identified several pathways that showed aging-related characteristics in various cancers, further validated by conventional aging-related gene sets. Genomic analysis revealed high mutation burdens in cytokines and cytokines receptors pathways, which were strongly correlated with aging in diverse cancers. Moreover, immune-related pathways were found to be favorable prognostic factors in melanoma. Furthermore, the expression level of these pathways had close associations with patient response to immune checkpoint blockade therapy in melanoma and non-small cell lung cancer. Applying a net-work-based method, we predicted immune- and aging-related genes in pan-cancer and utilized these genes for potential immunotherapy drug discovery. Mapping drug target data to our top-ranked genes identified potential drug targets, FYN, JUN, and SRC. (4) Conclusions: Taken together, our systematic study helped interpret the associations among immune-related pathways, aging, and cancer and could serve as a resource for promoting clinical treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yue Gao
- Correspondence: (Y.G.); (S.N.)
| | | |
Collapse
|
11
|
Weinmann AS. Tipping the balance in CD4 + T cells. Nat Immunol 2023; 24:8-9. [PMID: 36596891 DOI: 10.1038/s41590-022-01389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
Interaction of aging and Immunosenescence: New therapeutic targets of aging. Int Immunopharmacol 2022; 113:109397. [DOI: 10.1016/j.intimp.2022.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
13
|
Tizazu AM, Mengist HM, Demeke G. Aging, inflammaging and immunosenescence as risk factors of severe COVID-19. Immun Ageing 2022; 19:53. [PMID: 36369012 PMCID: PMC9650172 DOI: 10.1186/s12979-022-00309-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory infectious disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is characterized by having a heterogeneous disease course, ranging from asymptomatic and mild symptoms to more severe and critical cases. In most cases the severity of COVID-19 is related to host factors, especially deregulation of the immune response in patients. Even if COVID-19 indiscriminately affects individuals of different age group, ethnicity and economic status; most severe cases and disproportional mortality occur in elderly individuals. This point out that aging is one risk factor for unfavourable clinical outcomes among COVID-19 patients. The biology of aging is a complex process; Aging can alter the structure and function of cells, tissues, and organs resulting in impaired response to stress. Alongside with other systems, the immune system is also affected with the aging process. Immunosenescence is an age associated change in the immune system that affects the overall response to immunological challenges in the elderly. Similarly, apart from the normal inflammatory process, aging is associated with a low grade, sterile, chronic inflammation which is termed as inflammaging. We hypothesized that inflammaging and immunosenescence could play an important role in SARS-CoV-2 pathogenesis and poor recovery from COVID-19 in elderly individuals. This review summarizes the changes in the immune system with age and how these changes play part in the pathogenesis of SARS-CoV-2 and clinical outcome of COVID-19 which could add to the understanding of age associated targeted immunotherapy in the elderly.
Collapse
Affiliation(s)
- Anteneh Mehari Tizazu
- Department of Microbiology, Parasitology and Immunology, School of Medicine, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia.
| | - Hylemariam Mihiretie Mengist
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Gebreselassie Demeke
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
14
|
Vadi S, Pednekar A, Suthar D, Sanwalka N, Ghodke K, Rabade N. Characteristics and Predictive Value of T-lymphocyte Subset Absolute Counts in Patients with COVID-19-associated Acute Respiratory Failure: A Retrospective Study. Indian J Crit Care Med 2022; 26:1198-1203. [PMID: 36873590 PMCID: PMC9983653 DOI: 10.5005/jp-journals-10071-24352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Background Of the factors influencing severity and outcomes following coronavirus disease-2019 (COVID-19), cellular immune response has a strong impact. The spectrum of response varies from over-activation to hypo-functioning. The severe infection leads to reduction in numbers and dysfunction of T-lymphocytes/subsets. Patients and methods This retrospective, single-center study aimed to analyze the expression of T-lymphocyte/subsets by flow cytometry and inflammation-related biomarker, serum ferritin in real-time polymerase chain reaction (RT-PCR) positive patients. According to oxygen requirements, patients were stratified into nonsevere (room air, nasal prongs, and face mask) and severe [nonrebreather mask (NRBM), noninvasive ventilation (NIV), high-flow nasal oxygen (HFNO), and invasive mechanical ventilation (IMV)] subgroups for analysis. Patients were classified into survivors and nonsurvivors. Mann-Whitney U test was used to analyze differences in T-lymphocyte and subset values when classified according to gender, the severity of COVID, outcome, and prevalence of diabetes mellitus (DM). Cross tabulations were computed for categorical data and compared using Fisher's exact test. Spearman correlation was used to analyze the correlation of T-lymphocyte and subset values with age or serum ferritin levels. p <0.05 values were considered to be statistically significant. Results A total of 379 patients were analyzed. Significantly higher percentage of patients with DM were aged ≥61 years in both nonsevere and severe COVID groups. A significant negative correlation of CD3+, CD4+, and CD8+ was found with age. CD3+ and CD4+ absolute counts were significantly higher in females as compared to males. Patients with severe COVID had significantly lesser total lymphocyte (%), CD3+, CD4+, and CD8+ counts as compared to those with nonsevere COVID (p <0.05). T-lymphocyte subsets were reduced in patients with severe disease. A significant negative correlation of total lymphocyte (%), CD3+, CD4+, and CD8+ counts was found with serum ferritin levels. Conclusions T-lymphocyte/subset trends are an independent risk factor for clinical prognosis. Monitoring may help in intervening in patients with disease progression. How to cite this article Vadi S, Pednekar A, Suthar D, Sanwalka N, Ghodke K, Rabade N. Characteristics and Predictive Value of T-lymphocyte Subset Absolute Counts in Patients with COVID-19-associated Acute Respiratory Failure: A Retrospective Study. Indian J Crit Care Med 2022;26(11):1198-1203.
Collapse
Affiliation(s)
- Sonali Vadi
- Department of Intensive Care Medicine, Kokilaben Dhirubhai Ambani Hospital & Medical Research Institute, Mumbai, Maharashtra, India
| | - Ashwini Pednekar
- Department of Intensive Care Medicine, Kokilaben Dhirubhai Ambani Hospital & Medical Research Institute, Mumbai, Maharashtra, India
| | - Durga Suthar
- Department of Intensive Care Medicine, Kokilaben Dhirubhai Ambani Hospital & Medical Research Institute, Mumbai, Maharashtra, India
| | - Neha Sanwalka
- Department of Nutrition and Biostatistics, NutriCanvas, Mumbai, Maharashtra, India
| | - Kiran Ghodke
- Department of Hematology, Kokilaben Dhirubhai Ambani Hospital & Medical Research Institute, India
| | - Nikhil Rabade
- Department of Hematology, Kokilaben Dhirubhai Ambani Hospital & Medical Research Institute, India
| |
Collapse
|
15
|
Garnica M, Aiello A, Ligotti ME, Accardi G, Arasanz H, Bocanegra A, Blanco E, Calabrò A, Chocarro L, Echaide M, Kochan G, Fernandez-Rubio L, Ramos P, Pojero F, Zareian N, Piñeiro-Hermida S, Farzaneh F, Candore G, Caruso C, Escors D. How Can We Improve the Vaccination Response in Older People? Part II: Targeting Immunosenescence of Adaptive Immunity Cells. Int J Mol Sci 2022; 23:9797. [PMID: 36077216 PMCID: PMC9456031 DOI: 10.3390/ijms23179797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The number of people that are 65 years old or older has been increasing due to the improvement in medicine and public health. However, this trend is not accompanied by an increase in quality of life, and this population is vulnerable to most illnesses, especially to infectious diseases. Vaccination is the best strategy to prevent this fact, but older people present a less efficient response, as their immune system is weaker due mainly to a phenomenon known as immunosenescence. The adaptive immune system is constituted by two types of lymphocytes, T and B cells, and the function and fitness of these cell populations are affected during ageing. Here, we review the impact of ageing on T and B cells and discuss the approaches that have been described or proposed to modulate and reverse the decline of the ageing adaptive immune system.
Collapse
Affiliation(s)
- Maider Garnica
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Leticia Fernandez-Rubio
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Pablo Ramos
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Nahid Zareian
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Farzin Farzaneh
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - David Escors
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
16
|
Zöphel D, Angenendt A, Kaschek L, Ravichandran K, Hof C, Janku S, Hoth M, Lis A. Faster cytotoxicity with age: Increased perforin and granzyme levels in cytotoxic CD8 + T cells boost cancer cell elimination. Aging Cell 2022; 21:e13668. [PMID: 35818124 PMCID: PMC9381916 DOI: 10.1111/acel.13668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/19/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
A variety of intrinsic and extrinsic factors contribute to the altered efficiency of CTLs in elderly organisms. In particular, the efficacy of antiviral CD8+ T cells responses in the elderly has come back into focus since the COVID‐19 pandemic outbreak. However, the exact molecular mechanisms leading to alterations in T cell function and the origin of the observed impairments have not been fully explored. Therefore, we investigated whether intrinsic changes affect the cytotoxic ability of CD8+ T cells in aging. We focused on the different subpopulations and time‐resolved quantification of cytotoxicity during tumor cell elimination. We report a surprising result: Killing kinetics of CD8+ T cells from elderly mice are much faster than those of CD8+ T cells from adult mice. This is true not only in the total CD8+ T cell population but also for their effector (TEM) and central memory (TCM) T cell subpopulations. TIRF experiments reveal that CD8+ T cells from elderly mice possess comparable numbers of fusion events per cell, but significantly increased numbers of cells with granule fusion. Analysis of the cytotoxic granule (CG) content shows significantly increased perforin and granzyme levels and turns CD8+ T cells of elderly mice into very efficient killers. This highlights the importance of distinguishing between cell‐intrinsic alterations and microenvironmental changes in elderly individuals. Our results also stress the importance of analyzing the dynamics of CTL cytotoxicity against cancer cells because, with a simple endpoint lysis analysis, cytotoxic differences could have easily been overlooked.
Collapse
Affiliation(s)
- Dorina Zöphel
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Adrian Angenendt
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Lea Kaschek
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Keerthana Ravichandran
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Chantal Hof
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Sandra Janku
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Annette Lis
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
17
|
Nattrass RG, Krafft L, Zjablovskaja P, Schuster M, Kasmapour B, Sarisoy C, Minich J, Bach E, Streeck H. The effect of age on the magnitude and longevity of Th1-directed CD4 T cell responses to SARS-CoV-2. Immunology 2022; 166:327-340. [PMID: 35396852 PMCID: PMC9111694 DOI: 10.1111/imm.13475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 11/26/2022] Open
Abstract
Age is associated with changes in the immune system which increase the risk for severe COVID‐19. Here, we investigate SARS‐CoV‐2‐reactive CD4 T cells from individuals recovered from SARS‐CoV‐2 infection with mild COVID‐19 symptoms after 3, 6 and 9 months using incubation with SARS‐CoV‐2 S1, S2 and N‐peptide pools, followed by flow cytometry for a Th1‐activation profile or proliferation analyses. We found that SARS‐CoV‐2‐reactive CD4 T cells are decreasing on average after 9 months but highly polyfunctional CD4 T cells can peak after 6‐month recovery. We show that individuals older than 60 years of age have significantly more SARS‐CoV‐2‐reactive T cells in their blood after 3 months of recovery compared to younger individuals and that the percentage of SARS‐CoV‐2‐reactive Th1‐directed CD4 T cells in the blood of mild‐COVID‐19‐recovered individuals correlates with age. Finally, we show that individuals over the age of 40 have significantly increased the amounts of highly polyfunctional SARS‐CoV‐2‐S‐peptide‐reactive CD4 T cells, compared to SARS‐CoV‐2 naïve individuals, than those under the age of 40. These findings suggest that in individuals recovered from mild COVID‐19, increased age is associated with significantly more highly polyfunctional SARS‐CoV‐2‐reactive CD4 T cells with a Th1‐profile and that these responses persist over time.
Collapse
Affiliation(s)
- Ryan G. Nattrass
- Institute of VirologyUniversity Hospital BonnBonnGermany
- German Centre for Infection Research (DZIF)partner site Bonn‐CologneBraunschweigGermany
| | - Lisa Krafft
- Institute of VirologyUniversity Hospital BonnBonnGermany
- German Centre for Infection Research (DZIF)partner site Bonn‐CologneBraunschweigGermany
| | | | | | | | - Cem Sarisoy
- Institute of VirologyUniversity Hospital BonnBonnGermany
- German Centre for Infection Research (DZIF)partner site Bonn‐CologneBraunschweigGermany
| | - Jessica Minich
- Institute of VirologyUniversity Hospital BonnBonnGermany
- German Centre for Infection Research (DZIF)partner site Bonn‐CologneBraunschweigGermany
| | - Elena Bach
- Institute of VirologyUniversity Hospital BonnBonnGermany
- German Centre for Infection Research (DZIF)partner site Bonn‐CologneBraunschweigGermany
| | - Hendrik Streeck
- Institute of VirologyUniversity Hospital BonnBonnGermany
- German Centre for Infection Research (DZIF)partner site Bonn‐CologneBraunschweigGermany
| |
Collapse
|
18
|
Finger CE, Moreno-Gonzalez I, Gutierrez A, Moruno-Manchon JF, McCullough LD. Age-related immune alterations and cerebrovascular inflammation. Mol Psychiatry 2022; 27:803-818. [PMID: 34711943 PMCID: PMC9046462 DOI: 10.1038/s41380-021-01361-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Aging is associated with chronic systemic inflammation, which contributes to the development of many age-related diseases, including vascular disease. The world's population is aging, leading to an increasing prevalence of both stroke and vascular dementia. The inflammatory response to ischemic stroke is critical to both stroke pathophysiology and recovery. Age is a predictor of poor outcomes after stroke. The immune response to stroke is altered in aged individuals, which contributes to the disparate outcomes between young and aged patients. In this review, we describe the current knowledge of the effects of aging on the immune system and the cerebral vasculature and how these changes alter the immune response to stroke and vascular dementia in animal and human studies. Potential implications of these age-related immune alterations on chronic inflammation in vascular disease outcome are highlighted.
Collapse
Affiliation(s)
- Carson E. Finger
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Ines Moreno-Gonzalez
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA ,grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Antonia Gutierrez
- grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Jose Felix Moruno-Manchon
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| |
Collapse
|
19
|
Ho E, Wong CP, King JC. Impact of zinc on DNA integrity and age-related inflammation. Free Radic Biol Med 2022; 178:391-397. [PMID: 34921929 DOI: 10.1016/j.freeradbiomed.2021.12.256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Dr. Bruce Ames was a pioneer in understanding the role of oxidative stress and DNA damage, and in the 1990s began to make connections between micronutrient deficiencies and DNA damage. Zinc is an essential micronutrient for human health and a key component for the function of numerous cellular processes. In particular, zinc plays a critical role in cellular antioxidant defense, the maintenance of DNA integrity and is also essential for the normal development and function of the immune system. This review highlights the work helping connect zinc deficiency to oxidative stress, susceptibility to DNA damage and chronic inflammation that was initiated while working with Dr. Ames. This review outlines the body of work in this area, from cells to humans. The article also reviews the unique challenges of maintaining zinc status as we age and the interplay between zinc deficiency and age-related inflammation and immune dysfunction. Several micronutrient deficiencies, including zinc deficiency, can drastically affect the risk of many chronic diseases and underscores the importance of adequate nutrition for healthy aging.
Collapse
Affiliation(s)
- Emily Ho
- Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR, 97331, USA; School of Biological and Population Health Sciences, 101 Milam Hall, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Carmen P Wong
- Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR, 97331, USA; School of Biological and Population Health Sciences, 101 Milam Hall, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Janet C King
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 94720, USA
| |
Collapse
|
20
|
Witkowski JM. Immune system aging and the aging-related diseases in the COVIID-19 era. Immunol Lett 2022; 243:19-27. [PMID: 35108570 PMCID: PMC8801734 DOI: 10.1016/j.imlet.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/13/2022]
Abstract
The interest in the process of aging, and specifically in how aging affects the working of our immune system, has recently enormously grown among both specialists (immunologists and gerontologists) and representatives of other disciplines of health sciences. An obvious reason for this interest is the current pandemics of COVID-19, known to affect the elderly more than younger people. In this paper current knowledge about mechanisms and complex facets of human immune system aging is presented, stemming from the knowledge about the working of various parts of the immune system, and leading to understanding of immunological mechanisms of chronic, inflammatory, aging-related diseases and of COVID-19.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
21
|
van Bentem K, Bos M, van der Keur C, Kapsenberg H, Lashley E, Eikmans M, van der Hoorn ML. Different immunoregulatory components at the decidua basalis of oocyte donation pregnancies. Hum Immunol 2021; 83:319-327. [PMID: 34785097 DOI: 10.1016/j.humimm.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 10/31/2021] [Indexed: 11/04/2022]
Abstract
Oocyte donation (OD) pregnancies are characterized by more fetal-maternal human leukocyte antigen (HLA) mismatches compared with naturally conceived (NC) and in vitro fertilization (IVF) pregnancies. The maternal immune system has to cope with greater immunogenetic dissimilarity, but involved immunoregulation remains poorly understood. We examined whether the amount of regulatory T cells (Tregs) and immunoregulatory cytokines in decidua basalis of OD pregnancies differs from NC and IVF pregnancies. The cohort included 25 OD, 11 IVF and 16 NC placentas, maternal peripheral blood, and umbilical cord blood of uncomplicated pregnancies. Placenta slides were stained for FOXP3, IL-10, IL-6, gal-1, TGF-β and Flt-1. Semi-quantitative (FOXP3+ Tregs) and computerized analysis (cytokines) were executed. The blood samples were typed for HLA class I and II to calculate fetal-maternal HLA mismatches. The percentage of Tregs was significantly higher in pregnancies with 4-6 HLA class I mismatches (n = 17), compared to 0-3 mismatches (n = 35; p = 0.04). Cytokine analysis showed significant differences between OD, IVF and NC pregnancies. Flt-1 was significantly lower in pregnancies with 4-6 HLA class I mismatches (p = 0.004), and in pregnancies with 6-10 HLA mismatches in total (p = 0.024). This study suggests that immunoregulation at the fetal-maternal interface in OD pregnancies with more fetal-maternal HLA mismatches is altered.
Collapse
Affiliation(s)
- Kim van Bentem
- Department of Obstetrics and Gynecology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| | - Manon Bos
- Department of Obstetrics and Gynecology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Carin van der Keur
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Hanneke Kapsenberg
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Eileen Lashley
- Department of Obstetrics and Gynecology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Marie-Louise van der Hoorn
- Department of Obstetrics and Gynecology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
22
|
Sharma H, Moroni L. Recent Advancements in Regenerative Approaches for Thymus Rejuvenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100543. [PMID: 34306981 PMCID: PMC8292900 DOI: 10.1002/advs.202100543] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/04/2021] [Indexed: 05/29/2023]
Abstract
The thymus plays a key role in adaptive immunity by generating a diverse population of T cells that defend the body against pathogens. Various factors from disease and toxic insults contribute to the degeneration of the thymus resulting in a fewer output of T cells. Consequently, the body is prone to a wide host of diseases and infections. In this review, first, the relevance of the thymus is discussed, followed by thymic embryological organogenesis and anatomy as well as the development and functionality of T cells. Attempts to regenerate the thymus include in vitro methods, such as forming thymic organoids aided by biofabrication techniques that are transplantable. Ex vivo methods that have shown promise in enhancing thymic regeneration are also discussed. Current regenerative technologies have not yet matched the complexity and functionality of the thymus. Therefore, emerging techniques that have shown promise and the challenges that lie ahead are explored.
Collapse
Affiliation(s)
- Himal Sharma
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| |
Collapse
|
23
|
Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol 2021; 22:687-698. [PMID: 33986548 DOI: 10.1038/s41590-021-00927-z] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The aged adaptive immune system is characterized by progressive dysfunction as well as increased autoimmunity. This decline is responsible for elevated susceptibility to infection and cancer, as well as decreased vaccination efficacy. Recent evidence indicates that CD4+ T cell-intrinsic alteratins contribute to chronic inflammation and are sufficient to accelerate an organism-wide aging phenotype, supporting the idea that T cell aging plays a major role in body-wide deterioration. In this Review, we propose ten molecular hallmarks to represent common denominators of T cell aging. These hallmarks are grouped into four primary hallmarks (thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, and loss of proteostasis) and four secondary hallmarks (reduction of the TCR repertoire, naive-memory imbalance, T cell senescence, and lack of effector plasticity), and together they explain the manifestation of the two integrative hallmarks (immunodeficiency and inflammaging). A major challenge now is weighing the relative impact of these hallmarks on T cell aging and understanding their interconnections, with the final goal of defining molecular targets for interventions in the aging process.
Collapse
Affiliation(s)
- Maria Mittelbrunn
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain. .,Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
24
|
Asymmetric cell division shapes naive and virtual memory T-cell immunity during ageing. Nat Commun 2021; 12:2715. [PMID: 33976157 PMCID: PMC8113513 DOI: 10.1038/s41467-021-22954-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
Efficient immune responses rely on heterogeneity, which in CD8+ T cells, amongst other mechanisms, is achieved by asymmetric cell division (ACD). Here we find that ageing, known to negatively impact immune responses, impairs ACD in murine CD8+ T cells, and that this phenotype can be rescued by transient mTOR inhibition. Increased ACD rates in mitotic cells from aged mice restore the expansion and memory potential of their cellular progenies. Further characterization of the composition of CD8+ T cells reveals that virtual memory cells (TVM cells), which accumulate during ageing, have a unique proliferation and metabolic profile, and retain their ability to divide asymmetrically, which correlates with increased memory potential. The opposite is observed for naive CD8+ T cells from aged mice. Our data provide evidence on how ACD modulation contributes to long-term survival and function of T cells during ageing, offering new insights into how the immune system adapts to ageing. Asymmetrical cell division helps to maintain cellular heterogeneity in the T cell compartment. Here the authors examine the differential immune responses built by naive and virtual memory T cells from young and aged individuals, and explore the effect of mTOR inhibition on asymmetrical cell division and memory formation.
Collapse
|
25
|
Kureel AK, Saini S, Singh B, Singh K, Rai AK. Compromised levels of CD6 and reduced T cell activation in the aged immune system. Biomarkers 2021; 26:483-490. [PMID: 33913383 DOI: 10.1080/1354750x.2021.1921030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The CD6 molecule, a cell surface marker, is involved in immunological synapse formation between T cell and antigen-presenting cell and T lymphocyte activation for adequate immune response. Geriatric individuals fail to mount a satisfactory immunological response against pathogens thus, insights into the functionality of CD6 may provide information for competence building in elderly immune cells. However, limited information is available regarding the status of CD6 in geriatric individuals. In this study, various isoforms of CD6 were analysed in aged mononuclear cells (MNCs) and compared with young individuals. In geriatric individuals, protein and mRNA expressions of CD6 molecule/isoforms were found to be decreased compared to their young counterparts. Furthermore, geriatric MNCs failed to show any change in CD6 levels and its isoforms upon polyclonal activation compared to young MNCs, marked by reduced Ca++ release and IL-2 expression. We suggest an overall decrease in CD6 levels in geriatric MNCs and T cells with suboptimal T cell activation in aged individuals.
Collapse
Affiliation(s)
- Amit Kumar Kureel
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, India
| | - Sheetal Saini
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, India
| | - Bharat Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, India
| | - Kulwant Singh
- Stem Cell Facility, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, India
| |
Collapse
|
26
|
Herati RS, Silva LV, Vella LA, Muselman A, Alanio C, Bengsch B, Kurupati RK, Kannan S, Manne S, Kossenkov AV, Canaday DH, Doyle SA, Ertl HC, Schmader KE, Wherry EJ. Vaccine-induced ICOS +CD38 + circulating Tfh are sensitive biosensors of age-related changes in inflammatory pathways. CELL REPORTS MEDICINE 2021; 2:100262. [PMID: 34095875 PMCID: PMC8149371 DOI: 10.1016/j.xcrm.2021.100262] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/23/2022]
Abstract
Humoral immune responses are dysregulated with aging, but the cellular and molecular pathways involved remain incompletely understood. In particular, little is known about the effects of aging on T follicular helper (Tfh) CD4 cells, the key cells that provide help to B cells for effective humoral immunity. We performed transcriptional profiling and cellular analysis on circulating Tfh before and after influenza vaccination in young and elderly adults. First, whole-blood transcriptional profiling shows that ICOS+CD38+ cTfh following vaccination preferentially enriches in gene sets associated with youth versus aging compared to other circulating T cell types. Second, vaccine-induced ICOS+CD38+ cTfh from the elderly had increased the expression of genes associated with inflammation, including tumor necrosis factor-nuclear factor κB (TNF-NF-κB) pathway activation. Finally, vaccine-induced ICOS+CD38+ cTfh display strong enrichment for signatures of underlying age-associated biological changes. These data highlight the ability to use vaccine-induced cTfh as cellular “biosensors” of underlying inflammatory and/or overall immune health. Vaccine-induced ICOS+CD38+ cTfh show increased TNF-NF-κB signaling with aging TNF-NF-κB signaling is beneficial for cTfh survival in the elderly Vaccine-induced cTfh are sensors of background changes in immune environment
Collapse
Affiliation(s)
- Ramin Sedaghat Herati
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
- Corresponding author
| | - Luisa Victoria Silva
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura A. Vella
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Cecile Alanio
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bertram Bengsch
- Department of Internal Medicine II, University Medical Center Freiburg, and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | | | | | - Sasikanth Manne
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - David H. Canaday
- Division of Infectious Disease, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Research, Education, and Clinical Center, Cleveland VA Medical Center, Cleveland, OH, 44195, USA
| | - Susan A. Doyle
- Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, NC 27710, USA
| | | | - Kenneth E. Schmader
- Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, NC 27710, USA
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
27
|
Hansen CH, Michlmayr D, Gubbels SM, Mølbak K, Ethelberg S. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study. Lancet 2021; 397:1204-1212. [PMID: 33743221 PMCID: PMC7969130 DOI: 10.1016/s0140-6736(21)00575-4] [Citation(s) in RCA: 419] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND The degree to which infection with SARS-CoV-2 confers protection towards subsequent reinfection is not well described. In 2020, as part of Denmark's extensive, free-of-charge PCR-testing strategy, approximately 4 million individuals (69% of the population) underwent 10·6 million tests. Using these national PCR-test data from 2020, we estimated protection towards repeat infection with SARS-CoV-2. METHODS In this population-level observational study, we collected individual-level data on patients who had been tested in Denmark in 2020 from the Danish Microbiology Database and analysed infection rates during the second surge of the COVID-19 epidemic, from Sept 1 to Dec 31, 2020, by comparison of infection rates between individuals with positive and negative PCR tests during the first surge (March to May, 2020). For the main analysis, we excluded people who tested positive for the first time between the two surges and those who died before the second surge. We did an alternative cohort analysis, in which we compared infection rates throughout the year between those with and without a previous confirmed infection at least 3 months earlier, irrespective of date. We also investigated whether differences were found by age group, sex, and time since infection in the alternative cohort analysis. We calculated rate ratios (RRs) adjusted for potential confounders and estimated protection against repeat infection as 1 - RR. FINDINGS During the first surge (ie, before June, 2020), 533 381 people were tested, of whom 11 727 (2·20%) were PCR positive, and 525 339 were eligible for follow-up in the second surge, of whom 11 068 (2·11%) had tested positive during the first surge. Among eligible PCR-positive individuals from the first surge of the epidemic, 72 (0·65% [95% CI 0·51-0·82]) tested positive again during the second surge compared with 16 819 (3·27% [3·22-3·32]) of 514 271 who tested negative during the first surge (adjusted RR 0·195 [95% CI 0·155-0·246]). Protection against repeat infection was 80·5% (95% CI 75·4-84·5). The alternative cohort analysis gave similar estimates (adjusted RR 0·212 [0·179-0·251], estimated protection 78·8% [74·9-82·1]). In the alternative cohort analysis, among those aged 65 years and older, observed protection against repeat infection was 47·1% (95% CI 24·7-62·8). We found no difference in estimated protection against repeat infection by sex (male 78·4% [72·1-83·2] vs female 79·1% [73·9-83·3]) or evidence of waning protection over time (3-6 months of follow-up 79·3% [74·4-83·3] vs ≥7 months of follow-up 77·7% [70·9-82·9]). INTERPRETATION Our findings could inform decisions on which groups should be vaccinated and advocate for vaccination of previously infected individuals because natural protection, especially among older people, cannot be relied on. FUNDING None.
Collapse
Affiliation(s)
- Christian Holm Hansen
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark; MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Daniela Michlmayr
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark; European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | | | - Kåre Mølbak
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark; Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Ethelberg
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark; Department of Public Health, Global Health Section, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
28
|
Cuzzubbo S, Mangsbo S, Nagarajan D, Habra K, Pockley AG, McArdle SEB. Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments. Front Immunol 2021; 11:615240. [PMID: 33679703 PMCID: PMC7927599 DOI: 10.3389/fimmu.2020.615240] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Although the discovery and characterization of multiple tumor antigens have sparked the development of many antigen/derived cancer vaccines, many are poorly immunogenic and thus, lack clinical efficacy. Adjuvants are therefore incorporated into vaccine formulations to trigger strong and long-lasting immune responses. Adjuvants have generally been classified into two categories: those that ‘depot’ antigens (e.g. mineral salts such as aluminum hydroxide, emulsions, liposomes) and those that act as immunostimulants (Toll Like Receptor agonists, saponins, cytokines). In addition, several novel technologies using vector-based delivery of antigens have been used. Unfortunately, the immune system declines with age, a phenomenon known as immunosenescence, and this is characterized by functional changes in both innate and adaptive cellular immunity systems as well as in lymph node architecture. While many of the immune functions decline over time, others paradoxically increase. Indeed, aging is known to be associated with a low level of chronic inflammation—inflamm-aging. Given that the median age of cancer diagnosis is 66 years and that immunotherapeutic interventions such as cancer vaccines are currently given in combination with or after other forms of treatments which themselves have immune-modulating potential such as surgery, chemotherapy and radiotherapy, the choice of adjuvants requires careful consideration in order to achieve the maximum immune response in a compromised environment. In addition, more clinical trials need to be performed to carefully assess how less conventional form of immune adjuvants, such as exercise, diet and psychological care which have all be shown to influence immune responses can be incorporated to improve the efficacy of cancer vaccines. In this review, adjuvants will be discussed with respect to the above-mentioned important elements.
Collapse
Affiliation(s)
- Stefania Cuzzubbo
- Université de Paris, PARCC, INSERM U970, 75015, Paris, France.,Laboratoire de Recherches Biochirurgicales (Fondation Carpentier), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - Sara Mangsbo
- Ultimovacs AB, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Divya Nagarajan
- Department of Immunology, Genetics and Clinical pathology Rudbeck laboratories, Uppsala University, Uppsala, Sweden
| | - Kinana Habra
- The School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Alan Graham Pockley
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephanie E B McArdle
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
29
|
Leacy E, Brady G, Little MA. Pathogenesis of ANCA-associated vasculitis: an emerging role for immunometabolism. Rheumatology (Oxford) 2021; 59:iii33-iii41. [PMID: 32348520 DOI: 10.1093/rheumatology/keaa023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/02/2020] [Indexed: 12/16/2022] Open
Abstract
ANCA-associated vasculitis (AAV) is a severe systemic autoimmune disease. A key feature of AAV is the presence of Anti-Neutrophil Cytoplasmic Antibodies (ANCA) directed against myeloperoxidase (MPO) or proteinase-3 (PR3). ANCA are key to the pathogenesis of AAV, where they activate innate immune cells to drive inflammation. Pre-activation or 'priming' of immune cells appears to be important for complete cellular activation in AAV. The burgeoning field of immunometabolism has illuminated the governance of immune cell function by distinct metabolic pathways. There is ample evidence that the priming events synonymous with AAV alter immune cell metabolism. In this review we discuss the pathogenesis of AAV and its intersection with recent insights into immune cell metabolism.
Collapse
Affiliation(s)
- Emma Leacy
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Gareth Brady
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Mark A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Batista MA, Calvo-Fortes F, Silveira-Nunes G, Camatta GC, Speziali E, Turroni S, Teixeira-Carvalho A, Martins-Filho OA, Neretti N, Maioli TU, Santos RR, Brigidi P, Franceschi C, Faria AMC. Inflammaging in Endemic Areas for Infectious Diseases. Front Immunol 2020; 11:579972. [PMID: 33262758 PMCID: PMC7688519 DOI: 10.3389/fimmu.2020.579972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Immunosenescence is marked by a systemic process named inflammaging along with a series of defects in the immunological activity that results in poor responses to infectious agents and to vaccination. Inflammaging, a state of low-grade chronic inflammation, usually leads to chronic inflammatory diseases and frailty in the elderly. However, some elderly escape from frailty and reach advanced age free of the consequences of inflammaging. This process has been called immunological remodeling, and it is the hallmark of healthy aging as described in the studies of centenarians in Italy. The biological markers of healthy aging are still a matter of debate, and the studies on the topic have focused on inflammatory versus remodeling processes and molecules. The sub-clinical inflammatory status associated with aging might be a deleterious event for populations living in countries where chronic infectious diseases are not prevalent. Nevertheless, in other parts of the world where they are, two possibilities may occur. Inflammatory responses may have a protective effect against these infectious agents. At the same time, the long-term consequences of protective immune responses during chronic infections may result in accelerated immunosenescence in these individuals. Therefore, the biological markers of healthy aging can vary according to environmental, cultural, and geographical settings that reflect worldwide, and in a non-biased, non-westernized perspective, the changes that we experience regarding our contacts with microorganisms and the outcomes of such contacts.
Collapse
Affiliation(s)
- Marina Andrade Batista
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Calvo-Fortes
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Silveira-Nunes
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Giovanna Caliman Camatta
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elaine Speziali
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | - Nicola Neretti
- Departament of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Tatiani Uceli Maioli
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Ribeiro Santos
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patrizia Brigidi
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Center for Biophysics, Bioinformatics, Biocomplexity, University of Bologna, Bologna, Italy.,Laboratory of Systems Biology of Healthy Aging, Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Ana Maria Caetano Faria
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
31
|
Sirpilla O, Bauss J, Gupta R, Underwood A, Qutob D, Freeland T, Bupp C, Carcillo J, Hartog N, Rajasekaran S, Prokop JW. SARS-CoV-2-Encoded Proteome and Human Genetics: From Interaction-Based to Ribosomal Biology Impact on Disease and Risk Processes. J Proteome Res 2020; 19:4275-4290. [PMID: 32686937 PMCID: PMC7418564 DOI: 10.1021/acs.jproteome.0c00421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 (COVID-19) has infected millions of people worldwide, with lethality in hundreds of thousands. The rapid publication of information, both regarding the clinical course and the viral biology, has yielded incredible knowledge of the virus. In this review, we address the insights gained for the SARS-CoV-2 proteome, which we have integrated into the Viral Integrated Structural Evolution Dynamic Database, a publicly available resource. Integrating evolutionary, structural, and interaction data with human proteins, we present how the SARS-CoV-2 proteome interacts with human disorders and risk factors ranging from cytokine storm, hyperferritinemic septic, coagulopathic, cardiac, immune, and rare disease-based genetics. The most noteworthy human genetic potential of SARS-CoV-2 is that of the nucleocapsid protein, where it is known to contribute to the inhibition of the biological process known as nonsense-mediated decay. This inhibition has the potential to not only regulate about 10% of all biological transcripts through altered ribosomal biology but also associate with viral-induced genetics, where suppressed human variants are activated to drive dominant, negative outcomes within cells. As we understand more of the dynamic and complex biological pathways that the proteome of SARS-CoV-2 utilizes for entry into cells, for replication, and for release from human cells, we can understand more risk factors for severe/lethal outcomes in patients and novel pharmaceutical interventions that may mitigate future pandemics.
Collapse
Affiliation(s)
- Olivia Sirpilla
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Jacob Bauss
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
| | - Ruchir Gupta
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Adam Underwood
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Dinah Qutob
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Tom Freeland
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Caleb Bupp
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Spectrum Health Medical
Genetics, Grand Rapids, Michigan 49503,
United States
| | - Joseph Carcillo
- Department of Critical Care Medicine
and Pediatrics, Children’s Hospital of Pittsburgh,
University of Pittsburgh School of
Medicine, Pittsburgh, Pennsylvania 15421,
United States
| | - Nicholas Hartog
- Allergy & Immunology,
Spectrum Health, Grand Rapids, Michigan 49503,
United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Pediatric Intensive Care
Unit, Helen DeVos Children’s Hospital,
Grand Rapids, Michigan 49503, United States
- Office of Research,
Spectrum Health, Grand Rapids, Michigan 49503,
United States
| | - Jeremy W. Prokop
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| |
Collapse
|
32
|
Fulop T, Larbi A, Hirokawa K, Cohen AA, Witkowski JM. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol 2020; 42:521-536. [PMID: 32930852 PMCID: PMC7490574 DOI: 10.1007/s00281-020-00818-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
Alterations in the immune system with aging are considered to underlie many age-related diseases. However, many elderly individuals remain healthy until even a very advanced age. There is also an increase in numbers of centenarians and their apparent fitness. We should therefore change our unilaterally detrimental consideration of age-related immune changes. Recent data taking into consideration the immunobiography concept may allow for meaningful distinctions among various aging trajectories. This implies that the aging immune system has a homeodynamic characteristic balanced between adaptive and maladaptive aspects. The survival and health of an individual depends from the equilibrium of this balance. In this article, we highlight which parts of the aging of the immune system may be considered adaptive in contrast to those that may be maladaptive.
Collapse
Affiliation(s)
- T Fulop
- Department of Geriatrics, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.
| | - A Larbi
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, 138648, Singapore
| | - K Hirokawa
- Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Department of Pathology, Tokyo Med. Dent. University, Tokyo, Japan
| | - A A Cohen
- Department of Family Medicine, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - J M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
33
|
Abstract
The role of T cells in the resolution or exacerbation of COVID-19, as well as their potential to provide long-term protection from reinfection with SARS-CoV-2, remains debated. Nevertheless, recent studies have highlighted various aspects of T cell responses to SARS-CoV-2 infection that are starting to enable some general concepts to emerge.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Nuzzo D, Picone P. Potential neurological effects of severe COVID-19 infection. Neurosci Res 2020; 158:1-5. [PMID: 32628969 PMCID: PMC7333632 DOI: 10.1016/j.neures.2020.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Coronaviruses (CoVs) are large positive stranded enveloped RNA viruses that generally cause enteric and respiratory diseases in humans and in animals. Most human CoVs have recently attracted global attention to their lethal potential and great infectious capacity. A highly pathogenic CoV, called COVID-19 or SARS-CoV-2, dramatically emerged in December 2019 in Wuhan, China. This new CoV has caused severe pneumonia in China and rapidly spreads around the world, the COVID-19 pandemic. Growing evidence pieces show that viruses, such as CoVs, can enter the central nervous system from different pathways and inducing neurotoxicity. Therefore, it is urgent to make clear whether SARS-CoV-2 has access to the central nervous system and can cause direct neuronal effects. Moreover, a brain-lung-brain axis is been proposed from the scientific community where severe neurological dysfunction and injury are associated with lung injury, and vice versa. In this axis, virus-induced inflammation and oxidative stress could be the common mechanisms responsible for CoV neurological symptoms. Therefore, is important to make clear whether SARS-CoV-2 lung damage can cause direct or indirect neuronal effects.
Collapse
Affiliation(s)
- Domenico Nuzzo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Palermo, Italy.
| | - Pasquale Picone
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Palermo, Italy.
| |
Collapse
|
35
|
Almanan M, Raynor J, Ogunsulire I, Malyshkina A, Mukherjee S, Hummel SA, Ingram JT, Saini A, Xie MM, Alenghat T, Way SS, Deepe GS, Divanovic S, Singh H, Miraldi E, Zajac AJ, Dent AL, Hölscher C, Chougnet C, Hildeman DA. IL-10-producing Tfh cells accumulate with age and link inflammation with age-related immune suppression. SCIENCE ADVANCES 2020; 6:eabb0806. [PMID: 32832688 PMCID: PMC7439492 DOI: 10.1126/sciadv.abb0806] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/11/2020] [Indexed: 05/02/2023]
Abstract
Aging results in profound immune dysfunction, resulting in the decline of vaccine responsiveness previously attributed to irreversible defects in the immune system. In addition to increased interleukin-6 (IL-6), we found aged mice exhibit increased systemic IL-10 that requires forkhead box P3-negative (FoxP3-), but not FoxP3+, CD4+T cells. Most IL-10-producing cells manifested a T follicular helper (Tfh) phenotype and required the Tfh cytokines IL-6 and IL-21 for their accrual, so we refer to them as Tfh10 cells. IL-21 was also required to maintain normal serum levels of IL-6 and IL-10. Notably, antigen-specific Tfh10 cells arose after immunization of aged mice, and neutralization of IL-10 receptor signaling significantly restored Tfh-dependent antibody responses, whereas depletion of FoxP3+ regulatory and follicular regulatory cells did not. Thus, these data demonstrate that immune suppression with age is reversible and implicate Tfh10 cells as an intriguing link between "inflammaging" and impaired immune responses with age.
Collapse
Affiliation(s)
- Maha Almanan
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jana Raynor
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ireti Ogunsulire
- Division of Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Anna Malyshkina
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Shibabrata Mukherjee
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sarah A. Hummel
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jennifer T. Ingram
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ankur Saini
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Systems Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - Markus M. Xie
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Theresa Alenghat
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Systems Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - Sing Sing Way
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - George S. Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Senad Divanovic
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Harinder Singh
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Systems Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - Emily Miraldi
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Systems Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - Allan J. Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexander L. Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christoph Hölscher
- Division of Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Claire Chougnet
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Systems Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - David A. Hildeman
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Systems Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
36
|
Abstract
T-cell immunity undergoes a complex and continuous remodeling with aging. Understanding those dynamics is essential in refining immunosuppression. Aging is linked to phenotypic and metabolic changes in T-cell immunity, many resulting into impaired function and compromised effectiveness. Those changes may impact clinical immunosuppression with evidences suggesting age-specific efficacies of some (CNI and mammalian target of rapamycin inhibitors) but not necessarily all immunosuppressants. Metabolic changes of T cells with aging have only recently been appreciated and may provide novel ways of immunosuppression. Here, we provide an update on changes of T-cell immunity in aging.
Collapse
|
37
|
Xu W, Lau ZWX, Fulop T, Larbi A. The Aging of γδ T Cells. Cells 2020; 9:E1181. [PMID: 32397491 PMCID: PMC7290956 DOI: 10.3390/cells9051181] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
In the coming decades, many developed countries in the world are expecting the "greying" of their populations. This phenomenon poses unprecedented challenges to healthcare systems. Aging is one of the most important risk factors for infections and a myriad of diseases such as cancer, cardiovascular and neurodegenerative diseases. A common denominator that is implicated in these diseases is the immune system. The immune system consists of the innate and adaptive arms that complement each other to provide the host with a holistic defense system. While the diverse interactions between multiple arms of the immune system are necessary for its function, this complexity is amplified in the aging immune system as each immune cell type is affected differently-resulting in a conundrum that is especially difficult to target. Furthermore, certain cell types, such as γδ T cells, do not fit categorically into the arms of innate or adaptive immunity. In this review, we will first introduce the human γδ T cell family and its ligands before discussing parallels in mice. By covering the ontogeny and homeostasis of γδ T cells during their lifespan, we will better capture their evolution and responses to age-related stressors. Finally, we will identify knowledge gaps within these topics that can advance our understanding of the relationship between γδ T cells and aging, as well as age-related diseases such as cancer.
Collapse
Affiliation(s)
- Weili Xu
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore 138648, Singapore; (W.X.); (Z.W.X.L.)
| | - Zandrea Wan Xuan Lau
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore 138648, Singapore; (W.X.); (Z.W.X.L.)
| | - Tamas Fulop
- Department of Geriatrics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Anis Larbi
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore 138648, Singapore; (W.X.); (Z.W.X.L.)
- Department of Geriatrics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Department of Microbiology, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
38
|
Lee GH, Hong KT, Choi JY, Shin HY, Lee WW, Kang HJ. Immunosenescent characteristics of T cells in young patients following haploidentical haematopoietic stem cell transplantation from parental donors. Clin Transl Immunology 2020; 9:e1124. [PMID: 32280463 PMCID: PMC7142179 DOI: 10.1002/cti2.1124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives Paediatric and adolescent patients in need of allogeneic haematopoietic stem cell transplantation (HSCT) generally receive stem cells from older, unrelated or parental donors when a sibling donor is not available. Despite encouraging clinical outcomes, it has been suggested that immune reconstitution accompanied by increased replicative stress and a large difference between donor and recipient age may worsen immunosenescence in paediatric recipients. Methods In this study, paired samples were collected at the same time from donors and recipients of haploidentical haematopoietic stem cell transplantation (HaploSCT). We then conducted flow cytometry‐based phenotypic and functional analyses and telomere length (TL) measurements of 21 paired T‐cell sets from parental donors and children who received T‐cell‐replete HaploSCT with post‐transplant cyclophosphamide (PTCy). Results Senescent T cells, CD28− or CD57+ cells, were significantly expanded in patients. Further, not only CD4+CD28− T cells, but also CD4+CD28+ T cells showed reduced cytokine production capacity and impaired polyfunctionality compared with parental donors, whereas their TCR‐mediated proliferation capacity was comparable. Of note, the TL in patient T cells was preserved, or even slightly longer, in senescent T cells compared with donor cells. Regression analysis showed that senescent features of CD4+ and CD8+ T cells in patients were influenced by donor age and the frequency of CD28− cells, respectively. Conclusion Our data suggest that in paediatric HaploSCT, premature immunosenescent changes occur in T cells from parental donors, and therefore, long‐term immune monitoring should be conducted.
Collapse
Affiliation(s)
- Ga Hye Lee
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea.,BK21Plus Biomedical Science Project Seoul National University College of Medicine Seoul South Korea
| | - Kyung Taek Hong
- Department of Pediatrics Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea
| | - Jung Yoon Choi
- Department of Pediatrics Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea
| | - Hee Young Shin
- Department of Pediatrics Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea
| | - Won-Woo Lee
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea.,BK21Plus Biomedical Science Project Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea.,Department of Microbiology and Immunology Seoul National University College of Medicine Seoul South Korea.,Ischemic/Hypoxic Disease Institute Seoul National University College of Medicine Seoul South Korea.,Institute of Infectious Diseases Seoul National University College of Medicine Seoul South Korea.,Seoul National University Hospital Biomedical Research Institute Seoul South Korea
| | - Hyoung Jin Kang
- Department of Pediatrics Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea
| |
Collapse
|
39
|
Nikolich-Zugich J, Knox KS, Rios CT, Natt B, Bhattacharya D, Fain MJ. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. GeroScience 2020; 42:505-514. [PMID: 32274617 PMCID: PMC7145538 DOI: 10.1007/s11357-020-00186-0] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 virus, the causative agent of the coronavirus infectious disease-19 (COVID-19), is taking the globe by storm, approaching 500,000 confirmed cases and over 21,000 deaths as of March 25, 2020. While under control in some affected Asian countries (Taiwan, Singapore, Vietnam), the virus demonstrated an exponential phase of infectivity in several large countries (China in late January and February and many European countries and the USA in March), with cases exploding by 30-50,000/day in the third and fourth weeks of March, 2020. SARS-CoV-2 has proven to be particularly deadly to older adults and those with certain underlying medical conditions, many of whom are of advanced age. Here, we briefly review the virus, its structure and evolution, epidemiology and pathogenesis, immunogenicity and immune, and clinical response in older adults, using available knowledge on SARS-CoV-2 and its highly pathogenic relatives MERS-CoV and SARS-CoV-1. We conclude by discussing clinical and basic science approaches to protect older adults against this disease.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA.
- University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, P.O. Box 249221, 1501 N. Campbell Ave, Tucson, AZ, 8524, USA.
| | - Kenneth S Knox
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
- Department of Medicine, University of Arizona-Phoenix, Phoenix, AZ, 85004, USA
| | - Carlos Tafich Rios
- Division of Geriatrics, General and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Bhupinder Natt
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Mindy J Fain
- University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, P.O. Box 249221, 1501 N. Campbell Ave, Tucson, AZ, 8524, USA
- Division of Geriatrics, General and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| |
Collapse
|
40
|
Dillon SM, Liu J, Purba CM, Christians AJ, Kibbie JJ, Castleman MJ, McCarter MD, Wilson CC. Age-related alterations in human gut CD4 T cell phenotype, T helper cell frequencies, and functional responses to enteric bacteria. J Leukoc Biol 2019; 107:119-132. [PMID: 31573727 DOI: 10.1002/jlb.5a0919-177rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Intestinal lamina propria (LP) CD4 T cells play critical roles in maintaining intestinal homeostasis and in immune responses to enteric microbes, yet little is known regarding whether they contribute to age-associated intestinal immune dysfunction. In this study, we evaluated the direct ex vivo frequency, activation/inhibitory phenotype, death profiles, and in vitro functional responses of human jejunum LP CD4 T cells, including Th1, Th17, and Th22 subsets isolated from younger (<45 years) and older (>65years) persons. Expression of the co-inhibitory molecule CTLA-4 was significantly lower in older CD4 T cells, whereas expression of HLA-DR, CD38, CD57, and PD-1 were not significantly different between groups. Total CD4 T cell frequencies were similar between age groups, but lower frequencies and numbers of Th17 cells were observed directly ex vivo in older samples. Older Th17 and Th1 cells proliferated to a lesser degree following in vitro exposure to bacterial antigens vs. their younger counterparts. Levels of spontaneous cell death were increased in older CD4 T cells; however, cellular death profiles following activation did not differ based on age. Thus, small intestinal CD4 T cells from older persons have altered phenotypic and functional profiles including reduced expression of a co-inhibitory molecule, increased spontaneous cell death, and both reduced frequencies and altered functional responses of specific Th cell subsets. These changes may contribute to altered intestinal homeostasis and loss of protective gut immunity with aging.
Collapse
Affiliation(s)
- Stephanie M Dillon
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jay Liu
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christine M Purba
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Allison J Christians
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jon J Kibbie
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Moriah J Castleman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Martin D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cara C Wilson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
41
|
Hu B, Li G, Ye Z, Gustafson CE, Tian L, Weyand CM, Goronzy JJ. Transcription factor networks in aged naïve CD4 T cells bias lineage differentiation. Aging Cell 2019; 18:e12957. [PMID: 31264370 PMCID: PMC6612640 DOI: 10.1111/acel.12957] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/17/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
With reduced thymic activity, the population of naïve T cells in humans is maintained by homeostatic proliferation throughout adult life. In young adults, naïve CD4 T cells have enormous proliferative potential and plasticity to differentiate into different lineages. Here, we explored whether naïve CD4 T-cell aging is associated with a partial loss of this unbiased multipotency. We find that naïve CD4 T cells from older individuals have developed a propensity to develop into TH9 cells. Two major mechanisms contribute to this predisposition. First, responsiveness to transforming growth factor β (TGFβ) stimulation is enhanced with age due to an upregulation of the TGFβR3 receptor that results in increased expression of the transcription factor PU.1. Secondly, aged naïve CD4 T cells display altered transcription factor profiles in response to T-cell receptor stimulation, including enhanced expression of BATF and IRF4 and reduced expression of ID3 and BCL6. These transcription factors are involved in TH9 differentiation as well as IL9 transcription suggesting that the aging-associated changes in the transcription factor profile favor TH9 commitment.
Collapse
Affiliation(s)
- Bin Hu
- Department of Medicine, Division of Immunology and RheumatologyStanford UniversityStanfordCaliforniaUSA
- Department of MedicinePalo Alto Veterans Administration Healthcare SystemPalo AltoCaliforniaUSA
| | - Guangjin Li
- Department of MedicinePalo Alto Veterans Administration Healthcare SystemPalo AltoCaliforniaUSA
| | - Zhongde Ye
- Department of MedicinePalo Alto Veterans Administration Healthcare SystemPalo AltoCaliforniaUSA
| | - Claire E. Gustafson
- Department of Medicine, Division of Immunology and RheumatologyStanford UniversityStanfordCaliforniaUSA
- Department of MedicinePalo Alto Veterans Administration Healthcare SystemPalo AltoCaliforniaUSA
| | - Lu Tian
- Department of Biomedical Data ScienceStanford University School of MedicineStanfordCaliforniaUSA
| | - Cornelia M. Weyand
- Department of Medicine, Division of Immunology and RheumatologyStanford UniversityStanfordCaliforniaUSA
- Department of MedicinePalo Alto Veterans Administration Healthcare SystemPalo AltoCaliforniaUSA
| | - Jörg J. Goronzy
- Department of Medicine, Division of Immunology and RheumatologyStanford UniversityStanfordCaliforniaUSA
- Department of MedicinePalo Alto Veterans Administration Healthcare SystemPalo AltoCaliforniaUSA
| |
Collapse
|
42
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Exp Gerontol 2019; 124:110632. [PMID: 31201918 DOI: 10.1016/j.exger.2019.110632] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Immunosenescence contributes to a decreased capacity of the immune system to respond effectively to infections or vaccines in the elderly. The full extent of the biological changes that lead to immunosenescence are unknown, but numerous cell types involved in innate and adaptive immunity exhibit altered phenotypes and function as a result of aging. These manifestations of immunosenescence at the cellular level are mediated by dysregulation at the genetic level, and changes throughout the immune system are, in turn, propagated by numerous cellular interactions. Environmental factors, such as nutrition, also exert significant influence on the immune system during aging. While the mechanisms that govern the onset of immunosenescence are complex, systems biology approaches allow for the identification of individual contributions from each component within the system as a whole. Although there is still much to learn regarding immunosenescence, systems-level studies of vaccine responses have been highly informative and will guide the development of new vaccine candidates, novel adjuvant formulations, and immunotherapeutic drugs to improve vaccine responses among the aging population.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
43
|
Philippe M, Gatterer H, Burtscher M, Weinberger B, Keller M, Grubeck-Loebenstein B, Fleckenstein J, Alack K, Krüger K. Concentric and Eccentric Endurance Exercise Reverse Hallmarks of T-Cell Senescence in Pre-diabetic Subjects. Front Physiol 2019; 10:684. [PMID: 31214051 PMCID: PMC6558034 DOI: 10.3389/fphys.2019.00684] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/13/2019] [Indexed: 11/23/2022] Open
Abstract
The peripheral T-cell pool undergoes a striking age associated remodeling which is accelerated by progressive insulin resistance. Exercise training is known to delay several aspects of T-cell senescence. The purpose of the current study was to investigate the effect of 3 weeks regular concentric or eccentric endurance exercise training on the composition of the T-cell compartment in pre-diabetic subjects. Sixteen male older adults with impaired glucose tolerance were recruited and performed either concentric exercise (CE) or eccentric exercise (EE) walking 3 times a week for 3 weeks. Fasting venous blood sampling was performed before training and after the training intervention. Various T-cell subpopulations were analyzed by flow cytometry. We did not find significant time × group effects (interaction) but found several significant time effects for cell type ratios and cell subsets proportions. There was an increase of the CD4+/CD8+ (0.55 ± 0.85%; p = 0.033) and CD4+/CD3+ ratio (5.63 ± 8.44%; p = 0.018) and a decrease of the CD8+/CD3+ ratio (-0.95 ± 1.64%; p = 0.049) after training. We found proportional increases of CD4+/CCR7+/CD45RO+ central memory cells (5.02 ± 7.68%; p = 0.030), naïve CD8+/CCR7+/CD45RO- (3.00 ± 6.68%; p = 0.047) and CD8+/CCR7+/CD45RO+ central memory cells (3.01 ± 3.70%; p = 0.009), while proportions of CD4+/CCR7-/CD45RO- TEMRA cells (-2.17 ± 4.66%; p = 0.012), CD8+/CCR7-/CD45RO- TEMRA cells (-5.11 ± 7.02%; p = 0.018) and CD16+ cells (-4.67 ± 6.45%; p = 0.016) decreased after training. 3 weeks of either CE or EE were effective in reversing hallmarks of T-cell senescence in pre-diabetic subjects. It is suggested that exercise stimulates production and mobilization of naïve T-cells, while differentiated TEMRA cells might disappear by apoptosis.
Collapse
Affiliation(s)
- Marc Philippe
- Department of Sports Medicine, Institute of Sports Sciences, Giessen University, Giessen, Germany
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
- Department of Health Promotion and Prevention, Swiss Lung Association, St. Gallen, Switzerland
| | - Hannes Gatterer
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, EURAC Research, Bozen, Italy
| | - Martin Burtscher
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Michael Keller
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | | | - Johannes Fleckenstein
- Department of Sports Medicine, Institute of Sports Sciences, Giessen University, Giessen, Germany
| | - Katharina Alack
- Department of Sports Medicine, Institute of Sports Sciences, Giessen University, Giessen, Germany
| | - Karsten Krüger
- Department Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
44
|
Salminen A, Kaarniranta K, Kauppinen A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci 2019; 76:1901-1918. [PMID: 30788516 PMCID: PMC6478639 DOI: 10.1007/s00018-019-03048-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
The aging process is associated with chronic low-grade inflammation in both humans and rodents, commonly called inflammaging. At the same time, there is a gradual decline in the functional capacity of adaptive and innate immune systems, i.e., immunosenescence, a process not only linked to the aging process, but also encountered in several pathological conditions involving chronic inflammation. The hallmarks of immunosenescence include a decline in the numbers of naïve CD4+ and CD8+ T cells, an imbalance in the T cell subsets, and a decrease in T cell receptor (TCR) repertoire and signaling. Correspondingly, there is a decline in B cell lymphopoiesis and a reduction in antibody production. The age-related changes are not as profound in innate immunity as they are in adaptive immunity. However, there are distinct functional deficiencies in dendritic cells, natural killer cells, and monocytes/macrophages with aging. Interestingly, the immunosuppression induced by myeloid-derived suppressor cells (MDSC) in diverse inflammatory conditions also targets mainly the T and B cell compartments, i.e., inducing very similar alterations to those present in immunosenescence. Here, we will compare the immune profiles induced by immunosenescence and the MDSC-driven immunosuppression. Given that the appearance of MDSCs significantly increases with aging and MDSCs are the enhancers of other immunosuppressive cells, e.g., regulatory T cells (Tregs) and B cells (Bregs), it seems likely that MDSCs might remodel the immune system, thus preventing excessive inflammation with aging. We propose that MDSCs are potent inducers of immunosenescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
45
|
Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and Immune Pathogenesis of Viral Sepsis. Front Immunol 2018; 9:2147. [PMID: 30319615 PMCID: PMC6170629 DOI: 10.3389/fimmu.2018.02147] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis can be caused by a broad range of pathogens; however, bacterial infections represent the majority of sepsis cases. Up to 42% of sepsis presentations are culture negative, suggesting a non-bacterial cause. Despite this, diagnosis of viral sepsis remains very rare. Almost any virus can cause sepsis in vulnerable patients (e.g., neonates, infants, and other immunosuppressed groups). The prevalence of viral sepsis is not known, nor is there enough information to make an accurate estimate. The initial standard of care for all cases of sepsis, even those that are subsequently proven to be culture negative, is the immediate use of broad-spectrum antibiotics. In the absence of definite diagnostic criteria for viral sepsis, or at least to exclude bacterial sepsis, this inevitably leads to unnecessary antimicrobial use, with associated consequences for antimicrobial resistance, effects on the host microbiome and excess healthcare costs. It is important to understand non-bacterial causes of sepsis so that inappropriate treatment can be minimised, and appropriate treatments can be developed to improve outcomes. In this review, we summarise what is known about viral sepsis, its most common causes, and how the immune responses to severe viral infections can contribute to sepsis. We also discuss strategies to improve our understanding of viral sepsis, and ways we can integrate this new information into effective treatment.
Collapse
Affiliation(s)
- Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Joseph P McGinley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom.,Department of Paediatrics, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
46
|
Preshaw PM, Henne K, Taylor JJ, Valentine RA, Conrads G. Age-related changes in immune function (immune senescence) in caries and periodontal diseases: a systematic review. J Clin Periodontol 2018; 44 Suppl 18:S153-S177. [PMID: 28266110 DOI: 10.1111/jcpe.12675] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 12/17/2022]
Abstract
AIM To systematically review the evidence regarding immune senescence in the pathogenesis of periodontitis and dental caries. METHODS A systematic search of electronic databases utilizing medical subject headings (MeSH terms) supplemented by screening of review articles and other relevant texts was undertaken. RESULTS Seventy-three articles were included (43 for periodontitis, 30 for caries). Study results were found to be generally heterogeneous. Regarding periodontitis, human studies suggest evidence for altered neutrophil function and increased production of pro-inflammatory mediators (e.g. interleukin-1β, interleukin-6 and prostaglandin E2 ) in older compared to younger subjects, and animal experiments suggest increased expression of genes that contribute to a pro-inflammatory state in older compared to younger animals. Regarding dental caries, research relating to changes in immune functioning and the impact of ageing is in its infancy. A small number of studies have reported components of innate and adaptive immunity that affect the composition of saliva and dental biofilms with possible impacts on caries progression. CONCLUSION There is evidence that immune functioning related to periodontitis and (less investigated) dental caries alters with increasing age. In both conditions, age-associated mechanistic changes in immune functioning are complex and incompletely understood and it is not clear how these relate to disease susceptibility.
Collapse
Affiliation(s)
- Philip M Preshaw
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Karsten Henne
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Aachen, Germany
| | - John J Taylor
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ruth A Valentine
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK.,Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
47
|
Ray D, Yung R. Immune senescence, epigenetics and autoimmunity. Clin Immunol 2018; 196:59-63. [PMID: 29654845 DOI: 10.1016/j.clim.2018.04.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022]
Abstract
Aging of the immune system in humans and animals is characterized by a decline in both adaptive and innate immune responses. Paradoxically, aging is also associated with a state of chronic inflammation ("inflammaging") and an increased likelihood of developing autoimmune diseases. Epigenetic changes in non-dividing and dividing cells, including immune cells, due to environmental factors contribute to the inflammation and autoimmunity that characterize both the state and diseases of aging. Here, we review the epigenetic mechanisms involved in the development of immune senescence and autoimmunity in old age.
Collapse
Affiliation(s)
- Donna Ray
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Raymond Yung
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
48
|
Abstract
Advancing age remains one of the most significant risk factors for cancer development. Changes in the immune system occur with aging, and likely play a role in the increased incidence of malignancy in older patients. With the advent of immune checkpoint inhibitors, and their use in a variety of malignancies, there has been an explosion of clinical trials evaluating their use. Unfortunately, these trials have not shown consistent results in elderly patients, nor have age-specific outcomes been consistently reported. Further evaluation of the efficacy and toxicity of these agents in the elderly is needed, as they are now in frequent clinical use. By investigating how age-related changes in the immune system occur and intersect with use of immune checkpoint inhibitors, their use can be optimized in a clear and safe manner. Further study of age-related changes in the immune system can also lead to effective combination immunotherapeutic approaches, maximizing the efficacy of immune checkpoint inhibitors across tumor types and across the age spectrum of cancer patients.
Collapse
|
49
|
Le Page A, Dupuis G, Larbi A, Witkowski JM, Fülöp T. Signal transduction changes in CD4 + and CD8 + T cell subpopulations with aging. Exp Gerontol 2018; 105:128-139. [PMID: 29307735 DOI: 10.1016/j.exger.2018.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/30/2017] [Accepted: 01/03/2018] [Indexed: 01/04/2023]
Abstract
The innate and adaptive branches of the immune system display changes with aging, a fact referred to as immunosenescence. Furthermore, it has been established that adaptive immunity is more susceptible to age-related changes than innate immunity. The most prominent phenotypic changes that reflect the specific differentiation and role of each T cell subpopulation are two-fold. They are a decreased number of naïve T cells that parallels an increase in memory T cells, mainly in the cytotoxic CD8+ T cell population, which can be subdivided into naïve, central, effector memory and TEMRA cells. The two main T cell properties that are the most affected with aging are the altered clonal expansion and decreased cytokine production, especially IL-2. These T cell functions have been shown to be affected in the early events of signaling. The aim of the present study was to investigate the influence of age on TCR- and CD28-dependent activation of the downstream signaling effectors Lck, SHP-1, Akt, PI3K p85α and mTOR in differentiated subpopulations of CD4+ and CD8+ T cells. Results showed that lymphocytes of elderly subjects were already in an activated state that could not be upregulated by external stimulation. Results also showed that the age-related signal transduction changes were more important than phenotype in the CD4+ and CD8+ T subpopulations. These observations suggested that age-related molecular and biochemical changes have a more significant influence on T cell functions than T cell phenotype.
Collapse
Affiliation(s)
- Aurélie Le Page
- Research Center on Aging, Department of Medicine, Graduate Programme in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gilles Dupuis
- Clinical Research Center, Department of Biochemistry, Graduate Programme in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Immunos Building at Biopolis, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tamas Fülöp
- Research Center on Aging, Department of Medicine, Graduate Programme in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
50
|
Abstract
Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.
Collapse
|