1
|
Ajona D, Cragg MS, Pio R. The complement system in clinical oncology: Applications, limitations and challenges. Semin Immunol 2025; 77:101921. [PMID: 39700788 DOI: 10.1016/j.smim.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
The complement system, a key component of innate immunity, is involved in seemingly contradictory aspects of tumor progression and cancer therapy. It can act as an immune effector against cancer and modulate the antitumor activity of certain therapeutic antibodies, but it can also contribute to a tumor-promoting microenvironment. Understanding this dual role should lead to the development of better therapeutic tools, strategies for cancer treatment and biomarkers for the clinical management of cancer patients. Here, we review recent advances in the understanding of the role of complement in cancer, focusing on how these findings are being translated into the clinic. We highlight the activity of therapeutic agents that modulate the complement system, as well as combination therapies that integrate complement modulation with existing therapies. We conclude that the role of complement activation in cancer is a rapidly evolving field with the potential to translate findings into new therapeutic strategies and clinically useful biomarkers.
Collapse
Affiliation(s)
- Daniel Ajona
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ruben Pio
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
2
|
Nikolsky KS, Kopylov AT, Nakhod VI, Potoldykova NV, Enikeev DV, Butkova TV, Kulikova LI, Malsagova KA, Rudnev VR, Petrovskiy DV, Izotov AA, Kaysheva AL. Plasma proteome fingerprint in kidney diseases. Front Mol Biosci 2025; 11:1494779. [PMID: 39896931 PMCID: PMC11782039 DOI: 10.3389/fmolb.2024.1494779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction Kidney diseases pose a serious healthcare problem because of their high prevalence, worsening of patients' quality of life, and high mortality. Patients with kidney diseases are often asymptomatic until disease progression starts. Expensive renal replacement therapy options, such as dialysis or kidney transplant, are required for end-stage kidney disease. Early diagnosis of kidney pathology is crucial for slowing down or curbing further damage. This study aimed to analyze the features of the protein composition of blood plasma in patients with the most common kidney pathologies: kidney calculus, kidney cyst, and kidney cancer. Methods The study involved 75 subjects. Proteins associated with kidney pathologies (CFB, SERPINA3, HPX, HRG, SERPING1, HBB, ORM2, and CP) were proposed. These proteins are important participants of complement and coagulation cascade activation and lipid metabolism. Results The revealed phosphorylated proteoforms (CFB, C4A/C4B, F2, APOB, TTR, and NRAP) were identified. For them, modification sites were mapped on 3D protein models, and the potential role in formation of complexes with native partner proteins was assessed. Discussion The study demonstrates that the selected kidney pathologies have a similar proteomic profile, and patients can be classified into kidney pathology groups with an accuracy of (70-80)%.
Collapse
Affiliation(s)
- Kirill S. Nikolsky
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Arthur T. Kopylov
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Valeriya I. Nakhod
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Natalia V. Potoldykova
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dmitry V. Enikeev
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana V. Butkova
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Liudmila I. Kulikova
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Kristina A. Malsagova
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Vladimir R. Rudnev
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Denis V. Petrovskiy
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexander A. Izotov
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Anna L. Kaysheva
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
3
|
Pan H, Jing C. Immune cells mediate the causal pathway linking circulating complements to cancer: A Mendelian randomization study. Inflamm Res 2024; 73:2141-2152. [PMID: 39352488 DOI: 10.1007/s00011-024-01955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/09/2024] [Accepted: 09/27/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND The role of complement in cancer remains controversial. Whether immune cells and inflammatory factors mediate the pathway from complement to cancer has not been fully elucidated. METHODS We conducted bidirectional Mendelian randomization (MR) analysis to explore the causal association between complement components and cancer. Meta-analysis was conducted to enhance the robustness of the results. We further explored the mediation roles of immune cells and inflammatory factors in these associations. RESULTS Our study identified causal associations between 11 complement components and 12 types of cancer. Furthermore, we identified five immune cells as potential mediators: BAFF-R on IgD + CD38- naive B cell mediated 7.434% of the increased risk for liver cancer from C3; CD4 on CD39 + activated CD4 regulatory T cell mediated 12.384% of the increased risk for biliary tract cancer from CD93; CD25 + + CD45RA + CD4 not regulatory T cell and Basophil %CD33dim HLA DR- CD66b- mediated 7.721% and 7.986% of the increased risk of colorectal cancer from MASP1, respectively; CD45RA on resting CD4 regulatory T cell mediated 11.444% of the increased risk of skin cancer from MASP1. CONCLUSION This study revealed the causal relationships between complement components and certain cancers, with five immune cells as potential mediators.
Collapse
Affiliation(s)
- Hao Pan
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, People's Republic of China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, People's Republic of China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Liu C, Liu L. Identification and immunoassay of prognostic genes associated with the complement system in acute myeloid leukemia. J Formos Med Assoc 2024; 123:904-915. [PMID: 38341328 DOI: 10.1016/j.jfma.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Studies have associated the development of pulmonary leukemia with the activation of the complement system. However, the roles and mechanisms of complement system-related genes (CSRGs) in acute myeloid leukemia (AML) have not been investigated extensively. This study used The Cancer Genome Atlas (TCGA)-AML and GSE37642 datasets. Differentially expressed CSRGs (CSRDEGs) were identified by overlapping genes differentially expressed between the high and low CSRG score groups and key module genes identified in a weighted gene co-expression network analysis. Univariate and multivariate Cox analyses identified CSRG-related biomarkers, which were used to build a prognostic model. After gene set enrichment analysis (GSEA), immune-related and drug-sensitivity analyses were performed in the high- and low-risk groups. Four prognosis-related biomarkers were identified and used to develop a prognostic model: MEOX2, IGFBP5, CH25H, and RAB3B. The model's performance was verified in a test cohort (a subset of samples from the TCGA-AML dataset) and a validation cohort (GSE37642). The GSEA revealed that the high-risk group was mainly enriched for Golgi organization and cytokine-cytokine receptor interactions, and the low-risk group was mainly enriched in the hedgehog signaling pathway and spliceosome. Lastly, two immune cells were found to show differential infiltration between risk groups, which correlated with the risk scores. M1 macrophage infiltration was significantly positively correlated with RAB3B expression. Sensitivity to 36 drugs differed significantly between risk groups. This study screened four CSRG-related biomarkers (MEOX2, IGFBP5, CH25H, and RAB3B) to provide a basis for predicting AML prognosis.
Collapse
Affiliation(s)
- Chen Liu
- Department of Hematology, First Affiliated Hospital of Chongqing Medical University, ChongQing, 400016, China.
| | - Lin Liu
- Department of Hematology, First Affiliated Hospital of Chongqing Medical University, ChongQing, 400016, China.
| |
Collapse
|
5
|
Li W, You L, Lin J, Zhang J, Zhou Z, Wang T, Wu Y, Zheng C, Gao Y, Kong X, Sun X. An herbal formula Shenlian decoction upregulates M1/M2 macrophage proportion in hepatocellular carcinoma by suppressing complement cascade. Biomed Pharmacother 2024; 177:116943. [PMID: 38878636 DOI: 10.1016/j.biopha.2024.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
The immunosuppressive microenvironment is a vital factor for the hepatocellular carcinoma (HCC) progression. However, effective treatment is lacking at current. Shenlian decoction (SLD) is a registered herbal therapy for the HCC treatment, but the underlying mechanism of SLD remains largely elusive. Here, we aimed to explore the anti-tumor effect of SLD in the treatment of HCC. SLD was intragastrically given after the tumor initiation in β-catenin/C-Met or DEN and CCl4 induced HCC mouse model. The tumor growth levels were evaluated by liver weight and histological staining. The tumor-infiltrating immune cells were detected by immunological staining and flow cytometry. The mechanism of the SLD was detected by non-targeted proteomics and verified by a cell co-culture system. The result showed that SLD significantly attenuated HCC progression. SLD promoted macrophage infiltration and increased the M1/M2 macrophage ratio within the tumor tissues. Non-targeted proteomics showed the inhibition of complement C5/C5a signaling is the key mechanism of SLD. Immunological staining showed SLD inhibited C5/C5a expression and C5aR1+ macrophage infiltration. The suggested mechanism was demonstrated by application of C5aR1 inhibitor, PMX-53 in mouse HCC model. Hepatoma cell-macrophage co-culture showed SLD targeted hepatoma cells and inhibited the supernatant-induced macrophage M2 polarization. SLD inhibited AMPK/p38 signaling which is an upstream mechanism of C5 transcription. In conclusion, we found SLD relieved immune-suppressive environment by inhibiting C5 expression. SLD could suppress the C5 secretion in hepatoma cells via inhibition of AMPK/p38 signaling. We suggested that SLD is a potential herbal therapy for the treatment of HCC by alleviating immune-suppressive status.
Collapse
Affiliation(s)
- Wenxuan Li
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijia Zhou
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuelan Wu
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Zheng
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
Beach C, MacLean D, Majorova D, Melemenidis S, Nambiar DK, Kim RK, Valbuena GN, Guglietta S, Krieg C, Darvish-Damavandi M, Suwa T, Easton A, Hillson LV, McCulloch AK, McMahon RK, Pennel K, Edwards J, O’Cathail SM, Roxburgh CS, Domingo E, Moon EJ, Jiang D, Jiang Y, Zhang Q, Koong AC, Woodruff TM, Graves EE, Maughan T, Buczacki SJ, Stucki M, Le QT, Leedham SJ, Giaccia AJ, Olcina MM. Improving radiotherapy in immunosuppressive microenvironments by targeting complement receptor C5aR1. J Clin Invest 2023; 133:e168277. [PMID: 37824211 PMCID: PMC10688992 DOI: 10.1172/jci168277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
An immunosuppressive microenvironment causes poor tumor T cell infiltration and is associated with reduced patient overall survival in colorectal cancer. How to improve treatment responses in these tumors is still a challenge. Using an integrated screening approach to identify cancer-specific vulnerabilities, we identified complement receptor C5aR1 as a druggable target, which when inhibited improved radiotherapy, even in tumors displaying immunosuppressive features and poor CD8+ T cell infiltration. While C5aR1 is well-known for its role in the immune compartment, we found that C5aR1 is also robustly expressed on malignant epithelial cells, highlighting potential tumor cell-specific functions. C5aR1 targeting resulted in increased NF-κB-dependent apoptosis specifically in tumors and not normal tissues, indicating that, in malignant cells, C5aR1 primarily regulated cell fate. Collectively, these data revealed that increased complement gene expression is part of the stress response mounted by irradiated tumors and that targeting C5aR1 could improve radiotherapy, even in tumors displaying immunosuppressive features.
Collapse
Affiliation(s)
- Callum Beach
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - David MacLean
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Dominika Majorova
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Dhanya K. Nambiar
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Ryan K. Kim
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Gabriel N. Valbuena
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Silvia Guglietta
- Department of Regenerative Medicine and Cell Biology
- Hollings Cancer Center, and
| | - Carsten Krieg
- Hollings Cancer Center, and
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Tatsuya Suwa
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Alistair Easton
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Lily V.S. Hillson
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Ross K. McMahon
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn Pennel
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Joanne Edwards
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sean M. O’Cathail
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Eui Jung Moon
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Dadi Jiang
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanyan Jiang
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Qingyang Zhang
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Albert C. Koong
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Edward E. Graves
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Tim Maughan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Simon J.A. Buczacki
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Simon J. Leedham
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Amato J. Giaccia
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Monica M. Olcina
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
7
|
Li Y, Maimaiti M, Yang B, Lu Z, Zheng Q, Lin Y, Luo W, Wang R, Ding L, Wang H, Chen X, Xu Z, Wang M, Li G, Gao L. Comprehensive analysis of subtypes and risk model based on complement system associated genes in ccRCC. Cell Signal 2023; 111:110888. [PMID: 37717714 DOI: 10.1016/j.cellsig.2023.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Immune therapy is widely used in treating clear cell renal cell carcinoma (ccRCC), yet identifying patient subgroups that are expected to response remains challenging. As complement system can mediate immune effects, including the progression of tumors, a correlation between complement system and immune therapy may exist. METHODS Based on 11 complement system associated genes (CSAGs) identified from The Cancer Genome Atlas (TCGA), we performed unsupervised clustering and classified the tumors into two different complement system (CS) patterns. The clinical significance, tumor microenvironment (TME), functional enrichment, and immune infiltration were further analyzed. A novel scoring system named CSscore was developed based on the expression levels of the 11 CSAGs. RESULTS Two distinct CS patterns were identified, classified as Cluster1 and Cluster2, and Cluster1 showed poor clinical outcome. Further analysis of functional enrichment, immune cell infiltration, and genetic variation revealed that Cluster1 had high infiltration of TME immune cells, but also exhibited high immune escape. The novel prognostic model, CSscore could act as an independent prognostic factor and effectively predict patients' prognosis and distinguish the therapeutic efficacy of different immune treatment strategies. The pan-cancer analysis of the CSscore indicates its potential to be further generalized to other types of cancer. CONCLUSIONS Two distinct CS patterns were identified and were further analyzed in terms of infiltration of TME immune cells and immune escape, providing potential explanations for the impact on prognosis of ccRCC. Our CSscore prognostic model may offer a novel perspective in the management of ccRCC patients, and potentially other types of cancer as well.
Collapse
Affiliation(s)
- Yang Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Muzhapaer Maimaiti
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Bowen Yang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yudong Lin
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xianjiong Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhehao Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Lei Gao
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
8
|
Gu X, Shen H, Zhu G, Li X, Zhang Y, Zhang R, Su F, Wang Z. Prognostic Model and Tumor Immune Microenvironment Analysis of Complement-Related Genes in Gastric Cancer. J Inflamm Res 2023; 16:4697-4711. [PMID: 37872955 PMCID: PMC10590588 DOI: 10.2147/jir.s422903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Introduction The complement system is integral to the innate and adaptive immune response, helping antibodies eliminate pathogens. However, the potential role of complement and its modulators in the tumor microenvironment (TME) of gastric cancer (GC) remains unclear. Methods This study assessed the expression, frequency of somatic mutations, and copy number variations of complement family genes in GC derived from The Cancer Genome Atlas (TCGA). Lasso and Cox regression analyses were conducted to develop a prognostic model based on the complement genes family, with the training and validation sets taken from the TCGA-GC cohort (n=371) and the International Gene Expression Omnibus (GEO) cohort (n=433), correspondingly. The nomogram assessment model was used to predict patient outcomes. Additionally, the link between immune checkpoints, immune cells, and the prognostic model was investigated. Results In contrast to patients at low risk, those at high risk had a less favorable outcome. The prognostic model-derived risk score was shown to serve as a prognostic marker of GC independently, as per the multivariate Cox analysis. Nomogram assessment showed that the model had high reliability for predicting the survival of patients with GC in the 1, 3, 5 years. Additionally, the risk score was positively linked to the expression of immune checkpoints, notably CTLA4, LAG3, PDCD1, and CD274, according to an analysis of immune processes. The core gene C5aR1 in the prognostic model was found to be upregulated in GC tissues in contrast to adjoining normal tissues, and patients with elevated expressed levels of C5aR1 had lower 10-year overall survival (OS) rates. Conclusion Our work reveals that complement genes are associated with the diversity and complexity of TME. The complement prognosis model help improves our understanding of TME infiltration characteristics and makes immunotherapeutic strategies more effective.
Collapse
Affiliation(s)
- Xianhua Gu
- Department of Gynecology Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Honghong Shen
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Guangzheng Zhu
- Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Xinwei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Yue Zhang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Rong Zhang
- Department of Gynecology Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Fang Su
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Zishu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| |
Collapse
|
9
|
Ettl T, Grube M, Schulz D, Bauer RJ. Checkpoint Inhibitors in Cancer Therapy: Clinical Benefits for Head and Neck Cancers. Cancers (Basel) 2022; 14:4985. [PMID: 36291769 PMCID: PMC9599671 DOI: 10.3390/cancers14204985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/20/2022] Open
Abstract
Recently, considerable progress has been achieved in cancer immunotherapy. Targeted immune checkpoint therapies have been established for several forms of cancers, which resulted in a tremendous positive impact on patient survival, even in more advanced tumor stages. With a better understanding of cellular responses to immune checkpoint therapies, it will soon be feasible to find targeted compounds which will make personalized medicine practicable. This is a great opportunity, but it also sets tremendous challenges on both the scientific and clinical aspects. Head and neck tumors evade immune surveillance through various mechanisms. They contain fewer lymphocytes (natural killer cells) than normal tissue with an accumulation of immunosuppressive regulatory T cells. Standard therapies for HNSCC, such as surgery, radiation, and chemotherapy, are becoming more advantageous by targeting immune checkpoints and employing combination therapies. The purpose of this review is to provide an overview of the expanded therapeutic options, particularly the combination of immune checkpoint inhibition with various conventional and novel therapeutics for head and neck tumor patients.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Matthias Grube
- Department of Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Gut Microbiota and Therapy in Metastatic Melanoma: Focus on MAPK Pathway Inhibition. Int J Mol Sci 2022; 23:ijms231911990. [PMID: 36233289 PMCID: PMC9569448 DOI: 10.3390/ijms231911990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Gut microbiome (GM) and its either pro-tumorigenic or anti-tumorigenic role is intriguing and constitutes an evolving landscape in translational oncology. It has been suggested that these microorganisms may be involved in carcinogenesis, cancer treatment response and resistance, as well as predisposition to adverse effects. In melanoma patients, one of the most immunogenic cancers, immune checkpoint inhibitors (ICI) and MAPK-targeted therapy—BRAF/MEK inhibitors—have revolutionized prognosis, and the study of the microbiome as a modulating factor is thus appealing. Although BRAF/MEK inhibitors constitute one of the main backbones of treatment in melanoma, little is known about their impact on GM and how this might correlate with immune re-induction. On the contrary, ICI and their relationship to GM has become an interesting field of research due to the already-known impact of immunotherapy in modulating the immune system. Immune reprogramming in the tumor microenvironment has been established as one of the main targets of microbiome, since it can induce immunosuppressive phenotypes, promote inflammatory responses or conduct anti-tumor responses. As a result, ongoing clinical trials are evaluating the role of fecal microbiota transplant (FMT), as well as the impact of using dietary supplements, antibiotics and probiotics in the prediction of response to therapy. In this review, we provide an overview of GM’s link to cancer, its relationship with the immune system and how this may impact response to treatments in melanoma patients. We also discuss insights about novel therapeutic approaches including FMT, changes in diet and use of probiotics, prebiotics and symbiotics. Finally, we hypothesize on the possible pathways through which GM may impact anti-tumor efficacy in melanoma patients treated with targeted therapy, an appealing subject of which little is known.
Collapse
|
11
|
Neutrophils activated by membrane attack complexes increase the permeability of melanoma blood vessels. Proc Natl Acad Sci U S A 2022; 119:e2122716119. [PMID: 35960843 PMCID: PMC9388087 DOI: 10.1073/pnas.2122716119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cancer cell dissemination is the seed for metastasis and adversely linked to patients’ benefit. Critical for hematogenous dissemination is the entrance of the cancer cell into the circulation, which is regulated by vascular permeability within the primary tumor. Here, we describe pathophysiological communication between endothelial cells, tumor infiltrating neutrophils, and the complement system, with implications for vascular barrier opening and melanoma cell dissemination. Experiments in complement-deficient animals indicate that interference with complement-mediated activation of neutrophils stabilizes blood vessel integrity and abolishes the systemic spread of melanoma cells. The microenvironment of malignant melanomas defines the properties of tumor blood vessels and regulates infiltration and vascular dissemination of immune and cancer cells, respectively. Previous research in other cancer entities suggested the complement system as an essential part of the tumor microenvironment. Here, we confirm activation of the complement system in samples of melanoma patients and murine melanomas. We identified the tumor endothelium as the starting point of the complement cascade. Generation of complement-derived C5a promoted the recruitment of neutrophils. Upon contact with the vascular endothelium, neutrophils were further activated by complement membrane attack complexes (MACs). MAC-activated neutrophils release neutrophil extracellular traps (NETs). Close to the blood vessel wall, NETs opened the endothelial barrier as indicated by an enhanced vascular leakage. This facilitated the entrance of melanoma cells into the circulation and their systemic spread. Depletion of neutrophils or lack of MAC formation in complement component 6 (C6)–deficient animals protected the vascular endothelium and prevented vascular intravasation of melanoma cells. Our data suggest that inhibition of MAC-mediated neutrophil activation is a potent strategy to abolish hematogenous dissemination in melanoma.
Collapse
|
12
|
Sialic acids: An Avenue to Target Cancer Progression, Metastasis, and Resistance to Therapy. FORUM OF CLINICAL ONCOLOGY 2022. [DOI: 10.2478/fco-2021-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
Background
Sialic acids are alpha-keto acids with nine carbons that are commonly present in the terminal sugars of glycans on glycoproteins and glycolipids on the cell surface. Sialic acids have a role in a variety of physiological and pathological processes by interacting with carbohydrates and proteins, communicating between cells, and acting as cell surface receptors for viruses and bacteria. Several studies have shown the aberrant pattern of sialic acids on cancer cells due to change in their glycosylation status. This pattern may be attributed to various physiological and pathological changes occurring in tumour cells. Hypersialylation in tumours, its involvement in tumour growth, immune evasion and escape from the apoptotic pathway, metastasis formation, and therapeutic resistance have all been fairly well investigated.
Methods
A PubMed search was conducted and published articles in different studies from 2000 to 2020 were included and reviewed. Here, we discuss current outcomes that emphasize the unfavourable effects of hypersialylation on multiple aspects of tumour genesis, immune evasion, metastasis and resistance to therapy.
Conclusion
These recent investigations have found that aberrant sialylation is an essential process for tumour cells to evade immune surveillance and maintain their malignancy. Together, these noteworthy views provide a solid platform for designing and developing therapeutic approaches that target hypersialylation of cancer cells.
Collapse
|
13
|
Hussain N, Das D, Pramanik A, Pandey MK, Joshi V, Pramanik KC. Targeting the complement system in pancreatic cancer drug resistance: a novel therapeutic approach. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:317-327. [PMID: 35800364 PMCID: PMC9255240 DOI: 10.20517/cdr.2021.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
Pancreatic cancer is ranked as the fourth leading cause of cancer-related mortality and is predicted to become the second leading cause of cancer-related death by 2030. The cause of this high mortality rate is due to pancreatic ductal adenocarcinoma's rapid progression and metastasis, and development of drug resistance. Today, cancer immunotherapy is becoming a strong candidate to not only treat various cancers but also to combat against chemoresistance. Studies have suggested that complement system pathways play an important role in cancer progression and chemoresistance, especially in pancreatic cancer. A recent report also suggested that several signaling pathways play an important role in causing chemoresistance in pancreatic cancer, major ones including nuclear factor kappa B, signal transducer and activator of transcription 3, c-mesenchymal-epithelial transition factor, and phosphoinositide-3-kinase/protein kinase B. In addition, it has also been proven that the complement system has a very active role in establishing the tumor microenvironment, which would aid in promoting tumorigenesis, progression, metastasis, and recurrence. Interestingly, it has been shown that the downstream products of the complement system directly upregulate inflammatory mediators, which in turn activate these chemo-resistant pathways. Therefore, targeting complement pathways could be an innovative approach to combat against pancreatic cancer drugs resistance. In this review, we have discussed the role of complement system pathways in pancreatic cancer drug resistance and a special focus on the complement as a therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Naushair Hussain
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA
| | - Deea Das
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA
| | - Atreyi Pramanik
- Department of Education, South College, Knoxville, TN 37902, USA
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Vivek Joshi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Wyomissing, PA 19610, USA
| | - Kartick C. Pramanik
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA
| |
Collapse
|
14
|
Kou W, Li B, Shi Y, Zhao Y, Yu Q, Zhuang J, Xu Y, Peng W. High complement protein C1q levels in pulmonary fibrosis and non-small cell lung cancer associated with poor prognosis. BMC Cancer 2022; 22:110. [PMID: 35078421 PMCID: PMC8790889 DOI: 10.1186/s12885-021-08912-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is the most common type of interstitial pneumonia. Lung cancer, mainly non-small cell lung cancer (NSCLC), is a complication of idiopathic pulmonary fibrosis. IPF is also an independent risk factor of lung cancer. Some studies have shown that the complement system can promote the progression of interstitial pulmonary fibrosis. In addition, C1q has also demonstrated to exert a tumor-promoting effect in many tumors. However, the role of C1q in idiopathic pulmonary fibrosis and lung cancer still remain unclear. METHODS We selected common differentially expressed genes in IPF and non-small cell lung cancer using datasets from GEO, and investigated common hub gene. The hub genes were validated in IPF by establishing mouse model of IPF and using another four datasets from the GEO. Multiple databases were analyzed including those of Kaplan-Meier Plotter, Tumor Immune Estimation Resource (TIMER2.0) and the Human Protein Atlas (HPA) for NSCLC. RESULTS In this study, 37 common DEGs were identified in IPF and NSCLC including 32 up-regulated genes and 5 down-regulated genes, and C1q was identified as common hub gene. The methylation status of C1q decreased and the expression levels of C1q increased in both lung cancer and idiopathic pulmonary fibrosis. The prognosis of non-small cell lung cancer and IPF patients with high levels of C1q is poor. CONCLUSIONS These results show that C1q participates in pulmonary fibrosis and non-small cell lung cancer, and may be a potential diagnostic / prognostic biomarker or a therapeutic target.
Collapse
Affiliation(s)
- Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Bo Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yeifei Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yifan Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
15
|
Chen Y, Li Y. Metabolic reprogramming and immunity in cancer. CANCER IMMUNOLOGY AND IMMUNOTHERAPY 2022:137-196. [DOI: 10.1016/b978-0-12-823397-9.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Detection of Circulating Serum Protein Biomarkers of Non-Muscle Invasive Bladder Cancer after Protein Corona-Silver Nanoparticles Analysis by SWATH-MS. NANOMATERIALS 2021; 11:nano11092384. [PMID: 34578700 PMCID: PMC8467878 DOI: 10.3390/nano11092384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Because cystoscopy is expensive and invasive, a new method of detecting non-invasive muscular bladder cancer (NMIBC) is needed. This study aims to identify potential serum protein markers for NMIBC to improve diagnosis and to find treatment approaches that avoid disease progression to a life-threatening phenotype (muscle-invasive bladder cancer, MIBC). Here, silver nanoparticles (AgNPs, 9.73 ± 1.70 nm) as a scavenging device together with sequential window acquisition of all theoretical mass spectra (SWATH-MS) were used to quantitatively analyze the blood serum protein alterations in two NMIBC subtypes, T1 and Ta, and they were compared to normal samples (HC). NMIBC’s analysis of serum samples identified three major groups of proteins, the relative content of which is different from the HC content: proteins implicated in the complement and coagulation cascade pathways and apolipoproteins. In conclusion, many biomarker proteins were identified that merit further examination to validate their useful significance and utility within the clinical management of NMIBC patients.
Collapse
|
17
|
Han J, Zhang X. Complement Component C3: A Novel Biomarker Participating in the Pathogenesis of Non-alcoholic Fatty Liver Disease. Front Med (Lausanne) 2021; 8:653293. [PMID: 34395461 PMCID: PMC8358116 DOI: 10.3389/fmed.2021.653293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disorder worldwide. The pathological spectrum of NAFLD ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) that induces progressive liver cirrhosis and eventually hepatocellular carcinoma (HCC). However, the molecular mechanisms driving the transformation of NASH are obscure. There is a compelling need for understanding the pathogenic mechanisms of NASH, and thereby providing new insight into mechanism-based therapy. Currently, several studies reported that complement system, an innate immune system, played an important role in the pathogenesis of NAFLD, which was also proved by our recent study. Complement component 3 (C3), a protein of the innate immune system, plays a hub role in the complement system. Herein, we present a review on the role and molecular mechanism of C3 in NASH as well as its implication in NASH diagnosis and treatment.
Collapse
Affiliation(s)
- Juqiang Han
- Institute of Liver Disease, The 7th Medical Centre of Chinese People Liberation Army General Hospital, Beijing, China.,The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Senent Y, Ajona D, González-Martín A, Pio R, Tavira B. The Complement System in Ovarian Cancer: An Underexplored Old Path. Cancers (Basel) 2021; 13:3806. [PMID: 34359708 PMCID: PMC8345190 DOI: 10.3390/cancers13153806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers. Current therapeutic strategies allow temporary control of the disease, but most patients develop resistance to treatment. Moreover, although successful in a range of solid tumors, immunotherapy has yielded only modest results in ovarian cancer. Emerging evidence underscores the relevance of the components of innate and adaptive immunity in ovarian cancer progression and response to treatment. Particularly, over the last decade, the complement system, a pillar of innate immunity, has emerged as a major regulator of the tumor microenvironment in cancer immunity. Tumor-associated complement activation may support chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling pathways. Recent insights suggest an important role of complement effectors, such as C1q or anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1 in ovarian cancer progression. Nevertheless, the implication of these factors in different clinical contexts is still poorly understood. Detailed knowledge of the interplay between ovarian cancer cells and complement is required to develop new immunotherapy combinations and biomarkers. In this context, we discuss the possibility of targeting complement to overcome some of the hurdles encountered in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yaiza Senent
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
| | - Daniel Ajona
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Antonio González-Martín
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Oncology, Clinica Universidad de Navarra, 28027 Madrid, Spain
| | - Ruben Pio
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Beatriz Tavira
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
19
|
de Oliveira TL, Bavia L, Fontana PD, Cruz LS, Paludo KS, Crisma AR, Messias-Reason IJ, Beltrame FL. Immunomodulatory and cytotoxic activities of euphol. Life Sci 2021; 280:119700. [PMID: 34111465 DOI: 10.1016/j.lfs.2021.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022]
Abstract
AIMS This study evaluated the effect of euphol isolated from Euphorbia umbellata (Pax) Bruyns latex on the activation of complement pathways (classical (CP), alternative (AP) and lectin (LP)), neutrophil chemotaxis, cytotoxic activity, cell morphology and death in HRT-18 and 3T3 cells lines. MAIN METHODS CP and AP were assessed using hemolytic assays and ELISA for LP; neutrophil chemotaxis was performed using Boyden's chamber; cytotoxicity was evaluated by neutral red methodology and characteristics of cell death were assessed by cell morphology with hematological staining. KEY FINDINGS Although euphol increased CP activation (38% at a concentration of 976.1 μM), an inhibitory effect on AP, LP (31% and 32% reduction in the concentration of 976.1 μM) and neutrophil chemotaxis (inhibit 84% of neutrophil migration at a concentration 292.9 μM) was observed. In addiction euphol was able to induce significant cell death in a time-dependent manner, presenting an IC50 of 70.8 μM and 39.2 μM for HRT-18 and 3T3 cell lines respectively and it was also observed apoptotic characteristics as cellular rounding, chromatin condensation and blebs formation for both cell lines. SIGNIFICANCE Euphol has a potential use for the treatment of complement-related inflammatory diseases due to its ability to downregulate inflammation. On the other hand, the controlled activation of CP can contribute to complement-dependent cytotoxicity in the context of monoclonal antibody-based cancer treatment.
Collapse
Affiliation(s)
- Thais Latansio de Oliveira
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil.
| | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Pâmela Dias Fontana
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Luiza Stolz Cruz
- Laboratory of Phytotherapy, Phytotherapy Technology and Chemistry of Natural Products, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Katia Sabrina Paludo
- Multidisciplinary Laboratory of Biological Sciences and Health, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | - Iara Jose Messias-Reason
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Flávio Luís Beltrame
- Laboratory of Phytotherapy, Phytotherapy Technology and Chemistry of Natural Products, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
20
|
Jiang Z, Jiang Q, Fang X, Wang P, Que W, Li H, Yu Y, Liu X, Wang C, Zhong L. Recipient C7 rs9292795 genotype and the risk of hepatocellular carcinoma recurrence after orthotopic liver transplantation in a Han Chinese population. BMC Cancer 2021; 21:521. [PMID: 33964921 PMCID: PMC8106183 DOI: 10.1186/s12885-021-08269-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Complement component(C7) gene has been shown to influence the prognosis in Hepatocellular carcinoma (HCC) patients. The association between C7 and HCC recurrence after orthotopic liver transplantation (OLT), however, is still unknown. The purpose of this study was to evaluate whether the donor and recipient C7 gene polymorphisms are related to HCC recurrence after OLT in the Han Chinese population. METHODS A total of 73 consecutive patients with HCC who had undergone OLT, both donors and recipients, were involved in this research. A single nucleotide polymorphism of C7, rs9292795, was genotyped using Sequenom MassARRAY in the cohort. The expression of C7 and the association between C7 gene polymorphisms and HCC recurrence following OLT were analyzed by bioinformatics and statistical analysis, respectively. RESULTS As shown in database, the expression of C7 was higher in HCC tissues than that in normal tissues, and represented a worse prognosis. We also found that recipient C7 rs9292795 polymorphism, rather than the donor, was significantly associated with HCC recurrence after OLT. Multivariate logistic regression analysis confirmed that TNM stage (P = 0.001), Milan criteria (P = 0.000) and recipient rs9292795 genotype (TT vs AA/AT, P = 0.008) were independent risk factors for HCC recurrence. Furthermore, the recipient carrying AA/AT showed higher recurrence-free survival (RFS) and overall survival (OS) than that carrying TT (P < 0.05). In Cox proportional hazards model, TNM stage, recipient rs9292795 genotype, and Milan criteria were identified as independent factors for RFS and OS (P < 0.05) as well as pre-OLT serum alpha fetoprotein (AFP) level was associated with OS (P < 0.05). CONCLUSIONS Recipient C7 rs9292795 gene polymorphism is related to the recurrence of HCC after OLT, which may be a helpful prognostic marker for HCC patients who receive OLT.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Qianwei Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Xu Fang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Weitao Que
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Yang Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Chunguang Wang
- Emergency & Critical Care Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Songjiang District, Shanghai, China.
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
21
|
Schvarcz CA, Danics L, Krenács T, Viana P, Béres R, Vancsik T, Nagy Á, Gyenesei A, Kun J, Fonović M, Vidmar R, Benyó Z, Kaucsár T, Hamar P. Modulated Electro-Hyperthermia Induces a Prominent Local Stress Response and Growth Inhibition in Mouse Breast Cancer Isografts. Cancers (Basel) 2021; 13:1744. [PMID: 33917524 PMCID: PMC8038813 DOI: 10.3390/cancers13071744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Modulated electro-hyperthermia (mEHT) is a selective cancer treatment used in human oncology complementing other therapies. During mEHT, a focused electromagnetic field (EMF) is generated within the tumor inducing cell death by thermal and nonthermal effects. Here we investigated molecular changes elicited by mEHT using multiplex methods in an aggressive, therapy-resistant triple negative breast cancer (TNBC) model. 4T1/4T07 isografts inoculated orthotopically into female BALB/c mice were treated with mEHT three to five times. mEHT induced the upregulation of the stress-related Hsp70 and cleaved caspase-3 proteins, resulting in effective inhibition of tumor growth and proliferation. Several acute stress response proteins, including protease inhibitors, coagulation and heat shock factors, and complement family members, were among the most upregulated treatment-related genes/proteins as revealed by next-generation sequencing (NGS), Nanostring and mass spectrometry (MS). pathway analysis demonstrated that several of these proteins belong to the response to stimulus pathway. Cell culture treatments confirmed that the source of these proteins was the tumor cells. The heat-shock factor inhibitor KRIBB11 reduced mEHT-induced complement factor 4 (C4) mRNA increase. In conclusion, mEHT monotherapy induced tumor growth inhibition and a complex stress response. Inhibition of this stress response is likely to enhance the effectiveness of mEHT and other cancer treatments.
Collapse
Affiliation(s)
- Csaba András Schvarcz
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Lea Danics
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Pedro Viana
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Rita Béres
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Tamás Vancsik
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Ákos Nagy
- Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Attila Gyenesei
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (J.K.)
| | - József Kun
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (J.K.)
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Marko Fonović
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.F.); (R.V.)
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.F.); (R.V.)
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Tamás Kaucsár
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| |
Collapse
|
22
|
O’Brien RM, Cannon A, Reynolds JV, Lysaght J, Lynam-Lennon N. Complement in Tumourigenesis and the Response to Cancer Therapy. Cancers (Basel) 2021; 13:1209. [PMID: 33802004 PMCID: PMC7998562 DOI: 10.3390/cancers13061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, our knowledge of the complement system beyond innate immunity has progressed significantly. A modern understanding is that the complement system has a multifaceted role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response to therapies. The ability of local immune cells to produce and respond to complement components has provided valuable insights into their regulation, and the subsequent remodeling of the tumour microenvironment. These novel discoveries have advanced our understanding of the immunosuppressive mechanisms supporting tumour growth and uncovered potential therapeutic targets. This review discusses the current understanding of complement in cancer, outlining both direct and immune cell-mediated roles. The role of complement in response to therapies such as chemotherapy, radiation and immunotherapy is also presented. While complement activities are largely context and cancer type-dependent, it is evident that promising therapeutic avenues have been identified, in particular in combination therapies.
Collapse
Affiliation(s)
- Rebecca M. O’Brien
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Aoife Cannon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - Joanne Lysaght
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| |
Collapse
|
23
|
Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma. Front Oncol 2021; 10:627701. [PMID: 33718121 PMCID: PMC7943925 DOI: 10.3389/fonc.2020.627701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander Bondoc
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
24
|
Yang H, Li L, Liu X, Zhao Y. High Expression of the Component 3a Receptor 1 (C3AR1) Gene in Stomach Adenocarcinomas Infers a Poor Prognosis and High Immune-Infiltration Levels. Med Sci Monit 2021; 27:e927977. [PMID: 33539329 PMCID: PMC7871482 DOI: 10.12659/msm.927977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background This study was designed to explore the incompletely investigated role of the complement component 3a receptor 1 (C3AR1) in the prognosis of stomach adenocarcinomas (STAD). Material/Methods Using bioinformatic methods, we systematically determined the expression and prognosis value of C3AR1 in various cancers by using the TIMER (Tumor Immune Estimation Resource) database, UALCAN platform, GEPIA (Gene Expression Profiling Interactive Analysis) server, and the OncoLnc tool. The biological processes influenced by C3AR1 were determined using the GSEA (Gene Set Enrichment Analysis) software (Copyright 2004–2020 Broad Institute, Inc., Massachusetts Institute of Technology, and Regents of the University of California). The correlation between C3AR1 expression and the immune-infiltrating cells as well as the correlation analysis between C3AR1 expression and the corresponding immune-marker sets were conducted using the TIMER and GEPIA databases. Results The expression of C3AR1 was significantly (P<0.001) differentially expressed on several tumor types, while its prognosis value could only be determined on STAD, with a high expression of C3AR1 closely correlated with a poor prognosis. The GSEA analysis revealed that the differential expression of C3AR1 profoundly affected the immune-related biological processes. The expression of C3AR1 was strongly and positively correlated with the infiltration of monocytes, tumor-associated macrophages, M2 macrophages, dendritic cells, and exhausted T cells. Conclusions Our results have revealed that a high expression of C3AR1 is positively correlated with a poor prognosis and increased tumor-immune infiltration. C3AR1 can promote the polarization of M2 macrophages and T cell exhaustion, leading to the immune escape of STAD. These findings suggest that C3AR1 could be used as a prognostic and immune-infiltration marker in the pathogenesis of STAD.
Collapse
Affiliation(s)
- Haibo Yang
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Lin Li
- Department of Pharmacy, Affiliated Nanchong Central Hospital of North Sichuan Medical College (University), Nanchong, Sichuan, China (mainland)
| | - Xiaoyu Liu
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Yu Zhao
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
25
|
Bao D, Zhang C, Li L, Wang H, Li Q, Ni L, Lin Y, Huang R, Yang Z, Zhang Y, Hu Y. Integrative Analysis of Complement System to Prognosis and Immune Infiltrating in Colon Cancer and Gastric Cancer. Front Oncol 2021; 10:553297. [PMID: 33614473 PMCID: PMC7886994 DOI: 10.3389/fonc.2020.553297] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background The complement system acts as an integral part of the innate immune response, which acts primarily to remove pathogens and injured cells. Emerging evidence has shown the activation of the immune regulatory function of complements in the tumor microenvironment (TME). We revealed the expression levels of various complements in human cancers and their role in tumor prognosis and immune infiltration. Methods The differential expression of complements was explored via the Tumor Immune Estimation Resource (TIMER) site and the Oncomine database. To investigate whether these differentially expressed complements have correlation with the prognosis of gastric cancer (GC) and colon cancer, their impact on survival was assessed using the PrognoScan database and Kaplan-Meier plotter. The correlations between complements and tumor immune-infiltrating levels and immune gene markers were statistically explored in TIMER based on Spearman's correlation coefficients and p-values. Results In two colon cancer cohorts, an increased expression level of DAF (CD55) has statistically significant correlation with poor disease-free survival (DFS). High C3, CR4, and C5aR1 expression levels were significantly related with poor prognosis in GC patients. In addition, C3, CR4, and C5aR1 expression was positively related to the tumor purity and infiltration levels of multiple immune cells in stomach adenocarcinoma (STAD). Moreover, the expression levels of C3, CR4, and C5aR1 were also strongly correlated with various immune marker sets, such as those of tumor-associated macrophages (TAMs), M1 and M2 macrophages, T cell exhaustion, Tregs, and DCs, in STAD. Additionally, CD55 has positive correlation with few immune cell infiltration levels in colon adenocarcinoma (COAD), but its correlation with immune marker sets was not statistically significant. Conclusion These findings confirm the relationship between various complements and tumor prognosis and immune infiltration in colon cancer and GC. CD55 may serve as an indicator on the survival prognosis of patients with colon cancer. Furthermore, as biomarkers for poor prognosis in GC, complements C3, CR4, and C5aR1 may provide potential biological targets for GC immunotherapy.
Collapse
Affiliation(s)
- Dandan Bao
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Chenghao Zhang
- Emergency department, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Longlong Li
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Sichuan, China
| | - Haihong Wang
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Qiuyan Li
- Department of Oncology, Wenzhou Medical University, Wenzhou, China
| | - Leilei Ni
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yinfeng Lin
- Department of Oncology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Rong Huang
- Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Zhangwei Yang
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yan Zhang
- Department of Gastroenterology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yiren Hu
- Department of General Surgery, Medical College of Soochow University, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| |
Collapse
|
26
|
Latansio de Oliveira T, Fontana PD, Bavia L, Cruz LS, Crisma AR, Sassaki GL, Alencar Menezes LR, Wang M, Beltrame FL, Messias-Reason IJ. Effects of Euphorbia umbellata extracts on complement activation and chemotaxis of neutrophils. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113348. [PMID: 32896626 DOI: 10.1016/j.jep.2020.113348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/16/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The species Euphorbia umbellata (leitosinha) has been traditionally used for the treatment of inflammatory diseases and cancer. AIM OF THE STUDY Evaluation the effect of E. umbellata latex extracts obtained with hexane, chloroform, ethyl acetate and methanol on the activation of the complement pathways and neutrophil chemotaxis. MATERIALS AND METHODS The latex was partitioned using Soxhlet apparatus and hexane, chloroform, ethyl acetate and methanol as solvents. The classical and alternative pathway activity were performed by hemolytic assays with sensitized sheep or rabbit erythrocytes, respectively; the lectin pathway activity was quantified by ELISA, through the measurement of C4 molecules and the chemotaxis of human neutrophils was performed using 1% casein as the chemotactic inducer and Boyden's chamber. GC-Q-ToF and NMR analyses were applied to evaluate the chemical composition of E. umbellata latex extracts. RESULTS All E. umbellata latex extracts exhibited an inhibitory effect on the activation of the alternative pathway. Methanol and ethyl acetate extracts inhibited the classical pathway while chloroform extract activated this pathway. Ethyl acetate and hexane extracts inhibited lectin activation. All E. umbellata extracts inhibited casein-induced neutrophil chemotaxis. Terpenes and phenolic compounds have been suggested to be present in the E. umbellta latex extracts. CONCLUSION The E. umbellata latex was able to modulate the functions of the immune system. Thus, it is possible to infer that the terpenes and phenolic compounds of the phytocomplex of E. umbellata latex can contribute for the activity on the complement pathways.
Collapse
Affiliation(s)
- Thais Latansio de Oliveira
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil.
| | - Pâmela Dias Fontana
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil.
| | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil.
| | - Luiza Stolz Cruz
- Laboratory of Phytotherapy, Phytotherapy Technology and Chemistry of Natural Products, State University of Ponta Grossa, Ponta Grossa, Brazil.
| | | | | | | | - Mei Wang
- Natural Products Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, University, Mississippi, USA.
| | - Flávio Luís Beltrame
- Laboratory of Phytotherapy, Phytotherapy Technology and Chemistry of Natural Products, State University of Ponta Grossa, Ponta Grossa, Brazil.
| | - Iara Jose Messias-Reason
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
27
|
Valproic acid influences the expression of genes implicated with hyperglycaemia-induced complement and coagulation pathways. Sci Rep 2021; 11:2163. [PMID: 33495488 PMCID: PMC7835211 DOI: 10.1038/s41598-021-81794-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/11/2021] [Indexed: 01/04/2023] Open
Abstract
Because the liver plays a major role in metabolic homeostasis and secretion of clotting factors and inflammatory innate immune proteins, there is interest in understanding the mechanisms of hepatic cell activation under hyperglycaemia and whether this can be attenuated pharmacologically. We have previously shown that hyperglycaemia stimulates major changes in chromatin organization and metabolism in hepatocytes, and that the histone deacetylase inhibitor valproic acid (VPA) is able to reverse some of these metabolic changes. In this study, we have used RNA-sequencing (RNA-seq) to investigate how VPA influences gene expression in hepatocytes. Interesting, we observed that VPA attenuates hyperglycaemia-induced activation of complement and coagulation cascade genes. We also observe that many of the gene activation events coincide with changes to histone acetylation at the promoter of these genes indicating that epigenetic regulation is involved in VPA action.
Collapse
|
28
|
Akhir FNM, Noor MHM, Leong KWK, Nabizadeh JA, Manthey HD, Sonderegger SE, Fung JNT, McGirr CE, Shiels IA, Mills PC, Woodruff TM, Rolfe BE. An Immunoregulatory Role for Complement Receptors in Murine Models of Breast Cancer. Antibodies (Basel) 2021; 10:2. [PMID: 33430104 PMCID: PMC7838807 DOI: 10.3390/antib10010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
The complement system has demonstrated roles in regulating tumor growth, although these may differ between tumor types. The current study used two murine breast cancer models (EMT6 and 4T1) to investigate whether pharmacological targeting of receptors for complement proteins C3a (C3aR) and C5a (C5aR1) is protective in murine breast cancer models. In contrast to prior studies in other tumor models, treatment with the selective C5aR1 antagonist PMX53 had no effect on tumor growth. However, treatment of mice with a dual C3aR/C5aR1 agonist (YSFKPMPLaR) significantly slowed mammary tumor development and progression. Examination of receptor expression by quantitative polymerase chain reaction (qPCR) analysis showed very low levels of mRNA expression for either C3aR or C5aR1 by EMT6 or 4T1 mammary carcinoma cell lines compared with the J774 macrophage line or bone marrow-derived macrophages. Moreover, flow cytometric analysis found no evidence of C3aR or C5aR1 protein expression by either EMT6 or 4T1 cells, leading us to hypothesize that the tumor inhibitory effects of the dual agonist are indirect, possibly via regulation of the anti-tumor immune response. This hypothesis was supported by flow cytometric analysis of tumor infiltrating leukocyte populations, which demonstrated a significant increase in T lymphocytes in mice treated with the C3aR/C5aR1 agonist. These results support an immunoregulatory role for complement receptors in primary murine mammary carcinoma models. They also suggest that complement activation peptides can influence the anti-tumor response in different ways depending on the cancer type, the host immune response to the tumor and levels of endogenous complement activation within the tumor microenvironment.
Collapse
Affiliation(s)
- Fazrena Nadia Md Akhir
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Mohd Hezmee Mohd Noor
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (M.H.M.N.); (I.A.S.); (P.C.M.)
| | - Keith Weng Kit Leong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| | - Jamileh A. Nabizadeh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| | - Helga D. Manthey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| | - Stefan E. Sonderegger
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| | - Jenny Nga Ting Fung
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| | - Crystal E. McGirr
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| | - Ian A. Shiels
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (M.H.M.N.); (I.A.S.); (P.C.M.)
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (M.H.M.N.); (I.A.S.); (P.C.M.)
| | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Barbara E. Rolfe
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| |
Collapse
|
29
|
The Activation of Prothrombin Seems to Play an Earlier Role than the Complement System in the Progression of Colorectal Cancer: A Mass Spectrometry Evaluation. Diagnostics (Basel) 2020; 10:diagnostics10121077. [PMID: 33322644 PMCID: PMC7763171 DOI: 10.3390/diagnostics10121077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer (CRC) is the second cause of death in men and the third in women. This work deals with the study of the low molecular weight protein fraction of sera from patients who underwent surgery for CRC and who were followed for several years thereafter. MALDI-TOF MS was used to identify serum peptidome profiles of healthy controls, non-metastatic CRC patients and metastatic CRC patients. A multiple regression model was applied to signals preliminarily selected by SAM analysis to take into account the age and gender differences between the groups. We found that, while a signal m/z 2021.08, corresponding to the C3f fragment of the complement system, appears significantly increased only in serum from metastatic CRC patients, a m/z 1561.72 signal, identified as a prothrombin fragment, has a significantly increased abundance in serum from non-metastatic patients as well. The findings were also validated by a bootstrap resampling procedure. The present results provide the basis for further studies on large cohorts of patients in order to confirm C3f and prothrombin as potential serum biomarkers. Thus, new and non-invasive tests might be developed to improve the classification of colorectal cancer.
Collapse
|
30
|
Samson F, Patrick AT, Fabunmi TE, Yahaya MF, Madu J, He W, Sripathi SR, Tyndall J, Raji H, Jee D, Gutsaeva DR, Jahng WJ. Oleic Acid, Cholesterol, and Linoleic Acid as Angiogenesis Initiators. ACS OMEGA 2020; 5:20575-20585. [PMID: 32832811 PMCID: PMC7439708 DOI: 10.1021/acsomega.0c02850] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/23/2020] [Indexed: 05/03/2023]
Abstract
The current study determined the natural angiogenic molecules using an unbiased metabolomics approach. A chick chorioallantoic membrane (CAM) model was used to examine pro- and antiangiogenic molecules, followed by gas chromatography-mass spectrometry (GCMS) analysis. Vessel formation was analyzed quantitatively using the angiogenic index (p < 0.05). At embryonic day one, a white streak or circle area was observed when vessel formation begins. GCMS analysis and database search demonstrated that angiogenesis may initiate when oleic, cholesterol, and linoleic acids increased in the area of angiogenic reactions. The gain of function study was conducted by the injection of cholesterol and oleic acid into a chick embryo to determine the role of each lipid in angiogenesis. We propose that oleic acid, cholesterol, and linoleic acid are natural molecules that set the platform for the initiation stage of angiogenesis before other proteins including the vascular endothelial growth factor, angiopoietin, angiotensin, and erythropoietin join as the angiome in sprout extension and vessel maturation.
Collapse
Affiliation(s)
| | - Ambrose Teru Patrick
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Tosin Esther Fabunmi
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | | | - Joshua Madu
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Weilue He
- Department
of Biomedical Engineering, Michigan Technological
University, Houghton Michigan 49931, United
States
| | - Srinivas R. Sripathi
- Department
of Ophthalmology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jennifer Tyndall
- Department
of Natural and Environmental Sciences, American
University of Nigeria, Yola 640101, Nigeria
| | - Hayatu Raji
- Department
of Natural and Environmental Sciences, American
University of Nigeria, Yola 640101, Nigeria
| | - Donghyun Jee
- Department
of Ophthalmology and Visual Science, St. Vincent’s Hospital,
College of Medicine, The Catholic University
of Korea, Suwon 16247, Korea
| | - Diana R. Gutsaeva
- Department
of Ophthalmology, Augusta University, Augusta, Georgia 30912, United States
| | - Wan Jin Jahng
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
- . Phone: +234-805-550-1032
| |
Collapse
|
31
|
Liu Z, Grant CN, Sun L, Miller BA, Spiegelman VS, Wang HG. Expression Patterns of Immune Genes Reveal Heterogeneous Subtypes of High-Risk Neuroblastoma. Cancers (Basel) 2020; 12:cancers12071739. [PMID: 32629858 PMCID: PMC7408437 DOI: 10.3390/cancers12071739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
High risk neuroblastoma (HR-NB) remains difficult to treat, and its overall survival (OS) is still below 50%. Although HR-NB is a heterogeneous disease, HR-NB patients are currently treated in a similar fashion. Through unsupervised biclustering, we further stratified HR-NB patients into two reproducible and clinically distinct subtypes, including an ultra-high risk neuroblastoma (UHR-NB) and high risk neuroblastoma (HR-NB). The UHR-NB subtype consistently had the worst OS in multiple independent cohorts ( P < 0 . 008 ). Out of 283 neuroblastoma-specific immune genes that were used for stratification, 39 of them were differentiated in UHR-NB, including four upregulated and 35 downregulated, as compared to HR-NB. The four UHR-NB upregulated genes (ADAM22, GAL, KLHL13 and TWIST1) were all upregulated in MYCN amplified neuroblastoma in 5 additional cohorts. TWIST1 and ADAM22 were also positively correlated with cancer stage, while GAL was an independent OS predictor in addition to MYCN and age. Furthermore, we identified 26 commonly upregulated and 311 downregulated genes in UHR-NB from all 4723 immune-related genes. While 43 KEGG pathways with molecular functions were enriched in the downregulated immune-related genes, only the P53 signaling pathway was enriched in the upregulated ones, which suggested that UHR-NB was a TP53 related subtype with reduced immune activities.
Collapse
Affiliation(s)
- Zhenqiu Liu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (B.A.M.); (V.S.S.); (H.-G.W)
- Correspondence:
| | - Christa N. Grant
- Division of Pediatric Surgery, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
| | - Lidan Sun
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
| | - Barbara A. Miller
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (B.A.M.); (V.S.S.); (H.-G.W)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (B.A.M.); (V.S.S.); (H.-G.W)
| | - Hong-Gang Wang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (B.A.M.); (V.S.S.); (H.-G.W)
| |
Collapse
|
32
|
Wang H, Li Y, Shi G, Wang Y, Lin Y, Wang Q, Zhang Y, Yang Q, Dai L, Cheng L, Su X, Yang Y, Zhang S, Li Z, Li J, Wei Y, Yu D, Deng H. A Novel Antitumor Strategy: Simultaneously Inhibiting Angiogenesis and Complement by Targeting VEGFA/PIGF and C3b/C4b. Mol Ther Oncolytics 2020; 16:20-29. [PMID: 31909182 PMCID: PMC6940616 DOI: 10.1016/j.omto.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023] Open
Abstract
Therapeutic antibodies targeting vascular endothelial growth factor (VEGF) have become a critical regimen for tumor therapy, but the efficacy of monotherapy is usually limited by drug resistance and multiple angiogenic mechanisms. Complement proteins are becoming potential candidates for cancer-targeted therapy based on their role in promoting cancer progression and angiogenesis. However, the antitumor abilities of simultaneous VEGF and complement blockade were unknown. We generated a humanized soluble VEGFR-Fc fusion protein (VID) binding VEGFA/PIGF and a CR1-Fc fusion protein (CID) targeting C3b/C4b. Both VID and CID had good affinities to their ligands and showed effective bioactivities. In vitro, angiogenesis effects induced by VEGF and hemolysis induced by complement were inhibited by VID and CID, respectively. Further, VID and CID confer a synergetic therapeutic effect in a colitis-associated colorectal cancer (CAC) model and an orthotopic 4T1 breast cancer model. Mechanically, combination therapy inhibited tumor angiogenesis, cell proliferation, and MDSC infiltration in the tumor microenvironment and promoted tumor cell apoptosis. Our study offers a novel therapeutic strategy for anti-VEGF-resistant tumors and chronic-inflammation-associated tumors.
Collapse
Affiliation(s)
- Huiling Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yiming Li
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, Jiangsu 215000, China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuan Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Lin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qin Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yujing Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qianmei Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhi Li
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, Jiangsu 215000, China
| | - Jia Li
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, Jiangsu 215000, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
33
|
Yuan K, Ye J, Liu Z, Ren Y, He W, Xu J, He Y, Yuan Y. Complement C3 overexpression activates JAK2/STAT3 pathway and correlates with gastric cancer progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:9. [PMID: 31928530 PMCID: PMC6956509 DOI: 10.1186/s13046-019-1514-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/22/2019] [Indexed: 12/21/2022]
Abstract
Background Localized C3 deposition is a well-known factor of inflammation. However, its role in oncoprogression of gastric cancer (GC) remains obscured. This study aims to explore the prognostic value of C3 deposition and to elucidate the mechanism of C3-related oncoprogression for GC. Methods From August to December 2013, 106 GC patients were prospectively included. The regional expression of C3 and other effectors in gastric tissues were detected by WB, IHC, qRT-PCR and other tests. The correlation of localized C3 deposition and oncologic outcomes was determined by 5-year survival significance. Human GC and normal epithelial cell lines were employed to detect a relationship between C3 and STAT3 signaling pathway in vitro experiments. Results C3 and C3a expression were markedly enhanced in GC tissues at both mRNA and protein levels compared with those in paired nontumorous tissues. According to IHC C3 score, 65 (61.3%) and 41 (38.7%) patients had high and low C3 deposition, respectively. C3 deposition was negatively correlated with plasma levels of C3 and C3a (both P < 0.001) and positively correlated with pathological T and TNM stages (both P < 0.001). High C3 deposition was identified as an independent prognostic factor of poor 5-year overall survival (P = 0.045). In vitro C3 administration remarkably enhanced p-JAK2/p-STAT3 expression in GC cell lines but caused a reduction of such activation when pre-incubated with a C3 blocker. Importantly, C3 failed to activate such signaling in cells pre-treated with a JAK2 inhibitor. Conclusions Localized C3 deposition in the tumor microenvironment is a relevant immune signature for predicting prognosis of GC. It may aberrantly activate JAK2/STAT3 pathway allowing oncoprogression. Trial registration ClinicalTrials.gov, NCT02425930, Registered 1st August 2013.
Collapse
Affiliation(s)
- Kaitao Yuan
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Center of Gastric cancer, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jinning Ye
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Center of Gastric cancer, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhenguo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yufeng Ren
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weiling He
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China. .,Center of Gastric cancer, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Jianbo Xu
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China. .,Center of Gastric cancer, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Yulong He
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China. .,Center of Gastric cancer, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Yujie Yuan
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China. .,Center of Gastric cancer, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
34
|
Olcina MM, Balanis NG, Kim RK, Aksoy BA, Kodysh J, Thompson MJ, Hammerbacher J, Graeber TG, Giaccia AJ. Mutations in an Innate Immunity Pathway Are Associated with Poor Overall Survival Outcomes and Hypoxic Signaling in Cancer. Cell Rep 2019; 25:3721-3732.e6. [PMID: 30590044 PMCID: PMC6405289 DOI: 10.1016/j.celrep.2018.11.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/01/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
Complement-mediated cytotoxicity may act as a selective pressure for tumor overexpression of complement regulators. We hypothesize that the same selective pressure could lead to complement alterations at the genetic level. We find that, when analyzed as a pathway, mutations in complement genes occur at a relatively high frequency and are associated with changes in overall survival across a number of cancer types. Analysis of pathways expressed in patients with complement mutations that are associated with poor overall survival reveals crosstalk between complement and hypoxia in colorectal cancer. The importance of this crosstalk is highlighted by two key findings: hypoxic signaling is increased in tumors harboring complement mutations, and hypoxic tumor cells are resistant to complement-mediated cytotoxicity due, in part, to hypoxia-induced expression of complement regulator CD55. The range of strategies employed by tumors to dysregulate the complement system testifies to the importance of this pathway in tumor progression.
Collapse
Affiliation(s)
- Monica M Olcina
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
| | - Nikolas G Balanis
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ryan K Kim
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - B Arman Aksoy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia Kodysh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Thompson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeff Hammerbacher
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Grand D, Navrazhina K, Frew JW. Integrating complement into the molecular pathogenesis of Hidradenitis Suppurativa. Exp Dermatol 2019; 29:86-92. [PMID: 31688984 DOI: 10.1111/exd.14056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
Complement inhibition has been identified as a potential therapeutic target for multiple inflammatory disorders including Hidradenitis Suppurativa (HS). It is currently unclear how complement integrates into our current model of molecular pathogenesis in HS and whether it represents a central component of pathogenesis, or a neutrophil-associated bystander. Levels of C5a in serum and tissue correlate with disease activity and degree of neutrophilic infiltrates in HS. C5a has been associated with Th17 immune axis activation in psoriasis, rheumatoid arthritis and Crohn's disease with strong similarities to TH17 activation in HS. Porphyromonas species (which are identified in the HS microbiome) are able to cleave inactive C5 into C5a implicating the cutaneous microbiome as an activator of complement. C3a and C5a are associated with activation of the NLRP3 inflammasome, implicated in the inflammatory drive in HS. Complement receptors are present upon dendritic cells, monocytes, fibroblasts and adipocytes, which may broaden the potential contribution of complement to multiple aspects of HS pathogenesis. Dysregulation of complement receptor pathways has been documented in obesity, insulin resistance and polycystic ovarian syndrome leading to the possibility that complement may explain the epidemiological associations between these conditions and HS. The therapeutic potential of complement inhibitors in HS may be related to the therapeutic target (complement receptor or complement subunit) and the presence of alternate receptors (such as C5aR2) or ligands (including C3a, PAMPs and DAMPs). Integrating complement into the known pathogenesis of HS may aid in explaining the contradictory results between Phase 2 studies of C5a antagonists. It also allows for the identification of existing knowledge gaps to target further clinical investigation and research.
Collapse
Affiliation(s)
- David Grand
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA.,Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell University, New York, NY, USA
| | - John W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
36
|
Germline variability and tumor expression level of ribosomal protein gene RPL28 are associated with survival of metastatic colorectal cancer patients. Sci Rep 2019; 9:13008. [PMID: 31506518 PMCID: PMC6736932 DOI: 10.1038/s41598-019-49477-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
This study investigated the potential of single nucleotide polymorphisms as predictors of survival in two cohorts comprising 417 metastatic colorectal cancer (mCRC) patients treated with the FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) regimen. The rs4806668G > T of the ribosomal protein gene RPL28 was associated with shorter progression-free survival and overall survival by 5 and 9 months (P = 0.002), with hazard ratios of 3.36 (P < 0.001) and 3.07 (P = 0.002), respectively. The rs4806668T allele was associated with an increased RPL28 expression in transverse normal colon tissues (n = 246, P = 0.007). RPL28 expression was higher in colorectal tumors compared to paired normal tissues by up to 124% (P < 0.001) in three independent datasets. Metastatic cases with highest RPL28 tumor expression had a reduced survival in two datasets (n = 88, P = 0.009 and n = 56, P = 0.009). High RPL28 was further associated with changes in immunoglobulin and extracellular matrix pathways. Repression of RPL28 reduced proliferation by 1.4-fold to 5.6-fold (P < 0.05) in colon cancer HCT116 and HT-29 cells. Our findings suggest that the ribosomal RPL28 protein may influence mCRC outcome.
Collapse
|
37
|
Ajona D, Zandueta C, Corrales L, Moreno H, Pajares MJ, Ortiz-Espinosa S, Martínez-Terroba E, Perurena N, de Miguel FJ, Jantus-Lewintre E, Camps C, Vicent S, Agorreta J, Montuenga LM, Pio R, Lecanda F. Blockade of the Complement C5a/C5aR1 Axis Impairs Lung Cancer Bone Metastasis by CXCL16-mediated Effects. Am J Respir Crit Care Med 2019; 197:1164-1176. [PMID: 29327939 DOI: 10.1164/rccm.201703-0660oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE C5aR1 (CD88), a receptor for complement anaphylatoxin C5a, is a potent immune mediator. Its impact on malignant growth and dissemination of non-small cell lung cancer cells is poorly understood. OBJECTIVES To investigate the contribution of the C5a/C5aR1 axis to the malignant phenotype of non-small cell lung cancer cells, particularly in skeletal colonization, a preferential lung metastasis site. METHODS Association between C5aR1 expression and clinical outcome was assessed in silico and validated by immunohistochemistry. Functional significance was evaluated by lentiviral gene silencing and ligand l-aptamer inhibition in in vivo models of lung cancer bone metastasis. In vitro functional assays for signaling, migration, invasion, metalloprotease activity, and osteoclastogenesis were also performed. MEASUREMENTS AND MAIN RESULTS High levels of C5aR1 in human lung tumors were significantly associated with shorter recurrence-free survival, overall survival, and bone metastasis. Silencing of C5aR1 in lung cancer cells led to a substantial reduction in skeletal metastatic burden and osteolysis in in vivo models. Furthermore, metalloproteolytic, migratory, and invasive tumor cell activities were modulated in vitro by C5aR1 stimulation or gene silencing. l-Aptamer blockade or C5aR1 silencing significantly reduced the osseous metastatic activity of lung cancer cells in vivo. This effect was associated with decreased osteoclastogenic activity in vitro and was rescued by the exogenous addition of the chemokine CXCL16. CONCLUSIONS Disruption of C5aR1 signaling in lung cancer cells abrogates their tumor-associated osteoclastogenic activity, impairing osseous colonization. This study unveils the role played by the C5a/C5aR1 axis in lung cancer dissemination and supports its potential use as a novel therapeutic target.
Collapse
Affiliation(s)
- Daniel Ajona
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,4 Department of Biochemistry and Genetics, School of Sciences, and
| | - Carolina Zandueta
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain
| | - Leticia Corrales
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain
| | - Haritz Moreno
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - María J Pajares
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,5 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Sergio Ortiz-Espinosa
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,4 Department of Biochemistry and Genetics, School of Sciences, and
| | - Elena Martínez-Terroba
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,5 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Naiara Perurena
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain
| | - Fernando J de Miguel
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,4 Department of Biochemistry and Genetics, School of Sciences, and
| | - Eloisa Jantus-Lewintre
- 3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,6 Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,7 Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Carlos Camps
- 3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,6 Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,8 Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain; and.,9 Department of Medicine, Universitat de València, Valencia, Spain
| | - Silvestre Vicent
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,5 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Jackeline Agorreta
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,5 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Luis M Montuenga
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,5 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Ruben Pio
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,4 Department of Biochemistry and Genetics, School of Sciences, and
| | - Fernando Lecanda
- 1 Center for Applied Medical Research, Program in Solid Tumors and Biomarkers, Pamplona, Spain.,2 IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,3 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.,5 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
38
|
Riihilä P, Nissinen L, Knuutila J, Rahmati Nezhad P, Viiklepp K, Kähäri VM. Complement System in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20143550. [PMID: 31331124 PMCID: PMC6678994 DOI: 10.3390/ijms20143550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with high mortality rates in the advanced stage. Chronic inflammation is a recognized risk factor for cSCC progression and the complement system, as a part of innate immunity, belongs to the microenvironment of tumors. The complement system is a double-edged sword in cancer, since complement activation is involved in anti-tumor cytotoxicity and immune responses, but it also promotes cancer progression directly and indirectly. Recently, the role of several complement components and inhibitors in the regulation of progression of cSCC has been shown. In this review, we will discuss the role of complement system components and inhibitors as biomarkers and potential new targets for therapeutic intervention in cSCC.
Collapse
Affiliation(s)
- Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Jaakko Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland.
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland.
| |
Collapse
|
39
|
Hong M, Shi H, Wang N, Tan HY, Wang Q, Feng Y. Dual Effects of Chinese Herbal Medicines on Angiogenesis in Cancer and Ischemic Stroke Treatments: Role of HIF-1 Network. Front Pharmacol 2019; 10:696. [PMID: 31297056 PMCID: PMC6606950 DOI: 10.3389/fphar.2019.00696] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1)-induced angiogenesis has been involved in numerous pathological conditions, and it may be harmful or beneficial depending on the types of diseases. Exploration on angiogenesis has sparked hopes in providing novel therapeutic approaches on multiple diseases with high mortality rates, such as cancer and ischemic stroke. The HIF-1 pathway is considered to be a major regulator of angiogenesis. HIF-1 seems to be involved in the vascular formation process by synergistic correlations with other proangiogenic factors in cancer and cerebrovascular disease. The regulation of HIF-1-dependent angiogenesis is related to the modulation of HIF-1 bioactivity by regulating HIF-1α transcription or protein translation, HIF-1α DNA binding, HIF-1α and HIF-1α dimerization, and HIF-1 degradation. Traditional Chinese herbal medicines have a long history of clinical use in both cancer and stroke treatments in Asia. Growing evidence has demonstrated potential proangiogenic benefits of Chinese herbal medicines in ischemic stroke, whereas tumor angiogenesis could be inhibited by the active components in Chinese herbal medicines. The objective of this review is to provide comprehensive insight on the effects of Chinese herbal medicines on angiogenesis by regulating HIF-1 pathways in both cancer and ischemic stroke.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
40
|
Chang TT, Cheng JH, Tsai HW, Young KC, Hsieh SY, Ho CH. Plasma proteome plus site-specific N-glycoprofiling for hepatobiliary carcinomas. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 5:199-212. [PMID: 31136099 PMCID: PMC6648390 DOI: 10.1002/cjp2.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/02/2019] [Accepted: 05/23/2019] [Indexed: 12/29/2022]
Abstract
Hepatobiliary cancer is the third leading cause of cancer death worldwide. Appropriate markers for early diagnosis, monitoring of disease progression, and prediction of postsurgical outcome are still lacking. As the majority of circulating N‐glycoproteins are originated from the hepatobiliary system, we sought to explore new markers by assessing the dynamics of N‐glycoproteome in plasma samples from patients with hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), or combined HCC and CCA (cHCC‐CCA). Using a mass spectrometry‐based quantitative proteomic approach, we found that 57 of 5358 identified plasma proteins were differentially expressed in hepatobiliary cancers. The levels of four essential proteins, including complement C3 and apolipoprotein C‐III in HCC, galectin‐3‐binding protein in CCA, and 72 kDa inositol polyphosphate 5‐phosphatase in cHCC‐CCA, were highly correlated with tumor stage, tumor grade, recurrence‐free survival, and overall survival. Postproteomic site‐specific N‐glycan analyses showed that human complement C3 bears high‐mannose and hybrid glycoforms rather than complex glycoforms at Asn85. The abundance of complement C3 with mannose‐5 or mannose‐6 glycoform at Asn85 was associated with HCC tumor grade. Furthermore, stepwise Cox regression analyses revealed that HCC patients with a hybrid glycoform at Asn85 of complement C3 had a lower postsurgery tumor recurrence rate or mortality rate than those with a low amount of complement C3 protein. In conclusion, our data show that particular plasma N‐glycoproteins with specific N‐glycan compositions could be potential noninvasive markers to evaluate oncological status and prognosis of hepatobiliary cancers.
Collapse
Affiliation(s)
- Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ji-Hong Cheng
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chia Young
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sun-Yuan Hsieh
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| |
Collapse
|
41
|
Lenkiewicz A, Bujko K, Brzezniakiewicz-Janus K, Xu B, Ratajczak MZ. The Complement Cascade as a Mediator of Human Malignant Hematopoietic Cell Trafficking. Front Immunol 2019; 10:1292. [PMID: 31231394 PMCID: PMC6567995 DOI: 10.3389/fimmu.2019.01292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
The complement cascade (ComC) cleavage fragments C3a and C5a regulate the trafficking of normal, differentiated hematopoietic cells, although they do not chemoattract more primitive hematopoietic stem/progenitor cells (HSPCs). By contrast, human myeloid and lymphoid leukemia cell lines and clonogenic blasts from chronic myelogenous leukemia (CML) and acute myelogenous leukemia (AML) patients respond to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. Consistent with this finding, C3a and C5a receptors are expressed by leukemic cells at the mRNA (RT-PCR) and protein (FACS) levels, and these cells respond to C3a and C5a stimulation by phosphorylation of p44/42 MAPK and AKT. However, neither of these ComC cleavage fragments have an effect on cell proliferation or survival. In parallel, we found that inducible heme oxygenase 1 (HO-1)-an anti-inflammatory enzyme, is a negative regulator of ComC-mediated trafficking of malignant cells and that stimulation of these cells by C3 or C5 cleavage fragments downregulates HO-1 expression in a p38 MAPK-dependent manner, rendering cells exposed to C3a or C5a more mobile. We propose that, while the ComC is not directly involved in the proliferation of malignant hematopoietic cells, its activation in leukemia/lymphoma patients (e.g., as a result of accompanying infections or sterile inflammation after radio-chemotherapy) enhances the motility of malignant cells and contributes to their dissemination in a p38 MAPK-HO-1 axis-dependent manner. Based on this idea, we propose that inhibition of p38 MAPK or upregulation of HO-1 by available small-molecule modulators would have a beneficial effect on ameliorating expansion and dissemination of leukemia/lymphoma cells in clinical situations in which the ComC becomes activated. Finally, since we detected expression of C3 and C5 mRNA in human leukemic cell lines, further study of the potential role of the complosome in regulating the behavior of these cells is needed.
Collapse
Affiliation(s)
- Anna Lenkiewicz
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | | | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology of Xiamen University, Xiamen, China
| | - Mariusz Z. Ratajczak
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
42
|
Kleczko EK, Kwak JW, Schenk EL, Nemenoff RA. Targeting the Complement Pathway as a Therapeutic Strategy in Lung Cancer. Front Immunol 2019; 10:954. [PMID: 31134065 PMCID: PMC6522855 DOI: 10.3389/fimmu.2019.00954] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the leading cause of cancer death in men and women. Lung adenocarcinoma (LUAD), represents approximately 40% of all lung cancer cases. Advances in recent years, such as the identification of oncogenes and the use of immunotherapies, have changed the treatment of LUAD. Yet survival rates still remain low. Additionally, there is still a gap in understanding the molecular and cellular interactions between cancer cells and the immune tumor microenvironment (TME). Defining how cancer cells with distinct oncogenic drivers interact with the TME and new strategies for enhancing anti-tumor immunity are greatly needed. The complement cascade, a central part of the innate immune system, plays an important role in regulation of adaptive immunity. Initially it was proposed that complement activation on the surface of cancer cells would inhibit cancer progression via membrane attack complex (MAC)-dependent killing. However, data from several groups have shown that complement activation promotes cancer progression, probably through the actions of anaphylatoxins (C3a and C5a) on the TME and engagement of immunoevasive pathways. While originally shown to be produced in the liver, recent studies show localized complement production in numerous cell types including immune cells and tumor cells. These results suggest that complement inhibitory drugs may represent a powerful new approach for treatment of NSCLC, and numerous new anti-complement drugs are in clinical development. However, the mechanisms by which complement is activated and affects tumor progression are not well understood. Furthermore, the role of local complement production vs. systemic activation has not been carefully examined. This review will focus on our current understanding of complement action in LUAD, and describe gaps in our knowledge critical for advancing complement therapy into the clinic.
Collapse
Affiliation(s)
- Emily K Kleczko
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeff W Kwak
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Erin L Schenk
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Raphael A Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
43
|
Li Y, Wan YY, Zhu B. Immune Cell Metabolism in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1011:163-196. [PMID: 28875490 DOI: 10.1007/978-94-024-1170-6_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumor microenvironment (TME) is composed of tumor cells, immune cells, cytokines, extracellular matrix, etc. The immune system and the metabolisms of glucose, lipids, amino acids, and nucleotides are integrated in the tumorigenesis and development. Cancer cells and immune cells show metabolic reprogramming in the TME, which intimately links immune cell functions and edits tumor immunology. Recent findings in immune cell metabolism hold the promising possibilities toward clinical therapeutics for treating cancer. This chapter introduces the updated understandings of metabolic reprogramming of immune cells in the TME and suggests new directions in manipulation of immune responses for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
44
|
Pio R, Ajona D, Ortiz-Espinosa S, Mantovani A, Lambris JD. Complementing the Cancer-Immunity Cycle. Front Immunol 2019; 10:774. [PMID: 31031765 PMCID: PMC6473060 DOI: 10.3389/fimmu.2019.00774] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Reactivation of cytotoxic CD8+ T-cell responses has set a new direction for cancer immunotherapy. Neutralizing antibodies targeting immune checkpoint programmed cell death protein 1 (PD-1) or its ligand (PD-L1) have been particularly successful for tumor types with limited therapeutic options such as melanoma and lung cancer. However, reactivation of T cells is only one step toward tumor elimination, and a substantial fraction of patients fails to respond to these therapies. In this context, combination therapies targeting more than one of the steps of the cancer-immune cycle may provide significant benefits. To find the best combinations, it is of upmost importance to understand the interplay between cancer cells and all the components of the immune response. This review focuses on the elements of the complement system that come into play in the cancer-immunity cycle. The complement system, an essential part of innate immunity, has emerged as a major regulator of cancer immunity. Complement effectors such as C1q, anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1, have been associated with tolerogenic cell death and inhibition of antitumor T-cell responses through the recruitment and/or activation of immunosuppressive cell subpopulations such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), or M2 tumor-associated macrophages (TAMs). Evidence is provided to support the idea that complement blocks many of the effector routes associated with the cancer-immunity cycle, providing the rationale for new therapeutic combinations aimed to enhance the antitumor efficacy of anti-PD-1/PD-L1 checkpoint inhibitors.
Collapse
Affiliation(s)
- Ruben Pio
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Daniel Ajona
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sergio Ortiz-Espinosa
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
45
|
Nachmany I, Bogoch Y, Friedlander-Malik G, Amar O, Bondar E, Zohar N, Hantisteanu S, Fainaru O, Lubezky N, Klausner JM, Pencovich N. The transcriptional profile of circulating myeloid derived suppressor cells correlates with tumor development and progression in mouse. Genes Immun 2019; 20:589-598. [PMID: 30880333 DOI: 10.1038/s41435-019-0062-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/13/2019] [Accepted: 02/25/2019] [Indexed: 12/27/2022]
Abstract
Myeloid derived suppressor cells (MDSCs) play key roles in cancer development. Accumulation of peripheral-blood MDSCs (PB-MDSCs) corresponds to the progression of various cancers, but provides only a crude indicator. We aimed toward identifying changes in the transcriptional profile of PB-MDSCs in response to tumor growth. CT26 colon cancer cells and B16 melanoma cells (106) were inoculated into peritoneal cavities of BALB/c mice and subcutaneously to C57-black mice, respectively. The circulating levels and global transcriptional patterns of PB CD11b+Ly6g+ MDSCs were assessed in control mice, and 4, 8, and 11 days following tumor cell inoculation. Although a significant accumulation of PB-MDSCs was demonstrated only 11 days following tumor induction, a pronounced transcriptional response was identified already on day 4 while the tumor was ~1 mm in size. Further transcriptional changes correlated with different stages of tumor growth. Key MDSC genes and canonical signaling pathways were activated along tumor progression. This phenomenon was demonstrated in both cancer models, and a consensus set of 817 genes, involved in myeloid cell recruitment and angiogenesis, was identified. The data suggest that the transcriptional signatures of PB-MDSC may serve as markers for tumor progression, as well as providing potential targets for future therapies.
Collapse
Affiliation(s)
- Ido Nachmany
- The Laboratory of Molecular Genetics, HPB Cancer Research, Department of Surgery B, the Surgical Division, Tel-Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoel Bogoch
- The Laboratory of Molecular Genetics, HPB Cancer Research, Department of Surgery B, the Surgical Division, Tel-Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gilgi Friedlander-Malik
- Ilana and Pascal Mantoux Institute for Bioinformatics, Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot, Israel
| | - Omer Amar
- The Laboratory of Molecular Genetics, HPB Cancer Research, Department of Surgery B, the Surgical Division, Tel-Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ekaterina Bondar
- The Laboratory of Molecular Genetics, HPB Cancer Research, Department of Surgery B, the Surgical Division, Tel-Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nitzan Zohar
- The Laboratory of Molecular Genetics, HPB Cancer Research, Department of Surgery B, the Surgical Division, Tel-Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shay Hantisteanu
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Fainaru
- IVF Unit, Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Nir Lubezky
- The Laboratory of Molecular Genetics, HPB Cancer Research, Department of Surgery B, the Surgical Division, Tel-Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Joseph M Klausner
- The Laboratory of Molecular Genetics, HPB Cancer Research, Department of Surgery B, the Surgical Division, Tel-Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Niv Pencovich
- The Laboratory of Molecular Genetics, HPB Cancer Research, Department of Surgery B, the Surgical Division, Tel-Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
46
|
CFP suppresses breast cancer cell growth by TES-mediated upregulation of the transcription factor DDIT3. Oncogene 2019; 38:4560-4573. [PMID: 30755730 DOI: 10.1038/s41388-019-0739-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/04/2018] [Accepted: 01/26/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is a heterogeneous genetic disease driven by the accumulation of individual mutations per tumor. Whole-genome sequencing approaches have identified numerous genes with recurrent mutations in primary tumors. Although mutations in well characterized tumor suppressors and oncogenes are overrepresented in these sets, the majority of the genetically altered genes have so far unknown roles in breast cancer progression. To improve the basic understanding of the complex disease breast cancer and to potentially identify novel drug targets or regulators of known cancer-driving pathways, we analyzed 86 wild-type genes and 94 mutated variants for their effect on cell growth using a serially constructed panel of MCF7 cell lines. We demonstrate in subsequent experiments that the metal cation transporter CNNM4 regulates growth by induction of apoptosis and identified a tumor suppressive role of complement factor properdin (CFP) in vitro and in vivo. CFP appears to induce the intracellular upregulation of the pro-apoptotic transcription factor DDIT3 which is associated with endoplasmic reticulum-stress response.
Collapse
|
47
|
Banach P, Dereziński P, Matuszewska E, Matysiak J, Bochyński H, Kokot ZJ, Nowak-Markwitz E. MALDI-TOF-MS Analysis in the Identification of Urine Proteomic Patterns of Gestational Trophoblastic Disease. Metabolites 2019; 9:metabo9020030. [PMID: 30744112 PMCID: PMC6409522 DOI: 10.3390/metabo9020030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 12/20/2022] Open
Abstract
Gestational trophoblastic disease (GTD) is a group of highly aggressive, rare tumors. Human chorionic gonadotropin is a common biomarker used in the diagnosis and monitoring of GTD. To improve our knowledge of the pathology of GTD, we performed protein-peptide profiling on the urine of patients affected with gestational trophoblastic neoplasm (GTN). We analyzed urine samples from patients diagnosed with GTN (n = 26) and from healthy pregnant and non-pregnant controls (n = 17) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Ions were examined in a linear mode over a m/z range of 1000–10,000. All GTN urine samples were analyzed before and after treatment and compared with those of the controls. The statistical analyses included multivariate classification algorithms as well as ROC curves. Urine sample analyses revealed there were significant differences in the composition of the ions between the evaluated groups. Comparing the pre-treatment and group with the pregnant controls, we identified two discriminatory proteins: hemoglobin subunit α (m/z = 1951.81) and complement C4A (m/z = 1895.43). Then, comparing urine samples from the post-treatment cases with those from the non-pregnant controls, we identified the peptides uromodulin fragments (m/z = 1682.34 and 1913.54) and complement C4A (m/z = 1895.43).
Collapse
Affiliation(s)
- Paulina Banach
- Gynecologic Oncology Department, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland.
| | - Paweł Dereziński
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Eliza Matuszewska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Hubert Bochyński
- Gynecologic Oncology Department, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland.
| | - Zenon J Kokot
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland.
| |
Collapse
|
48
|
Caracciolo G, Safavi-Sohi R, Malekzadeh R, Poustchi H, Vasighi M, Zenezini Chiozzi R, Capriotti AL, Laganà A, Hajipour M, Di Domenico M, Di Carlo A, Caputo D, Aghaverdi H, Papi M, Palmieri V, Santoni A, Palchetti S, Digiacomo L, Pozzi D, Suslick KS, Mahmoudi M. Disease-specific protein corona sensor arrays may have disease detection capacity. NANOSCALE HORIZONS 2019; 4:1063-1076. [DOI: 10.1039/c9nh00097f] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Protein corona sensor array technology identifies diseases through specific proteomics pattern recognition.
Collapse
|
49
|
Hansen CB, Willer A, Bayarri-Olmos R, Kemper C, Garred P. Expression of complement C3, C5, C3aR and C5aR1 genes in resting and activated CD4 + T cells. Immunobiology 2018; 224:307-315. [PMID: 30612786 DOI: 10.1016/j.imbio.2018.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023]
Abstract
Complement activation is traditionally thought to occur in the extracellular space. However, it has been suggested that complement proteins are activated and function at additional locations. T cells contain intracellular stores of C3 and C5 that can be cleaved into C3a and C5a and bind to intracellular receptors, which have been shown to be of vital importance for the differentiation and function of these cells. However, whether the origin of the complement proteins located within T cells is derived from endogenous produced complement or from an uptake dependent mechanism is unknown. The presence of intracellular C3 in T cells from normal donors was investigated by fluorescence microscopy and flow cytometry. Moreover, mRNA expression levels of several genes encoding for complement proteins with primary focus on C3, C3aR, C5 and C5aR1 during resting state and upon activation of CD4+ T cells were investigated by a quantitative PCR technique. Furthermore, the gene expression level was evaluated at different time points. We confirmed the presence of intracellular C3 protein in normal T-cells. However, we could not see any increase in mRNA levels using any activation strategy tested. On the contrary, we observed a slight increase in C3 and C5aR1 mRNA only in the non-activated T-cells compared to the activated T cells, and a decrease in the activated T-cells at different incubation time points. Our results show that there is a baseline intracellular expression of the complement C3, C5, C3aR and C5aR1 genes in normal CD4+ T cells, but that expression is not increased during T-cell activation, but rather down regulated. Thus, the pool of intracellular complement in CD4+ T cells may either be due to accumulated complement due low-grade expression or arise from the circulation from an uptake dependent mechanism, but these possibilities are not mutually exclusive.
Collapse
Affiliation(s)
- Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Faculty of Health and Medical Sciences, University Hospital of Copenhagen, Denmark
| | - Anton Willer
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Faculty of Health and Medical Sciences, University Hospital of Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Faculty of Health and Medical Sciences, University Hospital of Copenhagen, Denmark
| | - Claudia Kemper
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD, 20814, USA
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Faculty of Health and Medical Sciences, University Hospital of Copenhagen, Denmark.
| |
Collapse
|
50
|
Molecular dynamic simulations, ALIE surface, Fukui functions geometrical, molecular docking and vibrational spectra studies of tetra chloro p and m -xylene. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|