1
|
Daniel N, Farinella R, Belluomini F, Fajkic A, Rizzato C, Souček P, Campa D, Hughes DJ. The relationship of the microbiome, associated metabolites and the gut barrier with pancreatic cancer. Semin Cancer Biol 2025; 112:43-57. [PMID: 40154652 DOI: 10.1016/j.semcancer.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Pancreatic cancers have high mortality and rising incidence rates which may be related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and obesity rates. Recent data also suggest a role for the gut microbiome in the development of pancreatic cancer. Here, we review the experimental and observational evidence for the roles of the oral, gut and intratumoural microbiomes, impaired gut barrier function and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to pancreatic disease with a focus on pancreatic ductal adenocarcinoma (PDAC) initiation and progression. We also highlight some emerging gut microbiome editing techniques currently being investigated in the context of pancreatic disease. Notably, while the gut microbiome is significantly altered in PDAC and its precursor diseases, its utility as a diagnostic and prognostic tool is hindered by a lack of reproducibility and the potential for reverse causality in case-control cohorts. Future research should emphasise longitudinal and mechanistic studies as well as integrating lifestyle exposure and multi-omics data to unravel complex host-microbiome interactions. This will allow for deeper aetiologic and mechanistic insights that can inform treatments and guide public health recommendations.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Almir Fajkic
- Department of Pathophysiology Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Pavel Souček
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Jin X, Gu Y, Song X. Research status of the relationship between microecological imbalance and lung cancer. Front Microbiol 2025; 16:1558379. [PMID: 40130240 PMCID: PMC11931131 DOI: 10.3389/fmicb.2025.1558379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Microecology refers to the ecosystem formed by human and microbial communities in the process of co-evolution, the microecological imbalance is associated with occurrence and development of multiple diseases, including lung cancer. In this review, we detailedly summarized the concept and roles of microecology, the relationship between microecology and human diseases, and related techniques in microecology studies. Importantly, we specially analyzed the correlations between microecology and lung cancer by focusing on gut microbiota, oral microbiota and lower respiratory tract microbiota, and further evaluated the effects of microbiota dysbiosis on chemotherapy and immunotherapy efficacy in lung cancer. At last, we discussed the potential mechanisms by which dysregulated microbiota promotes the genesis and development of lung cancer. Microecology-centered detection and intervention will improve the early diagnosis of lung cancer and provide new targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xin Jin
- Department of Clinical Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yangang Gu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaojie Song
- Department of Respiratory and Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Zhang C, Wang Y, Cheng L, Cao X, Liu C. Gut microbiota in colorectal cancer: a review of its influence on tumor immune surveillance and therapeutic response. Front Oncol 2025; 15:1557959. [PMID: 40110192 PMCID: PMC11919680 DOI: 10.3389/fonc.2025.1557959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Colorectal cancer (CRC) poses a significant global health burden, with gut microbiota emerging as a crucial modulator of CRC pathogenesis and therapeutic outcomes. This review synthesizes current evidence on the influence of gut microbiota on tumor immune surveillance and responses to immunotherapies and chemotherapy in CRC. We highlight the role of specific microbial taxa in promoting or inhibiting tumor growth and the potential of microbiota-based biomarkers for predicting treatment efficacy. The review also discusses the implications of microbiota modulation strategies, including diet, probiotics, and fecal microbiota transplantation, for personalized CRC management. By critically evaluating the literature, we aim to provide a comprehensive understanding of the gut microbiota's dual role in CRC and to inform future research directions in this field.
Collapse
Affiliation(s)
- Chunlei Zhang
- Department of Colorectal and Anus Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yong Wang
- Department of Hepatobiliary Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Lei Cheng
- Department of Colorectal and Anus Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xiansheng Cao
- Department of Gastrointestinal Surgery, Hernia and Abdominal Wall Surgery I, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Chunyuan Liu
- Department of Colorectal and Anus Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Guo J, Han J, Li F, Ma Q, He J, You F, Ren Y, Fu X. 16S rRNA sequencing reveals relationships among enrichment of oral microbiota in the lower respiratory tract and pulmonary nodules malignant progression. Microbiol Spectr 2025; 13:e0128424. [PMID: 39907436 DOI: 10.1128/spectrum.01284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 12/17/2024] [Indexed: 02/06/2025] Open
Abstract
Micro-aspiration of oral microorganisms results in considerable enrichment within the lower respiratory tract (LRT), constituting an early event in lung cancer pathogenesis. To explore the correlation between malignant risk of pulmonary nodules (PNs) and oral commensals enrichment in LRT, oral saliva and bronchial alveolar lavage fluid samples from 22 low-risk PN patients, 17 intermediate-risk PN patients, and 11 high-risk PN patients were analyzed using 16S rRNA gene sequencing. Alpha and beta diversity analyses reveal minimal variation in oral microbial diversity and abundance among patients with different risks of PN. In contrast, a significant reduction in the diversity of LRT microbiota is observed in patients at high risk of PN. Based on multigroup comparative analysis of species differences and the linear discriminant analysis effect size method, Synergistes and Tannerella were identified as the dominant bacterial genera in the oral and LRT of high-risk PN patients, respectively. The study found that the LRT microbiota of PN patients seemed to originate from the oral, and the high enrichment of oral microbiota in the lower respiratory tract was most common in high-risk PN patients. The predominant bacterial genera present in the oral cavity and LRT of patients with PN were identified through abundance variance analysis. Eight key microbial genera were found in both the oral cavity and LRT: Streptococcus, Granulicatella, Porphyromonas, Bacillus, Neisseria, Alloprevotella, Prevotella, and Leptotrichia. Notably, receiver operating characteristic analysis identified Streptococcus, Granulicatella, and Leptotrichia as reliable biomarkers to differentiate high-risk PN. Spearman correlation analysis confirmed that the accumulation of oral microorganisms in the LRT played an important role in the process of PN cancerization. The co-occurrence network showed that the coexistence of Veillonella and Streptococcus in the oral and LRT may be involved in the occurrence of PN, while the LRT cluster of Rothia occurred in high-risk PN patients. Correlation analysis among species identified microbial communities predominantly composed of Veillonella, which may facilitate pulmonary carcinogenesis. IMPORTANCE This study is the first to elucidate the composition and interrelationships of oral and lower respiratory tract (LRT) microbiota in patients with pulmonary nodule (PN) across varying malignancy risk levels. We conducted an analysis to investigate the correlation between the malignant potential of PNs and the enrichment of oral microbiota within the LRT. Additionally, we explored the feasibility of utilizing oral-lower respiratory commensal microbiota as biomarkers to assess the benign and malignant nature of pulmonary nodules. This study aims to provide evidence supporting early diagnosis and intervention strategies for lung cancer.
Collapse
Affiliation(s)
- Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Jierong Han
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Fang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Jiawei He
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
- Cancer Institute, Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Yifeng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
- Tumor Teaching and Research Office, Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
- Tumor Teaching and Research Office, Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Wang R, Li W, Cao H, Zhang L. Decoding the Tumor-Associated Microbiota: From Origins to Nanomedicine Applications in Cancer Therapy. BIOLOGY 2025; 14:243. [PMID: 40136500 PMCID: PMC11940167 DOI: 10.3390/biology14030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Growing evidence reveals that the tumor microbiome-comprising distinct microbial communities within neoplastic tissues-exerts a profound influence on cancer initiation, progression, and therapeutic response. These microbes actively reshape the tumor microenvironment (TME) through metabolite secretion, the modulation of immune pathways, and direct interactions with host cells, thereby affecting tumor biology and therapeutic outcomes. Despite substantial heterogeneity among cancer types, recent insights underscore the tumor microbiome's potential as both a diagnostic/prognostic biomarker and a targetable component for innovative treatments. In this review, we synthesize emerging knowledge on the mechanistic roles of tumor-associated microbiota in shaping the TME, with a focus on how these discoveries can guide novel therapeutic strategies. We further explore interdisciplinary advances, including the convergence of microbiomics and nanotechnology, to enhance drug delivery, circumvent resistance, and foster TME remodeling. By highlighting these cutting-edge developments, our review underscores the transformative potential of integrating tumor microbiome research into precision oncology and advancing more personalized cancer therapies.
Collapse
Affiliation(s)
- Ruiqi Wang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
| | - Weizheng Li
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
| | - Hongqian Cao
- Department of Health Inspection and Quarantine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Bano Y, Shrivastava A, Shukla P, Chaudhary AA, Khan SUD, Khan S. The implication of microbiome in lungs cancer: mechanisms and strategies of cancer growth, diagnosis and therapy. Crit Rev Microbiol 2025; 51:128-152. [PMID: 38556797 DOI: 10.1080/1040841x.2024.2324864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
Available evidence illustrates that microbiome is a promising target for the study of growth, diagnosis and therapy of various types of cancer. Lung cancer is a leading cause of cancer death worldwide. The relationship of microbiota and their products with diverse pathologic conditions has been getting large attention. The novel research suggests that the microbiome plays an important role in the growth and progression of lung cancer. The lung microbiome plays a crucial role in maintaining mucosal immunity and synchronizing the stability between tolerance and inflammation. Alteration in microbiome is identified as a critical player in the progression of lung cancer and negatively impacts the patient. Studies suggest that healthy microbiome is essential for effective therapy. Various clinical trials and research are focusing on enhancing the treatment efficacy by altering the microbiome. The regulation of microbiota will provide innovative and promising treatment strategies for the maintenance of host homeostasis and the prevention of lung cancer in lung cancer patients. In the current review article, we presented the latest progress about the involvement of microbiome in the growth and diagnosis of lung cancer. Furthermore, we also assessed the therapeutic status of the microbiome for the management and treatment of lung cancer.
Collapse
Affiliation(s)
- Yasmin Bano
- Department of Biotechnology, College of Life Sciences, Cancer Hospital and research Institute, Gwalior, India
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, India
| | - Abhinav Shrivastava
- Department of Biotechnology, College of Life Sciences, Cancer Hospital and research Institute, Gwalior, India
| | - Piyush Shukla
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, India
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, Bilaspur, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Deoband, Saharanpur, UP, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
7
|
Sahin TK, Sonmezer MC. The role of the microbiome in head and neck squamous cell cancers. Eur Arch Otorhinolaryngol 2025; 282:623-637. [PMID: 39306588 DOI: 10.1007/s00405-024-08966-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/02/2024] [Indexed: 02/09/2025]
Abstract
The human microbiome has garnered tremendous interest in the field of oncology, and microbiota studies in head and neck oncology has also flourished. Given the increasing incidence and mortality of HNSCC, as well as the suboptimal outcomes of available treatments, there is an urgent need for innovative approaches involving the microbiome. This review evaluates the intricate relationship between the microbiome and HNSCC, highlighting the potential of the microbiome as a marker for cancer detection, its role in malignancy, and its impact on the efficacy of conventional treatments like chemotherapy and radiotherapy. The review also explores the effects of treatment modalities on the microbiome and discusses the potential of microbiome alterations to predict and influence treatment toxicities such as mucositis and xerostomia. Further research is warranted to characterize the microbiome-HNSCC association, which holds promise for advancing early diagnosis, enhancing prognostic accuracy, and personalizing treatment strategies to improve patient outcomes. The exploration of the microbiome in clinical trials indicates a burgeoning subject of microbiome-focused therapies, heralding a new frontier in most cancer care.
Collapse
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine and Medical Oncology Department, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06100, Turkey.
| | - Meliha Cagla Sonmezer
- Department of Infectious Diseases and Clinical Microbiology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
9
|
Esteban V, Gilabert P, Ferrer C, Gálvez B, Chiner E, Colom MF. Affinity of Malassezia and Other Yeasts for Pulmonary Lipids. Mycopathologia 2024; 190:1. [PMID: 39644437 PMCID: PMC11625056 DOI: 10.1007/s11046-024-00910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
Pulmonary surfactant, the primary substance lining the epithelium of the human Lower Respiratory Tract (LRT), is rich in lipids, with dipalmitoyl-phosphatidylcholine (DPPC) being the most abundant. Although surfactants are known to have antifungal activity against some yeast species, the significant presence of species like Malassezia restricta in the lung mycobiome suggests that these yeasts may exhibit some level of lipo-tolerance or even lipo-affinity for pulmonary lipids. This study explored the affinity and tolerance of yeasts, identified as significant members of the lung microbiome, to pulmonary lipids through culture-based methods. Eleven species from the genera Malassezia, Candida (including the new genera Nakaseomyces and Meyerozyma), and Cryptococcus were tested for their growth on media containing pulmonary lipids such as DPPC and commercial porcine surfactant and in other culture medium that contain non-pulmonary lipids such as glycerol monostearate and tweens. The yeasts' lipo-affinity or lipo-tolerance was assessed based on their growth on these lipids compared to standard media, specifically Modified Leeming Notman Agar (MLNA) for Malassezia species and Sabouraud Dextrose Agar (SDA) for the other genera. The addition of DPPC or surfactant to the media enhanced the growth of most Malassezia yeasts and some Cryptococcus species. C. parapsilosis, Meyerozyma guilliermondii and Cryptococcus neoformans s.s. showed similar growth to that on the standard media, while the other yeasts primarily demonstrated lipo-tolerance without lipo-affinity for these compounds. To our knowledge, this is the first report on the influence of pulmonary lipids on the in vitro growth of Malassezia spp. and other yeast members of the lung mycobiome. Some yeasts, such as Malassezia restricta, commonly found in the lower respiratory tract (LRT), exhibit specific affinity for lung lipids like DPPC and commercial porcine surfactant. This finding suggests that lung lipids may play a significant role in shaping the LRT mycobiome.
Collapse
Affiliation(s)
- Violeta Esteban
- Department of Respiratory Medicine, San Juan de Alicante University Hospital, 03550, Alicante, Spain.
| | - Pablo Gilabert
- Medical Mycology Laboratory, Department of Plant Production and Microbiology, Institute for Healthcare and Biomedical Research of Alicante (ISABIAL), University Miguel Hernández, Campus of San Juan de Alicante, 03550, Alicante, Spain
| | - Consuelo Ferrer
- Medical Mycology Laboratory, Department of Plant Production and Microbiology, Institute for Healthcare and Biomedical Research of Alicante (ISABIAL), University Miguel Hernández, Campus of San Juan de Alicante, 03550, Alicante, Spain
| | - Beatriz Gálvez
- Department of Respiratory Medicine, Vinalopó University Hospital, 03293, Elche, Alicante, Spain
| | - Eusebi Chiner
- Department of Respiratory Medicine, San Juan de Alicante University Hospital, 03550, Alicante, Spain
| | - María Francisca Colom
- Medical Mycology Laboratory, Department of Plant Production and Microbiology, Institute for Healthcare and Biomedical Research of Alicante (ISABIAL), University Miguel Hernández, Campus of San Juan de Alicante, 03550, Alicante, Spain.
| |
Collapse
|
10
|
Kulecka M, Czarnowski P, Bałabas A, Turkot M, Kruczkowska-Tarantowicz K, Żeber-Lubecka N, Dąbrowska M, Paszkiewicz-Kozik E, Walewski J, Ługowska I, Koseła-Paterczyk H, Rutkowski P, Kluska A, Piątkowska M, Jagiełło-Gruszfeld A, Tenderenda M, Gawiński C, Wyrwicz L, Borucka M, Krzakowski M, Zając L, Kamiński M, Mikula M, Ostrowski J. Microbial and Metabolic Gut Profiling across Seven Malignancies Identifies Fecal Faecalibacillus intestinalis and Formic Acid as Commonly Altered in Cancer Patients. Int J Mol Sci 2024; 25:8026. [PMID: 39125593 PMCID: PMC11311272 DOI: 10.3390/ijms25158026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The key association between gut dysbiosis and cancer is already known. Here, we used whole-genome shotgun sequencing (WGS) and gas chromatography/mass spectrometry (GC/MS) to conduct metagenomic and metabolomic analyses to identify common and distinct taxonomic configurations among 40, 45, 71, 34, 50, 60, and 40 patients with colorectal cancer, stomach cancer, breast cancer, lung cancer, melanoma, lymphoid neoplasms and acute myeloid leukemia (AML), respectively, and compared the data with those from sex- and age-matched healthy controls (HC). α-diversity differed only between the lymphoid neoplasm and AML groups and their respective HC, while β-diversity differed between all groups and their HC. Of 203 unique species, 179 and 24 were under- and over-represented, respectively, in the case groups compared with HC. Of these, Faecalibacillus intestinalis was under-represented in each of the seven groups studied, Anaerostipes hadrus was under-represented in all but the stomach cancer group, and 22 species were under-represented in the remaining five case groups. There was a marked reduction in the gut microbiome cancer index in all case groups except the AML group. Of the short-chain fatty acids and amino acids tested, the relative concentration of formic acid was significantly higher in each of the case groups than in HC, and the abundance of seven species of Faecalibacterium correlated negatively with most amino acids and formic acid, and positively with the levels of acetic, propanoic, and butanoic acid. We found more differences than similarities between the studied malignancy groups, with large variations in diversity, taxonomic/metabolomic profiles, and functional assignments. While the results obtained may demonstrate trends rather than objective differences that correlate with different types of malignancy, the newly developed gut microbiota cancer index did distinguish most of the cancer cases from HC. We believe that these data are a promising step forward in the search for new diagnostic and predictive tests to assess intestinal dysbiosis among cancer patients.
Collapse
Affiliation(s)
- Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Paweł Czarnowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maryla Turkot
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Kamila Kruczkowska-Tarantowicz
- Department of Internal Medicine and Hematology, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Ewa Paszkiewicz-Kozik
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Iwona Ługowska
- Early Phase Clinical Trials Unit, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Agnieszka Jagiełło-Gruszfeld
- Department of Breast Cancer & Reconstructive Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Tenderenda
- Department of Oncological Surgery and Neuroendocrine Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Cieszymierz Gawiński
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Cancer Research Institute, 02-781 Warsaw, Poland
| | - Lucjan Wyrwicz
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Cancer Research Institute, 02-781 Warsaw, Poland
| | - Magdalena Borucka
- Department of Lung and Chest Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maciej Krzakowski
- Department of Lung and Chest Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Leszek Zając
- Department of Gastrointestinal Surgical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Kamiński
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
11
|
Zhao SH, Zhang SM, Yang JW, Liu CJ, Zeng XQ, Zhang YL, Chen SQ, Zhao ZM, Xia YX, Li XR, Shang Y. Preliminary study on the active substances and cellular pathways of lactic acid bacteria for colorectal cancer treatment. J Cancer 2024; 15:4902-4921. [PMID: 39132155 PMCID: PMC11310875 DOI: 10.7150/jca.94530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/30/2024] [Indexed: 08/13/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor and is one of the three most common cancers worldwide. Traditional surgical treatment, supplemented by chemotherapy and radiotherapy, has obvious side effects on patients. Immunotherapy may lead to some unpredictable complications. Low introduction rate and high cost are some of the problems of gene therapy, so finding a safe, reliable and least toxic treatment method became the main research direction for this study. Lactic acid bacteria and their metabolites are widely used in functional foods or as adjuvant therapies for various diseases because they are safe to eat and have no adverse reactions. Research has shown that lactic acid bacteria and their metabolites play an auxiliary therapeutic role in colorectal cancer mainly by improving the intestinal flora composition, inhibiting the growth of pathogenic bacteria and inhibiting the proliferation of cancer cells. It is now widely believed that the substances that probiotics such as lactic acid bacteria exert anti-cancer effects are mainly secondary metabolites such as butyric acid. Lb. plantarum AY01 isolated from fermented food has good anti-cancer ability, and its main anti-cancer substance is 2'-deoxyinosine. Through flow cytometry detection, it was found that Lb. plantarum AY01 can block cell proliferation in the S phase. In addition, Lb. plantarum AY01 culture reduces the sensitivity of mice to colitis-associated CRC induced by azoxymethane (AOM)/dextran sulfate sodium salt (DSS) and exhibits the occurrence and promotion of tumors. According to transcriptome analysis, Lb. plantarum AY01 may induce apoptosis of colorectal cancer cells by activating the p38 MAPK pathway. This experiment provided possibilities for the treatment of CRC.
Collapse
Affiliation(s)
- Si-Hui Zhao
- Second Department of General Surgery, First People' s Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- Second Department of General Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Shu-Ming Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People' s Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- Second Department of General Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xue-Qin Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yuan-Lian Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Si-Qian Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Zhi-Min Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yun-Xin Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xiao-Ran Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yun Shang
- Second Department of General Surgery, First People' s Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- Second Department of General Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| |
Collapse
|
12
|
Arif B, Yasir S, Saeed M, Fatmi MQ. Natural products can be potential inhibitors of metalloproteinase II from Bacteroides fragilis to intervene colorectal cancer. Heliyon 2024; 10:e32838. [PMID: 39005891 PMCID: PMC11239599 DOI: 10.1016/j.heliyon.2024.e32838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Bacteroides fragilis, a gram negative and obligate anaerobe bacterium, is a member of normal gut microbiota and facilitates many essential roles being performed in human body in normal circumstances specifically in Gastrointestinal or GI tract. Sometimes, due to genetics, epigenetics, and environmental factors, Bacteroides fragilis and their protein(s) start interacting with intestinal epithelium thus damaging the lining leading to colorectal cancers (CRC). To identify these protein(s), we incorporated a novel subtractive proteomics approach in the study. Metalloproteinase II (MPII), a Bacteroides fragilis toxin (bft), was investigated for its virulence and unique pathways to demonstrate its specificity and uniqueness in pathogenicity followed by molecular docking against a set of small drug-like natural molecules to discover potential inhibitors against the toxin. All these identified inhibitor-like molecules were analyzed for their ADMET calculations and detailed physiochemical properties to predict their druggability, GI absorption, blood brain barrier and skin permeation, and others. Resultantly, a total of ten compounds with the least binding energies were obtained and were subjected to protein-compound interaction analysis. Interaction analysis revealed the most common ligand-interacting residues in MPII are His 345, Glu 346, His 339, Gly 310, Tyr 341, Pro 340, Asp 187, Phe 309, Lys 307, Ile 185, Thr 308, and Pro 184. Therefore, top three compounds complexed with MPII having best binding energies were selected in order to analyze their trajectories. RMSD, RMSF, Rg and MMPBSA analysis revealed that all compounds showed good binding and keeping the complex stable and compact throughout the simulation time in addition to all properties and qualities of being a potential inhibitor against MPII.
Collapse
Affiliation(s)
- Bushra Arif
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Pakistan
| | - Saba Yasir
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Muhammad Saeed
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Pakistan
| | - M. Qaiser Fatmi
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Pakistan
| |
Collapse
|
13
|
Luo P, Gao D, Zhang Q. Genetic causal relationship between gut microbiota and basal cell carcinoma: A two-sample mendelian randomization study. Skin Res Technol 2024; 30:e13804. [PMID: 38895789 PMCID: PMC11187847 DOI: 10.1111/srt.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Research has previously established connections between the intestinal microbiome and the progression of some cancers. However, there is a noticeable gap in the literature in regard to using Mendelian randomisation (MR) to delve into potential causal relationships between the gut microbiota (GM) and basal cell carcinoma (BCC). Therefore, the purpose of our study was to use MR to explore the causal relationship between four kinds of GM (Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae) and BCC. METHODS We used genome-wide association study (GWAS) data and MR to explore the causal relationship between four kinds of GM and BCC. This study primarily employed the random effect inverse variance weighted (IVW) model for analysis, as complemented by additional methods including the simple mode, weighted median, weighted mode and MR‒Egger methods. We used heterogeneity and horizontal multiplicity to judge the reliability of each analysis. MR-PRESSO was mainly used to detect and correct outliers. RESULTS The random-effects IVW results showed that Bacteroides (OR = 0.936, 95% CI = 0.787-1.113, p = 0.455), Streptococcus (OR = 0.974, 95% CI = 0.875-1.083, p = 0.629), Proteobacteria (OR = 1.113, 95% CI = 0.977-1.267, p = 0.106) and Lachnospiraceae (OR = 1.027, 95% CI = 0.899-1.173, p = 0.688) had no genetic causal relationship with BCC. All analyses revealed no horizontal pleiotropy, heterogeneity or outliers. CONCLUSION We found that Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae do not increase the incidence of BCC at the genetic level, which provides new insight for the study of GM and BCC.
Collapse
Affiliation(s)
- Pan Luo
- Department of Comprehensive Plastic SurgeryPlastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dejin Gao
- Department of Comprehensive Plastic SurgeryPlastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qingguo Zhang
- Department of Comprehensive Plastic SurgeryPlastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
14
|
Dong WJ, Xu MD, Yang XW, Yang XM, Long XZ, Han XY, Cui LY, Tong Q. Rice straw ash and amphibian health: A deep dive into microbiota changes and potential ecological consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171651. [PMID: 38490417 DOI: 10.1016/j.scitotenv.2024.171651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Rice straw is burned as a result of agricultural practices and technical limitations, generating significant volumes of ash that might have environmental and ecological consequences; however, the effects on organisms have not been researched. Amphibians depend on their gut and skin microbiomes. Ash exposure may cause inflammation and changes in microbial diversity and function in frogs' skin and gut microbiota due to its chemical composition and physical presence, but the implications remain unclear. Rana dybowskii were exposed to five aqueous extracts of ashes (AEA) concentrations for 30 days to study survival, metal concentrations, and microbial diversity, analyzing the microbiota of the cutaneous and gut microbiota using Illumina sequencing. Dominant elements in ash: K > Ca > Mg > Na > Al > Fe. In AEA, K > Na > Ca > Mg > As > Cu. Increased AEA concentrations significantly reduced frog survival. Skin microbiota alpha diversity varied significantly among all treatment groups, but not gut microbiota. Skin microbiota differed significantly across treatments via Bray-Curtis and weighted UniFrac; gut microbiota was only affected by Bray-Curtis. Skin microbiota varied significantly with AEA levels in Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes, while the gut microbiota's dominant phyla, Firmicutes, Bacteroidetes, and Proteobacteria, remained consistent across all groups. Lastly, the functional prediction showed that the skin microbiota had big differences in how it worked and looked, which were linked to different health and environmental adaptation pathways. The gut microbiota, on the other hand, had smaller differences. In conclusion, AEA exposure affects R. dybowskii survival and skin microbiota diversity, indicating potential health and ecological impacts, with less effect on gut microbiota.
Collapse
Affiliation(s)
- Wen-Jing Dong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Ming-da Xu
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xue-Wen Yang
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiu-Mei Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Zhou Long
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiao-Yun Han
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Li-Yong Cui
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
15
|
Cocomazzi G, Del Pup L, Contu V, Maggio G, Parmegiani L, Ciampaglia W, De Ruvo D, Faioli R, Maglione A, Baldini GM, Baldini D, Pazienza V. Gynecological Cancers and Microbiota Dynamics: Insights into Pathogenesis and Therapy. Int J Mol Sci 2024; 25:2237. [PMID: 38396914 PMCID: PMC10889201 DOI: 10.3390/ijms25042237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the relationship between the microbiota and various aspects of health has become a focal point of scientific investigation. Although the most studied microbiota concern the gastrointestinal tract, recently, the interest has also been extended to other body districts. Female genital tract dysbiosis and its possible impact on pathologies such as endometriosis, polycystic ovary syndrome (PCOS), pelvic inflammatory disease (PID), and gynecological cancers have been unveiled. The incursion of pathogenic microbes alters the ecological equilibrium of the vagina, triggering inflammation and compromising immune defense, potentially fostering an environment conducive to cancer development. The most common types of gynecological cancer include cervical, endometrial, and ovarian cancer, which occur in women of any age but especially in postmenopausal women. Several studies highlighted that a low presence of lactobacilli at the vaginal level, and consequently, in related areas (such as the endometrium and ovary), correlates with a higher risk of gynecological pathology and likely contributes to increased incidence and worse prognosis of gynecological cancers. The complex interplay between microbial communities and the development, progression, and treatment of gynecologic malignancies is a burgeoning field not yet fully understood. The intricate crosstalk between the gut microbiota and systemic inflammation introduces a new dimension to our understanding of gynecologic cancers. The objective of this review is to focus attention on the association between vaginal microbiota and gynecological malignancies and provide detailed knowledge for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Giovanna Cocomazzi
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy;
| | - Lino Del Pup
- Gynecological Endocrinology and Fertility, University Sanitary Agency Friuli Central (ASUFC), Via Pozzuolo, 330, 33100 Udine, FVG, Italy;
| | - Viviana Contu
- Integrative Medicine Unit, Humanitas Gradenigo, Corso Regina Margherita 8/10, 10153 Torino, FC, Italy;
| | - Gabriele Maggio
- Pia Fondazione Cardinale Giovanni Panico, Via S. Pio X, 4, 73039 Tricase, LE, Italy;
| | - Lodovico Parmegiani
- Next Fertility GynePro, NextClinics International Via T. Cremona 8, 40137 Bologna, RE, Italy; (L.P.); (W.C.)
| | - Walter Ciampaglia
- Next Fertility GynePro, NextClinics International Via T. Cremona 8, 40137 Bologna, RE, Italy; (L.P.); (W.C.)
| | - Daniele De Ruvo
- Gynaecology, Obstetrics and Reproductive Medicine Affidea Promea, Via Menabrea 14, 10126 Torino, TO, Italy;
| | - Raffaele Faioli
- Gynecology and Obstetrics, IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, FG, Italy; (R.F.); (A.M.)
| | - Annamaria Maglione
- Gynecology and Obstetrics, IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, FG, Italy; (R.F.); (A.M.)
| | - Giorgio Maria Baldini
- IVF Center, Momò Fertilife, 76011 Bisceglie Via Cala dell’Arciprete, 76011 Bisceglie, BT, Italy; (G.M.B.); (D.B.)
| | - Domenico Baldini
- IVF Center, Momò Fertilife, 76011 Bisceglie Via Cala dell’Arciprete, 76011 Bisceglie, BT, Italy; (G.M.B.); (D.B.)
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy;
| |
Collapse
|
16
|
Brisudová A, Bielniková-Kryštofová H, Motyka O, Fritzová D, Katuchová V, Ponikelská N, Skanderová D, Raclavský V, Michálek J, Mitták M, Švecová P, Jakubec P, Rozsivalová D, Szkorupa M, Klein JI, Škarda J, Kolář Z, Skopelidou V. Microbiota Diversity in Non-Small Cell Lung Cancer Gut and Mouth Cavity Microbiota Diversity in Non-Small Cell Lung Cancer Patients. Pol J Microbiol 2023; 72:467-475. [PMID: 38103007 PMCID: PMC10725158 DOI: 10.33073/pjm-2023-044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Lung malignancies have a substantial impact on cancer incidence and mortality worldwide. Even though many factors involved in the development of the disease are known, many questions remain unanswered. Previous studies suggest that the intestinal microbiota may have a role in developing malignant diseases. According to some findings, the microbiota has proven to be a key modulator of carcinogenic processes and the immune response against cancer cells, potentially influencing the effectiveness of immunotherapy. In our study, we characterized culturable microorganisms associated with non-small cell lung cancer (NSCLC) that can be recovered from rectal swabs and mouthwash. In addition, we also explored differences in the culturable microbiota with two main types of NSCLC - adenocarcinoma (ADC) and squamous cell carcinoma (SCC). With 141 patients included in the study (86 ADC and 55 SCC cases), a significant difference was observed between the two types in seven bacterial species (Collinsella, Corynebacterium, Klebsiella, Lactobacillus, Neisseria, Rothia, and Streptococcus), including the site of origin. The relationship between microbial dysbiosis and lung cancer is poorly understood; future research could shed light on the links between gut microbiota and lung cancer development.
Collapse
Affiliation(s)
- Aneta Brisudová
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Hana Bielniková-Kryštofová
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| | - Oldřich Motyka
- Faculty of Mining and Geology, VŠB – Technical University of Ostrava, Ostrava, Czech Republic
- Nanotechnology Centre, CEET, VŠB – Technical University of Ostrava, Ostrava, Czech Republic
| | - Dominika Fritzová
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Vladimíra Katuchová
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Natálie Ponikelská
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| | - Daniela Skanderová
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Vladislav Raclavský
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Jaroslav Michálek
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Marcel Mitták
- Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
- Department of Surgical Studies, University Hospital Ostrava, Ostrava, Czech Republic
| | - Petra Švecová
- Department of Respiratory Diseases, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Petr Jakubec
- Department of Respiratory Diseases, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Denisa Rozsivalová
- Department of Respiratory Diseases, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Marek Szkorupa
- Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - JIří Klein
- Surgical Clinic, Thomas Bat’a Regional Hospital, PragueCzech Republic
| | - Jozef Škarda
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| | - Zdeněk Kolář
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Valeria Skopelidou
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
17
|
İlhan B, Vural C, Gürhan C, Vural C, Veral A, Wilder-Smith P, Özdemir G, Güneri P. Real-Time PCR Detection of Candida Species in Biopsy Samples from Non-Smokers with Oral Dysplasia and Oral Squamous Cell Cancer: A Retrospective Archive Study. Cancers (Basel) 2023; 15:5251. [PMID: 37958424 PMCID: PMC10649242 DOI: 10.3390/cancers15215251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The impact of Candida sp. in the development of oral cancer remains uncertain and requires sensitive analytical approaches for clarification. Given the invasive capabilities of these microorganisms in penetrating and invading host tissues through hyphal invasion, this study sought to detect the presence of five Candida sp. in oral biopsy tissue samples from non-smoker patients. Samples were obtained from patients at varying stages of oral carcinogenesis, including dysplasia, carcinoma in situ, OSCC, and histologically benign lesions, and analyzed using Real-Time PCR. Oral tissue samples from 80 patients (46 males and 34 females) were included. Significantly higher C. albicans presence was detected in the mild/moderate dysplasia group compared to the healthy (p = 0.001), carcinoma in situ (p = 0.031) and OSCC groups (p = 0.000). Similarly, C. tropicalis carriage was higher in tissues with mild/moderate dysplasia compared to healthy (p = 0.004) and carcinoma in situ (p = 0.019). Our results showed a significant increase in the presence of C. albicans and C. tropicalis within the mild/moderate dysplasia group compared to other cohorts. Coexistence of these two microorganisms was observed, suggesting a potential transition from a commensal state to an opportunistic pathogen, which could be particularly linked to the onset of oral neoplasia.
Collapse
Affiliation(s)
- Betül İlhan
- Department of Oral & Maxillofacial Radiology, Faculty of Dentistry, Ege University, 35040 İzmir, Türkiye; (B.İ.); (P.G.)
| | - Caner Vural
- Molecular Biology Section, Department of Biology, Faculty of Science, Pamukkale University, 20160 Denizli, Türkiye;
| | - Ceyda Gürhan
- Department of Oral & Maxillofacial Radiology, Faculty of Dentistry, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye;
| | - Cansu Vural
- Basic and Industrial Microbiology Section, Department of Biology, Ege University, 35040 İzmir, Türkiye; (C.V.); (G.Ö.)
| | - Ali Veral
- Department of Medical Pathology, Faculty of Medicine, Ege University, 35040 İzmir, Türkiye;
| | - Petra Wilder-Smith
- Beckman Laser Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Güven Özdemir
- Basic and Industrial Microbiology Section, Department of Biology, Ege University, 35040 İzmir, Türkiye; (C.V.); (G.Ö.)
| | - Pelin Güneri
- Department of Oral & Maxillofacial Radiology, Faculty of Dentistry, Ege University, 35040 İzmir, Türkiye; (B.İ.); (P.G.)
| |
Collapse
|
18
|
Jang HJ, Lee E, Cho YJ, Lee SH. Subtype-Based Microbial Analysis in Non-small Cell Lung Cancer. Tuberc Respir Dis (Seoul) 2023; 86:294-303. [PMID: 37345463 PMCID: PMC10555521 DOI: 10.4046/trd.2022.0149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/17/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND The human lung serves as a niche for a unique and dynamic bacterial community related to the development and aggravation of multiple respiratory diseases. Therefore, identifying the microbiome status is crucial to maintaining the microecological balance and maximizing the therapeutic effect on lung diseases. Therefore, we investigated the histological type-based differences in the lung microbiomes of patients with lung cancer. METHODS We performed 16S rRNA sequencing to evaluate the respiratory tract microbiome present in bronchoalveolar lavage fluid. Patients with non-small cell lung cancer were stratified based on two main subtypes of lung cancer: adenocarcinoma and squamous cell carcinoma (SqCC). RESULTS Among the 84 patients analyzed, 64 (76.2%) had adenocarcinoma, and 20 (23.8%) had SqCC. The α- and β-diversities showed significant differences between the two groups (p=0.004 for Chao1, p=0.001 for Simpson index, and p=0.011 for PERMANOVA). Actinomyces graevenitzii was dominant in the SqCC group (linear discriminant analysis [LDA] score, 2.46); the populations of Haemophilus parainfluenza (LDA score, 4.08), Neisseria subflava (LDA score, 4.07), Porphyromonas endodontalis (LDA score, 3.88), and Fusobacterium nucleatum (LDA score, 3.72) were significantly higher in the adenocarcinoma group. CONCLUSION Microbiome diversity is crucial for maintaining homeostasis in the lung environment, and dysbiosis may be related to the development and prognosis of lung cancer. The mortality rate was high, and the microbiome was not diverse in SqCC. Further large-scale studies are required to investigate the role of the microbiome in the development of different lung cancer types.
Collapse
Affiliation(s)
- Hye Jin Jang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of internal medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Eunkyung Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Feitelson MA, Arzumanyan A, Medhat A, Spector I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev 2023; 42:677-698. [PMID: 37432606 PMCID: PMC10584782 DOI: 10.1007/s10555-023-10117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Cancer is a multi-step process that can be viewed as a cellular and immunological shift away from homeostasis in response to selected infectious agents, mutations, diet, and environmental carcinogens. Homeostasis, which contributes importantly to the definition of "health," is maintained, in part by the production of short-chain fatty acids (SCFAs), which are metabolites of specific gut bacteria. Alteration in the composition of gut bacteria, or dysbiosis, is often a major risk factor for some two dozen tumor types. Dysbiosis is often characterized by diminished levels of SCFAs in the stool, and the presence of a "leaky gut," permitting the penetration of microbes and microbial derived molecules (e.g., lipopolysaccharides) through the gut wall, thereby triggering chronic inflammation. SCFAs attenuate inflammation by inhibiting the activation of nuclear factor kappa B, by decreasing the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha, by stimulating the expression of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor beta, and by promoting the differentiation of naïve T cells into T regulatory cells, which down-regulate immune responses by immunomodulation. SCFA function epigenetically by inhibiting selected histone acetyltransferases that alter the expression of multiple genes and the activity of many signaling pathways (e.g., Wnt, Hedgehog, Hippo, and Notch) that contribute to the pathogenesis of cancer. SCFAs block cancer stem cell proliferation, thereby potentially delaying or inhibiting cancer development or relapse by targeting genes and pathways that are mutated in tumors (e.g., epidermal growth factor receptor, hepatocyte growth factor, and MET) and by promoting the expression of tumor suppressors (e.g., by up-regulating PTEN and p53). When administered properly, SCFAs have many advantages compared to probiotic bacteria and fecal transplants. In carcinogenesis, SCFAs are toxic against tumor cells but not to surrounding tissue due to differences in their metabolic fate. Multiple hallmarks of cancer are also targets of SCFAs. These data suggest that SCFAs may re-establish homeostasis without overt toxicity and either delay or prevent the development of various tumor types.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran, 1975933411, Iran
| | - Ira Spector
- SFA Therapeutics, Jenkintown, PA, 19046, USA
| |
Collapse
|
20
|
Santacroce L, Passarelli PC, Azzolino D, Bottalico L, Charitos IA, Cazzolla AP, Colella M, Topi S, Godoy FG, D’Addona A. Oral microbiota in human health and disease: A perspective. Exp Biol Med (Maywood) 2023; 248:1288-1301. [PMID: 37688509 PMCID: PMC10625343 DOI: 10.1177/15353702231187645] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023] Open
Abstract
The evolution of medical knowledge about oral microbiota has increased awareness of its important role for the entire human body health. A wide range of microbial species colonizing the oral cavity interact both with each other and with their host through complex pathways. Usually, these interactions lead to a harmonious coexistence (i.e. eubiosis). However, several factors - including diet, poor oral hygiene, tobacco smoking, and certain medications, among others - can disrupt this weak homeostatic balance (i.e. dysbiosis) with potential implications on both oral (i.e. development of caries and periodontal disease) and systemic health. This article is thus aimed at providing an overview on the importance of oral microbiota in mediating several physiological and pathological conditions affecting human health. In this context, strategies based on oral hygiene and diet as well as the role of probiotics supplementation are discussed.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Pier Carmine Passarelli
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Ioannis Alexandros Charitos
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
- Istituti Clinici Scientifici Maugeri IRCCS, Institute of Bari, Bari 70124, Italy
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Foggia 71122, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Franklin Garcia Godoy
- Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Antonio D’Addona
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
21
|
Mendes I, Vale N. How Can the Microbiome Induce Carcinogenesis and Modulate Drug Resistance in Cancer Therapy? Int J Mol Sci 2023; 24:11855. [PMID: 37511612 PMCID: PMC10380870 DOI: 10.3390/ijms241411855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Over the years, cancer has been affecting the lives of many people globally and it has become one of the most studied diseases. Despite the efforts to understand the cell mechanisms behind this complex disease, not every patient seems to respond to targeted therapies or immunotherapies. Drug resistance in cancer is one of the limiting factors contributing to unsuccessful therapies; therefore, understanding how cancer cells acquire this resistance is essential to help cure individuals affected by cancer. Recently, the altered microbiome was observed to be an important hallmark of cancer and therefore it represents a promising topic of cancer research. Our review aims to provide a global perspective of some cancer hallmarks, for instance how genetic and epigenetic modifications may be caused by an altered human microbiome. We also provide information on how an altered human microbiome can lead to cancer development as well as how the microbiome can influence drug resistance and ultimately targeted therapies. This may be useful to develop alternatives for cancer treatment, i.e., future personalized medicine that can help in cases where traditional cancer treatment is unsuccessful.
Collapse
Affiliation(s)
- Inês Mendes
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Edifício de Geociências, 5000-801 Vila Real, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
22
|
Yu S, Chen J, Zhao Y, Yan F, Fan Y, Xia X, Shan G, Zhang P, Chen X. Oral-microbiome-derived signatures enable non-invasive diagnosis of laryngeal cancers. J Transl Med 2023; 21:438. [PMID: 37408030 DOI: 10.1186/s12967-023-04285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Recent studies have uncovered that the microbiota in patients with head and neck cancers is significantly altered and may drive cancer development. However, there is limited data to explore the unique microbiota of laryngeal squamous cell carcinoma (LSCC), and little is known regarding whether the oral microbiota can be utilized as an early diagnostic biomarker. METHODS Using 16S rRNA gene sequencing, we characterized the microbiome of oral rinse and tissue samples from 77 patients with LSCC and 76 control patients with vocal polyps, and then performed bioinformatic analyses to identify taxonomic groups associated with clinicopathologic features. RESULTS Multiple bacterial genera exhibited significant differences in relative abundance when stratifying by histologic and tissue type. By exploiting the distinct microbial abundance and identifying the tumor-associated microbiota taxa between patients of LSCC and vocal polyps, we developed a predictive classifier by using rinse microbiota as key features for the diagnosis of LSCC with 85.7% accuracy. CONCLUSION This is the first evidence of taxonomical features based on the oral rinse microbiome that could diagnose LSCC. Our results revealed the oral rinse microbiome is an understudied source of clinical variation and represents a potential non-evasive biomarker of LSCC.
Collapse
Affiliation(s)
- Shuting Yu
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Junru Chen
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Fangxu Yan
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Yue Fan
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Xin Xia
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Guangliang Shan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Xingming Chen
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China.
| |
Collapse
|
23
|
Benjamin WJ, Wang K, Zarins K, Bellile E, Blostein F, Argirion I, Taylor JMG, D’Silva NJ, Chinn SB, Rifkin S, Sartor MA, Rozek LS. Oral Microbiome Community Composition in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:2549. [PMID: 37174014 PMCID: PMC10177240 DOI: 10.3390/cancers15092549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The impact of the oral microbiome on head and neck cancer pathogenesis and outcomes requires further study. 16s rRNA was isolated and amplified from pre-treatment oral wash samples for 52 cases and 102 controls. The sequences were binned into operational taxonomic units (OTUs) at the genus level. Diversity metrics and significant associations between OTUs and case status were assessed. The samples were binned into community types using Dirichlet multinomial models, and survival outcomes were assessed by community type. Twelve OTUs from the phyla Firmicutes, Proteobacteria, and Acinetobacter were found to differ significantly between the cases and the controls. Beta-diversity was significantly higher between the cases than between the controls (p < 0.01). Two community types were identified based on the predominant sets of OTUs within our study population. The community type with a higher abundance of periodontitis-associated bacteria was more likely to be present in the cases (p < 0.01), in older patients (p < 0.01), and in smokers (p < 0.01). Significant differences between the cases and the controls in community type, beta-diversity, and OTUs indicate that the oral microbiome may play a role in HNSCC.
Collapse
Affiliation(s)
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine Zarins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily Bellile
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Freida Blostein
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilona Argirion
- Division of Cancer Epidemiology and Genomics, National Cancer Institute, Bethesda, MA 20814, USA
| | - Jeremy M. G. Taylor
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven B. Chinn
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samara Rifkin
- Department of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura S. Rozek
- Medical Center Department of Oncology, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
24
|
Liu QY, Liao Y, Wu YX, Diao H, Du Y, Chen YW, Xie JR, Xue WQ, He YQ, Wang TM, Zheng XH, Jia WH. The Oral Microbiome as Mediator between Oral Hygiene and Its Impact on Nasopharyngeal Carcinoma. Microorganisms 2023; 11:microorganisms11030719. [PMID: 36985292 PMCID: PMC10058307 DOI: 10.3390/microorganisms11030719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Oral hygiene and the alteration of the oral microbiome have been linked to nasopharyngeal carcinoma (NPC). This study aimed to investigate whether the oral microbiome plays a mediating role in the relationship between oral hygiene and NPC, and identify differential microbial taxonomies that potentially mediated this association. We conducted a case–control study that involved 218 NPC patients and 192 healthy controls. The 16S rRNA gene sequencing of the V4 region was performed to evaluate the composition of the oral microbiome. Mediation analysis was applied to explore the relationship among oral hygiene, the oral microbiome and NPC. We found that dental fillings and poor oral hygiene score were associated with increased risks of NPC (OR = 2.51 (1.52–4.25) and OR = 1.54 (1.02–2.33)). Mediation analysis indicated that dental fillings increased the risk of NPC by altering the abundance of Erysipelotrichales, Erysipelotrichaceae, Solobacterium and Leptotrichia wadei. In addition, Leptotrichia wadei also mediated the association between oral hygiene score and the risk of NPC. Our study confirmed that poor oral hygiene increased the risk of NPC, which was partly mediated by the oral microbiome. These findings might help us to understand the potential mechanism of oral hygiene influencing the risk of NPC via the microbiome.
Collapse
Affiliation(s)
- Qiao-Yun Liu
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hua Diao
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi-Wei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jin-Ru Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wei-Hua Jia
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Correspondence: ; Tel.: +86-020-87342327
| |
Collapse
|
25
|
Russano M, La Cava G, Cortellini A, Citarella F, Galletti A, Di Fazio GR, Santo V, Brunetti L, Vendittelli A, Fioroni I, Pantano F, Tonini G, Vincenzi B. Immunotherapy for Metastatic Non-Small Cell Lung Cancer: Therapeutic Advances and Biomarkers. Curr Oncol 2023; 30:2366-2387. [PMID: 36826142 PMCID: PMC9955173 DOI: 10.3390/curroncol30020181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Immunotherapy has revolutionized the treatment paradigm of non-small cell lung cancer and improved patients' prognosis. Immune checkpoint inhibitors have quickly become standard frontline treatment for metastatic non-oncogene addicted disease, either as a single agent or in combination strategies. However, only a few patients have long-term benefits, and most of them do not respond or develop progressive disease during treatment. Thus, the identification of reliable predictive and prognostic biomarkers remains crucial for patient selection and guiding therapeutic choices. In this review, we provide an overview of the current strategies, highlighting the main clinical challenges and novel potential biomarkers.
Collapse
Affiliation(s)
- Marco Russano
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Giulia La Cava
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Alessio Cortellini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Fabrizio Citarella
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Alessandro Galletti
- Division of Medical Oncology, San Camillo Forlanini Hospital, 00152 Roma, Italy
| | - Giuseppina Rita Di Fazio
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Valentina Santo
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Leonardo Brunetti
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Alessia Vendittelli
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Iacopo Fioroni
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Francesco Pantano
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
26
|
Tacconi E, Palma G, De Biase D, Luciano A, Barbieri M, de Nigris F, Bruzzese F. Microbiota Effect on Trimethylamine N-Oxide Production: From Cancer to Fitness-A Practical Preventing Recommendation and Therapies. Nutrients 2023; 15:563. [PMID: 36771270 PMCID: PMC9920414 DOI: 10.3390/nu15030563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a microbial metabolite derived from nutrients, such as choline, L-carnitine, ergothioneine and betaine. Recently, it has come under the spotlight for its close interactions with gut microbiota and implications for gastrointestinal cancers, cardiovascular disease, and systemic inflammation. The culprits in the origin of these pathologies may be food sources, in particular, high fat meat, offal, egg yolk, whole dairy products, and fatty fish, but intercalated between these food sources and the production of pro-inflammatory TMAO, the composition of gut microbiota plays an important role in modulating this process. The aim of this review is to explain how the gut microbiota interacts with the conversion of specific compounds into TMA and its oxidation to TMAO. We will first cover the correlation between TMAO and various pathologies such as dysbiosis, then focus on cardiovascular disease, with a particular emphasis on pro-atherogenic factors, and then on systemic inflammation and gastrointestinal cancers. Finally, we will discuss primary prevention and therapies that are or may become possible. Possible treatments include modulation of the gut microbiota species with diets, physical activity and supplements, and administration of drugs, such as metformin and aspirin.
Collapse
Affiliation(s)
- Edoardo Tacconi
- Department of Human Science and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Antonio Luciano
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimiliano Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Francesca Bruzzese
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
27
|
Ghorbani M, Al-Manei K, Naud S, Healy K, Gabarrini G, Sobkowiak MJ, Chen P, Ray S, Akber M, Muschiol S, Bogdanovic G, Bergman P, Ljungman P, Buggert M, Ljunggren HG, Pin E, Nowak P, Aleman S, Sällberg Chen M. Persistence of salivary antibody responses after COVID-19 vaccination is associated with oral microbiome variation in both healthy and people living with HIV. Front Immunol 2023; 13:1079995. [PMID: 36703980 PMCID: PMC9871925 DOI: 10.3389/fimmu.2022.1079995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
Coevolution of microbiome and immunity at mucosal sites is essential for our health. Whether the oral microbiome, the second largest community after the gut, contributes to the immunogenicity of COVID-19 vaccines is not known. We investigated the baseline oral microbiome in individuals in the COVAXID clinical trial receiving the BNT162b2 mRNA vaccine. Participants (n=115) included healthy controls (HC; n=57) and people living with HIV (PLHIV; n=58) who met the study selection criteria. Vaccine-induced Spike antibodies in saliva and serum from 0 to 6 months were assessed and comparative analyses were performed against the individual salivary 16S ASV microbiome diversity. High- versus low vaccine responders were assessed on general, immunological, and oral microbiome features. Our analyses identified oral microbiome features enriched in high- vs. low-responders among healthy and PLHIV participants. In low-responders, an enrichment of Gram-negative, anaerobic species with proteolytic activity were found including Campylobacter, Butyrivibrio, Selenomonas, Lachnoanaerobaculum, Leptotrichia, Megasphaera, Prevotella and Stomatobaculum. In high-responders, enriched species were mainly Gram-positive and saccharolytic facultative anaerobes: Abiotrophia, Corynebacterium, Gemella, Granulicatella, Rothia, and Haemophilus. Combining identified microbial features in a classifier using the area under the receiver operating characteristic curve (ROC AUC) yielded scores of 0.879 (healthy controls) to 0.82 (PLHIV), supporting the oral microbiome contribution in the long-term vaccination outcome. The present study is the first to suggest that the oral microbiome has an impact on the durability of mucosal immunity after Covid-19 vaccination. Microbiome-targeted interventions to enhance long-term duration of mucosal vaccine immunity may be exploited.
Collapse
Affiliation(s)
- Mahin Ghorbani
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Khaled Al-Manei
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden,Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Sabrina Naud
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Katie Healy
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden,Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Giorgio Gabarrini
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Puran Chen
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Shilpa Ray
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Mira Akber
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Sandra Muschiol
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Gordana Bogdanovic
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Per Ljungman
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden,Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Huddinge, Sweden
| | - Marcus Buggert
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | | | - Elisa Pin
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Piotr Nowak
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden,Department of Infectious Diseases, Karolinska University Hospital, Huddinge, Sweden
| | - Soo Aleman
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden,Department of Infectious Diseases, Karolinska University Hospital, Huddinge, Sweden
| | - Margaret Sällberg Chen
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden,*Correspondence: Margaret Sällberg Chen,
| |
Collapse
|
28
|
de Oliveira Andrade F, Verma V, Hilakivi-Clarke L. Maternal obesity and resistance to breast cancer treatments among offspring: Link to gut dysbiosis. Cancer Rep (Hoboken) 2022; 5:e1752. [PMID: 36411524 PMCID: PMC9780430 DOI: 10.1002/cnr2.1752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND About 50 000 new cases of cancer in the United States are attributed to obesity. The adverse effects of obesity on breast cancer may be most profound when affecting the early development; that is, in the womb of a pregnant obese mother. Maternal obesity has several long-lasting adverse health effects on the offspring, including increasing offspring's breast cancer risk and mortality. Gut microbiota is a player in obesity as well as may impact breast carcinogenesis. Gut microbiota is established early in life and the microbial composition of an infant's gut becomes permanently dysregulated because of maternal obesity. Metabolites from the microbiota, especially short chain fatty acids (SCFAs), play a critical role in mediating the effect of gut bacteria on multiple biological functions, such as immune system, including tumor immune responses. RECENT FINDINGS Maternal obesity can pre-program daughter's breast cancer to be more aggressive, less responsive to treatments and consequently more likely to cause breast cancer related death. Maternal obesity may also induce poor response to immune checkpoint inhibitor (ICB) therapy through increased abundance of inflammation associated microbiome and decreased abundance of bacteria that are linked to production of SCFAs. Dietary interventions that increase the abundance of bacteria producing SCFAs potentially reverses offspring's resistance to breast cancer therapy. CONCLUSION Since immunotherapies have emerged as highly effective treatments for many cancers, albeit there is an urgent need to enlarge the patient population who will be responsive to these treatments. One of the factors which may cause ICB refractoriness could be maternal obesity, based on its effects on the microbiota markers of ICB therapy response among the offspring. Since about 40% of children are born to obese mothers in the Western societies, it is important to determine if maternal obesity impairs offspring's response to cancer immunotherapies.
Collapse
Affiliation(s)
| | - Vivek Verma
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | | |
Collapse
|
29
|
Li S, He M, Lei Y, Liu Y, Li X, Xiang X, Wu Q, Wang Q. Oral Microbiota and Tumor-A New Perspective of Tumor Pathogenesis. Microorganisms 2022; 10:2206. [PMID: 36363799 PMCID: PMC9692822 DOI: 10.3390/microorganisms10112206] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 09/11/2023] Open
Abstract
Microorganisms have long been known to play key roles in the initiation and development of tumors. The oral microbiota and tumorigenesis have been linked in epidemiological research relating to molecular pathology. Notably, some bacteria can impact distal tumors by their gastrointestinal or blood-borne transmission under pathological circumstances. Certain bacteria drive tumorigenesis and progression through direct or indirect immune system actions. This review systemically discusses the recent advances in the field of oral microecology and tumor, including the oncogenic role of oral microbial abnormalities and various potential carcinogenesis mechanisms (excessive inflammatory response, host immunosuppression, anti-apoptotic activity, and carcinogen secretion) to introduce future directions for effective tumor prevention.
Collapse
Affiliation(s)
- Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Mingxin He
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yang Liu
- Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xinquan Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
30
|
Wang H, Hu J, Wu J, Ji P, Shang A, Li D. The Function and Molecular Mechanism of Commensal Microbiome in Promoting Malignant Progression of Lung Cancer. Cancers (Basel) 2022; 14:5394. [PMID: 36358812 PMCID: PMC9658664 DOI: 10.3390/cancers14215394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 02/03/2024] Open
Abstract
The human commensal microbiome existing in an internal environment is relatively consistent with that of the host. The presence of bacterial dysbiosis, on the other hand, promptly results in the termination of this symbiotic association. The altered microbial structure in the lung may be responsible for the development of lung cancer by controlling the host's inflammatory response and influencing a variety of immunological pathways. More and more studies have pointed to the fact that the commensal microbiota plays a vital role in both the development of tumors and the body's response to lung cancer treatment. Microbiome dysbiosis, genotoxicity, virulence effect, and epigenetic dysregulations are some of the potential mechanisms that may lie behind the process of tumorigenesis that is mediated by microbiome. Other potential mechanisms include regulating host immune activity through a variety of pathogenic factors, dysregulating host metabolism as a result of microbiome alterations, and microbiome dysbiosis. In this historical overview, we go through some of the more recent mechanistic discoveries into the biological processes that are involved in lung cancer that are caused by bacteria. Without a question, obtaining a greater knowledge of the dynamic link between the lung microbiome and lung cancer has the potential to inspire the development of innovative early detection and customized treatment methods for lung cancer.
Collapse
Affiliation(s)
| | | | | | | | - Anquan Shang
- Department of Laboratory Medicine, Tongji Hospital of Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| | - Dong Li
- Department of Laboratory Medicine, Tongji Hospital of Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| |
Collapse
|
31
|
Vikramdeo KS, Anand S, Pierce JY, Singh AP, Singh S, Dasgupta S. Distribution of microbiota in cervical preneoplasia of racially disparate populations. BMC Cancer 2022; 22:1074. [PMID: 36258167 PMCID: PMC9578267 DOI: 10.1186/s12885-022-10112-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUNDS Microbiome dysbiosis is an important contributing factor in tumor development and thus may be a risk predictor for human malignancies. In the United States, women with Hispanic/Latina (HIS) and African American (AA) background have a higher incidence of cervical cancer and poorer outcomes than Caucasian American (CA) women. METHODS Here, we assessed the distribution pattern of microbiota in cervical intraepithelial neoplasia (CIN) lesions obtained from HIS (n = 12), AA (n = 12), and CA (n = 12) women, who were screened for CC risk assessment. We employed a 16S rRNA gene sequencing approach adapted from the NIH-Human Microbiome Project to identify the microbial niche in all CIN lesions (n = 36). RESULTS We detected an appreciably decreased abundance of beneficial Lactobacillus in the CIN lesions of the AA and HIS women compared to the CA women. Differential abundance of potentially pathogenic Prevotella, Delftia, Gardnerella, and Fastidiosipila was also evident among the various racial groups. An increased abundance of Micrococcus was also evident in AA and HIS women compared to the CA women. The detection level of Rhizobium was higher among the AA ad CA women compared to the HIS women. In addition to the top 10 microbes, a unique niche of 27 microbes was identified exclusively in women with a histopathological diagnosis of CIN. Among these microbes, a group of 8 microbiota; Rubellimicrobium, Podobacter, Brevibacterium, Paracoccus, Atopobium, Brevundimonous, Comamonous, and Novospingobium was detected only in the CIN lesions obtained from AA and CA women. CONCLUSIONS Microbial dysbiosis in the cervical epithelium represented by an increased ratio of potentially pathogenic to beneficial microbes may be associated with increased CC risk disparities. Developing a race-specific reliable panel of microbial markers could be beneficial for CC risk assessment, disease prevention, and/or therapeutic guidance.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Shashi Anand
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | | | - Ajay Pratap Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Santanu Dasgupta
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA.
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
32
|
Esposito AM, Esposito MM, Ptashnik A. Phylogenetic Diversity of Animal Oral and Gastrointestinal Viromes Useful in Surveillance of Zoonoses. Microorganisms 2022; 10:microorganisms10091815. [PMID: 36144417 PMCID: PMC9506515 DOI: 10.3390/microorganisms10091815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Great emphasis has been placed on bacterial microbiomes in human and animal systems. In recent years, advances in metagenomics have allowed for the detection and characterization of more and more native viral particles also residing in these organisms. The digestive tracts of animals and humans—from the oral cavity, to the gut, to fecal excretions—have become one such area of interest. Next-generation sequencing and bioinformatic analyses have uncovered vast phylogenetic virome diversity in companion animals, such as dogs and cats, as well as farm animals and wildlife such as bats. Zoonotic and arthropod-borne illnesses remain major causes of worldwide outbreaks, as demonstrated by the devastating COVID-19 pandemic. This highlights the increasing need to identify and study animal viromes to prevent such disastrous cross-species transmission outbreaks in the coming years. Novel viruses have been uncovered in the viromes of multiple organisms, including birds, bats, cats, and dogs. Although the exact consequences for public health have not yet become clear, many analyses have revealed viromes dominated by RNA viruses, which can be the most problematic to human health, as these genomes are known for their high mutation rates and immune system evasion capabilities. Furthermore, in the wake of worldwide disruption from the COVID-19 pandemic, it is evident that proper surveillance of viral biodiversity is crucial. For instance, gut viral metagenomic analysis in dogs has shown close relationships between the highly abundant canine coronavirus and human coronavirus strains 229E and NL63. Future studies and vigilance could potentially save many lives.
Collapse
Affiliation(s)
| | - Michelle Marie Esposito
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- Correspondence:
| | - Albert Ptashnik
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- DDS Program, NYU College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
33
|
Burcher KM, Burcher JT, Inscore L, Bloomer CH, Furdui CM, Porosnicu M. A Review of the Role of Oral Microbiome in the Development, Detection, and Management of Head and Neck Squamous Cell Cancers. Cancers (Basel) 2022; 14:4116. [PMID: 36077651 PMCID: PMC9454796 DOI: 10.3390/cancers14174116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The role of the microbiome in the development and propagation of head and neck squamous cell cancer (HNSCC) is largely unknown and the surrounding knowledge lags behind what has been discovered related to the microbiome and other malignancies. In this review, the authors performed a structured analysis of the available literature from several databases. The authors discuss the merits and detriments of several studies discussing the microbiome of the structures of the aerodigestive system throughout the development of HNSCC, the role of the microbiome in the development of malignancies (generally and in HNSCC) and clinical applications of the microbiome in HNSCC. Further studies will be needed to adequately describe the relationship between HNSCC and the microbiome, and to push this relationship into a space where it is clinically relevant outside of a research environment.
Collapse
Affiliation(s)
| | | | - Logan Inscore
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
34
|
Giordano-Kelhoffer B, Lorca C, March Llanes J, Rábano A, del Ser T, Serra A, Gallart-Palau X. Oral Microbiota, Its Equilibrium and Implications in the Pathophysiology of Human Diseases: A Systematic Review. Biomedicines 2022; 10:biomedicines10081803. [PMID: 36009350 PMCID: PMC9405223 DOI: 10.3390/biomedicines10081803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Imbalances of the oral microbiota and dysbiosis have traditionally been linked to the occurrence of teeth and oral diseases. However, recent findings indicate that this microbiota exerts relevant influence in systemic health. Dysbiosis of the oral microbiota is implicated in the apparition and progression of cardiovascular, neurodegenerative and other major human diseases. In fact, the oral microbiota are the second most diverse and largely populated microbiota of the human body and its relationships with systemic health, although widely explored, they still lack of proper integration. The purpose of this systematic review is thus to widely examine the implications of oral microbiota in oral, cardiovascular and neurodegenerative diseases to offer integrative and up-to-date interpretations. To achieve that aim, we identified a total of 121 studies curated in PUBMED from the time interval January 2003–April 2022, which after careful screening resulted in 79 studies included. The reviewed scientific literature provides plausible vias of implication of dysbiotic oral microbiota in systemic human diseases, and encourages further research to continue elucidating the highly relevant and still poorly understood implications of this niche microbiota in systemic health. PROSPERO Registration Number: CRD42022299692. This systematic review follows relevant PRISMA guidelines.
Collapse
Affiliation(s)
- Barbara Giordano-Kelhoffer
- Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain;
- Bioengineering Institute of Technology, Faculty of Health Sciences, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
| | - Cristina Lorca
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
| | - Jaume March Llanes
- NeuroPGA Research Group—Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain;
| | - Alberto Rábano
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Aida Serra
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| | - Xavier Gallart-Palau
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| |
Collapse
|
35
|
Qin X, Zhou J, Wang Z, Feng C, Fan J, Huang J, Hu D, Baban B, Wang S, Ma D, Sun C, Zhou Z, Chen G. Metagenomic analysis of the microbiome of the upper reproductive tract: combating ovarian cancer through predictive, preventive, and personalized medicine. EPMA J 2022; 13:487-498. [PMID: 35762010 PMCID: PMC9219379 DOI: 10.1007/s13167-022-00286-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/12/2022] [Indexed: 11/03/2022]
Abstract
Purpose We investigated whether ovarian cancer could alter the genital microbiota in a specific way with clinical values. Furthermore, we proposed how such changes could be envisioned in a paradigm of predictive, preventive, and personalized medicine (PPPM). Methods The samples were collected using cotton swabs from the cervical, uterine cavity, fallopian tubes, and ovaries of patients subjected to the surgical procedures for the malignant/benign lesions. All samples were then analyzed by metagenomic shotgun sequencing. The distribution patterns and characteristics of the microbiota in the reproductive tract of subjects were analyzed and were interpreted in relation to the clinical outcomes of the subjects. Results While the ovarian cancer was able to alter the genital microbiota, the bacteria were the dominant microorganisms in all samples across all cohorts in the study (median 99%). The microbiota of the upper female reproductive tract were mainly from the cervical, identified by low bacterial biomass and high bacterial diversity. Ovarian cancer had a distinct microbiota signature. The tubal ligation affects its microbial distribution. There were no different species on the surface of platinum-sensitive ovarian tissues compared to samples from platinum-resistant patients. Conclusion The ovarian cancer-induced changes in microbiota magnify the potential of microbiota as a biotherapeutic modality in the treatment of ovarian cancer in this study and very likely for several malignancies and other conditions. Our findings demonstrated, for the first time, that microbiota could be dissected and applied in more specific fashion based on a predictive, preventive, and personalized medicine (PPPM) model in the treatment of ovarian cancer. Utilizing microbiota portfolio in a PPPM system in ovarian cancer would provide a unique opportunity to a clinically intelligent and novel approach in the treatment of ovarian cancer as well as several other conditions and malignancies. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-022-00286-1.
Collapse
Affiliation(s)
- Xu Qin
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianglin Zhou
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zizhuo Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenzhao Feng
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junpeng Fan
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Huang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dianxing Hu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Babak Baban
- Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Shengqi Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Zhou
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Gang Chen
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Song X, Wei C, Li X. The Relationship Between Microbial Community and Breast Cancer. Front Cell Infect Microbiol 2022; 12:849022. [PMID: 35782150 PMCID: PMC9245449 DOI: 10.3389/fcimb.2022.849022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women and the leading cause of cancer-related deaths in women worldwide. Recent research studies have shown that the intestinal flora is related to the occurrence and progression of BC. Notably, some evidence identifies a unique microbial community in breast tissue, a site previously thought to be sterile. In addition, breast tumors have their own specific microbial community, distinct from normal mammary gland tissue, and all of them may result from intestinal flora. Some microbial community in breast tissue may lead to the occurrence and development of BC. This review focuses on the relationship between the microbial community and breast cancer, which will lay a solid theoretical foundation for further understanding the local microenvironment of BC and developing effective targeted therapeutic drugs.
Collapse
Affiliation(s)
- Xuelian Song
- Department of The Graduate Student, Shandong First Medical University, Tai’an, China
| | - Changran Wei
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangqi Li
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| |
Collapse
|
37
|
Liu X, Jin G, Tang Q, Huang S, Zhang Y, Sun Y, Liu T, Guo Z, Yang C, Wang B, Jiang K, Zhong W, Cao H. Early life Lactobacillus rhamnosus GG colonisation inhibits intestinal tumour formation. Br J Cancer 2022; 126:1421-1431. [PMID: 35091695 PMCID: PMC9090826 DOI: 10.1038/s41416-021-01562-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/04/2021] [Accepted: 09/17/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Gut microbiota dysbiosis is closely related to the progression of colorectal cancer. Our previous study revealed that early life colonisation with Lactobacillus rhamnosus GG (LGG) had long-term positive effects on health. We sought to investigate whether early life LGG colonisation could inhibit intestinal tumour formation in offspring. METHODS Adult C57BL/6 female mice were mated with Apcmin/+ male mice. Pregnant mice with the same conception date received 108 cfu live or fixed LGG from day 18 of pregnancy until natural delivery. After genotyping, offspring mice received 107 cfu of live or fixed LGG for 0-5 days after birth. RESULTS Early life LGG colonisation significantly promoted intestinal development, inhibited low-grade intestinal inflammation and altered the gut microbiota composition of offspring in the weaning period (3 week old). Notably, early life LGG colonisation reduced the multiplicity of intestinal tumours in adulthood (12 week old), possibly due to inhibition of Wnt signalling and promotion of tumour cell apoptosis. Importantly, at the genus level, Bifidobacterium and Anaeroplasma with potential anti-tumour effects were increased in adulthood, while Peptostreptococcus, which potentially contributes to tumour formation, was decreased. CONCLUSIONS Early life LGG colonisation inhibited the intestinal tumour formation of offspring in adulthood.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiang Tang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Shumin Huang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yujie Zhang
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yue Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Zixuan Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Cheng Yang
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
38
|
Bi W, Cai S, Hang Z, Lei T, Wang D, Wang L, Du H. Transplantation of feces from mice with Alzheimer's disease promoted lung cancer growth. Biochem Biophys Res Commun 2022; 600:67-74. [DOI: 10.1016/j.bbrc.2022.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
|
39
|
Issrani R, Reddy J, Dabah THEM, Prabhu N. Role of Oral Microbiota in Carcinogenesis: A Short Review. J Cancer Prev 2022; 27:16-21. [PMID: 35419305 PMCID: PMC8984651 DOI: 10.15430/jcp.2022.27.1.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
A strong and healthy microbiome is responsible for homeostasis between the host and microbiota which is necessary to achieve the normal functioning of the body. Dysbiosis provokes prevalence of pathogenic microbes, leading to alterations in gene expression profiles and metabolic processes. This in turn results in anomalous immune responses of the host. Dysbiosis may be associated with a wide variety of diseases like irritable bowel syndrome, coeliac disease, allergic conditions, bronchitis, asthma, heart diseases and oncogenesis. Presently, the links between oral microbial consortia and their functions, not only in the preservation of homeostasis but also pathogenesis of several malignancies have gained much awareness from the scientific community. The primary intent of this review is to highlight the dynamic role of oral microbiome in oncogenesis and its progression through various mechanisms. A literature search was conducted using multiple databases comprising of PubMed, Scopus, Google Scholar, and Cochrane electronic databases with keywords including microbiome, microbiota, carcinogenesis, tumorigenesis, and immunosuppression. Current and the past literature has pointed out the role of microorganisms in oncogenesis. It may be put forth that both the commensal and pathogenic strains of oral microbiome play an undeniably conspicuous role in carcinogenesis at different body sites.
Collapse
Affiliation(s)
- Rakhi Issrani
- Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia
- Department of Oral Medicine & Radiology, Indira Gandhi Institute of Dental Sciences, SBV University, Pondicherry, India
| | - Jagat Reddy
- Department of Oral Medicine & Radiology, Indira Gandhi Institute of Dental Sciences, SBV University, Pondicherry, India
| | - Tarek H. El-Metwally Dabah
- Medical Biochemistry Division, Department of Pathology, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Namdeo Prabhu
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Nouri R, Hasani A, Asgharzadeh M, Sefidan FY, Hemmati F, Rezaee MA. Roles of gut microbiota in colorectal carcinogenesis providing a perspective for early diagnosis and treatment. Curr Pharm Biotechnol 2022; 23:1569-1580. [PMID: 35255786 DOI: 10.2174/1389201023666220307112413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/02/2022]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignant neoplasm in the world. CRC is influenced by both environmental and genetic factors. Through toxin-mediated DNA damage and promotion of persistent dysregulated inflammation, the gut microbiota plays a crucial role in the development of CRC. In this review, we discussed the correlation between the bacterial microbiota and CRC carcinogenesis as well as the mechanism by which Streptococcus bovis/gallolyticus, Fusobacterium nucleatum, Bacteroides fragilis, and Escherichia coli can cause CRC.
Collapse
Affiliation(s)
- Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Yeganeh Sefidan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hemmati
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit of Children Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Wheatley RC, Kilgour E, Jacobs T, Lamarca A, Hubner RA, Valle JW, McNamara MG. Potential influence of the microbiome environment in patients with biliary tract cancer and implications for therapy. Br J Cancer 2022; 126:693-705. [PMID: 34663949 PMCID: PMC8888758 DOI: 10.1038/s41416-021-01583-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Biliary tract cancers, including intra- and extra-hepatic cholangiocarcinoma as well as gallbladder cancer, are associated with poor prognosis and the majority of patients present with advanced-stage, non-resectable disease at diagnosis. Biliary tract cancer may develop through an accumulation of genetic and epigenetic alterations and can be influenced by microbial exposure. Furthermore, the liver and biliary tract are exposed to the gastrointestinal microbiome through the gut-liver axis. The availability of next-generation sequencing technology has led to an increase in studies investigating the relationship between microbiota and human disease. In particular, the interplay between the microbiome, the tumour micro-environment and response to systemic therapy is a prospering area of interest. Given the poor outcomes for patients with biliary tract cancer, this emerging field of research, through which new biomarkers may be identified, offers potential as a tool for early diagnosis, prognostication or even as a future therapeutic target. This review summarises the available evidence on the microbiome environment in patients with biliary tract cancer, including a discussion around confounding factors, implications for therapy and proposed future directions.
Collapse
Affiliation(s)
- Roseanna C Wheatley
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Elaine Kilgour
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Alderley Park, UK
| | - Timothy Jacobs
- The Library, The Christie NHS Foundation Trust, Manchester, UK
| | - Angela Lamarca
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Richard A Hubner
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Juan W Valle
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Mairéad G McNamara
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK.
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
42
|
Huang DH, He J, Su XF, Wen YN, Zhang SJ, Liu LY, Zhao H, Ye CP, Wu JH, Cai S, Dong H. The airway microbiota of non-small cell lung cancer patients and its relationship to tumor stage and EGFR gene mutation. Thorac Cancer 2022; 13:858-869. [PMID: 35142041 PMCID: PMC8930493 DOI: 10.1111/1759-7714.14340] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Accumulating studies have suggested the airway microbiota in lung cancer patients is significantly different from that of healthy controls. However, little is known about the relationship between airway microbiota and important clinical parameters of lung cancer. In this study, we aimed to explore the association between sputum microbiota and lung cancer stage, lymph node metastasis, intrathoracic metastasis, and epidermal growth factor receptor (EGFR) gene mutation. METHODS The microbiota of sputum samples from 85 newly-diagnosed NSCLC patients were sequenced via 16S rRNA sequencing of the V3-V4 region. Sequencing reads were filtered using QIIME2 and clustered against UPARSE. RESULTS Alpha- and β-diversity was significantly different between patients in stages I to II (early stage, ES) and patients in stages III to IV (advanced stage, AS). Linear discriminant analysis Effect Size (LEfSe) identified that genera Granulicatella and Actinobacillus were significantly enriched in ES, and the genus Actinomyces was significantly enriched in AS. PICRUSt2 identified that the NAD salvage pathway was significantly enriched in AS, which was positively associated with Granulicatella. Patients with intrathoracic metastasis were associated with increased genus Peptostreptococcus and incomplete reductive TCA cycle, which was associated with increased Peptostreptococcus. Genera Parvimonas, Pseudomona and L-valine biosynthesis were positively associated with lymph node metastasis. L-valine biosynthesis was related with increased Pseudomona. Finally, the genus Parvimonas was significantly enriched in adenocarcinoma patients with EGFR mutation. CONCLUSION The taxonomy structure differed between different lung cancer stages. The tumor stage, intrathoracic metastasis, lymph node metastasis, and EGFR mutation were associated with alteration of specific airway genera and metabolic function of sputum microbiota.
Collapse
Affiliation(s)
- Dan Hui Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing He
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Fang Su
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Na Wen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu Jia Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lai Yu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cui Pin Ye
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Hua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Bian Y, Chen X, Cao H, Xie D, Zhu M, Yuan N, Lu L, Lu B, Wu C, Bahaji Azami NL, Wang Z, Wang H, Zhang Y, Li K, Ye G, Sun M. A correlational study of Weifuchun and its clinical effect on intestinal flora in precancerous lesions of gastric cancer. Chin Med 2021; 16:120. [PMID: 34801051 PMCID: PMC8605594 DOI: 10.1186/s13020-021-00529-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/31/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Weifuchun (WFC), a Chinese herbal prescription consisting of Red Ginseng, Isodon amethystoides and Fructus Aurantii, is commonly used in China to treat a variety of chronic stomach disorders. The aim of the paper was to determine the effect of WFC on intestinal microbiota changes in precancerous lesions of gastric cancer (PLGC) patients. METHODS PLGC patients of H. pylori negative were randomly divided into two groups and received either WFC tablets for a dose of 1.44 g three times a day or vitacoenzyme (Vit) tablets for a dose of 0.8 g three times a day. All patients were treated for 6 months consecutively. Gastroscopy and histopathology were used to assess the histopathological changes in gastric tissues before and after treatment. 16S rRNA gene sequencing was carried out to assess the effects WFC on intestinal microbiota changes in PLGC patients. Receiver Operating Characteristics (ROC) analysis was used to assess the sensitivity and specificity of different intestinal microbiota in distinguishing between PLGC patients and healthy control group. RESULTS Gastroscopy and histopathological results indicated that WFC could improve the pathological condition of PLGC patients, especially in the case of atrophy or intestinal metaplasia. The results of 16S rRNA gene sequencing indicated that WFC could regulate microbial diversity, microbial composition, and abundance of the intestinal microbiota of PLGC patients. Following WFC treatment, the relative abundance of Parabacteroides decreased in WFC group when compared with the Vit group. ROC analysis found that the Parabacteroides could effectively distinguish PLGC patients from healthy individuals with sensitivity of 0.79 and specificity of 0.8. CONCLUSIONS WFC could slow down the progression of PLGC by regulating intestinal microbiota abundance. Trial registration NCT03814629. Name of registry: Randomized Clinical Trial: Weifuchun Treatment on Precancerous Lesions of Gastric Cancer. Registered 3 August 2018-Retrospectively registered, https://register.clinicaltrials.gov/ NCT03814629.
Collapse
Affiliation(s)
- Yanqin Bian
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China
| | - Xi Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- Department of Infectious Disease and Gastroenterology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Hongyan Cao
- Department of Infectious Disease and Gastroenterology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Dong Xie
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Meiping Zhu
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nong Yuan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Lu Lu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Bingjie Lu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Chao Wu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Nisma Lena Bahaji Azami
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Zheng Wang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Huijun Wang
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Building 4, No. 898, Halei Road, Pudong New Area, Shanghai, 201203, China
| | - Yeqing Zhang
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Building 4, No. 898, Halei Road, Pudong New Area, Shanghai, 201203, China
| | - Kun Li
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Building 4, No. 898, Halei Road, Pudong New Area, Shanghai, 201203, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Building 4, No. 898, Halei Road, Pudong New Area, Shanghai, 201203, China.
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China.
| |
Collapse
|
44
|
Overview of Candida albicans and Human Papillomavirus (HPV) Infection Agents and their Biomolecular Mechanisms in Promoting Oral Cancer in Pediatric Patients. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7312611. [PMID: 34765678 PMCID: PMC8577934 DOI: 10.1155/2021/7312611] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/16/2021] [Indexed: 12/28/2022]
Abstract
Oral carcinoma represents one of the most common malignancies worldwide. Oral squamous cell carcinomas (OSCCs) account over 90% of all oral malignant tumors and are characterized by high mortality in the advanced stages. Early diagnosis is often a challenge for its ambiguous appearance in early stages. Mucosal infection by the human papillomavirus (HPV) is responsible for a growing number of malignancies, particularly cervical cancer and oropharyngeal carcinomas. In addition, Candida albicans (C. albicans), which is the principal fungi involved in the oral cancer development, may induce carcinogenesis through several mechanisms, mainly promoting inflammation. Medical knowledge and research on adolescent/pediatric patients' management and prevention are in continuous evolution. Besides, microbiota can play an important role in maintaining oral health and therefore all human health. The aim of this review is to evaluate epidemiological and pathophysiological characteristics of the several biochemical pathways involved during HPV and C. albicans infections in pediatric dentistry.
Collapse
|
45
|
Zhao F, An R, Wang L, Shan J, Wang X. Specific Gut Microbiome and Serum Metabolome Changes in Lung Cancer Patients. Front Cell Infect Microbiol 2021; 11:725284. [PMID: 34527604 PMCID: PMC8435782 DOI: 10.3389/fcimb.2021.725284] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Background Lung cancer (LC) is one of the most aggressive, prevalent and fatal malignancies. Gut microbes and their associated metabolites are thought to cause and modulate LC development, albeit influenced by the host genetic make-up and environment. Herein, we identified and classified gut microbiota and serum metabolites associated with LC. Methods Stool samples were collected from 41 LC patients and 40 healthy volunteers. The gut microbiota was analyzed using 16S rRNA gene sequencing. Serum samples were collected from the same LC patients (n=30) and healthy volunteers (n=30) and serum metabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS). Microbiome and metabolome data were analyzed separately and integrated for combined analysis using various bioinformatics methods. Results Serum metabolomics uncovered 870 metabolites regulated in 76 metabolic pathways in both groups. Microbial diversity analyses identified 15967 operational taxonomic units (OTUs) in groups. Of these, the abundance of 232 OTUs was significantly different between HC and LC groups. Also, serum levels of glycerophospholipids (LysoPE 18:3, LysoPC 14:0, LysoPC 18:3), Imidazopyrimidines (Hypoxanthine), AcylGlcADG 66:18; AcylGlcADG (22:6/22:6/22:6) and Acylcarnitine 11:0 were substantially different between HC and LC groups. Combined analysis correlated LC-associated microbes with metabolites, such as Erysipelotrichaceae_UCG_003, Clostridium and Synergistes with glycerophospholipids. Conclusions There is an intricate relationship between gut microbiome and levels of several metabolites such as glycerophospholipids and imidazopyrimidines. Microbial-associated metabolites are potential diagnostic biomarkers and therapeutic targets for LC.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Laboratory Medicine, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui An
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Laboratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqian Wang
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jikang Shan
- Department of Laboratory Medicine, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianjun Wang
- Department of Laboratory Medicine, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
46
|
Le Noci V, Bernardo G, Bianchi F, Tagliabue E, Sommariva M, Sfondrini L. Toll Like Receptors as Sensors of the Tumor Microbial Dysbiosis: Implications in Cancer Progression. Front Cell Dev Biol 2021; 9:732192. [PMID: 34604233 PMCID: PMC8485072 DOI: 10.3389/fcell.2021.732192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
The microbiota is a complex ecosystem of active microorganisms resident in the body of mammals. Although the majority of these microorganisms resides in the distal gastrointestinal tract, high-throughput DNA sequencing technology has made possible to understand that several other tissues of the human body host their own microbiota, even those once considered sterile, such as lung tissue. These bacterial communities have important functions in maintaining a healthy body state, preserving symbiosis with the host immune system, which generates protective responses against pathogens and regulatory pathways that sustain the tolerance to commensal microbes. Toll-like receptors (TLRs) are critical in sensing the microbiota, maintaining the tolerance or triggering an immune response through the direct recognition of ligands derived from commensal microbiota or pathogenic microbes. Lately, it has been highlighted that the resident microbiota influences the initiation and development of cancer and its response to therapies and that specific changes in the number and distribution of taxa correlate with the existence of cancers in various tissues. However, the knowledge of functional activity and the meaning of microbiome changes remain limited. This review summarizes the current findings on the function of TLRs as sensors of the microbiota and highlighted their modulation as a reflection of tumor-associated changes in commensal microbiota. The data available to date suggest that commensal "onco-microbes" might be able to break the tolerance of TLRs and become complicit in cancer by sustaining its growth.
Collapse
Affiliation(s)
- Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
47
|
Genome of Helicobacter pylori and Serotype of HPV Detected in Oropharyngeal and Laryngeal Cancer and Chronic Inflammation Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189545. [PMID: 34574466 PMCID: PMC8470705 DOI: 10.3390/ijerph18189545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
Objective: Oropharyngeal/laryngeal carcinoma are common cancers of the upper aerodigestive system. Human papillomavirus (HPV) is described as the most frequent in the cancer of unknown primary. The presence of Helicobacter pylori (HP) in the oral cavity is discussed in some papers. The aim of study: To analyze the incidence of HPV and HP in oropharyngeal/laryngeal cancer persons versus persons with chronic tonsillar inflammation and healthy persons. Methods: The samples were taken in three groups: (1) tissue of oropharynx/larynx cancer (103 specimens); (2) tissue of palatine tonsils (85 specimens); and (3) healthy control group (50 specimens). We analyzed the presence of HP (PCR) and HPV genomic DNA (Sacace HPV High-Risk Screen Real-TM Quant) in the samples. Results: HP was detected in 86 samples (83.5%) and high-risk HPV in 62 samples (60.2%). We found a very high incidence of HP. In the cancer group, HP was detected in 82.5% cases and HPV positivity in 57.8%. In total, 7.2% of the cancer patients were negative for HP and HPV together. In turn, 53.6% of the cancer patients were positive for HP and HPV together. Four cases (4.2%) were positive for HPV only. VacA positivity was detected in 82 (79.6%) of the cancer cases and VacA negativity in 21 (20.4%) if the cancer cases. The incidence of HP in chronic inflammation (n = 85) was 65 cases (76.5%) and the incidence of HPV was 38 cases (44.7%). VacA positivity was detected in 59 (69.4%) of the chronic inflammation cases and VacA negativity was found in 26 (30.6%) of the chronic inflammation cases. Regarding the control group, we found HP positivity in 5 cases (11.1%) and HPV positivity in 19 cases (42.2%). There was VacA positivity in 6 cases (50.0%) of the control group. Statistically significantly lower prevalence of HP (p < 0.001) and HPV (p = 0.006) was found in the control group. Conclusions: We suggest that the palatine tonsils are colonized by HP. In our study, HP was present in oropharyngeal cancer in more cases in comparison with HPV infection. The presence of VacA from HP can have an influence on the human epithelial and immune cells’ regulation ways. Our results do not support idea that the CagA-positive HP is a primary carcinogen in oropharyngeal area.
Collapse
|
48
|
Kabwe M, Dashper S, Bachrach G, Tucci J. Bacteriophage manipulation of the microbiome associated with tumour microenvironments-can this improve cancer therapeutic response? FEMS Microbiol Rev 2021; 45:6188389. [PMID: 33765142 DOI: 10.1093/femsre/fuab017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Some cancer treatment failures have been attributed to the tumour microbiota, with implications that microbiota manipulation may improve treatment efficacy. While antibiotics have been used to control bacterial growth, their dysbiotic effects on the microbiome, failure to penetrate biofilms and decreased efficacy due to increasing antimicrobial resistance by bacteria, suggest alternatives are needed. Bacteriophages may provide a precise means for targeting oncobacteria whose relative abundance is increased in tumour tissue microbiomes. Fusobacterium, Streptococcus, Peptostreptococcus, Prevotella, Parvimonas, and Treponema species are prevalent in tumour tissue microbiomes of some cancers. They may promote cancer growth by dampening immunity, stimulating release of proinflammatory cytokines, and directly interacting with cancer cells to stimulate proliferation. Lytic bacteriophages against some of these oncobacteria have been isolated and characterised. The search continues for others. The possibility exists for their testing as adjuncts to complement existing therapies. In this review, we highlight the role of oncobacteria, specifically those whose relative abundance in the intra-tumour microbiome is increased, and discuss the potential for bacteriophages against these micro-organisms to augment existing cancer therapies. The capacity for bacteriophages to modulate immunity and kill specific bacteria makes them suitable candidates to manipulate the tumour microbiome and negate the effects of these oncobacteria.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| | - Stuart Dashper
- Melbourne Dental School, University of Melbourne, 720 Swanston St, Parkville, Victoria 3010, Australia
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, PO Box 12272, Jerusalem 9112102, Israel
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| |
Collapse
|
49
|
Association of Fusobacterium nucleatum infection and colorectal cancer: A Mexican study. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2021; 87:277-284. [PMID: 34312118 DOI: 10.1016/j.rgmxen.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION AND AIMS Colorectal cancer (CRC) is the third most prevalent cancer worldwide. Many risk factors are involved, and current evidence links the gut microbiota and colorectal carcinogenesis. Fusobacterium nucleatum (F. nucleatum) is proposed as one of the risk factors at the onset and during the progression of CRC, due to immune system and inflammatory modulation. MATERIALS AND METHODS Ninety samples from three different regions of the colon were collected through colonoscopy in patients with CRC, and qPCR TagMan® was conducted to detect F. nucleatum and cytokines (IL-17, IL-23, and IL-10) in tumor, peritumor, and normal samples. The differences between them were analyzed and correlated. RESULTS The abundance of F. nucleatum determined through the 2-ΔΔCt method in CRC (7.750 [5.790-10.469]) was significantly higher than in the normal control (0.409 [0.251-0.817]) (p < 0.05). There was no significant association between F. nucleatum and the cytokines (p > 0.05). CONCLUSIONS CRC is a heterogeneous disease that presents and progresses in a complex microenvironment, partially due to gut microbiome imbalance. F. nucleatum was enriched in CRC tissue, but whether that is a cause of the pathology or a consequence, has not yet been clearly defined.
Collapse
|
50
|
DeStefano Shields CE, White JR, Chung L, Wenzel A, Hicks JL, Tam AJ, Chan JL, Dejea CM, Fan H, Michel J, Maiuri AR, Sriramkumar S, Podicheti R, Rusch DB, Wang H, De Marzo AM, Besharati S, Anders RA, Baylin SB, O'Hagan HM, Housseau F, Sears CL. Bacterial-Driven Inflammation and Mutant BRAF Expression Combine to Promote Murine Colon Tumorigenesis That Is Sensitive to Immune Checkpoint Therapy. Cancer Discov 2021; 11:1792-1807. [PMID: 33632774 PMCID: PMC8295175 DOI: 10.1158/2159-8290.cd-20-0770] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 12/22/2022]
Abstract
Colorectal cancer is multifaceted, with subtypes defined by genetic, histologic, and immunologic features that are potentially influenced by inflammation, mutagens, and/or microbiota. Colorectal cancers with activating mutations in BRAF are associated with distinct clinical characteristics, although the pathogenesis is not well understood. The Wnt-driven multiple intestinal neoplasia (MinApcΔ716/+) enterotoxigenic Bacteroides fragilis (ETBF) murine model is characterized by IL17-dependent, distal colon adenomas. Herein, we report that the addition of the BRAF V600E mutation to this model results in the emergence of a distinct locus of midcolon tumors. In ETBF-colonized BRAF V600E Lgr5 CreMin (BLM) mice, tumors have similarities to human BRAF V600E tumors, including histology, CpG island DNA hypermethylation, and immune signatures. In comparison to Min ETBF tumors, BLM ETBF tumors are infiltrated by CD8+ T cells, express IFNγ signatures, and are sensitive to anti-PD-L1 treatment. These results provide direct evidence for critical roles of host genetic and microbiota interactions in colorectal cancer pathogenesis and sensitivity to immunotherapy. SIGNIFICANCE: Colorectal cancers with BRAF mutations have distinct characteristics. We present evidence of specific colorectal cancer gene-microbial interactions in which colonization with toxigenic bacteria drives tumorigenesis in BRAF V600E Lgr5 CreMin mice, wherein tumors phenocopy aspects of human BRAF-mutated tumors and have a distinct IFNγ-dominant immune microenvironment uniquely responsive to immune checkpoint blockade.This article is highlighted in the In This Issue feature, p. 1601.
Collapse
Affiliation(s)
| | | | - Liam Chung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alyssa Wenzel
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica L Hicks
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ada J Tam
- Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Flow Cytometry Technology Development Center, Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - June L Chan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine M Dejea
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hongni Fan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Michel
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley R Maiuri
- Medical Sciences, Cell, Molecular and Cancer Biology Program, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Bloomington, Indiana
| | - Shruthi Sriramkumar
- Medical Sciences, Cell, Molecular and Cancer Biology Program, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Bloomington, Indiana
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana
| | - Hao Wang
- Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sepideh Besharati
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephen B Baylin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Heather M O'Hagan
- Medical Sciences, Cell, Molecular and Cancer Biology Program, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Bloomington, Indiana.
| | - Franck Housseau
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Flow Cytometry Technology Development Center, Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|