1
|
Zhang L, Wei F, Sun Q, Huang X, Zou Q, Jiang M, Su Y, Li S, Li X, Xie K, He J. FOXM1-Driven CKS1B Upregulation Promotes Pancreatic Cancer Progression and Therapeutic Resistance. Int J Biol Sci 2025; 21:1047-1064. [PMID: 39897042 PMCID: PMC11781179 DOI: 10.7150/ijbs.105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal malignancy with limited treatment options. Investigating novel therapeutic targets and understanding mechanisms of chemoresistance are crucial for improving patient outcomes. This study investigated the role of CKS1B in PDAC carcinogenesis, stemness and chemoresistance, and explores the underlying mechanisms driving its upregulation. The findings may provide novel therapeutic insights and potential strategies for the treatment of PDAC. Methods: CKS1B expression was analyzed in PDAC tissues and cell lines, its impact on cell proliferation, migration, apoptosis, stemness and chemosensitivity were evaluated by using in vitro and in vivo models, and its underlying mechanistic connection to transcription factor FOXM1 was explored by using molecular biology methods. Results: CKS1B was significantly upregulated in PDAC tissues and correlated with poor patient survival. CKS1B promoted PDAC cell proliferation, migration, and inhibited apoptosis. Expression of CKS1B enhanced the stemness properties of pancreatic cancer. CKS1B knockdown sensitized PDAC cells to the treatment of gemcitabine and oxaliplatin. Mechanistically, CKS1B is transcriptionally regulated by FOXM1, establishing a novel FOXM1-CKS1B signaling axis that regulates carcinogenesis, proliferation, migration, stemness, apoptosis, and drug resistance in PDAC. Conclusions: Our findings strongly suggest that CKS1B plays a critical role in PDAC progression, stemness and chemoresistance. Targeting the FOXM1-CKS1B axis represents a promising therapeutic strategy for PDAC patients.
Collapse
Affiliation(s)
- Liuxi Zhang
- Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, #1 Panfu Road, Guangzhou, Guangdong 510180, P.R. China
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Fang Wei
- Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, #1 Panfu Road, Guangzhou, Guangdong 510180, P.R. China
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Qihui Sun
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Xinyan Huang
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Qi Zou
- Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, #1 Panfu Road, Guangzhou, Guangdong 510180, P.R. China
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Mengmeng Jiang
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Yuling Su
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Shu Li
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Keping Xie
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| | - Jie He
- Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, #1 Panfu Road, Guangzhou, Guangdong 510180, P.R. China
- Center for Pancreatic Cancer Research, South China University of Technology College of Medicine, 382 Waihuan Road, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
2
|
MacLean MR, Walker OL, Arun RP, Fernando W, Marcato P. Informed by Cancer Stem Cells of Solid Tumors: Advances in Treatments Targeting Tumor-Promoting Factors and Pathways. Int J Mol Sci 2024; 25:4102. [PMID: 38612911 PMCID: PMC11012648 DOI: 10.3390/ijms25074102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation within tumors that promote cancer progression, metastasis, and recurrence due to their self-renewal capacity and resistance to conventional therapies. CSC-specific markers and signaling pathways highly active in CSCs have emerged as a promising strategy for improving patient outcomes. This review provides a comprehensive overview of the therapeutic targets associated with CSCs of solid tumors across various cancer types, including key molecular markers aldehyde dehydrogenases, CD44, epithelial cellular adhesion molecule, and CD133 and signaling pathways such as Wnt/β-catenin, Notch, and Sonic Hedgehog. We discuss a wide array of therapeutic modalities ranging from targeted antibodies, small molecule inhibitors, and near-infrared photoimmunotherapy to advanced genetic approaches like RNA interference, CRISPR/Cas9 technology, aptamers, antisense oligonucleotides, chimeric antigen receptor (CAR) T cells, CAR natural killer cells, bispecific T cell engagers, immunotoxins, drug-antibody conjugates, therapeutic peptides, and dendritic cell vaccines. This review spans developments from preclinical investigations to ongoing clinical trials, highlighting the innovative targeting strategies that have been informed by CSC-associated pathways and molecules to overcome therapeutic resistance. We aim to provide insights into the potential of these therapies to revolutionize cancer treatment, underscoring the critical need for a multi-faceted approach in the battle against cancer. This comprehensive analysis demonstrates how advances made in the CSC field have informed significant developments in novel targeted therapeutic approaches, with the ultimate goal of achieving more effective and durable responses in cancer patients.
Collapse
Affiliation(s)
- Maya R. MacLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Olivia L. Walker
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Raj Pranap Arun
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Nova Scotia Health Authority, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
3
|
Tymetska S, Shymborska Y, Stetsyshyn Y, Budkowski A, Bernasik A, Awsiuk K, Donchak V, Raczkowska J. Thermoresponsive Smart Copolymer Coatings Based on P(NIPAM- co-HEMA) and P(OEGMA- co-HEMA) Brushes for Regenerative Medicine. ACS Biomater Sci Eng 2023; 9:6256-6272. [PMID: 37874897 PMCID: PMC10646826 DOI: 10.1021/acsbiomaterials.3c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
The fabrication of multifunctional, thermoresponsive platforms for regenerative medicine based on polymers that can be easily functionalized is one of the most important challenges in modern biomaterials science. In this study, we utilized atom transfer radical polymerization (ATRP) to produce two series of novel smart copolymer brush coatings. These coatings were based on copolymerizing 2-hydroxyethyl methacrylate (HEMA) with either oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or N-isopropylacrylamide (NIPAM). The chemical compositions of the resulting brush coatings, namely, poly(oligo(ethylene glycol) methyl ether methacrylate-co-2-hydroxyethyl methacrylate) (P(OEGMA-co-HEMA)) and poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (P(NIPAM-co-HEMA)), were predicted using reactive ratios of the monomers. These predictions were then verified using time-of-flight-secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The thermoresponsiveness of the coatings was examined through water contact angle (CA) measurements at different temperatures, revealing a transition driven by lower critical solution temperature (LCST) or upper critical solution temperature (UCST) or a vanishing transition. The type of transition observed depended on the chemical composition of the coatings. Furthermore, it was demonstrated that the transition temperature of the coatings could be easily adjusted by modifying their composition. The topography of the coatings was characterized using atomic force microscopy (AFM). To assess the biocompatibility of the coatings, dermal fibroblast cultures were employed, and the results indicated that none of the coatings exhibited cytotoxicity. However, the shape and arrangement of the cells were significantly influenced by the chemical structure of the coating. Additionally, the viability of the cells was correlated with the wettability and roughness of the coatings, which determined the initial adhesion of the cells. Lastly, the temperature-induced changes in the properties of the fabricated copolymer coatings effectively controlled cell morphology, adhesion, and spontaneous detachment in a noninvasive, enzyme-free manner that was confirmed using optical microscopy.
Collapse
Affiliation(s)
- Svitlana Tymetska
- Jagiellonian
University, Doctoral School of Exact and
Natural Sciences, Łojasiewicza
11, 30-348 Kraków, Poland
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Yana Shymborska
- Jagiellonian
University, Doctoral School of Exact and
Natural Sciences, Łojasiewicza
11, 30-348 Kraków, Poland
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
- Lviv
Polytechnic National University, St. George’s Square 2, 79013 Lviv, Ukraine
| | - Yurij Stetsyshyn
- Lviv
Polytechnic National University, St. George’s Square 2, 79013 Lviv, Ukraine
| | - Andrzej Budkowski
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Andrzej Bernasik
- Faculty
of Physics and Applied Computer Science, AGH - University of Science and Technology, al. Mickiewicza 30, 30-049 Kraków, Poland
| | - Kamil Awsiuk
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Volodymyr Donchak
- Lviv
Polytechnic National University, St. George’s Square 2, 79013 Lviv, Ukraine
| | - Joanna Raczkowska
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
4
|
Byroju VV, Nadukkandy AS, Cordani M, Kumar LD. Retinoblastoma: present scenario and future challenges. Cell Commun Signal 2023; 21:226. [PMID: 37667345 PMCID: PMC10478474 DOI: 10.1186/s12964-023-01223-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023] Open
Abstract
With an average incidence of 1 in every 18,000 live births, retinoblastoma is a rare type of intraocular tumour found to affect patients during their early childhood. It is curable if diagnosed at earlier stages but can become life-threateningly malignant if not treated timely. With no racial or gender predisposition, or even environmental factors known to have been involved in the incidence of the disease, retinoblastoma is often considered a clinical success story in pediatric oncology. The survival rate in highly developed countries is higher than 95% and they have achieved this because of the advancement in the development of diagnostics and treatment techniques. This includes developing the already existing techniques like chemotherapy and embarking on new strategies like enucleation, thermotherapy, cryotherapy, etc. Early diagnosis, studies on the etiopathogenesis and genetics of the disease are the need of the hour for improving the survival rates. According to the Knudson hypothesis, also known as the two hit hypothesis, two hits on the retinoblastoma susceptibility (RB) gene is often considered as the initiating event in the development of the disease. Studies on the molecular basis of the disease have also led to deciphering the downstream events and thus in the discovery of biomarkers and related targeted therapies. Furthermore, improvements in molecular biology techniques enhanced the development of efficient methods for early diagnosis, genetic counseling, and prevention of the disease. In this review, we discuss the genetic and molecular features of retinoblastoma with a special emphasis on the mutation leading to the dysregulation of key signaling pathways involved in cell proliferation, DNA repair, and cellular plasticity. Also, we describe the classification, clinical and epidemiological relevance of the disease, with an emphasis on both the traditional and innovative treatments to tackle retinoblastoma. Video Abstract.
Collapse
Affiliation(s)
- Vishnu Vardhan Byroju
- Department of Biochemistry, American International Medical University, Gros Islet, St. Lucia, USA
| | | | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, and Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Lekha Dinesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, India.
| |
Collapse
|
5
|
Venkadakrishnan VB, Yamada Y, Weng K, Idahor O, Beltran H. Significance of RB Loss in Unlocking Phenotypic Plasticity in Advanced Cancers. Mol Cancer Res 2023; 21:497-510. [PMID: 37052520 PMCID: PMC10239360 DOI: 10.1158/1541-7786.mcr-23-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Cancer cells can undergo plasticity in response to environmental stimuli or under selective therapeutic pressures that result in changes in phenotype. This complex phenomenon of phenotypic plasticity is now recognized as a hallmark of cancer. Lineage plasticity is often associated with loss of dependence on the original oncogenic driver and is facilitated, in part, by underlying genomic and epigenetic alterations. Understanding the molecular drivers of cancer plasticity is critical for the development of novel therapeutic strategies. The retinoblastoma gene RB1 (encoding RB) is the first tumor suppressor gene to be discovered and has a well-described role in cell-cycle regulation. RB is also involved in diverse cellular functions beyond cell cycle including differentiation. Here, we describe the emerging role of RB loss in unlocking cancer phenotypic plasticity and driving therapy resistance across cancer types. We highlight parallels in cancer with the noncanonical role of RB that is critical for normal development and lineage specification, and the downstream consequences of RB loss including epigenetic reprogramming and chromatin reorganization that can lead to changes in lineage program. Finally, we discuss potential therapeutic approaches geared toward RB loss cancers undergoing lineage reprogramming.
Collapse
Affiliation(s)
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenny Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Boston College, Chestnut Hill, Massachusetts, USA
| | - Osasenaga Idahor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard University, Cambridge, Massachusetts, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Rader AE, Bayarmagnai B, Frolov MV. Combined inactivation of RB and Hippo pathways converts differentiating photoreceptors into eye progenitor cells through derepression of homothorax. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537991. [PMID: 37163078 PMCID: PMC10168227 DOI: 10.1101/2023.04.23.537991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The RB and Hippo pathways interact to regulate cell proliferation and differentiation. However, their mechanism of interaction is not fully understood. Drosophila photoreceptors with inactivated RB and Hippo pathways specify normally but fail to maintain neuronal identity and dedifferentiate. We performed single-cell RNA-sequencing to elucidate the cause of dedifferentiation and the fate of these cells. We find that dedifferentiated cells adopt a progenitor-like fate due to inappropriate activation of the retinal differentiation suppressor homothorax (hth) by Yki/Sd. This results in activation of the Yki/Hth transcriptional program, driving photoreceptor dedifferentiation. We show that Rbf physically interacts with Yki which, together with the GAGA factor, inhibits hth expression. Thus, RB and Hippo pathways cooperate to maintain photoreceptor differentiation by preventing inappropriate expression of hth in differentiating photoreceptors. Our work accentuates the importance of both RB and Hippo pathway activity for maintaining the state of terminal differentiation.
Collapse
Affiliation(s)
- Alexandra E Rader
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago IL 60607
| | - Battuya Bayarmagnai
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago IL 60607
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago IL 60607
| |
Collapse
|
7
|
Zhang Y, Do KK, Wang F, Lu X, Liu JY, Li C, Ceresa BP, Zhang L, Dean DC, Liu Y. Zeb1 facilitates corneal epithelial wound healing by maintaining corneal epithelial cell viability and mobility. Commun Biol 2023; 6:434. [PMID: 37081200 PMCID: PMC10119281 DOI: 10.1038/s42003-023-04831-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
The cornea is the outmost ocular tissue and plays an important role in protecting the eye from environmental insults. Corneal epithelial wounding provokes pain and fear and contributes to the most ocular trauma emergency assessments worldwide. ZEB1 is an essential transcription factor in development; but its roles in adult tissues are not clear. We identify Zeb1 is an intrinsic factor that facilitates corneal epithelial wound healing. In this study, we demonstrate that monoallelic deletion of Zeb1 significantly expedites corneal cell death and inhibits corneal epithelial EMT-related cell migration upon an epithelial debridement. We provide evidence that Zeb1-regulation of corneal epithelial wound healing is through the repression of genes required for Tnfa-induced epithelial cell death and the induction of genes beneficial for epithelial cell migration. We suggest utilizing TNF-α antagonists would reduce TNF/TNFR1-induced cell death in the corneal epithelium and inflammation in the corneal stroma to help corneal wound healing.
Collapse
Affiliation(s)
- Yingnan Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX, 78229, USA
| | - Khoi K Do
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Fuhua Wang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, 250021, Jinan, China
| | - Xiaoqin Lu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - John Y Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Chi Li
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lijun Zhang
- Department of Ophthalmology, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, China
| | - Douglas C Dean
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
8
|
Deng L, Zhang X, Xiang X, Xiong R, Xiao D, Chen Z, Liu K, Feng G. NANOG Promotes Cell Proliferation, Invasion, and Stemness via IL-6/STAT3 Signaling in Esophageal Squamous Carcinoma. Technol Cancer Res Treat 2021; 20:15330338211038492. [PMID: 34520294 PMCID: PMC8723181 DOI: 10.1177/15330338211038492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Cancer cells have properties similar to those of stem cells, including high proliferation and self-renewal ability. NANOG is the key regulatory gene that maintains the self-renewal and pluripotency characteristics of embryonic stem cells. We previously reported that knockdown of the pluripotent stem cell factor NANOG obviously reduced the proliferation and drug-resistance capabilities of esophageal squamous cell carcinoma (ESCC). In this study, we gained insights into the potential regulatory mechanism of NANOG, particularly in ESCC. Methods: NANOG was ectopically expressed in the Eca-109 cell line via pcDNA3.1 vector transfection. The mRNA expression of different genes was detected using quantitative real-time polymerase chain reaction, and protein quantification was performed by western blotting. The enzyme-linked immunosorbent assay was used to detect the expression of interleukin 6 (IL-6). The capabilities of proliferation, migration, and invasion were investigated using cell count and Transwell assays. The tumor sphere-forming assay was used to investigate the sphere formation capacity of cancer stem cells. Results: The expression of NANOG promoted the cell proliferation and sphere formation capacity of cancer stem cells in a dose-dependent manner. IL-6-mediated activation of signal transducer and activator of transcription 3 (STAT3) was closely related to the expression of NANOG in ESCC. Consistently, the target genes of STAT3, including CCL5, VEGFA, CCND1, and Bcl-xL, were upregulated upon the overexpression of NANOG. Conclusion: These results revealed that the expression of NANOG promotes cell proliferation, invasion, and stemness via IL-6/STAT3 signaling in ESCC.
Collapse
Affiliation(s)
- Li Deng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Xinping Zhang
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaocong Xiang
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Rong Xiong
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Dongqin Xiao
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zhu Chen
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| |
Collapse
|
9
|
Wang J, Zhao H, Zheng L, Zhou Y, Wu L, Xu Y, Zhang X, Yan G, Sheng H, Xin R, Jiang L, Lei J, Zhang J, Chen Y, Peng J, Chen Q, Yang S, Yu K, Li D, Xie Q, Li Y. FGF19/SOCE/NFATc2 signaling circuit facilitates the self-renewal of liver cancer stem cells. Am J Cancer Res 2021; 11:5045-5060. [PMID: 33754043 PMCID: PMC7978301 DOI: 10.7150/thno.56369] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
Abstract
Background & Aims: Liver cancer stem cells (LCSCs) mediate therapeutic resistance and correlate with poor outcomes in patients with hepatocellular carcinoma (HCC). Fibroblast growth factor (FGF)-19 is a crucial oncogenic driver gene in HCC and correlates with poor prognosis. However, whether FGF19 signaling regulates the self-renewal of LCSCs is unknown. Methods: LCSCs were enriched by serum-free suspension. Self-renewal of LCSCs were characterized by sphere formation assay, clonogenicity assay, sorafenib resistance assay and tumorigenic potential assays. Ca2+ image was employed to determine the intracellular concentration of Ca2+. Gain- and loss-of function studies were applied to explore the role of FGF19 signaling in the self-renewal of LCSCs. Results: FGF19 was up-regulated in LCSCs, and positively correlated with certain self-renewal related genes in HCC. Silencing FGF19 suppressed self-renewal of LCSCs, whereas overexpressing FGF19 facilitated CSCs-like properties via activation of FGF receptor (FGFR)-4 in none-LCSCs. Mechanistically, FGF19/FGFR4 signaling stimulated store-operated Ca2+ entry (SOCE) through both the PLCγ and ERK1/2 pathways. Subsequently, SOCE-calcineurin signaling promoted the activation and translocation of nuclear factors of activated T cells (NFAT)-c2, which transcriptionally activated the expression of stemness-related genes (e.g., NANOG, OCT4 and SOX2), as well as FGF19. Furthermore, blockade of FGF19/FGFR4-NFATc2 signaling observably suppressed the self-renewal of LCSCs. Conclusions: FGF19/FGFR4 axis promotes the self-renewal of LCSCs via activating SOCE/NFATc2 pathway; in turn, NFATc2 transcriptionally activates FGF19 expression. Targeting this signaling circuit represents a potential strategy for improving the therapeutic efficacy of HCC.
Collapse
|
10
|
Woappi Y, Altomare D, Creek KE, Pirisi L. Self-assembling 3D spheroid cultures of human neonatal keratinocytes have enhanced regenerative properties. Stem Cell Res 2020; 49:102048. [PMID: 33128954 PMCID: PMC7805020 DOI: 10.1016/j.scr.2020.102048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
Relative to conventional two-dimensional (2-D) culture, three-dimensional (3-D) suspension culture of epithelial cells more closely mimics the in vivo cell microenvironment regarding cell architecture, cell to matrix interaction, and osmosis exchange. However, primary normal human keratinocytes (NHKc) rapidly undergo terminal differentiation and detachment-induced cell death (anoikis) upon disconnection from the basement membrane, thus greatly constraining their use in 3-D suspension culture models. Here, we examined the 3-D anchorage-free growth potential of NHKc isolated from neonatal skin explants of 59 different individuals. We found that 40% of all isolates naturally self-assembled into multicellular spheroids within 24 h in anchorage-free culture, while 60% did not. Placing a single spheroid back into 2-D monolayer culture yielded proliferating cells that expressed elevated levels of nuclear P63 and basal cytokeratin 14. These cells also displayed prolonged keratinocyte renewal and a gene expression profile corresponding to cellular heterogeneity, quiescence, and de-differentiation. Notably, spheroid-derived (SD) NHKc were enriched for a P63/K14 double-positive population that formed holoclonal colonies and reassembled into multicellular spheroids during 3-D suspension subculture. This study reveals marked phenotypic differences in neonatal keratinocyte suspension cultures isolated from different individuals and present a model system that can be readily employed to study epithelial cell behavior, along with a variety of dermatological diseases.
Collapse
Affiliation(s)
- Yvon Woappi
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA; Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Kim E Creek
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Lucia Pirisi
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
11
|
Effect of Substrate Stiffness on Physicochemical Properties of Normal and Fibrotic Lung Fibroblasts. MATERIALS 2020; 13:ma13204495. [PMID: 33050502 PMCID: PMC7600549 DOI: 10.3390/ma13204495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
The presented research aims to verify whether physicochemical properties of lung fibroblasts, modified by substrate stiffness, can be used to discriminate between normal and fibrotic cells from idiopathic pulmonary fibrosis (IPF). The impact of polydimethylsiloxane (PDMS) substrate stiffness on the physicochemical properties of normal (LL24) and IPF-derived lung fibroblasts (LL97A) was examined in detail. The growth and elasticity of cells were assessed using fluorescence microscopy and atomic force microscopy working in force spectroscopy mode, respectively. The number of fibroblasts, as well as their shape and the arrangement, strongly depends on the mechanical properties of the substrate. Moreover, normal fibroblasts remain more rigid as compared to their fibrotic counterparts, which may indicate the impairments of IPF-derived fibroblasts induced by the fibrosis process. The chemical properties of normal and IPF-derived lung fibroblasts inspected using time-of-flight secondary ion mass spectrometry, and analyzed complexly with principal component analysis (PCA), show a significant difference in the distribution of cholesterol and phospholipids. Based on the observed distinctions between healthy and fibrotic cells, the mechanical properties of cells may serve as prospective diagnostic biomarkers enabling fast and reliable identification of idiopathic pulmonary fibrosis (IPF).
Collapse
|
12
|
Tumor Milieu Controlled by RB Tumor Suppressor. Int J Mol Sci 2020; 21:ijms21072450. [PMID: 32244804 PMCID: PMC7177274 DOI: 10.3390/ijms21072450] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The RB gene is one of the most frequently mutated genes in human cancers. Canonically, RB exerts its tumor suppressive activity through the regulation of the G1/S transition during cell cycle progression by modulating the activity of E2F transcription factors. However, aberration of the RB gene is most commonly detected in tumors when they gain more aggressive phenotypes, including metastatic activity or drug resistance, rather than accelerated proliferation. This implicates RB controls' malignant progression to a considerable extent in a cell cycle-independent manner. In this review, we highlight the multifaceted functions of the RB protein in controlling tumor lineage plasticity, metabolism, and the tumor microenvironment (TME), with a focus on the mechanism whereby RB controls the TME. In brief, RB inactivation in several types of cancer cells enhances production of pro-inflammatory cytokines, including CCL2, through upregulation of mitochondrial reactive oxygen species (ROS) production. These factors not only accelerate the growth of cancer cells in a cell-autonomous manner, but also stimulate non-malignant cells in the TME to generate a pro-tumorigenic niche in a non-cell-autonomous manner. Here, we discuss the biological and pathological significance of the non-cell-autonomous functions of RB and attempt to predict their potential clinical relevance to cancer immunotherapy.
Collapse
|
13
|
Chen F, Liu X, Chen Y, Liu JY, Lu H, Wang W, Lu X, Dean KC, Gao L, Kaplan HJ, Dean DC, Peng X, Liu Y. Sphere-induced reprogramming of RPE cells into dual-potential RPE stem-like cells. EBioMedicine 2020; 52:102618. [PMID: 31982829 PMCID: PMC6994567 DOI: 10.1016/j.ebiom.2019.102618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/20/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background The retinal pigment epithelium (RPE) has the potential to regenerate the entire neuroretina upon retinal injury in amphibians. In contrast, this regenerative capacity has been lost in mammals. The reprogramming of differentiated somatic cells into induced pluripotent stem cells (iPSCs) by viral transduction of exogenous stem cell factors has triggered a revolution in regenerative medicine. However, the risks of potential mutation(s) caused by random viral vector insertion in host genomes and tumor formation in recipients hamper its clinical application. One alternative is to immortalize adult stem cells with limited potential or to partially reprogram differentiated somatic cells into progenitor-like cells through non-integration protocols. Methods Sphere-induced RPE stem cells (iRPESCs) were generated from adult mouse RPE cells. Their stem cell functionality was studied in a mouse model of retinal degeneration. The molecular mechanism underlying the sphere-induced reprogramming was investigated using microarray and loss-of-function approaches. Findings We provide evidence that our sphere-induced reprogramming protocol can immortalize and transform mouse RPE cells into iRPESCs with dual potential to differentiate into cells that express either RPE or photoreceptor markers both in vitro and in vivo. When subretinally transplanted into mice with retinal degeneration, iRPESCs can integrate to the RPE and neuroretina, thereby delaying retinal degeneration in the model animals. Our molecular analyses indicate that the Hippo signaling pathway is important in iRPESC reprogramming. Interpretation The Hippo factor Yap1 is activated in the nuclei of cells at the borders of spheres. The factors Zeb1 and P300 downstream of the Hippo pathway are shown to bind to the promoters of the stemness genes Oct4, Klf4 and Sox2, thereby likely transactivate them to reprogram RPE cells into iRPESCs. Fund National Natural Science Foundation of China and the National Institute of Health USA.
Collapse
Affiliation(s)
- Fenghua Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA; Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xiao Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA; Department of Ophthalmology, Second Affiliated Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Yao Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - John Y Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA
| | - Huayi Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA; Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA
| | - Kevin C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA
| | - Ling Gao
- Department of Ophthalmology, Second Affiliated Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA; James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA; Birth Defects Center; University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.
| | - Xiaoyan Peng
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China.
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA; James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA; Birth Defects Center; University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.
| |
Collapse
|
14
|
Conversion of Sox2-dependent Merkel cell carcinoma to a differentiated neuron-like phenotype by T antigen inhibition. Proc Natl Acad Sci U S A 2019; 116:20104-20114. [PMID: 31527246 PMCID: PMC6778204 DOI: 10.1073/pnas.1907154116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Normal cells can be transformed into cancer cells by viral oncogenes. Reversion of a viral human cancer cell, however, into a differentiated cell by viral oncogene inhibition has not been described. Merkel cell carcinoma (MCC) is a neuroendocrine cancer caused by Merkel cell polyomavirus (MCV) that encodes a T antigen oncogene. When MCV+ MCC cells with T antigen knockdown are cocultured with keratinocytes, the MCC phenotype converts to a differentiated neuronal phenotype and loses Merkel cell factor Sox2 and Atoh1 expression. MCV large T activates Sox2 and Atoh1 by its ability to inhibit retinoblastoma. Sox2 inhibition similarly induced this phenotypic conversion of MCC. These findings suggest that MCV induces cancer by dysregulating embryonic Merkel cell differentiation pathways. Viral cancers show oncogene addiction to viral oncoproteins, which are required for survival and proliferation of the dedifferentiated cancer cell. Human Merkel cell carcinomas (MCCs) that harbor a clonally integrated Merkel cell polyomavirus (MCV) genome have low mutation burden and require viral T antigen expression for tumor growth. Here, we showed that MCV+ MCC cells cocultured with keratinocytes undergo neuron-like differentiation with neurite outgrowth, secretory vesicle accumulation, and the generation of sodium-dependent action potentials, hallmarks of a neuronal cell lineage. Cocultured keratinocytes are essential for induction of the neuronal phenotype. Keratinocyte-conditioned medium was insufficient to induce this phenotype. Single-cell RNA sequencing revealed that T antigen knockdown inhibited cell cycle gene expression and reduced expression of key Merkel cell lineage/MCC marker genes, including HES6, SOX2, ATOH1, and KRT20. Of these, T antigen knockdown directly inhibited Sox2 and Atoh1 expression. MCV large T up-regulated Sox2 through its retinoblastoma protein-inhibition domain, which in turn activated Atoh1 expression. The knockdown of Sox2 in MCV+ MCCs mimicked T antigen knockdown by inducing MCC cell growth arrest and neuron-like differentiation. These results show Sox2-dependent conversion of an undifferentiated, aggressive cancer cell to a differentiated neuron-like phenotype and suggest that the ontology of MCC arises from a neuronal cell precursor.
Collapse
|
15
|
Chang YW, Singh KP. Arsenic-Induced Neoplastic Transformation Involves Epithelial-Mesenchymal Transition and Activation of the β-Catenin/c-Myc Pathway in Human Kidney Epithelial Cells. Chem Res Toxicol 2019; 32:1299-1309. [PMID: 31120745 DOI: 10.1021/acs.chemrestox.9b00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic contamination is a serious environmental and public health issue worldwide including the United States. Accumulating evidence suggests that kidney is one of the target organs for arsenic-induced carcinogenesis. However, the mechanism of arsenic-induced renal carcinogenesis is not well understood. Therefore, the objective of this study was to evaluate the carcinogenicity of chronic exposure to an environmentally relevant concentration of arsenic on kidney epithelial cells and identify the molecular mechanism underlying this process. HK-2 kidney epithelial cells were treated with arsenic for acute, long-term, and chronic durations, and cellular responses to arsenic exposure at these time points were evaluated by the changes in growth, morphology, and expression of genes. The results revealed a significant growth increase after long-term and chronic exposure to arsenic in HK-2 cells. The morphological changes of EMT and stem cell sphere formation were also observed in long-term arsenic exposed cells. The anchorage-independent growth assay for colony formation and cell maintenance in cancer stem cell medium further confirmed neoplastic transformation and the induced cancer stem cell properties of arsenic-exposed cells. Additionally, the expression of marker genes confirmed the increased growth, EMT, and stemness during arsenic-induced carcinogenesis. Moreover, the increase expression of β-catenin and c-Myc further suggested the role of these signaling molecules during carcinogenesis in HK-2 cells. In summary, results of this study suggest that chronic exposure to arsenic even at a relatively lower concentration can induce neoplastic transformation through acquisitions of EMT, stemness, and MET phenotypes, which might be related to the β-catenin/c-Myc signaling pathway.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) , Texas Tech University , Lubbock , Texas , United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) , Texas Tech University , Lubbock , Texas , United States
| |
Collapse
|
16
|
Esposito M, Mondal N, Greco TM, Wei Y, Spadazzi C, Lin SC, Zheng H, Cheung C, Magnani JL, Lin SH, Cristea IM, Sackstein R, Kang Y. Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat Cell Biol 2019; 21:627-639. [PMID: 30988423 PMCID: PMC6556210 DOI: 10.1038/s41556-019-0309-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 01/06/2023]
Abstract
How disseminated tumor cells (DTCs) engage specific stromal components in distant organs for survival and outgrowth is a critical but poorly understood step of the metastatic cascade. Previous studies have demonstrated the importance of the epithelial-mesenchymal transition (EMT) in promoting the cancer stem cell properties needed for metastasis initiation, while the reverse process of mesenchymal-epithelial transition (MET) is required for metastatic outgrowth. Here we report that this paradoxical requirement for simultaneous induction of both MET and cancer stem cell traits in DTCs is provided by bone vascular niche E-selectin, whose direct binding to cancer cells promotes bone metastasis by inducing MET and activating Wnt signaling. E-selectin binding activity mediated by α1–3 Fucosyltransferases Fut3/Fut6 and Glg1 are instrumental to the formation of bone metastasis. These findings provide unique insights into the functional role of E-selectin as a component of the vascular niche critical for metastatic colonization in bone.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nandini Mondal
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hanqiu Zheng
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Corey Cheung
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Robert Sackstein
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
17
|
Wei F, Zhang T, Deng SC, Wei JC, Yang P, Wang Q, Chen ZP, Li WL, Chen HC, Hu H, Cao J. PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Lett 2019; 450:1-13. [PMID: 30776481 DOI: 10.1016/j.canlet.2019.02.022] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 01/23/2023]
Abstract
PD-L1 is critical for tumor cell escape from immune surveillance by inhibiting T cell function via the PD-1 receptor. Accumulating evidence demonstrates that anti-PD-L1 monoclonal antibodies might potently enhance antitumor effects in various tumors, but the effect of PD-L1 on colorectal cancer stem cells (CSCs) remains unclear. We observed high PD-L1 expression in CD133+CD44+ colorectal CSCs and CSC-enriched tumorspheres. Altering PD-L1 expression promoted colorectal CSC self-renewal by increasing the expression of stemness genes, the CD133+CD44+ cell population sizes and the ability to form tumorspheres. Additionally, PD-L1 expression was markedly increased in chemoresistant colorectal cancer (CRC) cells in vitro and in vivo. More importantly, PD-L1 enhanced CRC cell tumorigenicity in nude mice; the inoculation of 1 × 104 cells resulted in high tumor formation efficiency. Mechanistically, PD-L1 directly interacted with HMGA1, and HMGA1 upregulation by PD-L1 activated HMGA1-dependent pathways, including the PI3K/Akt and MEK/ERK pathways, and promoted CSC expansion. HMGA1 downregulation rescued the PD-L1-induced phenotypes, highlighting the role of HMGA1 in PD-L1-mediated colorectal CSC self-renewal. Moreover, PD-L1 expression was correlated with the expression of CSC markers and HMGA1 in clinical CRC specimens. Thus, PD-L1 could crucially contribute to the maintenance of CSC self-renewal by activating HMGA1-dependent signaling pathways.
Collapse
Affiliation(s)
- Fang Wei
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Tong Zhang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Shu-Chou Deng
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Jian-Chang Wei
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Ping Yang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Qiang Wang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Zhuan-Peng Chen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Wang-Lin Li
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Hua-Cui Chen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - He Hu
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| |
Collapse
|
18
|
The Role of RB in Prostate Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:301-318. [PMID: 31900914 DOI: 10.1007/978-3-030-32656-2_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The RB tumor suppressor is one of the most commonly deleted/mutated genes in human cancers. In prostate cancer specifically, mutation of RB is most frequently observed in aggressive, metastatic disease. As one of the earliest tumor suppressors to be identified, the molecular functions of RB that are lost in tumor development have been studied for decades. Earlier work focused on the canonical RB pathway connecting mitogenic signaling to the cell cycle via Cyclin/CDK inactivation of RB, thereby releasing the E2F transcription factors. More in-depth analysis revealed that RB-E2F complexes regulate cellular processes beyond proliferation. Most recently, "non-canonical" roles for RB function have been expanded beyond its E2F interactions, which may play a particular role in advanced prostate cancer. For example, in mouse models of prostate cancer, loss of RB has been shown to induce lineage plasticity, which enables resistance to androgen deprivation therapy. This increased understanding of the potential downstream functions of RB in prostate cancer may lead the way to identifying therapeutic vulnerabilities in cells following RB loss.
Collapse
|
19
|
Zhang Y, Xu L, Li A, Han X. The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed Pharmacother 2018; 110:400-408. [PMID: 30530042 DOI: 10.1016/j.biopha.2018.11.112] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 02/07/2023] Open
Abstract
Highly expressed Zinc-finger E-box binding protein 1 (ZEB1) is significantly associated with the malignancy of various cancers. Signal transduction and activation of ZEB1 play important roles in cancer transformation and epithelial-mesenchymal transition (EMT). Emerging evidence suggests that ZEB1 drives the induction of EMT with activation of stem cell traits, immune evasion and epigenetic reprogramming. As an ideal target for EMT research, ZEB1 has been extensively studied for decades. However, the link between ZEB1 and epigenetic regulation of EMT has only recently been discovered. ZEB1 facilitates the epigenetic silencing of E-cadherin by recruiting multiple chromatin enzymes of E-cadherin promoter, such as histone deacetylases (HDACs), DNA methyltransferase (DNMT) and ubiquitin ligase. Destruction of the connection between ZEB1 and these chromatin-modifying enzymes may represent an efficient for treating cancer. In this review, we outlined the biological function of ZEB1 in tumorigenic progression and epigenetic modifications and elucidate its transcriptional network, which is a suitable potential target for the design of novel anticancer drugs.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Lei Xu
- Pharmaceutical Preparation Section, Hospital of Laiwu Steel Group, 68 Xinxing Road, Laigang 271126, Shandong Province, China
| | - Anqi Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong Province, China.
| |
Collapse
|
20
|
Abstract
The canonical model of RB-mediated tumour suppression developed over the past 30 years is based on the regulation of E2F transcription factors to restrict cell cycle progression. Several additional functions have been proposed for RB, on the basis of which a non-canonical RB pathway can be described. Mechanistically, the non-canonical RB pathway promotes histone modification and regulates chromosome structure in a manner distinct from cell cycle regulation. These functions have implications for chemotherapy response and resistance to targeted anticancer agents. This Opinion offers a framework to guide future studies of RB in basic and clinical research.
Collapse
Affiliation(s)
- Frederick A Dick
- London Regional Cancer Program, Children's Health Research Institute, Western University, London, Ontario, Canada.
- London Regional Cancer Program, Department of Biochemistry, Western University, London, Ontario, Canada.
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
21
|
El-Badawy A, Ghoneim MA, Gabr MM, Salah RA, Mohamed IK, Amer M, El-Badri N. Cancer cell-soluble factors reprogram mesenchymal stromal cells to slow cycling, chemoresistant cells with a more stem-like state. Stem Cell Res Ther 2017; 8:254. [PMID: 29115987 PMCID: PMC5688803 DOI: 10.1186/s13287-017-0709-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/24/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) play different roles in modulating tumor progression, growth, and metastasis. MSCs are recruited to the tumor site in large numbers and subsequently have an important microenvironmental role in modulating tumor progression and drug sensitivity. However, the effect of the tumor microenvironment on MSC plasticity remains poorly understood. Herein, we report a paracrine effect of cancer cells, in which they secrete soluble factors that promote a more stem-like state in bone marrow mesenchymal stem cells (BM-MSCs). METHODS The effect of soluble factors secreted from MCF7, Hela, and HepG2 cancer cell lines on BM-MSCs was assessed using a Transwell indirect coculture system. After 5 days of coculture, BM-MSCs were characterized by flow cytometry for surface marker expression, by qPCR for gene expression profile, and by confocal immunofluorescence for marker expression. We then measured the sensitivity of cocultured BM-MSCs to chemotherapeutic agents, their cell cycle profile, and their response to DNA damage. The sphere formation, invasive properties, and in-vivo performance of BM-MSCs after coculture with cancer cells were also measured. RESULTS Indirect coculture of cancer cells and BM-MSCs, without direct cell contact, generated slow cycling, chemoresistant spheroid stem cells that highly expressed markers of pluripotency, cancer cells, and cancer stem cells (CSCs). They also displayed properties of a side population and enhanced sphere formation in culture. Accordingly, these cells were termed cancer-induced stem cells (CiSCs). CiSCs showed a more mesenchymal phenotype that was further augmented upon TGF-β stimulation and demonstrated a high expression of the β-catenin pathway and ALDH1A1. CONCLUSIONS These findings demonstrate that MSCs, recruited to the tumor microenvironment in large numbers, may display cellular plasticity, acquire a more stem-like state, and acquire some properties of CSCs upon exposure to cancer cell-secreted factors. These acquired characteristics may contribute to tumor progression, survival, and metastasis. Our findings provide new insights into the interactions between MSCs and cancer cells, with the potential to identify novel molecular targets for cancer therapy.
Collapse
Affiliation(s)
- Ahmed El-Badawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, 12588, 6th of October City, Giza, Egypt
| | | | - Mahmoud M. Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, 12588, 6th of October City, Giza, Egypt
| | - Ihab K. Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Marwa Amer
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, 12588, 6th of October City, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, 12588, 6th of October City, Giza, Egypt
| |
Collapse
|
22
|
Chang B, Park MJ, Choi SI, In KH, Kim CH, Lee SH. NANOG as an adverse predictive marker in advanced non-small cell lung cancer treated with platinum-based chemotherapy. Onco Targets Ther 2017; 10:4625-4633. [PMID: 29033581 PMCID: PMC5614794 DOI: 10.2147/ott.s144895] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose NANOG is a master transcription factor that regulates stem cell pluripotency and cellular reprograming. Increased NANOG expression has been associated with poor survival in several human malignancies. However, the clinical significance of NANOG overexpression in lung cancer has been scarcely evaluated. The aim of this study was to investigate whether NANOG levels are associated with clinical outcomes of patients with non–small cell lung cancer (NSCLC) who were treated with platinum-based chemotherapy. Methods NANOG levels were evaluated immunohistochemically using the histologic score (H-score) in tumor tissues from patients with advanced NSCLC who received platinum-based doublet treatment. We performed survival analyses according to the NANOG levels and evaluated the association between clinicopathological parameters and levels of NANOG. Results Multivariate analyses using 112 tumor specimens showed that high NANOG levels were independently associated with short progression-free survival (hazard ratio [HR] =3.09, 95% confidence interval [CI]: 2.01–4.76) and with short overall survival (HR =3.00, 95% CI: 1.98–4.54). Similar results were shown in the subgroup analyses for patients with adenocarcinoma and squamous cell carcinoma. NANOG expression was not associated with any clinicopathological parameter such as age, gender, smoking status, stage, differentiation, or histological subtypes. Conclusion NANOG overexpression was associated with poor response and short overall survival in patients with advanced NSCLC who were treated with platinum-based chemotherapy, suggesting that NANOG could be a potential adverse predictive marker in this setting.
Collapse
Affiliation(s)
- Boksoon Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University School of Medicine
| | - Myung Jae Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University School of Medicine
| | - Sue In Choi
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine
| | - Kwang Ho In
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine
| | - Chul Hwan Kim
- Department of Pathology, College of Medicine, Korea University, Seoul, South Korea
| | - Seung Hyeun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University School of Medicine
| |
Collapse
|
23
|
Zhou C, Jiang H, Zhang Z, Zhang G, Wang H, Zhang Q, Sun P, Xiang R, Yang S. ZEB1 confers stem cell-like properties in breast cancer by targeting neurogenin-3. Oncotarget 2017; 8:54388-54401. [PMID: 28903350 PMCID: PMC5589589 DOI: 10.18632/oncotarget.17077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/20/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells believed to be implicated in cancer initiation, progression, and recurrence. Here, we report that ectopic expression of zinc finger E-box binding homeobox 1 protein (ZEB1) results in the acquisition of CSC properties by breast cancer cells, leading to tumor initiation and progression in vitro and in vivo. The neurogenin 3 gene (Ngn3) is a bona fide target of ZEB1, and its repression is a key factor contributing to ZEB1-induced cancer cell stemness. ZEB1 suppressed Ngn3 transcription by forming a ZEB1/DNA methyltransferase (DNMT)3B/histone deacetylase 1 (HDAC1) complex on the Ngn3 promoter, leading to promoter hypermethylation and gene silencing. The rescue of Ngn3 expression attenuated ZEB1-induced cancer stemness and symmetric CSC division. Immunohistological analysis of human breast cancer specimens revealed a strong inverse relationship between ZEB1 and NGN3 protein expression. Thus, our findings suggest ZEB1-mediated silencing of Ngn3 is required for breast tumor initiation and maintenance. Targeted therapies against the ZEB1/Ngn3 axis may be highly valuable for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Chen Zhou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Huimin Jiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Zhen Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Guomin Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Quansheng Zhang
- Tianjin Key Laboratory of Organ Transplantation, Tianjin First Center Hospital, Tianjin 300192, China
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Rong Xiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Kitajima S, Takahashi C. Intersection of retinoblastoma tumor suppressor function, stem cells, metabolism, and inflammation. Cancer Sci 2017; 108:1726-1731. [PMID: 28865172 PMCID: PMC5581511 DOI: 10.1111/cas.13312] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/27/2022] Open
Abstract
The Retinoblastoma (RB) tumor suppressor regulates G1/S transition during cell cycle progression by modulating the activity of E2F transcription factors. The RB pathway plays a central role in the suppression of most cancers, and RB mutation was initially discovered by virtue of its role in tumor initiation. However, as cancer genome sequencing has evolved to profile more advanced and treatment‐resistant cancers, it has become increasingly clear that, in the majority of cancers, somatic RB inactivation occurs during tumor progression. Furthermore, despite the presence of deregulation of cell cycle control due to an INK4A deletion, additional CCND amplification and/or other mutations in the RB pathway, mutation or deletion of the RB gene is often observed during cancer progression. Of note, RB inactivation during cancer progression not only facilitates G1/S transition but also enhances some characteristics of malignancy, including altered drug sensitivity and a return to the undifferentiated state. Recently, we reported that RB inactivation enhances pro‐inflammatory signaling through stimulation of the interleukin‐6/STAT3 pathway, which directly promotes various malignant features of cancer cells. In this review, we highlight the consequences of RB inactivation during cancer progression, and discuss the biological and pathological significance of the interaction between RB and pro‐inflammatory signaling.
Collapse
Affiliation(s)
- Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
25
|
Deng L, Xiang X, Yang F, Xiao D, Liu K, Chen Z, Zhang R, Feng G. Functional evidence that the self-renewal gene NANOG regulates esophageal squamous cancer development. Biochem Biophys Res Commun 2017; 490:161-168. [PMID: 28601640 DOI: 10.1016/j.bbrc.2017.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Cancer cell molecular mimicry of stem cells (SC) follows with enhanced proliferative and renewal capacities. In support, numerous mediators of SC self-renewal have been evinced to exhibit oncogenic potential. More and more researches showed that the embryonic stem cell self-renewal genes express in various cancer cells. In this study, we sought to test the tumorigenic functions of NANOG, particularly, in esophageal cancer (EC). Using quantitative RT-PCR and western blotting, we confirmed that EC cells highly express NANOG mRNA and protein. We then constructed a shRNA-mediated plasmid to knockdown of NANOG mRNA. We observed that NANOG deficiency in Eca109 cells decreased clone formation, cell proliferation, and showed G1 arrest. To further investigate the functions and mechanisms of NANOG in Eca109 cells, we detected the changes of multiple signaling molecules when NANOG deficiency. We foud that NANOG deficiency affected multiple genes, particularly, supressed drug-resistance via down-regulated ABCG2 in Eca109 cells, and caused G1 arrest by down-regulated cyclin D1 (CCND1) expression. The present loss-of-function work, establish the integral role for NANOG in Eca109 cell proliferation, drug resistance, and shed light on its mechanisms of action.
Collapse
Affiliation(s)
- Li Deng
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiaocong Xiang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Fei Yang
- Orthopedics, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Kang Liu
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Zhu Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ruolan Zhang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Gang Feng
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| |
Collapse
|
26
|
The RB–IL-6 axis controls self-renewal and endocrine therapy resistance by fine-tuning mitochondrial activity. Oncogene 2017; 36:5145-5157. [DOI: 10.1038/onc.2017.124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
|
27
|
Freitag D, McLean AL, Simon M, Koch A, Grube S, Walter J, Kalff R, Ewald C. NANOG overexpression and its correlation with stem cell and differentiation markers in meningiomas of different WHO grades. Mol Carcinog 2017; 56:1953-1964. [PMID: 28345785 DOI: 10.1002/mc.22653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 01/15/2023]
Abstract
NANOG, as a key regulator of pluripotency and acting synergistically with other factors, has been described as a crucial transcription factor in various types of cancer. In meningiomas the expression of this marker has not yet been described. With our study, we aimed to identify and localize NANOG and other possible markers of pluripotency, stem cell properties and differentiation in meningioma tissue, to elucidate a possible effect on tumorigenesis. The gene expression levels of NANOG (NANOG1 and NANOGP8), SOX2, OCT4, KLF4, ABCG2, CMYC, MSI1, CD44, NOTCH1, NES, SALL4B, TP53, and EPAS1 were quantitatively examined using RT-qPCR in 33 surgical specimens of low- (WHO grade I) as well as in high-grade (WHO grade II/III) meningiomas with dural tissue as reference. Immunofluorescence co-localization analysis following confocal fluorescence microscopy for NANOG, OCT4, SOX2, Nestin, KI-67, and CD44 was also performed. There was a significant overexpression of NANOG, MSI1, and EPAS1 and a downregulation of NES in all examined tumors. Subgroup analysis (WHO grade I versus grade II/III) revealed differences in the expression of NANOG, CD44, and MSI1. We found 1% NANOG-positive (NANOG+) cells in low-grade and 2% in grade II/III meningiomas co-expressing the other mentioned markers in various compositions. In particular, NANOG+ cells expressing SOX2 and OCT4 were successfully identified (26% low-grade versus 20% high-grade). Our data reveal an overexpression of NANOG and other markers of pluripotency and stemness in meningiomas. Such potentially pluripotent "stem cell-like" cells may have an impact on tumorigenesis and progression in human meningiomas.
Collapse
Affiliation(s)
- Diana Freitag
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Aaron Lawson McLean
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Michèle Simon
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.,Department of Neurosurgery, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Arend Koch
- Department of Neuropathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Grube
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Jan Walter
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Rolf Kalff
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Ewald
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.,Department of Neurosurgery, Städtisches Klinikum Brandenburg, Brandenburg an der Havel, Germany
| |
Collapse
|
28
|
Chen Y, Lu X, Montoya-Durango DE, Liu YH, Dean KC, Darling DS, Kaplan HJ, Dean DC, Gao L, Liu Y. ZEB1 Regulates Multiple Oncogenic Components Involved in Uveal Melanoma Progression. Sci Rep 2017; 7:45. [PMID: 28246385 PMCID: PMC5428321 DOI: 10.1038/s41598-017-00079-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/31/2017] [Indexed: 12/11/2022] Open
Abstract
Human uveal melanoma (UM) is a major ocular malignant tumor with high risk of metastasis and requires multiple oncogenic factors for progression. ZEB1 is a zinc finger E-box binding transcription factor known for participating epithelial-mesenchymal transition (EMT), a critical cellular event for metastasis of malignant tumors of epithelium origin. ZEB1 is also expressed in UM and high expression of ZEB1 correlates with UM advancement, but has little effect on cell morphology. We show that spindle UM cells can become epithelioid but not vice versa; and ZEB1 exerts its tumorigenic effects by promoting cell dedifferentiation, proliferation, invasiveness, and dissemination. We provide evidence that ZEB1 binds not only to repress critical genes involving in pigment synthesis, mitosis, adherent junctions, but also to transactivate genes involving in matrix degradation and cellular locomotion to propel UM progression towards metastasis. We conclude that ZEB1 is a major oncogenic factor required for UM progression and could be a potential therapeutic target for treating UM in the clinic.
Collapse
Affiliation(s)
- Yao Chen
- The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China.,Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Diego E Montoya-Durango
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Yu-Hua Liu
- The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Kevin C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Douglas S Darling
- Periodontics, Endodontics, and Dental Hygiene, University of Louisville, Louisville, Kentucky, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Ling Gao
- The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China.
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA. .,James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
29
|
CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget 2016; 6:22361-74. [PMID: 26087476 PMCID: PMC4673169 DOI: 10.18632/oncotarget.4293] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/03/2015] [Indexed: 01/03/2023] Open
Abstract
NANOG expression in prostate cancer is highly correlated with cancer stem cell characteristics and resistance to androgen deprivation. However, it is not clear whether NANOG or its pseudogenes contribute to the malignant potential of cancer. We established NANOG- and NANOGP8-knockout DU145 prostate cancer cell lines using the CRISPR/Cas9 system. Knockouts of NANOG and NANOGP8 significantly attenuated malignant potential, including sphere formation, anchorage-independent growth, migration capability, and drug resistance, compared to parental DU145 cells. NANOG and NANOGP8 knockout did not inhibit in vitro cell proliferation, but in vivo tumorigenic potential decreased significantly. These phenotypes were recovered in NANOG- and NANOGP8-rescued cell lines. These results indicate that NANOG and NANOGP8 proteins are expressed in prostate cancer cell lines, and NANOG and NANOGP8 equally contribute to the high malignant potential of prostate cancer.
Collapse
|
30
|
APC/C and retinoblastoma interaction: cross-talk of retinoblastoma protein with the ubiquitin proteasome pathway. Biosci Rep 2016; 36:BSR20160152. [PMID: 27402801 PMCID: PMC5025812 DOI: 10.1042/bsr20160152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin (Ub) ligase anaphase promoting complex/cyclosome (APC/C) and the tumour suppressor retinoblastoma protein (pRB) play key roles in cell cycle regulation. APC/C is a critical regulator of mitosis and G1-phase of the cell cycle whereas pRB keeps a check on proliferation by inhibiting transition to the S-phase. APC/C and pRB interact with each other via the co-activator of APC/C, FZR1, providing an alternative pathway of regulation of G1 to S transition by pRB using a post-translational mechanism. Both pRB and FZR1 have complex roles and are implicated not only in regulation of cell proliferation but also in differentiation, quiescence, apoptosis, maintenance of chromosomal integrity and metabolism. Both are also targeted by transforming viruses. We discuss recent advances in our understanding of the involvement of APC/C and pRB in cell cycle based decisions and how these insights will be useful for development of anti-cancer and anti-viral drugs.
Collapse
|
31
|
Kohno S, Kitajima S, Sasaki N, Takahashi C. Retinoblastoma tumor suppressor functions shared by stem cell and cancer cell strategies. World J Stem Cells 2016; 8:170-84. [PMID: 27114748 PMCID: PMC4835675 DOI: 10.4252/wjsc.v8.i4.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/30/2015] [Accepted: 02/14/2016] [Indexed: 02/06/2023] Open
Abstract
Carcinogenic transformation of somatic cells resembles nuclear reprogramming toward the generation of pluripotent stem cells. These events share eternal escape from cellular senescence, continuous self-renewal in limited but certain population of cells, and refractoriness to terminal differentiation while maintaining the potential to differentiate into cells of one or multiple lineages. As represented by several oncogenes those appeared to be first keys to pluripotency, carcinogenesis and nuclear reprogramming seem to share a number of core mechanisms. The retinoblastoma tumor suppressor product retinoblastoma (RB) seems to be critically involved in both events in highly complicated manners. However, disentangling such complicated interactions has enabled us to better understand how stem cell strategies are shared by cancer cells. This review covers recent findings on RB functions related to stem cells and stem cell-like behaviors of cancer cells.
Collapse
Affiliation(s)
- Susumu Kohno
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Shunsuke Kitajima
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Nobunari Sasaki
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Chiaki Takahashi
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
32
|
Kitajima S, Kohno S, Kondoh A, Sasaki N, Nishimoto Y, Li F, Abdallah Mohammed MS, Muranaka H, Nagatani N, Suzuki M, Kido Y, Takahashi C. Undifferentiated State Induced by Rb-p53 Double Inactivation in Mouse Thyroid Neuroendocrine Cells and Embryonic Fibroblasts. Stem Cells 2016; 33:1657-69. [PMID: 25694388 DOI: 10.1002/stem.1971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023]
Abstract
Retinoblastoma tumor suppressor protein (RB) is inactivated more frequently during tumor progression than during tumor initiation. However, its exact role in controlling the malignant features associated with tumor progression is poorly understood. We established in vivo and in vitro models to investigate the undifferentiated state induced by Rb inactivation. Rb heterozygous mice develop well-differentiated thyroid medullary carcinoma. We found that additional deletion of Trp53, without change in lineage, converted these Rb-deficient tumors to a poorly differentiated type associated with higher self-renewal activity. Freshly prepared mouse embryonic fibroblasts (MEFs) of Rb(-/-) ; Trp53(-/-) background formed stem cell-like spheres that expressed significant levels of embryonic genes despite of lacking the ability to form colonies on soft agar or tumors in immune-deficient mice. This suggested that Rb-p53 double inactivation resulted in an undifferentiated status but without carcinogenic conversion. We next established Rb(-/-) ; N-ras(-/-) MEFs that harbored a spontaneous carcinogenic mutation in Trp53. These cells (RN6), in an Rb-dependent manner, efficiently generated spheres that expressed very high levels of embryonic genes, and appeared to be carcinogenic. We then screened an FDA-approved drug library to search for agents that suppressed the spherogenic activity of RN6 cells. Data revealed that RN6 cells were sensitive to specific agents including ones those are effective against cancer stem cells. Taken together, all these findings suggest that the genetic interaction between Rb and p53 is a critical determinant of the undifferentiated state in normal and tumor cells.
Collapse
Affiliation(s)
- Shunsuke Kitajima
- Division of Oncology and Molecular Biology, Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Han H, Du Y, Zhao W, Li S, Chen D, Zhang J, Liu J, Suo Z, Bian X, Xing B, Zhang Z. PBX3 is targeted by multiple miRNAs and is essential for liver tumour-initiating cells. Nat Commun 2015; 6:8271. [PMID: 26420065 DOI: 10.1038/ncomms9271] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 08/04/2015] [Indexed: 12/12/2022] Open
Abstract
Tumour-initiating cells (TICs) are advocated to constitute the sustaining force to maintain and renew fully established malignancy; however, the molecular mechanisms responsible for these properties are elusive. We previously demonstrated that voltage-gated calcium channel α2δ1 subunit marks hepatocellular carcinoma (HCC) TICs. Here we confirm directly that α2δ1 is a HCC TIC surface marker, and identify let-7c, miR-200b, miR-222 and miR-424 as suppressors of α2δ1(+) HCC TICs. Interestingly, all the four miRNAs synergistically target PBX3, which is sufficient and necessary for the acquisition and maintenance of TIC properties. Moreover, PBX3 drives an essential transcriptional programme, activating the expression of genes critical for HCC TIC stemness including CACNA2D1, EpCAM, SOX2 and NOTCH3. In addition, the expression of CACNA2D1 and PBX3 mRNA is predictive of poor prognosis for HCC patients. Collectively, our study identifies an essential signalling pathway that controls the switch of HCC TIC phenotypes.
Collapse
Affiliation(s)
- Haibo Han
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Molecular and Translational Medicine, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing 100142, China
| | - Yantao Du
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Molecular and Translational Medicine, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing 100142, China
| | - Wei Zhao
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Molecular and Translational Medicine, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing 100142, China
| | - Sheng Li
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Molecular and Translational Medicine, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing 100142, China
| | - Dongji Chen
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Molecular and Translational Medicine, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing 100142, China
| | - Jing Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiang Liu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenhe Suo
- Department of Pathology, Oslo University Hospital, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0379, Norway
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Baocai Xing
- Department of Hepatobiliary Surgery I, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhiqian Zhang
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Molecular and Translational Medicine, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing 100142, China
| |
Collapse
|
34
|
Jeter CR, Yang T, Wang J, Chao HP, Tang DG. Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells 2015; 33:2381-90. [PMID: 25821200 DOI: 10.1002/stem.2007] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/08/2015] [Indexed: 12/22/2022]
Abstract
The homeobox domain transcription factor NANOG, a key regulator of embryonic development and cellular reprogramming, has been reported to be broadly expressed in human cancers. Functional studies have provided strong evidence that NANOG possesses protumorigenic attributes. In addition to promoting self-renewal and long-term proliferative potential of stem-like cancer cells, NANOG-mediated oncogenic reprogramming may underlie clinical manifestations of malignant disease. In this review, we examine the molecular origin, expression, biological activities, and mechanisms of action of NANOG in various malignancies. We also consider clinical implications such as correlations between NANOG expression and cancer prognosis and/or response to therapy. We surmise that NANOG potentiates the molecular circuitry of tumorigenesis, and thus may represent a novel therapeutic target or biomarker for the diagnosis, prognosis, and treatment outcome of cancer. Finally, we present critical pending questions relating NANOG to cancer stem cells and tumor development.
Collapse
Affiliation(s)
- Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, USA
| | - Tao Yang
- Cancer Stem Cell Institute, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Junchen Wang
- Cancer Stem Cell Institute, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, USA
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Liu Y, Lu X, Huang L, Wang W, Jiang G, Dean KC, Clem B, Telang S, Jenson AB, Cuatrecasas M, Chesney J, Darling DS, Postigo A, Dean DC. Different thresholds of ZEB1 are required for Ras-mediated tumour initiation and metastasis. Nat Commun 2014; 5:5660. [PMID: 25434817 DOI: 10.1038/ncomms6660] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/24/2014] [Indexed: 01/28/2023] Open
Abstract
Ras pathway mutation is frequent in carcinomas where it induces expression of the transcriptional repressor ZEB1. Although ZEB1 is classically linked to epithelial-mesenchymal transition and tumour metastasis, it has an emerging second role in generation of cancer-initiating cells. Here we show that Ras induction of ZEB1 is required for tumour initiation in a lung cancer model, and we link this function to repression Pten, whose loss is critical for emergence of cancer-initiating cells. These two roles for ZEB1 in tumour progression can be distinguished by their requirement for different levels of ZEB1. A lower threshold of ZEB1 is sufficient for cancer initiation, whereas further induction is necessary for tumour metastasis.
Collapse
Affiliation(s)
- Yongqing Liu
- 1] Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [2] Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [3] Birth Defects Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Li Huang
- 1] Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [2] College of Agriculture and Biotechnology, Zejiang University, Zejiang 310058, China
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Guomin Jiang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Kevin C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Brian Clem
- Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Sucheta Telang
- Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Alfred B Jenson
- Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Miriam Cuatrecasas
- 1] Department of Pathology, Centro de Diagnóstico Biomédico (CDB) Hospital Clínic, University of Barcelona, Barcelona 08036, Spain [2] Tumor Bank-Biobank, IDIBAPS, Barcelona 08036, Spain
| | - Jason Chesney
- Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Douglas S Darling
- Department of Periodontics, Endodontics, and Dental Hygiene, University of Louisville, Louisville, Kentucky 40202, USA
| | - Antonio Postigo
- 1] Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [2] Group of Transcriptional Regulation of Gene Expression, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain [3] ICREA, Barcelona 08010, Spain
| | - Douglas C Dean
- 1] Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [2] Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [3] Birth Defects Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| |
Collapse
|
36
|
Kareta MS, Gorges LL, Hafeez S, Benayoun BA, Marro S, Zmoos AF, Cecchini MJ, Spacek D, Batista LFZ, O'Brien M, Ng YH, Ang CE, Vaka D, Artandi SE, Dick FA, Brunet A, Sage J, Wernig M. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell 2014; 16:39-50. [PMID: 25467916 DOI: 10.1016/j.stem.2014.10.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 08/18/2014] [Accepted: 10/24/2014] [Indexed: 12/15/2022]
Abstract
Mutations in the retinoblastoma tumor suppressor gene Rb are involved in many forms of human cancer. In this study, we investigated the early consequences of inactivating Rb in the context of cellular reprogramming. We found that Rb inactivation promotes the reprogramming of differentiated cells to a pluripotent state. Unexpectedly, this effect is cell cycle independent, and instead reflects direct binding of Rb to pluripotency genes, including Sox2 and Oct4, which leads to a repressed chromatin state. More broadly, this regulation of pluripotency networks and Sox2 in particular is critical for the initiation of tumors upon loss of Rb in mice. These studies therefore identify Rb as a global transcriptional repressor of pluripotency networks, providing a molecular basis for previous reports about its involvement in cell fate pliability, and implicate misregulation of pluripotency factors such as Sox2 in tumorigenesis related to loss of Rb function.
Collapse
Affiliation(s)
- Michael S Kareta
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laura L Gorges
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sana Hafeez
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bérénice A Benayoun
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA 94305, USA
| | - Samuele Marro
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Anne-Flore Zmoos
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Matthew J Cecchini
- London Regional Cancer Program, Children's Research Institute, Western University, London, ON N6A 4L6, Canada
| | - Damek Spacek
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Luis F Z Batista
- Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Megan O'Brien
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yi-Han Ng
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Cheen Euong Ang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dedeepya Vaka
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Steven E Artandi
- Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Frederick A Dick
- London Regional Cancer Program, Children's Research Institute, Western University, London, ON N6A 4L6, Canada
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA 94305, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Marius Wernig
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
37
|
Eid JE, Garcia CB. Reprogramming of mesenchymal stem cells by oncogenes. Semin Cancer Biol 2014; 32:18-31. [PMID: 24938913 DOI: 10.1016/j.semcancer.2014.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) originate from embryonic mesoderm and give rise to the multiple lineages of connective tissues. Transformed MSCs develop into aggressive sarcomas, some of which are initiated by specific chromosomal translocations that generate fusion proteins with potent oncogenic properties. The sarcoma oncogenes typically prime MSCs through aberrant reprogramming. They dictate commitment to a specific lineage but prevent mature differentiation, thus locking the cells in a state of proliferative precursors. Deregulated expression of lineage-specific transcription factors and controllers of chromatin structure play a central role in MSC reprogramming and sarcoma pathogenesis. This suggests that reversing the epigenetic aberrancies created by the sarcoma oncogenes with differentiation-related reagents holds great promise as a beneficial addition to sarcoma therapies.
Collapse
Affiliation(s)
- Josiane E Eid
- Department of Cancer Biology, Vanderbilt University Medical Center, 771 Preston, Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA.
| | - Christina B Garcia
- Department of Pediatrics-Nutrition, Baylor College of Medicine, BCM320, Huston, TX 77030, USA
| |
Collapse
|
38
|
Rb1 family mutation is sufficient for sarcoma initiation. Nat Commun 2014; 4:2650. [PMID: 24150016 DOI: 10.1038/ncomms3650] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/19/2013] [Indexed: 12/16/2022] Open
Abstract
It is thought that genomic instability precipitated by Rb1 pathway loss rapidly triggers additional cancer gene mutations, accounting for rapid tumour onset following Rb1 mutation. However, recent whole-genome sequencing of retinoblastomas demonstrated little genomic instability, but instead suggested rapid epigenetic activation of cancer genes. These results raise the possibility that loss of the Rb1 pathway, which is a hallmark of cancers, might be sufficient for cancer initiation. Yet, mutation of the Rb1 family or inactivation of the Rb1 pathway in primary cells has proven insufficient for tumour initiation. Here we demonstrate that traditional nude mouse assays impose an artificial anoikis and proliferation barrier that prevents Rb1 family mutant fibroblasts from initiating tumours. By circumventing this barrier, we show that primary fibroblasts with only an Rb1 family mutation efficiently form sarcomas in nude mice, and a Ras-ZEB1-Akt pathway then causes transition of these tumours to an invasive phenotype.
Collapse
|
39
|
Wasik AM, Grabarek J, Pantovic A, Cieślar-Pobuda A, Asgari HR, Bundgaard-Nielsen C, Rafat M, Dixon IMC, Ghavami S, Łos MJ. Reprogramming and carcinogenesis--parallels and distinctions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:167-203. [PMID: 24411172 DOI: 10.1016/b978-0-12-800097-7.00005-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rapid progress made in various areas of regenerative medicine in recent years occurred both at the cellular level, with the Nobel prize-winning discovery of reprogramming (generation of induced pluripotent stem (iPS) cells) and also at the biomaterial level. The use of four transcription factors, Oct3/4, Sox2, c-Myc, and Klf4 (called commonly "Yamanaka factors") for the conversion of differentiated cells, back to the pluripotent/embryonic stage, has opened virtually endless and ethically acceptable source of stem cells for medical use. Various types of stem cells are becoming increasingly popular as starting components for the development of replacement tissues, or artificial organs. Interestingly, many of the transcription factors, key to the maintenance of stemness phenotype in various cells, are also overexpressed in cancer (stem) cells, and some of them may find the use as prognostic factors. In this review, we describe various methods of iPS creation, followed by overview of factors known to interfere with the efficiency of reprogramming. Next, we discuss similarities between cancer stem cells and various stem cell types. Final paragraphs are dedicated to interaction of biomaterials with tissues, various adverse reactions generated as a result of such interactions, and measures available, that allow for mitigation of such negative effects.
Collapse
Affiliation(s)
- Agata M Wasik
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Jerzy Grabarek
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Aleksandar Pantovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, and Clinic of Neurology, Military Medical Academy, Belgrade, Serbia
| | - Artur Cieślar-Pobuda
- Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology, and Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden; Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | | | - Caspar Bundgaard-Nielsen
- Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology, and Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden; Laboratory for Stem Cell Research, Aalborg University, Aalborg, Denmark
| | - Mehrdad Rafat
- Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology, and Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden; Department of Biomedical Engineering (IMT), Linköping University, Linköping, Sweden
| | - Ian M C Dixon
- Department of Physiology, St. Boniface Research Centre, and Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Canada
| | - Saeid Ghavami
- Department of Physiology, St. Boniface Research Centre, and Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Canada
| | - Marek J Łos
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland; Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology, and Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden; BioApplications Enterprises, Winnipeg, Manitoba, Canada.
| |
Collapse
|
40
|
Liu Y, Sánchez-Tilló E, Lu X, Huang L, Clem B, Telang S, Jenson AB, Cuatrecasas M, Chesney J, Postigo A, Dean DC. The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression. J Biol Chem 2013; 289:4116-25. [PMID: 24371144 DOI: 10.1074/jbc.m113.533505] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras mutations are frequent in cancer cells where they drive proliferation and resistance to apoptosis. However in primary cells, mutant Ras instead can cause oncogene-induced senescence, a tumor suppressor function linked to repression of the polycomb factor Bmi1, which normally regulates cell cycle inhibitory cyclin-dependent kinase inhibitors (cdki). It is unclear how Ras causes repression of Bmi1 in primary cells to suppress tumor formation while inducing the gene in cancer cells to drive tumor progression. Ras also induces the EMT transcription factor ZEB1 to trigger tumor invasion and metastasis. Beyond its well-documented role in EMT, ZEB1 is important for maintaining repression of cdki. Indeed, heterozygous mutation of ZEB1 is sufficient for elevated cdki expression, leading to premature senescence of primary cells. A similar phenotype is evident with Bmi1 mutation. We show that activation of Rb1 in response to mutant Ras causes dominant repression of ZEB1 in primary cells, but loss of the Rb1 pathway is a hallmark of cancer cells and in the absence of such Rb1 repression Ras induces ZEB1 in cancer cells. ZEB1 represses miR-200 in the context of a mutual repression loop. Because miR-200 represses Bmi1, induction of ZEB1 leads to induction of Bmi1. Rb1 pathway status then dictates the opposing effects of mutant Ras on the ZEB1-miR-200 loop in primary versus cancer cells. This loop not only triggers EMT, surprisingly we show it acts downstream of Ras to regulate Bmi1 expression and thus the critical decision between oncogene-induced senescence and tumor initiation.
Collapse
Affiliation(s)
- Yongqing Liu
- From the Molecular Targets Program, James Brown Cancer Center
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Iacovides D, Michael S, Achilleos C, Strati K. Shared mechanisms in stemness and carcinogenesis: lessons from oncogenic viruses. Front Cell Infect Microbiol 2013; 3:66. [PMID: 24400225 PMCID: PMC3872316 DOI: 10.3389/fcimb.2013.00066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/03/2013] [Indexed: 01/08/2023] Open
Abstract
A rise in technologies for epigenetic reprogramming of cells to pluripotency, highlights the potential of understanding and manipulating cellular plasticity in unprecedented ways. Increasing evidence points to shared mechanisms between cellular reprogramming and the carcinogenic process, with the emerging possibility to harness these parallels in future therapeutics. In this review, we present a synopsis of recent work from oncogenic viruses which contributes to this body of knowledge, establishing a nexus between infection, cancer, and stemness.
Collapse
Affiliation(s)
| | - Stella Michael
- Department of Biological Sciences, University of Cyprus Nicosia, Cyprus
| | - Charis Achilleos
- Department of Biological Sciences, University of Cyprus Nicosia, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus Nicosia, Cyprus
| |
Collapse
|
42
|
Zheng YW, Nie YZ, Taniguchi H. Cellular reprogramming and hepatocellular carcinoma development. World J Gastroenterol 2013; 19:8850-8860. [PMID: 24379607 PMCID: PMC3870535 DOI: 10.3748/wjg.v19.i47.8850] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/13/2013] [Accepted: 11/28/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers, and is also the leading cause of death worldwide. Studies have shown that cellular reprogramming contributes to chemotherapy and/or radiotherapy resistance and the recurrence of cancers. In this article, we summarize and discuss the latest findings in the area of cellular reprogramming in HCC. The aberrant expression of transcription factors OCT4, KLF4, SOX2, c-MYC, NANOG, and LIN28 have been also observed, and the expression of these transcription factors is associated with unfavorable clinical outcomes in HCC. Studies indicate that cellular reprogramming may play a critical role in the occurrence and recurrence of HCC. Recent reports have shown that DNA methylation, miRNAs, tumor microenvironment, and signaling pathways can induce the expression of stemness transcription factors, which leads to cellular reprogramming in HCC. Furthermore, studies indicate that therapies based on cellular reprogramming could revolutionize HCC treatment. Finally, a novel therapeutic concept is discussed: reprogramming control therapy. A potential reprogramming control therapy method could be developed based on the reprogramming demonstrated in HCC studies and applied at two opposing levels: differentiation and reprogramming. Our increasing understanding and control of cellular programming should facilitate the exploitation of this novel therapeutic concept and its application in clinical HCC treatment, which may represent a promising strategy in the future that is not restricted to liver cancer.
Collapse
|
43
|
Leal J, Lleonart M. MicroRNAs and cancer stem cells: Therapeutic approaches and future perspectives. Cancer Lett 2013; 338:174-83. [DOI: 10.1016/j.canlet.2012.04.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/21/2012] [Accepted: 04/25/2012] [Indexed: 12/25/2022]
|
44
|
Hajrasouliha AR, Jiang G, Lu Q, Lu H, Kaplan HJ, Zhang HG, Shao H. Exosomes from retinal astrocytes contain antiangiogenic components that inhibit laser-induced choroidal neovascularization. J Biol Chem 2013; 288:28058-67. [PMID: 23926109 DOI: 10.1074/jbc.m113.470765] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exosomes released from different types of host cells have different biological effects. We report that exosomes released from retinal astroglial cells (RACs) suppress retinal vessel leakage and inhibit choroidal neovascularization (CNV) in a laser-induced CNV model, whereas exosomes released from retinal pigmental epithelium do not. RAC exosomes inhibit the migration of macrophages and the tubule forming of mouse retinal microvascular endothelial cells. Further, we analyzed antiangiogenic components in RAC exosomes using an angiogenesis array kit and detected several endogenous inhibitors of angiogenesis exclusively present in RAC exosomes, such as endostatin. Moreover, blockade of matrix metalloproteinases in the cleavage of collagen XVIII to form endostatin using FN-439 reverses RAC exosome-mediated retinal vessel leakage. This study demonstrates that exosomes released from retinal tissue cells have different angiogenic effects, with exosomes from RACs containing antiangiogenic components that might protect the eye from angiogenesis and maintain its functional integrity. In addition, by identifying additional components and their functions of RAC exosomes, we might improve the antiangiogenic therapy for CNV in age-related macular degeneration and diabetic retinopathy.
Collapse
|
45
|
Liu Y, Mukhopadhyay P, Pisano MM, Lu X, Huang L, Lu Q, Dean DC. Repression of Zeb1 and hypoxia cause sequential mesenchymal-to-epithelial transition and induction of aid, Oct4, and Dnmt1, leading to immortalization and multipotential reprogramming of fibroblasts in spheres. Stem Cells 2013; 31:1350-62. [PMID: 23554223 PMCID: PMC4265806 DOI: 10.1002/stem.1382] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/06/2013] [Indexed: 12/26/2022]
Abstract
In this study, we demonstrate that sphere formation triggers immortalization and stable reprogramming of mouse fibroblasts. Cell contact signaling in spheres causes downregulation of the epithelial-to-mesenchymal transition transcription factor Zeb1 leading to rapid mesenchymal-to-epithelial transition. Hypoxia within spheres together with loss of Zeb1 repression synergize to cause superinduction of Hif1a, which in turn leads to induction of the DNA demethylase Aid/Aicda, demethylation of the Oct4 promoter/enhancer and multipotency. Oct4 and Nanog expression diminish when cells are removed from the hypoxic environment of spheres and placed in monolayer culture, but the cells retain multipotential capacity, demonstrating stable reprogramming and a gene expression pattern resembling adult stem cells. Oct4 has been shown to induce Dnmt1 in mesenchymal stem cells, and we link Oct4 and Dnmt1 to silencing of cell cycle inhibitory cyclin dependent kinase inhibitors and Arf, and immortalization of the reprogrammed fibroblasts. Sphere formation then represents a novel and rapid protocol for immortalization and stable reprogramming of fibroblasts to multipotency that does not require exogenous expression of a stem cell factor or a lineage-specifying transcription factor.
Collapse
Affiliation(s)
- Yongqing Liu
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202
- Department of Ophthalmology, University of Louisville Health Sciences Center, Louisville, KY 40202
- Birth Defects Center, University of Louisville Health Sciences Center, Louisville, KY 40202
| | - Partha Mukhopadhyay
- Birth Defects Center, University of Louisville Health Sciences Center, Louisville, KY 40202
| | - M. Michele Pisano
- Birth Defects Center, University of Louisville Health Sciences Center, Louisville, KY 40202
| | - Xiaoqin Lu
- Department of Ophthalmology, University of Louisville Health Sciences Center, Louisville, KY 40202
| | - Li Huang
- Department of Ophthalmology, University of Louisville Health Sciences Center, Louisville, KY 40202
- School of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qingxian Lu
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202
- Department of Ophthalmology, University of Louisville Health Sciences Center, Louisville, KY 40202
| | - Douglas C. Dean
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202
- Department of Ophthalmology, University of Louisville Health Sciences Center, Louisville, KY 40202
- Department of Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40202
- Birth Defects Center, University of Louisville Health Sciences Center, Louisville, KY 40202
| |
Collapse
|
46
|
ATM mediates pRB function to control DNMT1 protein stability and DNA methylation. Mol Cell Biol 2013; 33:3113-24. [PMID: 23754744 DOI: 10.1128/mcb.01597-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The retinoblastoma tumor suppressor gene (RB) product has been implicated in epigenetic control of gene expression owing to its ability to physically bind to many chromatin modifiers. However, the biological and clinical significance of this activity was not well elucidated. To address this, we performed genetic and epigenetic analyses in an Rb-deficient mouse thyroid C cell tumor model. Here we report that the genetic interaction of Rb and ATM regulates DNMT1 protein stability and hence controls the DNA methylation status in the promoters of at least the Ink4a, Shc2, FoxO6, and Noggin genes. Furthermore, we demonstrate that inactivation of pRB promotes Tip60 (acetyltransferase)-dependent ATM activation; allows activated ATM to physically bind to DNMT1, forming a complex with Tip60 and UHRF1 (E3 ligase); and consequently accelerates DNMT1 ubiquitination driven by Tip60-dependent acetylation. Our results indicate that inactivation of the pRB pathway in coordination with aberration in the DNA damage response deregulates DNMT1 stability, leading to an abnormal DNA methylation pattern and malignant progression.
Collapse
|
47
|
Menendez JA, Joven J, Cufí S, Corominas-Faja B, Oliveras-Ferraros C, Cuyàs E, Martin-Castillo B, López-Bonet E, Alarcón T, Vazquez-Martin A. The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells. Cell Cycle 2013; 12:1166-79. [PMID: 23549172 DOI: 10.4161/cc.24479] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
When fighting cancer, knowledge on metabolism has always been important. Today, it matters more than ever. The restricted cataloging of cancer genomes is quite unlikely to achieve the task of curing cancer, unless it is integrated into metabolic networks that respond to and influence the constantly evolving cancer stem cell (CSC) cellular states. Once the genomic era of carcinogenesis had pushed the 1920s Otto Warburg's metabolic cancer hypothesis into obscurity for decades, the most recent studies begin to support a new developing paradigm, in which the molecular logic behind the conversion of non-CSCs into CSCs can be better understood in terms of the "metabolic facilitators" and "metabolic impediments" that operate as proximate openings and roadblocks, respectively, for the transcriptional events and signal transduction programs that ultimately orchestrate the intrinsic and/or microenvironmental paths to CSC cellular states. Here we propose that a profound understanding of how human carcinomas install a proper "Warburg effect version 2.0" allowing them to "run" the CSCs' "software" programs should guide a new era of metabolo-genomic-personalized cancer medicine. By viewing metabolic reprogramming of CSCs as an essential characteristic that allows dynamic, multidimensional and evolving cancer populations to compete successfully for their expansion on the organism, we now argue that CSCs bioenergetics might be another cancer hallmark. A definitive understanding of metabolic reprogramming in CSCs may complement or to some extent replace, the 30-y-old paradigm of targeting oncogenes to treat human carcinomas, because it can be possible to metabolically create non-permissive or "hostile" metabotypes to prevent the occurrence of CSC cellular states with tumor- and metastasis-initiating capacity.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology-Girona (ICO-Girona), Girona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The effect of forced growth of cells into 3D spheres using low attachment surfaces on the acquisition of stemness properties. Biomaterials 2013; 34:3215-22. [DOI: 10.1016/j.biomaterials.2013.01.044] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/07/2013] [Indexed: 01/16/2023]
|
49
|
Liu Y, Sánchez-Tilló E, Lu X, Huang L, Clem B, Telang S, Jenson AB, Cuatrecasas M, Chesney J, Postigo A, Dean DC. Sequential inductions of the ZEB1 transcription factor caused by mutation of Rb and then Ras proteins are required for tumor initiation and progression. J Biol Chem 2013; 288:11572-80. [PMID: 23443660 DOI: 10.1074/jbc.m112.434951] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rb1 restricts cell cycle progression, and it imposes cell contact inhibition to suppress tumor outgrowth. It also triggers oncogene-induced senescence to block Ras mutation. Loss of the Rb1 pathway, which is a hallmark of cancer cells, then provides a permissive environment for Ras mutation, and Ras is sufficient for invasive tumor formation in Rb1 family mutant mouse embryo fibroblasts (MEFs). These results demonstrate that sequential mutation of the Rb1 and Ras pathways comprises a tumor initiation axis. Both Rb1 and Ras regulate expression of the transcription factor ZEB1, thereby linking tumor initiation to the subsequent invasion and metastasis, which is induced by ZEB1. ZEB1 acts in a negative feedback loop to block expression of miR-200, which is thought to facilitate tumor invasion and metastasis. However, ZEB1 also represses cyclin-dependent kinase (cdk) inhibitors to control the cell cycle; its mutation in MEFs leads to induction of these inhibitors and premature senescence. Here, we provide evidence for two sequential inductions of ZEB1 during Ras transformation of MEFs. Rb1 constitutively represses cdk inhibitors, and induction of ZEB1 when the Rb1 pathway is lost is required to maintain this repression, allowing for the classic immortalization and loss of cell contact inhibition seen when the Rb1 pathway is lost. In vivo, we show that this induction of ZEB1 is required for Ras-initiated tumor formation. ZEB1 is then further induced by Ras, beyond the level seen with Rb1 mutation, and this Ras superinduction is required to reach a threshold of ZEB1 sufficient for repression of miR-200 and tumor invasion.
Collapse
Affiliation(s)
- Yongqing Liu
- Molecular Targets Program, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sánchez-Tilló E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A, Postigo A. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 2012; 69:3429-56. [PMID: 22945800 PMCID: PMC11115078 DOI: 10.1007/s00018-012-1122-2] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 12/13/2022]
Abstract
Cancer is a complex multistep process involving genetic and epigenetic changes that eventually result in the activation of oncogenic pathways and/or inactivation of tumor suppressor signals. During cancer progression, cancer cells acquire a number of hallmarks that promote tumor growth and invasion. A crucial mechanism by which carcinoma cells enhance their invasive capacity is the dissolution of intercellular adhesions and the acquisition of a more motile mesenchymal phenotype as part of an epithelial-to-mesenchymal transition (EMT). Although many transcription factors can trigger it, the full molecular reprogramming occurring during an EMT is mainly orchestrated by three major groups of transcription factors: the ZEB, Snail and Twist families. Upregulated expression of these EMT-activating transcription factors (EMT-ATFs) promotes tumor invasiveness in cell lines and xenograft mice models and has been associated with poor clinical prognosis in human cancers. Evidence accumulated in the last few years indicates that EMT-ATFs also regulate an expanding set of cancer cell capabilities beyond tumor invasion. Thus, EMT-ATFs have been shown to cooperate in oncogenic transformation, regulate cancer cell stemness, override safeguard programs against cancer like apoptosis and senescence, determine resistance to chemotherapy and promote tumor angiogenesis. This article reviews the expanding portfolio of functions played by EMT-ATFs in cancer progression.
Collapse
Affiliation(s)
- Ester Sánchez-Tilló
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
| | - Yongqing Liu
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- Department of Ophthalmology and Birth Defects Center, Louisville Health Science Center, Louisville, KY 40202 USA
| | - Oriol de Barrios
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
| | - Laura Siles
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
| | - Lucia Fanlo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- Master Program in Biomedical Research, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Miriam Cuatrecasas
- Department of Pathology, Hospital Clinic and IDIBAPS’ Tumor Bank, 08036 Barcelona, Spain
| | - Douglas S. Darling
- Department of Oral Health and Rehabilitation, Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY 40202 USA
| | - Douglas C. Dean
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- Department of Ophthalmology and Birth Defects Center, Louisville Health Science Center, Louisville, KY 40202 USA
| | - Antoni Castells
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
- Institute of Digestive and Metabolic Diseases, Hospital Clinic, 08036 Barcelona, Spain
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- ICREA, 08010 Barcelona, Spain
| |
Collapse
|